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Abstract— In this paper we provide a theoretical
foundation for the problem of network localization in
which some nodes know their locations and other nodes
determine their locations by measuring distances or
bearings to their neighbors. Distance information is the
separation between two nodes connected by a sens-
ing/communication link. Bearing is the angle between
a sensing/communication link and the x-axis of a node’s
local coordinate system. We construct grounded graphs
to model network localization and apply graph rigidity
theory and parallel drawings to test the conditions
for unique localizability and to construct uniquely
localizable networks. We further investigate partially
localizable networks.

I. I NTRODUCTION

Location service is a basic service of many emerg-
ing computing/networking paradigms. In sensor net-
works, the sensor nodes need to know their locations
in order to detect and record events, or to route packets
using geometric-aware routing. In the case of generic
ad hoc networks, position of the nodes is not always
a requirement, but when it is available, more efficient
implementation of network services is possible. For
example, in pervasive computing knowing the loca-
tions of the computers and the printers in a building
will allow a computer to send a printing job to the
nearest printer [17].

In most cases, sensors are deployed without their
position information known in advance, and there is no
supporting infrastructure available to locate them after
deployment. Sensor network protocols and algorithms
must possess self-organizing capabilities [1]. It is
necessary to find an alternative approach to identify
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the position of each sensor in wireless sensor networks
after deployment. One method to determine the loca-
tion of a node is manual configuration. However, this
is unlikely to be feasible for any large-scale deploy-
ment or when nodes move often. Self positioning can
be achieved by means of Global Positioning System
(GPS). GPS has been widely used for positioning
service. Although it is possible to find the position
of each sensor in a wireless sensor network with
the aid of GPS installed in all sensors, it is not
practical to use because it is costly both in terms of
hardware and power requirements. Furthermore, since
GPS requires line-of-sight between the receiver and
the satellites, it may not work well in buildings or in
the presence of obstructions such as dense vegetation,
foliage, or mountains blocking the direct view to the
GPS satellites.

In the general model of wireless ad-hoc sensor
network, there are usually some landmarks or nodes
named beacons(also called anchor nodes), whose
position information is known, within the area to
facilitate locating all sensors in a sensor network.
Those beacons have either GPS or they are manually
configured. For the rest of the nodes two types of node
capabilities are considered in this paper: distance mea-
surements (also called ranging) and bearing measure-
ments (also called angle of arrival (AOA)). Distance
measurements provide the possibility for a node to
measure distance to neighbors. If two nodesi and
j have a sensing/communication link between each
other as shown in Figure 1, thenbearing information
for i and j, denoted byθij and θji respectively, are
the angles between thex-axis of each node’s local
coordinate system and the communication link(i, j).
If each node uses its own coordinate system and is not
aware of other nodes’ coordinate systems, then nodes
will not be able to reach a consensus to make use
of the bearing information. In real implementations of
bearing information, the information about a global
coordinate system(xG, yG) is either known by all
nodes or is transmitted from beacons to ordinary nodes
[13]. This is done by passing “heading” information



Fig. 1.

Fig. 2.

from one node to another. Byheading is meant the
angle between they-axis of the global coordinate
system and thex-axis of the node’s local coordinate
system. For example,φi is the heading ofi in Figure
2. Once nodei passes the informationφi and θij

to nodej, then nodej can compute its heading by
φj = π−(θij−φi)+θji. Once nodes know the global
coordinate system, they can transform the bearing
information measured in their local coordinate systems
(θij and θji) into bearing information in the global
coordinate system (Θij and Θji) as shown in Figure
3. We note thatΘji = π + Θij .

For bearing measurement capability, each node in

Fig. 3.

the network is assumed to have one main axis against
which all bearings are reported and the capacity to
estimate with a given precision the direction from
which a neighbor is sending data. It is assumed that
after the deployment, the axis of the node has an
arbitrary, unknown heading. A node can infer its
heading, if heading of one of its of the neighbors is
known. If no compass is available in any node, but
each node knows its position, heading can still be
found [13].

Bearing capability is achieved by various technolo-
gies, some of which might be prohibitive in size
and power consumption. A small form factor node
that satisfies the conditions outlined above has been
developed at MIT by the Cricket Compass project
[14]. These nodes indicate that it is feasible to obtain
bearing capability in a small package that would be
appropriate for future pervasive ad hoc networks.

The process of computing the locations of the nodes
is called network localization. It has been studied in
other research areas such as robotics. In the context of
sensor networks, some of the challenges are the size
and the power of individual sensor nodes. Recently,
novel schemes have been proposed to determine the
locations of the nodes in a network where only some
special nodes (beacons) know their locations. In these
schemes, network nodes measure the distances or
bearings to their neighbors and then try to determine
their locations [13], [2], [12].

Although the designs of the previous schemes have
demonstrated great engineering ingenuity, and their
effectiveness is verified through extensive simulations,
some fundamental questions have not been addressed;
as a result, the previous schemes are mainly heuristic-
based and a full theoretical foundation of network
localization is still lacking. Specifically, we identified
the following fundamental question in [5]: What are
the conditions for unique network localizability? Al-
though the network localization problem has already
been studied extensively, the precise conditions under
which the network localization problem is solvable
are not known. In [5], we investigated sensor net-
works with distance information. Here we extend our
analysis for sensor networks with both distance and
bearing information. Furthermore we also investigate
localization in subnetworks.

We address the unique localizability question using
graph rigidity theory. More specifically, we propose
grounded graphs. In these graphs, each vertex repre-
sents a network node, and two vertices in the graph are



connected if the distance between the two is known,
i.e., when the distance between the two nodes is
measured or when the two nodes are beacon nodes and
thus their distance is implicitly known. Given our con-
struction of grounded graphs, we show that a network
has a unique localization if and only if its correspond-
ing grounded graph is generically globally rigid. By
observing this connection, we are able to apply the
results from the graph-rigidity literature to network
localization. In [5] we proposed inductive sequences
for constructing uniquely localizable networks, both
in the plane and in 3- space. By following these
sequences, a designer of a network can be assured
that the constructed network is uniquely localizable,
thus avoiding expensive trial-and-error procedures.

To reduce the computational and communication
complexity of localization, which is important in set-
tings such as sensor networks, we studied a class of
graphs called trilateration graphs [5]. We showed that
trilateration graphs are uniquely localizable and the
locations of the nodes can be computed efficiently.
Here we extend our previous work in [5] for networks
with bearing information. Furthermore we analyze
localization in subnetworks. A longer version of this
paper is available as a technical report [6].

The rest of this paper is organized as follows. The
specific network localization problem to be addressed
is formulated in Section II. The concepts of rigidity
and global rigidity are discussed in Section III. In
Section IV, we study rigidity for sensor networks with
bearing information. In Section V, we study localiza-
tion for subnetworks. Our conclusion and future work
are in Section VI.

II. FORMULATION

A. The Network Localization Problem

The “network localization problem with distance
information” can be formulated as follows. One begins
with a networkN in reald-dimensional space{d = 2}
consisting of a set ofm > 0 nodes labelled1 through
m which represent “beacons” together withn−m > 0
additional nodes labelledm + 1 through n which
represent sensors. Each node is located at a fixed
position inIRd and has associated with it a specific set
of “neighboring” nodes. Although a node’s neighbors
are typically defined to be all other nodes within some
specified range, other definitions could also be used.
The essential property we will require in this paper
is that the definition of a neighbor be a symmetric
relation on{1, 2, . . . , n} in the sense that nodej is

a neighbor of nodei if and only if node i is also
a neighbor of nodej. Under these conditionsN’s
neighbor relationships can be conveniently described
by an undirected graphGN = {V, EN} with vertex
setV = {1, 2, . . . , n} and edge setEN defined so that
(i, j) is one of the graph’s edges just in case nodes
i and j are neighbors. We assume throughout, that
GN is a connected graph. Thenetwork localization
problem with distance informationis to determine
the locationsxi of all sensor nodes inIRd given the
graph of the networkGN, the positions of the beacons
xj , j ∈ {1, 2, . . . ,m} in IRd, and the distanceδN(i, j)
between each neighbor pair(i, j) ∈ EN.

The “network localization problem with bearing
information” can be formulated in a similar way. The
only difference is that instead of having the distance
δN(i, j) between each neighbor pair(i, j) ∈ EN, we
now have bearingsβN(i, j) between each neighbor
pair (i, j) ∈ EN. Note that there are two bearing
information for each edge, one is measured by one
of the nodes and the other is measured by the other
node on the other side of the edge.

The network localization problem just formulated is
said to besolvableif there is exactly one set of vectors
{xm+1, . . . xn} in IRd which is consistent with the
given dataGN, {x1, x2, . . . , xm}, andδN : EN → IR
(for bearingsβN : EN → [0, 2π)). In this paper
we will be concerned with “generic” solvability of
the problem which means, roughly speaking, that the
problem should be solvable not only for the given
data but also for slightly perturbed but consistent
versions of the given data. It is possible to make
precise what generic solvability means as follows.
Fix GN and let e1, e2, . . . , eq denote the edges in
EN. Note that for any set ofn points y1, y2, . . . , yn

in IRd there is a unique distance vectorz whose
kth component is the distance betweenyi and yj

where (i, j) = ek. This means that there is a well-
defined functionf : IRnd → IR(md+q) mapping
{y1, y2, . . . , yn} 7−→ {y1, y2, . . . , ym, z}. Solvability
of the network localization problem is equivalent to
f being injective{at {x1, x2, . . . , xn}} in the sense
that the only set of points{y1, y2, . . . , yn} ∈ IRnd

for which f(y1, y2, . . . , yn) = f(x1, x2, . . . , xn) is
{y1, y2, . . . , yn} = {x1, x2, . . . , xn}. In this context
it is natural to say that the network localization prob-
lem is generically solvableat {x1, x2, . . . , xn} if it
is solvable at each point in an open neighborhood
of {x1, x2, . . . , xn}. In other words, the localization
problem is solvable at{x1, x2, . . . , xn} if there is an



open neighborhood of{x1, x2, . . . , xn} on whichf is
an injective function.

B. Point Formations

To study the solvability of the network localization
problem, we reformulate the problem in terms of a
“point formation.” As we shall see, the point forma-
tion relevant to the network localization problem has
associated with it a graph with the same vertices as
GN but with a slightly larger edge set which includes
“links” or edges from every beacon to every other. It is
a property of this graph rather thanGN which proves
to be central to solvability of the localization problem
under consideration. We begin by reviewing the point
formation concept.

By a d-dimensional point formation at p ,
column {p1, p2, . . . , pn}, written Fp, is meant a set
of n points{p1, p2, . . . , pn} in IRd together with a set
L of k links, labelled(i, j), wherei andj are distinct
integers in{1, 2, . . . , n}; the length of link (i, j) is
the Euclidean distance between pointpi and pj . The
idea of a point formation is essentially the same as
the concept of a “framework” studied in mathematics
[15], [18] as well as within the theory of structures in
mechanical and civil engineering. For our purposes, a
point formationFp = ({p1, p2, . . . , pn},L) provides a
natural high-level model for ann-node sensor network
in real 2- or 3- dimensional space. In this context, the
points pi represent the positions of nodes{i.e., both
sensors and beacons} in IRd and the links inL label
those specific node pairs whose inter-node distances
are given.

Thus for the sensor network discussed above,L
would consist of not only all pairs inEN, but also
all additional beacon pairs(i, j), i, j ∈ {1, 2, . . . , m}
since the distances between pairs of beacons are
uniquely specified by their position vectors which are
given.

A point formation Fp , (p, E) provides a way
of representing a formation ofn nodes. p ,
{p1, p2, . . . , pn} and the pointspi represent the posi-
tions of nodes inRd {d = 2 or 3} wherei is an integer
in {1, 2, . . . , n} and denotes the labels of nodes.
E is the set of “maintenance links,” labelled(i, j),
where i and j are distinct integers in{1, 2, . . . , n}.
The maintenance linksin E correspond to constraints
between specific nodes, such as distances and bear-
ings, which are to be maintained over time by using
sensing/communication links between certain pairs of
nodes. Each point formationFp uniquely determines a

graphGFp
, (V, E) with vertex setV , {1, 2, . . . , n},

which is the set of labels of nodes, and edge setE . We
will denote the set of maintenance links with distance
constraints byL, the set of maintenance links with
bearing constraints byB. A formation with distance
constraints can be represented by(V,L, f) wheref :
L 7−→ R. Each maintenance link(i, j) ∈ L is used to
maintain the distancef((i, j)) between certain pairs of
nodes fixed. A formation with bearing constraints can
be represented by(V,B, g) whereg : B 7−→ [0, 2π).
Each maintenance link(i, j) ∈ B is used to maintain
the bearingg((i, j)) of the line joining certain pairs
of nodes fixed with respect to a reference coordinate
system. Let us note that the distance function ofFp

is the same as the distance function of any point
formation Fq with the same graph asFp provided q
is congruentto p in the sense that there is a distance
preserving mapT : IRd → IRd such thatT (qi) =
pi, i ∈ {1, 2, . . . , n}. In the sequel we will say that
two point formationsFp andFq arecongruentif they
have the same graph and ifq andp are congruent. It is
clear thatFp is uniquely determined by its graph and
distance functionat mostup to a congruence transfor-
mation. A formation which isexactlydetermined up to
congruence by its graph and distance function is called
“globally rigid.” More precisely, ad-dimensional point
formation Fp is said to beglobally rigid if each d-
dimensional point formationFq with the same graph
and distance function asFp is congruent toFp. It is
clear then any formation whose graph is complete is
globally rigid. The following simple generalizations
of this fact provide sufficient conditions for global
rigidity which are especially relevant to the network
localization problem.

Lemma 1.

Let Fp = ({p1, p2, . . . , pn},L) be a formation inIR2

which contains three pointspa, pb, and pc which are
not co-linear. Suppose that the formation consisting
of these three points and all links fromFp which
connect pairs of these three points, has a graph which
is complete. ThenFp is globally rigid if and only if
it is the onlyn-point formation inIR2 which contains
these three points and has link setL.

These properties are direct consequences respectively
of the fact that the identity onIR2 is the only distance
preserving mapT : IR2 → R2 which leavespa, pb,
andpc unchanged. A proof of the lemma will not be
given.



C. Solvability of the Network Localization Problem

With previous definition of point formations, we
can now restate the network localization problem in
terms of its associated point formationFx. In the
present context, the problem is to determineFx, given
the graph and distance function ofFx as well as the
beacon position vectorsx1, x2, . . . , xm. Solvability of
the problem demands thatFx be globally rigid; for if
Fx were not globally rigid it would be impossible to
determineFx up to congruence, let alone to determine
it uniquely. AssumingFx is globally rigid, solvability
of the sensor network localization problem reduces to
making sure that the group of transformationsT which
leaves the set{x1, x2, . . . , xm} unchanged – namely
distance preserving transformationsT : IRd → IRd

for which T (xi) = xi, i ∈ {1, 2, . . . , m} – also
leaves unchanged the set{xm+1, . . . , xn}. About the
easiest way to guarantee this inIR2 is to require
{x1, x2, . . . , xm} to contain three vectorsxi1 , xi2 , xi3

which are not co-linear; for if this is so, then the
only distance preserving transformation which leaves
{x1, x2, . . . , xm} unchanged is the identity map on
IR2. Similarly, if in IR3 {x1, x2, . . . , xm} contains at
least four vectors which are not co-planar, thenT will
again be an identity map, in this case onIR3. We
summarize.

Theorem 2. Let N be a sensor network inIRd,
{d = 2 or 3}, consisting ofm > 0 beacons located
at positionsx1, x2, . . . , xm and n − m > 0 sensors
located positionsxm+1, . . . , xn. Suppose that for the
cased = 2 there are at least three beacons which
are not positioned in a single line. LetFx denote the
point formation whose points are atx1, x2, . . . , xn and
whose links are those labelling all neighbor pairs and
all beacon pairs inN. Then for bothd = 2 andd = 3
the sensor network localization problem is solvable if
and only ifFx is globally rigid.

III. R IGIDITY AND GLOBAL RIGIDITY

In the previous section, we established that under
certain mild conditions, the solvability of the network
localization problem is equivalent to the “global rigid-
ity” of a suitably defined point formation. We study
rigidity and global rigidity in this section.

One way of visualizing rigidity is to imagine a
collection of rigid bars connected to one another by
idealized ball joints, which is called a bar-joint frame-
work. By an idealized ball joint we mean a connection
between a collection of bars which imposes only the

restriction that the bars share common endpoints. Now,
can the bars and joints be moved in a continuous
manner without changing the lengths of any of the
bars, where translations and rotations do not count? If
so, the framework is flexible; if not, it is rigid. (Precise
definitions will appear in the sequel.) In a bar-joint
framework, the length of a bar imposes a distance
constraint for both end-joints. This is the same situa-
tion in a formation where two nodes connected by a
sensing/communication link are mutually affected by
the information conveyed by this link. For example,
if two nodes connected by a sensing/communication
link are set to maintain a ten meter distance between
each other, then both nodes perform action to maintain
this distance. In the graph theoretic setting, the edge
corresponding to this link is denoted by an undirected
edge.

A trajectoryof a formation is a continuously param-
eterized one-parameter family of curves(q1(t), q2(t),
..., qn(t)) in Rnd which containp and on which for
eacht, Fq(t) is a formation with the same measured
values underf, g. A rigid motion is a trajectory along
which point formations contained in this trajectory
are congruent to each other. We will say that two
point formationsFp and Fr, where p, r ∈ q(t), are
congruent if they have the same graph and ifp and
r are congruent.p is congruentto r in the sense that
there is a distance-preserving mapT : IRd → IRd such
that T (ri) = pi, i ∈ {1, 2, . . . , n}. If rigid motions
are the only possible trajectories then the formation is
called rigid; otherwise it is calledflexible [4].

A parallel rigid motion is a trajectory along which
point formations contained in this trajectory are trans-
lations or dilations of each other. Two point formations
Fp andFr areparallel if they have the same graph and
their corresponding maintenance links are parallel to
each other. If parallel rigid motions are the only pos-
sible trajectories then the formation is calledparallel
rigid, otherwiseparallel flexible.

As we’ve already stated, ad-dimensional point
formation Fp is globally rigid if eachd-dimensional
point formationFq with the same graph and distance
function asFp is congruent toFp. In order to clearly
understand what global rigidity means we need sev-
eral other concepts whose roots can be found in the
classical theory of structures.

A. Rigidity

Let Fp be d-dimensional point formation. Even
though the nodes in the networks we are considering



are in fixed positions, it is useful to consider trajec-
tories of such formations. By atrajectory of Fp is
meant a continuously parameterized, one-parameter
family of points {q(t) : t ≥ 0} in IRnd which
containsp. It is natural to say that such a formation
undergoesrigid motionalong a trajectoryq([0,∞)) ,
column{q1(t), q2(t), . . . , qn(t)} : t ≥ 0} if the Eu-
clidean distance between each pair of pointsqi(t)
and qj(t) remains constant all along the trajectory.
Let us note thatFp undergoes rigid motion along a
trajectory q([0,∞)) just in case each pair of points
q(t1), q(t2) ∈ q([0,∞)) are congruent. The set of
pointsMp in IRdn which are congruent top is known
to be a smooth manifold [15]. It is clear that any
trajectory along whichFp undergoes rigid motion must
lie completely withinMp; conversely any trajectory
of Fp which lies withinMp is one along whichFp

undergoes rigid motion.
A formation Fp is rigid if rigid motion is the only

kind of motion it can undergo along any trajectory on
which the lengths of all links inL remain constant.
Thus if Fp is rigid, its points “remain in formation”
provided that the lengths of all of the formation’s links
do not change as the formation moves. As we’ve al-
ready noted, for sensor localization we need networks
whose point formations are uniquely determined up
to congruence by their graphs and distance functions.
Unfortunately rigidity is not a strong enough property
of a formation to ensure that this is so. In other words
it is possible to construct two rigid formationsFp and
Fq which both have the same graph and distance func-
tion, but are not congruent. The subtly here stems from
the fact that rigidity ofFp stipulates that only those
formations encountered on trajectories containingFp

be congruent toFp. Unfortunately there are formations
with the same graph and distance function asFp which
cannot be reached fromFp on any trajectory; such
formations are typically not congruent toFp. From a
different perspective, a rigid formation is a formation
which is impossible tocontinuouslydeform while
holding fixed the lengths of all of its links. There
are examples of rigid formations which can indeed
be deformed, but not continuously; such formations
are rigid but not globally rigid. In the end, the key
feature which distinguishes globally rigid formations
from all others including those which are merely rigid,
is that the former cannot be deformed by any means
whatever, continuous or not, whereas the latter always
can.

An example of a rigid formation which can be

deformed discontinuously, is shown in Figure 4(a).
Observe that a discontinuous deformation can be ob-
tained by reflecting the triangle formed by pointsa,
b, andc about the line determined by pointsa andb.
The resulting rigid formation is shown in Figure 4(b).

(b)

d

a b

c

d

c

a b

(a)

Fig. 4. Two rigid formations with the same graph and
distance function

Adding a link from pointc to d in Figure 4(a) would
make the formation globally rigid. An example of a
globally rigid formation whose graph is not complete
is shown in Figure 5.

e

c

a

d

b

Fig. 5. A globally rigid formation

B. Conditions for Rigidity

The question of whether or not a given formation
is rigid has been studied for a long time [15], [18],
[11]. One starts by examining what happens to a
given formationFp = ({p1, p2, . . . , pn},L), along
trajectory{q1(t), q2(t), . . . , qn(t)} : t ≥ 0} on which
the Euclidean distancesδ(i, j) , ||pi − pj || between
pairs of points(qi, qj) for which (i, j) is a link, are
constant. Thus along such a trajectory(qi − qj)′(qi −
pj) = δ(i, j)2, (i, j) ∈ L, t ≥ 0. Assuming a smooth
trajectory, these equations can be differentiated to get
(qi − qj)′(q̇i − q̇j) = 0, (i, j) ∈ L, t ≥ 0. These
equations can be rewritten in matrix form as

R(q)q̇ = 0 (1)

where q̇ = column {q̇1, q̇2, . . . , q̇n}, and R(q) is a
specially structuredm × dn array called arigidity
matrix.



Example 3. Consider a planar point formationFp

shown in Figure 6. This has a rigidity matrix as shown
in Table I.

If adding a link(i, j) does not increase the rank of
the rigidity matrix, then we call(i, j) an implicit link
(implicit edgein the underlying graph).

Let Mp be the manifold of points congruent top.
Because any trajectory ofFp which lies withinMp,
is one along whichFp undergoes rigid motion, (1)
automatically holds along any trajectory which lies
within Mp. From this, it follows that the tangent space
toMp atp, writtenTp, must be contained in the kernel
of R(p). If the points p1, p2, . . . , pn are in general
position (which means that the pointsp1, p2, . . . , pn do
not lie on any hyperplane inIRn), thenMp is n(n +
1)/2 dimensional since it arises from then(n− 1)/2-
dimensional manifold of orthogonal transformations of
IRn and then-dimensional manifold of translations of
IRn [15]. ThusMp is 6-dimensional forFp in IR3, and
3-dimensional forFp in IR2. We haverank R(p) =
nd− dimension kernelR(q) ≤ nd− n(n + 1)/2. We
have the following theorem [15], [19]:

Theorem 4. AssumeFp is a formation with at least
d points ind-dimensional space{d = 2, or 3} where
rank R(p) = max{rank R(x) : x ∈ IRd}. Fp is rigid
in IRd if and only if

rank R(p) =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

This theorem leads to the notion of the “generic”
behavior of rigidity. When the rank is less than the
maximum, the formation may still be rigid. However
this type of rigidity lacks the generic behavior and
thus is not addressed in this paper.

It is possible to characterize generic rigidity in
terms of the “generic rank” ofR where by R’s
generic or maximal rank we mean the largest value
of rank{R(q)} as q ranges over all values inIRnd.
The following theorem is due to Roth [15].

Fig. 6. A planar point formation.

Theorem 5. A formationFp is generically rigid if and
only if

generic rank {R(p)} =

{
2n− 3 if d = 2,

3n− 6 if d = 3.

To understand this type of rigidity, it is useful
to observe that the set of pointsp that satisfy the
condition rank R(p) = max{rank R(x) : x ∈ IRd} is
a dense open subset ofIRnd [15]. Thus, a generically
rigid point formationFp is rigid for almost all points
in the neighborhood of points aboutp in IRdn. The
concept of generic rigidity does not depend on the
precise distances between the points ofFp but exam-
ines how well the rigidity of formations can be judged
by knowing the vertices and their incidences, in other
words, by knowing the underlying graph. For this
reason, it is a desirable specialization of the concept
of a “rigid formation” for our purposes. We have the
following theorem for a generically rigid graph [18]:

Theorem 6. The following are equivalent:
1) a graphG = (V,L) is generically rigid ind-

dimensional space (d = 2, 3);
2) for somep, the formationFp with the underlying

graphG is generically rigid;
3) for almost all p, the formationFp with the

underlying graphG is generically rigid.

A point formationFp is strongly generically rigid
if it is generically rigid and if rank R(p) =
generic rank {R}. Hence, a strongly generically rigid
formation is rigid and it remains rigid under small
perturbations. This is the type of rigidity that is useful
for our purposes.

It is easy to see that all the entries inR(p) are
polynomial {actually linear} functions ofp. Because
of this, the values ofp for which the rank ofR(p)
is below its maximum value, form a proper algebraic
set in IRdn. This and Theorem 5 imply that ifFp =
({p1, p2, . . . , pn},L) is generically rigid, then so is
Fq = ({q1, q2, . . . , qn},L) for all values ofq not in the
aforementioned proper algebraic set. Said differently,
if Fp is generically rigid, then so is “almost every”
other formation inIRd with the same set of links.

As noted above the concept of generic rigidity does
not depend on the precise distances between the points
in Fp. It is perhaps not surprising then, that generic
rigidity can be characterized in terms of the graph
of Fp without any reference toFp’s actual points
or distance function. To do this let us agree to say



R(p) i j r s
(i, j) xi − xj yi − yj xj − xi yj − yi 0 0 0 0
(i, r) xi − xr yi − yr 0 0 xr − xi yr − yi 0 0
(i, s) xi − xs yi − ys 0 0 0 0 xs − xi ys − yi

(j, r) 0 0 xj − xr yj − yr xr − xj yr − yj 0 0
(j, s) 0 0 xj − xs yj − ys 0 0 xs − xj ys − yj

(r, s) 0 0 0 0 xr − xs yr − ys xs − xr ys − yr

TABLE I

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

that a simple graphG , {V,L} with n vertices is
generically rigidin IRd if there is an open dense set of
pointsp ∈ IRdn at whichFp is a rigid formation with
link setL. The following theorem settles the generic
rigidity question ford = 2 in strictly graph theoretic
terms.

Theorem 7 (Laman [11]). A graphG , {V,L} with
n vertices is generically rigid inIR2 if and only ifL
contains a subsetE consisting of2n − 3 edges with
the property that for any nonempty subsetĒ ⊂ E the
number of edges inE cannot exceed2j − 3 wherej
is the number of vertices ofG which are endpoints of
edges inĒ .

The generalization of Laman’s theorem to higher
dimensions, including most especiallyd = 3 has prove
quite elusive. At present this is the most general result
known for characterizing generic rigidity in graph
theoretic terms.

C. Conditions for Global Rigidity

Let us agree to say that a formationFp =
({p1, p2, . . . , pn},L) of n points in IRd is generically
globally rigid if for eachq in some open neighborhood
of p in IRdn, formationFq = ({q1, q2, . . . , qn},L) is
globally rigid. Since generic global rigidity implies
global rigidity, it is clear that generic global rigidity
of Fx is a sufficient condition for the conclusion of
Theorem 2 to hold. There is a graph-theoretic charac-
terization of generic global rigidity for 2-dimensional
formations analogous to the characterization of generic
rigidity provided by Laman’s theorem{i.e., theorem
7}. To explain the result we need a few more concepts.

Recall that a connected graphG is k-connected
if it is possible to obtain from it a new graph with at
least two distinct connected components by removing
at least one set ofk vertices fromG along with all of
those edges ofG which are incident on thek vertices
being removed. Thek-connectivity of a complete

graph withn vertices is defined to ben− 1. A graph
G which is generically rigid inIRd is redundantly
rigid in IRd if removal of any single edge results in a
graph which is also generically rigid inIRd. Finally, a
connected simple graphG = {V,L} with n vertices
is generically globally rigidin IRd if there is an open
dense set of pointsp ∈ IRdn at whichFp is a globally
rigid formation with link setL. The following recent
result settles the generic global rigidity question for
d = 2 in graph theoretic terms.

Theorem 8 ( [10]). A connected simple graphG with
n ≥ 4 vertices is generically globally rigid inIR2 if
and only if it is3-connected and redundantly rigid in
IR2.

Let us note that to actually carry out a test to decide
whether or not a given graphG is generically globally
rigid in IR2, one must establish that it is both3-
connected and redundantly rigid inIR2. Various tests
for 3-connectivity are known and we refer the reader to
[9] for details including measures of the complexity
of the tests involved. Tests for redundant rigidity in
IR2 have recently been derived [8] based on variants
of Laman’s theorem [11].

Much like the situation with generic rigidity, the
generalization of Theorem 8 to higher dimensions does
not yet exist. Nonetheless it is possible to derive var-
ious sufficient condition for a graph to be generically
globally rigid in spaces of dimension greater than2.
The following result [5] is an example of this which
gives a sufficient condition for generic global rigidity
in both IR2 and IR3. The theorem extends toIR3

earlier work by Jackson-Jordan [10] who establishes
essentially the same result forIR2.

Theorem 9. ([5]) Fix d ∈ {2, 3} and let Fp be
a formation in IRd whose graph is connected and
consists ofn ≥ d + 1 vertices and link setL.



Suppose that there exists a set ofn − d formations
F(1),F(2), . . . ,F(n− d) in IRd such that

1) F (1) contains exactlyd + 1 points, all fromFp,
which are not co-linear ifd = 2 and not co-
planer if d = 3.

2) F (1) has a complete graph.
3) For i ∈ {2, . . . , n − d}, F(i) is obtained from
F(i− 1) by adding toF(i− 1) exactly one new
point fromFp together withd+1 incident edges
fromL; the d+1 points inF(i−1) upon which
the added edges are incident, are not co-linear
if d = 2 and not co-planer ifd = 3.

4) Fp = F(n− d).
ThenFp is generically globally rigid inIRd.

The utility of this sufficient condition is that it enables
us to devise a provably correct sequential network
localization algorithm using “tri-laterialization” which
can be executed in a distributed manner. Theorem 9
is a simple consequence of the following lemma [5].

Lemma 10. Let Fp be a globally rigid formation in
IR2 with three pointspa, pb, pc which are not co-linear.
Let F̄ be the formation which results by adding to the
point and link sets ofFp respectively, one new point
p̄ ∈ IR2 and links from this point topa, pb, and pc.
ThenF̄ is a globally rigid formation.

IV. R IGIDITY FOR NETWORKS WITH BEARING

INFORMATION

The analysis in the previous section applies to
sensor networks with distance information. Now we
proceed to investigate global rigidity for networks with
bearing information. Before proceeding further, we
introduce “parallel drawings.” Parallel drawings have
been studied in rigidity and plane configurations in
computer-aided design (CAD). Aplane configuration
is a collection of geometric objects such as points,
line segments, and circular arcs in the plane, together
with constraints on and between these objects [16].
Two point formations on the same graph areparallel
drawings if corresponding edges are parallel. Paral-
lel drawings, used by engineering draftsmen in the
nineteenth century, have reappeared in a number of
branches of discrete geometry [19].

Given a point formationFr, we are interested in
parallel drawingsFs in which si − sj is parallel to
ri − rj for all (i, j) ∈ E . Using the operator(.)⊥, for
turning a plane vector byπ2 counterclockwise, these
constraints can be written:

(ri − rj)⊥ · (si − sj) = 0. (2)

Each such constraint is a parallel drawing constraint.
This gives a system of|E| homogeneous linear equa-
tions, and a parallel drawing is a solution of this
system.

We have the following proposition [7].

Proposition 11. A bearing constraint can be written
as a parallel drawing constraint.

For every link with a bearing constraint in the point
formation, it is now straightforward to write

(pi−pj)⊥ · (qi(t)−qj(t)) = 0, (i, j) ∈ B, t ≥ 0.
(3)

This gives a system of|B| homogenous linear equa-
tions. A solution of this system is called aparallel
point formation.

Central to the development in the rest of this section
will be the use of parallel drawings of configurations
[16]. Given a point formation in 2-dimensional space
with bearing constraintsFp, we are interested in par-
allel point formationsFr in which ri − rj is parallel
to pi − pj for all (i, j) ∈ B. Trivially parallel point
formations are translations and dilations of the original
point formation, including the parallel point formation
in which all points are coincident. All others are non-
trivial. For example, Figure 7b shows a translation
of the point formation in Figure 7a; and Figure 7c
and Figure 7d are dilations of the point formation in
Figure 7a. In particular Figure 7c is a contraction and
Figure 7d is an expansion. Figure 7e shows a non-
trivial parallel point formation of Figure 7a. A point
formation with bearing constraints is calledparallel
rigid if all parallel point formations are trivially par-
allel. Otherwise it is calledflexible. For example, the
point formation in Figure 7a is flexible. On the other
hand, Figure 7f shows a parallel rigid point formation.

Taking the derivative of (3) (recall thatp is a fixed
point set andq(t) is time varying in (3)), we obtain

(pi − pj)⊥ · (q̇i(t)− q̇j(t)) = 0, (i, j) ∈ D, t ≥ 0
(4)

These equations can be rewritten in matrix form as

R(p)q̇ = 0 (5)

where q̇ = column {q̇1, q̇2, . . . , q̇n}.



Fig. 7. Parallel point formations.

Example 12. Consider a planar point formationFp

with bearing constraints shown in Figure 8. We as-
sume that at least one node knows the global coor-
dinate system and the information about this global
coordinate system is passed to the other nodes in
the formation. The same point formation drawn with
bearing constraints in the global coordinate system is
shown in Figure 9. This has a rigidity matrix as shown
in Table II. We note that given two pointspi = (xi, yi)
andpj = (xj , yj), then(pi−pj)⊥ = (yi−yj , xj−xi).

The generic type of rigidity is defined in the same
manner with the case of distances.

Theorem 13. A formationFp is generically parallel
rigid in 2-dimensional space if and only if

generic rank {R(p)} = 2n− 3.

The graph theoretic test is given with the following
theorem:

Theorem 14. A graphG = (V,B) is generically rigid
in 2-dimensional space if and only if there is a subset
B′ ⊆ B satisfying the following two conditions: (1)
|B′| = 2|V| − 3, (2) For all B′′ ⊆ B′,B′′ 6= ∅, |B′′| ≤
2|V(B′′)|−3, where|V(B′′)| is the number of vertices
that are end-vertices of the edges inB′′.

A graph is minimally rigid if it is rigid and it
becomes non-rigid under the removal of any edges
from the graph.

A. Global Rigidity for Networks with Bearing Infor-
mation

Recall from§III that although global rigidity implies
rigidity for networks with distance information, the

Fig. 8.

Fig. 9.

reverse is not true. Therefore the conditions for global
rigidity is much stronger than rigidity for networks
with distance information. On the other hand, as we
prove below, for networks with bearing information
rigidity also implies global rigidity. We have the
following theorem:

Theorem 15. If Fp andFq are parallel formations in
2-dimensional space, thenFp is rigid if and only ifFp

is globally rigid under similarity maps.

Proof: Suppose thatFp is not globally rigid.
Therefore, there is a parallel drawingFq which is not
similar toFp as a configuration. We will show thatFp

is flexible withFq as a non-trivial parallel drawing. For
all edges(i, j) ∈ B, (pi − pj) is parallel to(qi − qj).
Therefore,(pi−pj)⊥ · (qi−qj) = 0 as required. Since
Fp is not similar toFq, there is some pair(h, k) 6∈ B
such thatph−pk is not parallel toqh− qk. Therefore,
(ph − pk)⊥ · (qh − qk) 6= 0. This confirms thatFq is a
non-trivial parallel drawing ofFp.

Conversely, suppose thatFp is flexible with a non-
trivial parallel drawingFq. ThenFq itself is the non-
similar parallel drawing ofFp which shows it is not
globally rigid.

1) Sequential Techniques:It is possible to derive
useful sufficient conditions and sequential construc-



R(p) i j r s
(i, j) yi − yj xj − xi yj − yi xi − xj 0 0 0 0
(i, r) yi − yr xr − xi 0 0 yr − yi xi − xr 0 0
(i, s) yi − ys xs − xi 0 0 0 0 ys − yi xi − xs

(j, r) 0 0 yj − yr xr − xj yr − yj xj − xr 0 0
(j, s) 0 0 yj − ys xs − xj 0 0 ys − yj xj − xs

TABLE II

RIGIDITY MATRIX EXAMPLE FOR BEARINGS

tions for generically globally rigid networks with
bearing information in a similar way that trilaterations
are used for generically globally rigid networks with
distance information [5]. One operation is thevertex
addition: given a minimally rigid graphG = (V,L),
we add a new vertexi with two edges betweeni and
two other vertices inV. The other is theedge splitting:
given a minimally rigid graphG = (V,L), we remove
an edge(j, k) in L and then we add a new vertexi
with three edges by inserting two edges(i, j), (i, k)
and one edge betweeni and one other vertex (other
than j, k) in V.

Theorem 16 (vertex addition [18]). Let G = (V,L)
be a graph with a vertexi of degree 2 in 2-dimensional
space; letG∗ = (V∗,L∗) denote the subgraph ob-
tained by deletingi and the edges incident with it.
ThenG is minimally parallel rigid if and only ifG∗
is minimally parallel rigid.

Theorem 17 (edge splitting [18]).LetG = (V,L) be
a graph with a vertexi of degree 3; letVi be the set
of vertices incident toi; and letG∗ = (V∗,L∗) be the
subgraph obtained by deletingi and its three incident
edges. ThenG is minimally parallel rigid if and only if
there is a pairj, k of vertices ofVi such that the edge
(j, k) is not inL∗ and the graphG′ = (V∗,L∗⋃

(j, k))
is minimally parallel rigid.

V. L OCALIZATION IN SUBNETWORKS

In the previous sections, we presented the conditions
under which there exist a unique solution for the
network localization problem. One might argue that
althoughGN fails the conditions for unique localiz-
ability, it might still be possible to localize some of
the nodes, although not the entire network. Next we
consider those cases.

A. Globally rigid subnetworks

Assume that the underlying grounded graph of the
network N, namelyGN = (V, E), does not satisfy

the conditions of Theorem 8. Hence it is true that
not all the nodes inN are localizable. But let us
assume that there exists grounded subgraph(s) ofGN,
namelyḠ1, Ḡ2, . . . , Ḡk that satisfy the conditions of
Theorem 8. Then the subnetworksN1,N2, . . . ,Nk

(with the underlying grounded graphs̄G1, Ḡ2, . . . , Ḡk

respectively) are localizable. That is, all the nodes in
N1,N2, . . . ,Nk are localizable.

In another scenario, globally rigid subnetworks can
be merged together to form a larger globally rigid net-
work. In this way, computation can be decentralized.
Strategies to merge globally rigid subnetworks were
given in [3].

B. Implicitly globally rigid subnetworks

Let us assume that the underlying grounded graph
of the networkN, namelyGN is 2-connected, but not
3-connected. Hence it does not satisfy the conditions
of Theorem 8. Let us assume that there exists a
single cut set denoted byC = {c1, c2} where c1, c2

are cut vertices. Whenc − 1, c2 are removed then
there remains two connected graph components. Let
us denote these connected graph components byK1

and K2. Let ĜN be the grounded graph obtained
by inserting the implicit edge(c1, c2) to GN. Let
us consider each connected component together with
this inserted implicit edge and denote them byK̂1 =
K1 ∪ {(c1, c2)} and K̂2 = K2 ∪ {(c1, c2)}. We have
the following proposition:

Proposition 18. If K̂1 is rigid and if K̂2 satisfies the
conditions of Theorem 8 then̂K2 is localizable.

Proof: Recall that adding an implicit edge does
not increase the rank of the rigidity matrix. Given that
K̂1 is rigid, then the edge(c1, c2) implicitly exists.
Hence we can consider the entire network with this
implicit edge inserted, and the rigidity properties of
the networks remain the same. After inserting(c1, c2),
given thatK̂2 satisfies the conditions of Theorem 8
implies thatK̂2 is localizable.



This result given for one cut set can be generalized
to any number of cut sets by applying Proposition 18
repetitively.

VI. CONCLUDING REMARKS

In this paper, first we have demonstrated the use-
fulness of rigidity and parallel drawings for local-
ization in sensor networks. The unique localization
of networks from distance and bearing measurements
shares a number of features with work in several
other active fields of study: rigidity and global rigidity
in frameworks; the coordinated formations of au-
tonomous agents; and geometric constraints in CAD.
In this paper, we have drawn on techniques and results
from these fields, also combined in some previous
joint work [5], as well as specific results on global
rigidity. With these concepts, we were able to lay
a coherent solid foundation for the underlying prob-
lem of when a network is uniquely localizable, for
almost all configurations of the points. Specifically,
we constructed a formation and then a graph for each
network such that the localization problem for the
network is uniquely solvable, almost always, if and
only if the corresponding graph is generically glob-
ally rigid. From these connections, we drew specific
results on sequential techniques such as trilateration
for distances, vertex addition and edge splitting for
bearings.

It should be noted that as stated, the localization
problem with precise distance and bearing is not in
general numerically well posed since even if it is
solvable with the given data, it may be unsolvable with
data arbitrarily close to that which is given. In practical
terms, this means that special attention must be paid
to the computation process and to assessing the sig-
nificance of approximate solutions. It also means that
only graphs which are generically globally rigid are
capable of having computationally stable solutions for
given data sets. This confirms our choice of conceptual
framework for this problem. However, we comment
that even approximate solutions are hard to compute
due to the hardness of the localization problem.

The networks where nodes use both distance and
bearing information together will be explored further
in a future paper.
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