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Abstract—In this paper we provide a theoretical the position of each sensor in wireless sensor networks
foundation for the problem of network localization in  after deployment. One method to determine the loca-
which some nodes know their locations and other nodes tjon of a node is manual configuration. However, this
determine their locations by measuring distances or is unlikely to be feasible for any large-scale deploy-
bearings to their neighbors. Distance information is the ment or when nodes move often. Self positioning can

separation between two nodes connected by a sens- . o
ing/communication link. Bearing is the angle between be achieved by means of Global Positioning System

a sensing/communication link and the x-axis of a node’s (GPS). GPS has been widely used for positioning
local coordinate system. We construct grounded graphs Service. Although it is possible to find the position
to model network localization and apply graph rigidity =~ of each sensor in a wireless sensor network with
theory and parallel drawings to test the conditions the aid of GPS installed in all sensors, it is not
for unique localizability and to construct uniquely practical to use because it is costly both in terms of
Iocal?zable networks. We further investigate partially hardware and power requirements. Furthermore, since
localizable networks. GPS requires line-of-sight between the receiver and
|. INTRODUCTION the satellites, it may not work well in buildings or in

the presence of obstructions such as dense vegetation,

Location service is a basic service of many emerg . : ) : )
. ; . . oliage, or mountains blocking the direct view to the
ing computing/networking paradigms. In sensor net: PS satellites

works, the sensor nodes need to know their locations .
In the general model of wireless ad-hoc sensor

in order to detect and record events, or to route packets
. . . network, there are usually some landmarks or nodes
using geometric-aware routing. In the case of generic
o . named beacons(also called anchor nodes), whose

ad hoc networks, position of the nodes is not always

. o . .. _-position information is known, within the area to
a requirement, but when it is available, more efﬁmen?

) . : . . acilitate locating all sensors in a sensor network.
implementation of network services is possible. F .
: . . : hose beacons have either GPS or they are manually
example, in pervasive computing knowing the loca- ..
: . . .. _configured. For the rest of the nodes two types of node
tions of the computers and the printers in a buildin - ) S Y
. R apabilities are considered in this paper: distance mea-
will allow a computer to send a printing job to the . )
. surements (also called ranging) and bearing measure-
nearest printer [17]. . .
. ments (also called angle of arrival (AOA)). Distance
In most cases, sensors are deployed without their . .
Mmeasurements provide the possibility for a node to

position information known in advance, and there is n%easure distance to neighbors. If two nodeand

supporting infrastructure available to locate them af;[f?r have a sensing/communication link between each
deployment. Sensor network protocols and algorith MSher as shown in Figure 1, thdrearinginformation

must possess self—organlzmg capabilities [1]_. It iy and j, denoted byd,; and 4, respectively, are
necessary to find an alternative approach to identi . ,
e angles between the-axis of each node’s local
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the network is assumed to have one main axis against
which all bearings are reported and the capacity to
estimate with a given precision the direction from
which a neighbor is sending data. It is assumed that
after the deployment, the axis of the node has an
arbitrary, unknown heading. A node can infer its

_ heading, if heading of one of its of the neighbors is
i known. If no compass is available in any node, but
each node knows its position, heading can still be
found [13].

Bearing capability is achieved by various technolo-
gies, some of which might be prohibitive in size
and power consumption. A small form factor node
that satisfies the conditions outlined above has been
developed at MIT by the Cricket Compass project
[14]. These nodes indicate that it is feasible to obtain
bearing capability in a small package that would be
appropriate for future pervasive ad hoc networks.

The process of computing the locations of the nodes
is called network localization. It has been studied in
other research areas such as robotics. In the context of
Fig. 2. sensor networks, some of the challenges are the size
and the power of individual sensor nodes. Recently,
novel schemes have been proposed to determine the

from one node to another. Blyeadingis meant the locations of the nodes in a network where only some
angle between the-axis of the global coordinate special nodes (beacons) know their locations. In these
system and the:-axis of the node’s local coordinate Schémes, network nodes measure the distances or
system. For example); is the heading of in Figure bearings to their neighbors and then try to determine
2. Once nodei passes the informatios; and 6;; their locations [13], [2], [12]. _

to nodej, then nodej can compute its heading by Although the designs of the previous schemes have
¢; = m— (85— ¢;) +6;i. Once nodes know the g|Ob<,i|demonstrated great engineering ingenuity, and their
coordinate system, they can transform the beari,fgfectiveness is verified through extensive simulations,
information measured in their local coordinate systenizome fundamental questions have not been addressed;
(6;; and 6;;) into bearing information in the global @S @ result, the previous schemes are mainly heuristic-

coordinate systemd;; and ©;;) as shown in Figure based and a full theoretical foundation of network
3. We note thaB;; = 7 + ©;. localization is still lacking. Specifically, we identified

each node the following fundamental question in [5]: What are
the conditions for unique network localizability? Al-
though the network localization problem has already
been studied extensively, the precise conditions under
which the network localization problem is solvable
are not known. In [5], we investigated sensor net-
works with distance information. Here we extend our
analysis for sensor networks with both distance and
bearing information. Furthermore we also investigate
localization in subnetworks.

We address the unique localizability question using
graph rigidity theory. More specifically, we propose
grounded graphs. In these graphs, each vertex repre-

Fig. 3. sents a network node, and two vertices in the graph are

Fig. 1.

For bearing measurement capability,




connected if the distance between the two is knowm, neighbor of node if and only if node: is also
i.e., when the distance between the two nodes & neighbor of nodej. Under these condition¥N'’s
measured or when the two nodes are beacon nodes amighbor relationships can be conveniently described
thus their distance is implicitly known. Given our con-by an undirected graplen = {V,En} with vertex
struction of grounded graphs, we show that a netwoget) = {1,2,...,n} and edge sefn defined so that
has a unique localization if and only if its correspond{i, j) is one of the graph’s edges just in case nodes
ing grounded graph is generically globally rigid. Byi and j are neighbors. We assume throughout, that
observing this connection, we are able to apply th&n is a connected graph. Theetwork localization
results from the graph-rigidity literature to networkproblem with distance informatioms to determine
localization. In [5] we proposed inductive sequencethe locationsz; of all sensor nodes iflR? given the
for constructing uniquely localizable networks, botlgraph of the networksn;, the positions of the beacons
in the plane and in 3- space. By following theser;, j € {1,2,...,m}in IR?, and the distancéx (i, j)
sequences, a designer of a network can be assutetween each neighbor pdif, j) € En.
that the constructed network is uniquely localizable, The “network localization problem with bearing
thus avoiding expensive trial-and-error procedures. information” can be formulated in a similar way. The
To reduce the computational and communicatioonly difference is that instead of having the distance
complexity of localization, which is important in set-én (7, j) between each neighbor pdif, j) € En, we
tings such as sensor networks, we studied a classrdw have bearing$in(i,j) between each neighbor
graphs called trilateration graphs [5]. We showed thadair (i,7) € En. Note that there are two bearing
trilateration graphs are uniquely localizable and thanformation for each edge, one is measured by one
locations of the nodes can be computed efficientlpf the nodes and the other is measured by the other
Here we extend our previous work in [5] for networksnode on the other side of the edge.
with bearing information. Furthermore we analyze The network localization problem just formulated is
localization in subnetworks. A longer version of thissaid to besolvableif there is exactly one set of vectors
paper is available as a technical report [6]. {Zmi1,...2z,} in R? which is consistent with the
The rest of this paper is organized as follows. Thgiven dataGy, {z1,z2,...,2n}, andin : En — R
specific network localization problem to be addresseffor bearingsfn : En — [0,27)). In this paper
is formulated in Section Il. The concepts of rigiditywe will be concerned with “generic” solvability of
and global rigidity are discussed in Section lll. Inthe problem which means, roughly speaking, that the
Section IV, we study rigidity for sensor networks withproblem should be solvable not only for the given
bearing information. In Section V, we study localiza-data but also for slightly perturbed but consistent
tion for subnetworks. Our conclusion and future worksersions of the given data. It is possible to make

are in Section VI. precise what generic solvability means as follows.
Fix Gn and leteg,es,...,e, denote the edges in
[l. FORMULATION .
o En. Note that for any set oh pointsyi,y2, ..., yn
A. The Network Localization Problem in IR? there is a unique distance vector whose

The “network localization problem with distancekth component is the distance betwegn and y;
information” can be formulated as follows. One beginsvhere (i, j) = e;. This means that there is a well-
with a networkN in reald-dimensional spacéd = 2}  defined functionf : IR™ — IR(™¥+9) mapping
consisting of a set ofn > 0 nodes labelled through {y1,%2,...,yn} — {y1,%2,...,ym,2}. Solvability
m which represent “beacons” together with-m > 0  of the network localization problem is equivalent to
additional nodes labelledn + 1 through n which f being injective{at {z1,x2,...,z,}} in the sense
represent sensors. Each node is located at a fixdtht the only set of point{yi,ys,...,y,} € R™
position inIR¢ and has associated with it a specific sefor which f(y1,y2,...,yn) = f(z1,209,...,2,) IS
of “neighboring” nodes. Although a node’s neighborgyi,y2,...,yn} = {x1,29,...,2,}. In this context
are typically defined to be all other nodes within somé is natural to say that the network localization prob-
specified range, other definitions could also be uselem is generically solvableat {x;,z2,...,x,} if it
The essential property we will require in this papers solvable at each point in an open neighborhood
is that the definition of a neighbor be a symmetriof {z,zs,...,z,}. In other words, the localization
relation on{1,2,...,n} in the sense that nodgis problem is solvable afx;,zo,...,z,} if there is an



open neighborhood ofz1, z2,...,z,} onwhichfis  graphGp, 2 (Y, &) with vertex set = {1,2,...,n},
an injective function. which is the set of labels of nodes, and edgefsat/e
will denote the set of maintenance links with distance
constraints byZ, the set of maintenance links with
To study the solvability of the network localizationbearing constraints bys. A formation with distance
problem, we reformulate the problem in terms of &onstraints can be represented (B £, f) where f :
“point formation.” As we shall see, the point forma-£ —— R. Each maintenance link, j) € £ is used to
tion relevant to the network localization problem hasnaintain the distancé((, j)) between certain pairs of
associated with it a graph with the same vertices amdes fixed. A formation with bearing constraints can
Gn but with a slightly larger edge set which includeshe represented bV, B, g) whereg : B — [0, 27).
“links” or edges from every beacon to every other. It i€ach maintenance linki, j) € B is used to maintain
a property of this graph rather th&h which proves the bearingg((i,)) of the line joining certain pairs
to be central to solvability of the localization problemof nodes fixed with respect to a reference coordinate
under consideration. We begin by reviewing the poirdystem. Let us note that the distance functionFgf
formation concept. is the same as the distance function of any point
By a d-dimensional point formation at p = formation F, with the same graph a8, providedgq
column {p1,p2,...,pn}, Written F,, is meant a set is congruentto p in the sense that there is a distance
of n points{p1,ps, ..., pn} in IRY together with a set preserving mapl’ : IR? — IR? such thatT(¢;) =
L of k links, labelled(s, j), wherei andj are distinct p;,i € {1,2,...,n}. In the sequel we will say that
integers in{1,2,...,n}; the length of link (i,7) is two point formationsF, andF, arecongruentif they
the Euclidean distance between pojatandp;. The have the same graph and;ifindp are congruent. It is
idea of a point formation is essentially the same asear thatF, is uniquely determined by its graph and
the concept of a “framework” studied in mathematicglistance functiorat mostup to a congruence transfor-
[15], [18] as well as within the theory of structures inmation. A formation which iexactlydetermined up to
mechanical and civil engineering. For our purposes, @ngruence by its graph and distance function is called
point formationF, = ({p1,p2,...,pn}, L) provides a “globally rigid.” More precisely, al-dimensional point
natural high-level model for an-node sensor network formation IF,, is said to beglobally rigid if each d-
in real 2- or 3- dimensional space. In this context, thdimensional point formatioi, with the same graph
points p; represent the positions of nod¢se., both and distance function &8, is congruent taF,,. It is
sensors and beacgns IR? and the links inZ label clear then any formation whose graph is complete is
those specific node pairs whose inter-node distancgkbally rigid. The following simple generalizations
are given. of this fact provide sufficient conditions for global
Thus for the sensor network discussed abogfe, rigidity which are especially relevant to the network
would consist of not only all pairs i€n, but also localization problem.
all additional beacon pairg, j), i,5 € {1,2,...,m}
since the distances between pairs of beacons dremma 1.
uniquely specified by their position vectors which arg et F, = ({p1,p2,...,pn}, L) be a formation inlR?
given. which contains three points,, p,, and p. which are
A point formation F, £ (p,€) provides a way not co-linear. Suppose that the formation consisting
of representing a formation of: nodes.p = of these three points and all links froffi, which
{p1,p2,...,pn} and the pointgp; represent the posi- connect pairs of these three points, has a graph which
tions of nodes irR? {d = 2 or 3} wherei is an integer is complete. Thef¥, is globally rigid if and only if
in {1,2,...,n} and denotes the labels of nodesit s the onlyn-point formation inR? which contains
& is the set of “maintenance links,” labelle@, j), these three points and has link s@t
wherei and j are distinct integers i{1,2,...,n}.
The maintenance linkén £ correspond to constraints These properties are direct consequences respectively
between specific nodes, such as distances and bearthe fact that the identity oiR? is the only distance
ings, which are to be maintained over time by usingreserving magl’ : IR> — R2 which leavespq, ps,
sensing/communication links between certain pairs @ndp. unchanged. A proof of the lemma will not be
nodes. Each point formatidr, uniquely determines a given.

B. Point Formations



C. Solvability of the Network Localization Problem restriction that the bars share common endpoints. Now,
With previous definition of point formations, we c@n the bars and joints be moved in a continuous
can now restate the network localization problem iff@nner without changing the lengths of any of the
terms of its associated point formatidh,. In the bars, where translgtlons'and.rotathn.s d.o_not courjt? If
present context, the problem is to determiifje given so,_thg frameyvork is er>_(|bIe; if not, it is rigid. (Preg;e
the graph and distance function Bf as well as the definitions will appear in the sequel.) In a bay-10mt
beacon position vectors,, zs, . . . , z,,. Solvability of framework, the length of a bar imposes a distance

the problem demands that, be globally rigid; for if constraint for both end-joints. This is the same situa-
F, were not globally rigid it would be impossible to tion in a formation where two nodes connected by a

determineF,, up to congruence, let alone to determing€nsing/communication link are mutually affected by
it uniquely. AssumingF,, is globally rigid, solvability the information conveyed by this link. For example,
of the sensor network localization problem reduces th tW0 nodes connected by a sensing/communication

making sure that the group of transformati@hgvhich link are set to maintain a ten meter distance between
leaves the sefz;,z» #m} unchanged — namely each other, then both nodes perform action to maintain
) AR | m

distance preserving transformatiofis: IR? — R¢ this distance. In the graph theoretic setting, the edge
for which T(z;) = @, i € {1,2 m} — also corresponding to this link is denoted by an undirected
K3 - (2] ) AR ]

leaves unchanged the Sgt,..1....,z,}. About the €498 o _
easiest way to guarantee this IR is to require A trajectoryof a formation is a continuously param-

{z1,22,..., 2} to contain three vectors; , z;,, z;, eterized one-pirameter family of curves (t), ¢2(t),

which are not co-linear; for if this is so, then the- 4n(f)) in R"* which containp and on which for

only distance preserving transformation which leave€@cht, Fy() is a formation with the same measured

{21,292, ...,2m} unchanged is the identity map onVvalues underf, g. A rigid motionis a trajectory along

R2. Similarly, if in R? {1, 22 om)} contains at which point formations contained in this trajectory
. ) 9 9 cm -

least four vectors which are not co-planar, tHemill &€ congruent to each other. We will say that two

again be an identity map, in this case @?. We Point formationsF, and F,, wherep,r < q(t), are
summarize. congruent if they have the same graph ang i&nd

r are congruentp is congruentto r in the sense that

Theorem 2. Let N be a sensor network ifR?, there is a distance-preserving mifip R¢ — RR¢ such
{d = 2 or 3}, consisting ofm > 0 beacons located that 7'(r;) = p;,i € {1,2,...,n}. If rigid motions
at positionszy, xa, ..., z, andn —m > 0 sensors are the only possible trajectories then the formation is
located positionse,,+1, ..., z,. Suppose that for the calledrigid; otherwise it is calledlexible[4].
cased = 2 there are at least three beacons which A parallel rigid motionis a trajectory along which
are not positioned in a single line. L&, denote the point formations contained in this trajectory are trans-
point formation whose points are at, z2, ..., 2, and |ations or dilations of each other. Two point formations
whose links are those labelling all neighbor pairs anq:p andF, areparallel if they have the same graph and
all beacon pairs inN. Then for bothd = 2 andd =3  their corresponding maintenance links are parallel to
the sensor network localization problem is solvable iéach other. If para||e| r|g|d motions are the 0n|y pos-
and only ifF, is globally rigid. sible trajectories then the formation is callpdrallel
rigid, otherwiseparallel flexible

As we've already stated, a@-dimensional point

In the previous section, we established that undésrmation I, is globally rigid if eachd-dimensional
certain mild conditions, the solvability of the networkpoint formationF, with the same graph and distance
localization problem is equivalent to the “global rigid-function asF,, is congruent tdF,,. In order to clearly
ity” of a suitably defined point formation. We studyunderstand what global rigidity means we need sev-
rigidity and global rigidity in this section. eral other concepts whose roots can be found in the

One way of visualizing rigidity is to imagine a classical theory of structures.
collection of rigid bars connected to one another by
idealized ball joints, which is called a bar-joint frame Rigidity
work. By an idealized ball joint we mean a connection Let [, be d-dimensional point formation. Even
between a collection of bars which imposes only ththough the nodes in the networks we are considering

IIl. RIGIDITY AND GLOBAL RIGIDITY



are in fixed positions, it is useful to consider trajecdeformed discontinuously, is shown in Figure 4(a).
tories of such formations. By #@rajectory of IF, is Observe that a discontinuous deformation can be ob-
meant a continuously parameterized, one-parametained by reflecting the triangle formed by points
family of points {g(t) : t > 0} in R™ which b, andc about the line determined by poinisandb.
containsp. It is natural to say that such a formationThe resulting rigid formation is shown in Figure 4(b).
undergoesigid motionalong a trajectory([0, c0)) =

column{qi(t), g2(t),...,qn(t)} = t > 0} if the Eu- g . ;
clidean distance between each pair of point&) ;ES ;

and ¢;(t) remains constant all along the trajectory. . ) . f

Let us note thaff’, undergoes rigid motion along a

trajectory ¢([0,00)) just in case each pair of points

q(t1),q(t2) € ¢([0,00)) are congruent. The set of

points M,, in IRY" which are congruent tp is known @ ®

to be a smooth manifold [15]. It is clear that any o ] )

trajectory along whicl, undergoes rigid motion must Fig- 4. Two rigid formations with the same graph and
lie completely within M,,; conversely any trajectory distance function

of IF, which lies within M,, is one along whichF,
undergoes rigid motion.

A formationIF,, is rigid if rigid motion is the only
kind of motion it can undergo along any trajectory o
which the lengths of all links inZ remain constant.
Thus if I, is rigid, its points “remain in formation” o
provided that the lengths of all of the formation’s links
do not change as the formation moves. As we've al-
ready noted, for sensor localization we need networks
whose point formations are uniquely determined up
to congruence by their graphs and distance functions.
Unfortunately rigidity is not a strong enough property
of a formation to ensure that this is so. In other words Fig. 5. A globally rigid formation
it is possible to construct two rigid formatioii%, and
F, which both have the same graph and distance func- . .
tig)n, but are not congruent. The subtly here stems fror%r Conditions for Rigidity
the fact that rigidity ofF, stipulates that only those ~The question of whether or not a given formation
formations encountered on trajectories contairlihg IS rigid has been studied for a long time [15], [18],
be congruent t&,. Unfortunately there are formations[11]. One starts by examining what happens to a
with the same graph and distance functioffgsvhich ~ given formation¥, = ({p1,p2,...,ps}, L), along
cannot be reached fro, on any trajectory; such trajectory{qi(t), g2(t),...,q.(t)} : t > 0} on which
formations are typically not congruent &),. From a the Euclidean distance¥i, j) = [|p; — p;|| between
different perspective, a rigid formation is a formatiorairs of points(g;, g;) for which (i, j) is a link, are
which is impossible tocontinuouslydeform while constant. Thus along such a trajectdgy — q;)(¢; —
holding fixed the lengths of all of its links. Therep;) = (i, ), (i,j) € £, t > 0. Assuming a smooth
are examples of rigid formations which can indeedrajectory, these equations can be differentiated to get
be deformed, but not continuously; such formation§z: — ¢;)'(di — ¢;) = 0, (i,j) € £, t > 0. These
are rigid but not globally rigid. In the end, the keyequations can be rewritten in matrix form as
feature which distinguishes globally rigid formations
from all others including those which are merely rigid, R(q)§=0 1)
is that the former cannot be deformed by any means,

Adding a link from pointc to d in Figure 4(a) would
make the formation globally rigid. An example of a
rTqlobally rigid formation whose graph is not complete
Is shown in Figure 5.

c d

whatever, continuous or not, whereas the latter alwa%s ereq = column {gi, g, . -, gn}, and R(q.) s a
can pecially structuredn x dn array called arigidity
' matrix.

An example of a rigid formation which can be



Example 3. Consider a planar point formatiof’, Theorem 5. A formationF, is generically rigid if and
shown in Figure 6. This has a rigidity matrix as showronly if
in Table I.

If adding a link (7, j) does not increase the rank of o\ oric rank {R(p)} = 2n—3 if d=2,
the rigidity matrix, then we callz, j) animplicit link 3n—6 ifd=3.

(implicit edgein the underlying graph). To understand this type of rigidity, it is useful
Let M,, be the manifold of points congruent {0 5 phserve that the set of poins that satisfy the

Because any trajectory df, which lies within My,  ondition rank R(p) = max{rank R(z) : z € R%} is

is one along which, undergoes rigid motion, (1) 4 gense open subset B [15]. Thus, a generically

automatically holds along any trajectory which lies;giq point formationlF,, is rigid for almost all points

within M,,. From this, it follows that the tangent spaceg,, he neighborhood of points aboptin ]R%. The

to M, atp, Written%, must be contained i'n the keme'concept of generic rigidity does not depend on the

of R(p). If the pointspy,p2,...,p, are in general precise distances between the point&Fgfbut exam-

position (which means that the points pa, .., p» 0 jnes how well the rigidity of formations can be judged

not lie on any hyperplane ifR"), thenM,, is n(n +  py knowing the vertices and their incidences, in other

1)/2 dimensional since it arises from theén —1)/2-  \ords, by knowing the underlying graph. For this
dimensional manifold of orthogonal transformations ofa450n. it is a desirable specialization of the concept
IR™ and then-dimensional manifold of translations of ¢ 5 “rigid formation” for our purposes. We have the

IR”.[15]. ThusMp IS Q-dlmensmnal fof, in IR?, and following theorem for a generically rigid graph [18]:

3-dimensional forF, in IR?. We haverank R(p) =

nd— dimension kerneR(q) < nd — n(n+1)/2. We Theorem 6. The following are equivalent:

have the following theorem [15], [19]: 1) a graphG = (V, £) is generically rigid ind-
dimensional spaced(= 2, 3);

2) for somep, the formationF,, with the underlying
graph G is generically rigid;

3) for almost all p, the formationIF, with the
underlying graphG is generically rigid.

Theorem 4. AssumeF,, is a formation with at least
d points ind-dimensional spacé¢d = 2, or 3} where
rank R(p) = max{rank R(z) : = € R?}. F,, is rigid
in IR? if and only if

rank R(p) = {

on—3 ifd=2,

A point formationF, is strongly generically rigid
3n—6 if d=S3. P b gy g y ng

if it is generically rigid and if rank R(p) =
This theorem leads to the notion of the “genericeneric rank {£}. Hence, a strongly generically rigid

behavior of rigidity. When the rank is less than théormation_ s rigid_ "’!”d It remains_ r_ig_id unde_r small
maximum, the formation may still be rigid. Howeverperturbatlons. This is the type of rigidity that is useful

. o . . or our purposes.

this type of rigidity lacks the generic behavior anJ . .

thus is not addressed in this paper. It is casy to see t_hat all the_ entries I(p) are
It is possible to characterize generic rigidity inpolynomlal {actually lineaj functions ofp. Because

terms of the “generic rank’ ofR where by R's of this, the values ofp for which the rank ofR(p)

. . is below its maximum value, form a proper algebraic
genericor maximal rank we mean the largest value

of rank{R(q)} as ¢ ranges over all values ifR". setinIR™. This and Theorem 5 imply that i, =

) ) ({p1,p2,...,pn}, L) is generically rigid, then so is
The following theorem is due to Roth [15]. F, = ({q1, 2, . -, qn}, £) for all values ofg not in the

aforementioned proper algebraic set. Said differently,
if I, is generically rigid, then so is “almost every”
other formation inlR? with the same set of links.

As noted above the concept of generic rigidity does
not depend on the precise distances between the points
in F,,. It is perhaps not surprising then, that generic
rigidity can be characterized in terms of the graph
of IF, without any reference td,’s actual points
Fig. 6. A planar point formation. or distance function. To do this let us agree to say




R(p) r s

(,0) | Ti—%  Yi—yj | T —Ti Y —Yi 0 0 0 0
(i,7) | @i —xr  yi —yr 0 0 Tr —Ti  Yr — Yi 0 0
(4,8) | @i —xs  yi—Ys 0 0 0 0 Ts —Ti  Ys —Yi
(4, 7) 0 0 Lj—Fr Yj—Yr | Tr —Xj Yr —Yj 0 0
(J,s) 0 0O |xj—=s  yj—ys 0 0 Ts —Tj  Ys — Y
(r, s) 0 0 0 0 Tr —Ts Yr—Ys | Ts —Tr Ys — Yr

TABLE |

RIGIDITY MATRIX EXAMPLE FOR DISTANCES

that a simple graptG = {V, £} with n vertices is graph withn vertices is defined to be — 1. A graph
generically rigidin IR? if there is an open dense set of G which is generically rigid inIR? is redundantly
pointsp € IR™ at whichT, is a rigid formation with rigid in IRY if removal of any single edge results in a
link set £. The following theorem settles the genericgraph which is also generically rigid iR?. Finally, a
rigidity question ford = 2 in strictly graph theoretic connected simple grap® = {V, £} with n vertices
terms. is generically globally rigidin IR if there is an open

N . dense set of points € IR at whichF), is a globally
Theorfem 7. (Laman_ [11]). _A.gr.aphZG =L W'th rigid formation with link set£. The following recent
n vertices is generically rigid ifR* if and only if £

contains a subsef consisting of2n — 3 edges with result settles the generic global rigidity question for

the property that for any nonempty subget £ the d =2 in graph theoretic terms.

number of edges i@ cannot exceed;j — 3 wherej  Theorem 8 ( [10]). A connected simple graph with
is the number of vertices @ which are endpoints of n > 4 vertices is generically globally rigid iAR? if
edges inf. and only if it is3-connected and redundantly rigid in

2
The generalization of Laman’s theorem to highe}R'
dimensions, including most especially= 3 has prove

quite elusive. At present this is the most general result | g ys note that to actually carry out a test to decide
known for characterizing generic rigidity in graphyhether or not a given graph is generically globally
theoretic terms. rigid in IR2, one must establish that it is both
connected and redundantly rigid IR2. Various tests

_ for 3-connectivity are known and we refer the reader to
Let us agree to say that a formatioR, = (g for details including measures of the complexity

. . d . .
({P1,p2;- -, pa}, £) 0of n points inTR® is generically  of the tests involved. Tests for redundant rigidity in
globally rigid if for eachg in some open neighborhood g2 4y recently been derived [8] based on variants

of pin ]R_d"., formationIFq = (a1, a2, a_qu}»_ﬁ) is_ of Laman’s theorem [11].
globally rigid. Since generic global rigidity implies Much like the situation with generic rigidity, the

globallrigidity, _it_is clear t_h_at generic global rigidity generalization of Theorem 8 to higher dimensions does
?LF’” IS azsuffr:c%ntTchondlt_lon for tr;e hconclgsm}r: Ofnot yet exist. Nonetheless it is possible to derive var-
eorem 2 to hold. There Is a graph-theoretic charags - icient condition for a graph to be generically

terization of generic global rigidity for 2-dimensional lobally rigid in spaces of dimension greater tHan
formations analogous to the characterization of genergfcne following result [5] is an example of this which

rigidity prov!ded by Laman's theorenfi.e., theorem ives a sufficient condition for generic global rigidity
7}. To explain the result we need a few more concept both IR2 and IR®. The theorem extends tiR>

. _R_ecall th_at a conne_cted gr"’.“@l IS k—connectgd earlier work by Jackson-Jordan [10] who establishes
if it is possible to obtain from it a new graph with at

L “essentially the same result fit2.

least two distinct connected components by removing

at least one set of vertices fromG along with all of Theorem 9. ([5]) Fix d € {2,3} and letF, be
those edges of which are incident on thé vertices a formation in IR? whose graph is connected and

being removed. Thek-connectivity of a complete consists ofn > d + 1 vertices and link setl.

C. Conditions for Global Rigidity



Suppose that there exists a setrmof- d formations
F(1),F(2),...,F(n —d) in R¢ such that (ri —7j)" - (8i — s5) = 0. (2)

1) F(1) contains exactlyl + 1 points, all from[F,,
which are not co-linear ifd = 2 and not co-
planer if d = 3.

2) F(1) has a complete graph.

3) Fori € {2,...,n —d}, F(i) is obtained from
F(i — 1) by adding toF(i — 1) exactly one new
point fromF,, together withd + 1 incident edges Proposition 11. A bearing constraint can be written
from £; the d+ 1 points inF(i — 1) upon which as a parallel drawing constraint.
the added edges are incident, are not co-linea
if d =2 and not co-planer il = 3.

4) F, =F(n —d).

ThenTF, is generically globally rigid inR<.

Each such constraint is a parallel drawing constraint.
This gives a system d€| homogeneous linear equa-
tions, and a parallel drawing is a solution of this
system.

We have the following proposition [7].

For every link with a bearing constraint in the point
formation, it is now straightforward to write

(pi—pj)t-(qi(t)—q;(t)) =0, (5,5) €B, t>0.
€))

The utility of this sufficient condition is that it enables—r,. gives a system of5| homogenous linear equa-

IUS th dtt_awsel a g:}ovably C(‘)‘trr_elctt S??_ue?_t'a!, nﬁmr?rlons. A solution of this system is called @arallel
ocalization algorithm using “tri-laterialization” whic point formation

can be executed in a distributed manner. Theorem 9Central to the development in the rest of this section

is a simple consequence of the following lemma [5], 5, be the use of parallel drawings of configurations
Lemma 10. Let F,, be a globally rigid formation in [16]. Given a point formation in 2-dimensional space
IR2 with three point,, py, p. Which are not co-linear. with bearing constraint®,,, we are interested in par-
Let F be the formation which results by adding to theallel point formationsF,. in which r; — r; is parallel
point and link sets of, respectively, one new pointto p; — p; for all (i,j) € B. Trivially parallel point
7 € IR? and links from this point tg,,p,, and p.. formations are translations and dilations of the original
ThenF is a globally rigid formation. point formation, including the parallel point formation
in which all points are coincident. All others are non-
IV. RIGIDITY FOR NETWORKS WITH BEARING trivial. For example, Figure 7b shows a translation
INFORMATION of the point formation in Figure 7a; and Figure 7c
The analysis in the previous section applies tand Figure 7d are dilations of the point formation in
sensor networks with distance information. Now weFigure 7a. In particular Figure 7c is a contraction and
proceed to investigate global rigidity for networks withrigure 7d is an expansion. Figure 7e shows a non-
bearing information. Before proceeding further, waerivial parallel point formation of Figure 7a. A point
introduce “parallel drawings.” Parallel drawings havéormation with bearing constraints is callgzrallel
been studied in rigidity and plane configurations irigid if all parallel point formations are trivially par-
computer-aided design (CAD). plane configuration allel. Otherwise it is calledlexible For example, the
is a collection of geometric objects such as pointgoint formation in Figure 7a is flexible. On the other
line segments, and circular arcs in the plane, togethrand, Figure 7f shows a parallel rigid point formation.
with constraints on and between these objects [16]. Taking the derivative of (3) (recall thatis a fixed
Two point formations on the same graph @aallel  point set and;(¢) is time varying in (3)), we obtain
drawings if corresponding edges are parallel. Paral-
lel drawings, used by engineering draftsmen in the
nineteenth century, have reappeared in a number @ —Pj)~ - (4i(t) = d;(t)) =0,  (i,5) €D, ¢=0
branches of discrete geometry [19]. _ _ ] . (4)
Given a point formationF,, we are interested in 11€S€ equations can be rewritten in matrix form as
parallel drawingsF in which s; — s; is parallel to .
ri —r; for all (i, ) € £. Using the operatot.)*, for R(p)g =0 (5)
turning a plane vecto_r by, counterclockwise, these where g = column {1, o, . . . , dn }-
constraints can be written:



(a) ()

(d) ©) ®
Fig. 7. Parallel point formations.

Example 12. Consider a planar point formatioi¥,
with bearing constraints shown in Figure 8. We as-
sume that at least one node knows the global coor-
dinate system and the information about this global
coordinate system is passed to the other nodes in
the formation. The same point formation drawn with
bearing constraints in the global coordinate system is

shown in Figure 9. This has a rigidity matrix as showngyerse is not true. Therefore the conditions for global
in Table II. We note that g'VeanO Poinis= (i, ¥i)  rigidity is much stronger than rigidity for networks
andp; = (z;,y;), then(p; —p;)~ = (yi—v;, T —i).  with distance information. On the other hand, as we

The generic type of rigidity is defined in the samedrove below, for networks with bearing information
manner with the case of distances. rlgldlty also |mpI|es global rlgldlty We have the
following theorem:

Theorem 13. A formationF,, is generically parallel
rigid in 2-dimensional space if and only if Theorem 15.1f F, andF, are parallel formations in
) B 2-dimensional space, thdf), is rigid if and only if[F,
generic rank {R(p)} = 2n — 3. is globally rigid under similarity maps.
The graph theoretic test is given with the following

theorem: Proof: Suppose thaff, is not globally rigid.

Therefore, there is a parallel drawitiy which is not
Theorem 14. A graphG = (V, B) is generically rigid  similar toFF,, as a configuration. We will show that,
in 2-dimensional space if and only if there is a subsas flexible withIF, as a non-trivial parallel drawing. For
B' C B satisfying the following two conditions: (1) all edges(i, j) € B, (p; — p;) is parallel to(g; — g;).
|B'| =2|V| -3, (2) For all B C B',B" # 0, |B"| < Therefore,(p; —p;)* - (¢: — ;) = 0 as required. Since
2(V(B")| -3, where[V(B")] is the number of vertices T, is not similar toF,, there is some paith, k) ¢ B
that are end-vertices of the edgess. such thatp, — py, is not parallel tog;, — g;. Therefore,
A graph is minimally rigid if it is rigid and it (Pn —Pr) - (an —ax) # 0. This confirms thaF, is a
becomes non-rigid under the removal of any edg&on—trlwal parallel drawing OEP' _ _
from the graph. _(?onversely, suppose thay, is er>.<|bIe Wlth a non-
trivial parallel drawingF,. ThenF, itself is the non-
A. Global Rigidity for Networks with Bearing Infor- similar parallel drawing off,, which shows it is not
mation globally rigid. O
Recall fromglll that although global rigidity implies 1) Sequential Techniquedt is possible to derive
rigidity for networks with distance information, the useful sufficient conditions and sequential construc-



R(p) i J T s

() |¥i—ys @ —® | Yj—Yi T 0 0 0 0

(6,r) | i —yr  Tr — x4 0 0 Yr —Yi  Ti— Tp 0 0

(iv S) Yi — Ys Ts — T4 0 0 0 0 Ys — Yi Ti — Ts

(4, ) 0 0 Yji—Yr  Tr—Tj | Yr—Yi T~ Tr 0 0

(4,8) 0 0 Yj —Ys  Ts —Tj 0 0 Ys —Yj  Tj—Ts
TABLE Il

RIGIDITY MATRIX EXAMPLE FOR BEARINGS

tions for generically globally rigid networks with the conditions of Theorem 8. Hence it is true that
bearing information in a similar way that trilaterationsnot all the nodes inN are localizable. But let us
are used for generically globally rigid networks withassume that there exists grounded subgraph(&naf
distance information [5]. One operation is thiertex namelyG,Go,...,G; that satisfy the conditions of
addition given a minimally rigid graphc = (V,£), Theorem 8. Then the subnetworR$;,Ns, ..., Ny

we add a new vertex with two edges betweenand (with the underlying grounded graplis , Go, ..., Gy,
two other vertices iV. The other is thedge splitting respectively) are localizable. That is, all the nodes in
given a minimally rigid graplc = (V, £), we remove N, No,..., Ny are localizable.

an edge(j, k) in £ and then we add a new vertéx  In another scenario, globally rigid subnetworks can
with three edges by inserting two edggsj), (i,k) be merged together to form a larger globally rigid net-
and one edge betweenand one other vertex (otherwork. In this way, computation can be decentralized.
thanj, k) in V. Strategies to merge globally rigid subnetworks were

Theorem 16 (vertex addition [18]). Let G = (V, £) given in [3].
be a graph with a vertexof degree 2 in 2-dimensional B. Implicitly globally rigid subnetworks

space; letG* = (V*,L*) denote tht_e s_ubgraph 0?- Let us assume that the underlying grounded graph
tained by deleting and the edges incident with it. of the networkN, namelyGy is 2-connected, but not

ThenG is minimally parallel rigid if and only ifG* 3 connected. Hence it does not satisfy the conditions
is minimally parallel rigid. of Theorem 8. Let us assume that there exists a

Theorem 17 (edge splitting [18]).LetG = (V, £) be Single cut set denoted by = {c1,c2} wherecy, e

a graph with a vertex of degree 3; lef); be the set are cut vertices. Wher — 1,cy are removed then

of vertices incident té; and letG* = (V*, £*) be the there remains two connected graph components. Let
subgraph obtained by deletingand its three incident Us denote these connected graph componentX by
edges. ThefE is minimally parallel rigid if and only if and K. Let Gy be the grounded graph obtained

there is a pairj, k of vertices ofY; such that the edge Dy inserting the implicit edge(ci,c2) to Gn. Let
(4, k) is notin£* and the graphG’ = (V*, £*J(j, k)) US consider each connected component together with

is minimally parallel rigid. this inserted implicit edge and denote them By =
Ky U {(01,02)} andK; = Ky U {(01,62)}. We have
V. LOCALIZATION IN SUBNETWORKS the fo”owing proposition:

In the previous sections, we presented the Conditiorﬁsroposition 18. If K, is rigid and if K, satisfies the

under which there exist a unique solution for th%onditions of Theorem 8 thei, is localizable
network localization problem. One might argue that '

althoughGy fails the conditions for unique localiz- Proof: Recall that adding an implicit edge does
ability, it might still be possible to localize some ofnot increase the rank of the rigidity matrix. Given that
the nodes, although not the entire network. Next w1 is rigid, then the edgéc:,c2) implicitly exists.

consider those cases. Hence we can consider the entire network with this
o implicit edge inserted, and the rigidity properties of
A. Globally rigid subnetworks the networks remain the same. After insertiig, c2),

Assume that the underlying grounded graph of thgiven that]Kg satisfies the conditions of Theorem 8
network N, namelyGn = (V,€), does not satisfy implies thatKKs is localizable. O



This result given for one cut set can be generalized
to any number of cut sets by applying Proposition 18[1]
repetitively.

[2]
VI. CONCLUDING REMARKS
[3]

In this paper, first we have demonstrated the use-
fulness of rigidity and parallel drawings for local-
ization in sensor networks. The unique localization[4l
of networks from distance and bearing measurements
shares a number of features with work in several
other active fields of study: rigidity and global rigidity [5]
in frameworks; the coordinated formations of au-
tonomous agents; and geometric constraints in CAD.
In this paper, we have drawn on techniques and resul{g]
from these fields, also combined in some previous
joint work [5], as well as specific results on global
rigidity. With these concepts, we were able to lay 7
a coherent solid foundation for the underlying prob-
lem of when a network is uniquely localizable, for
almost all configurations of the points. Specifically,
we constructed a formation and then a graph for eacls)
network such that the localization problem for the
network is uniquely solvable, almost always, if and (9]
only if the corresponding graph is generically globy,g;
ally rigid. From these connections, we drew specific
results on sequential techniques such as trilateration
for distances, vertex addition and edge splitting fortt
bearings.

It should be noted that as stated, the localizatio2]
problem with precise distance and bearing is not in
general numerically well posed since even if it ig13]
solvable with the given data, it may be unsolvable with
data arbitrarily close to that which is given. In practic:j
terms, this means that special attention must be p |d]
to the computation process and to assessing the sig-
nificance of approximate solutions. It also means th&t5]
only graphs which are generically globally rigid are[lel
capable of having computationally stable solutions for
given data sets. This confirms our choice of conceptual
framework for this problem. However, we comment
that even approximate solutions are hard to compu&le7
due to the hardness of the localization problem.  [18]

The networks where nodes use both distance and
bearing information together will be explored further
in a future paper. [19]
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