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Proportional share resource management provides a flexivhich are increasingly common. Over the years, a num-
ble and useful abstraction for multiplexing time-shared re ber of scheduling mechanisms have been proposed, and a
sources. We present Group Ratio Round-RolgitRf),  significant amount of progress has been made. However,
the first proportional share scheduler that combines accuprevious mechanisms have either superconstant overhead,
rate proportional fairness scheduling behavior witfil) ~ or less-than-ideal fairness properties.

scheduling overhead on both uniprocessor and multipro- We introduce Group Ratio Round-Robi6 ), a

! ! . \ _ .
cessor systemsGGR” uses a novel client grouping strat- onortional share scheduler that provides constant fair-
egy to organize clients into groups of similar processor,ess pounds on proportional sharing accuracy ith)

allocations which can be3 more easily scheduled. Usingcheduling overhead for both uniprocessor and small-scale
this grouping strategy R° combines the benefits of low multiprocessor systems. In designi6gz?®, we observed

overhead round-robin exe3cution with a novel ratio-basedpa accurate, low-overhead proportional sharing is easy t
scheduling algorithm.GR” can provide fairness within - 4chieve when scheduling a set of clients with equal pro-
a constant factor of the ideal generalized processor shagessor allocations, but is harder to do when clients require
ing model for client weights with a fixed upper bound and ey different processor allocations. Based on this otzserv
preserves its fairness progp_ertl_es on multiprocessorsisste (ion (¢ R? uses a novel client grouping strategy to organize
We have implemente@ R” in Linux and measured its per-  cjients into groups of similar processor allocations which
formance against other schedulers commonly used in régn he more easily scheduled. Using this grouping strategy,
search and practice, including the standard Linux schedry ps combines the benefits of low overhead round-robin
uler, Weighted Fair Queueing, Virtual-Time Round-Robin, execution with a novel ratio-based scheduling algorithm.

and Smoothed Round-Robin_. Our experimental r95U|t%pecifically, we show that with onlg)(1) overheadG R
demonstrate that' R* can provide much lower scheduling provides fairess withirO(g2) of the ideal Generalized

overhead and much better scheduling accuracy in praCticﬁrocessing Sharing (GPS) model [13], wherehe num-

than these other approaches. ber of groups, is in practice a small constant that grows at
worst logarithmically with the largest client weight. Mere
over, we show how R3 M P, an extension of: k3, can be
successfully applied to multiprocessor systems, presgrvi

. _ its worst-case time complexity and fairness properties.
Proportional share resource management provides a flex-

ible and useful abstraction for multiplexing processor re- GR? is simple to implement and can be easily incor-
sources among a set of clients with associated weightd0rated into existing scheduling frameworks in commer-
However, developing processor scheduling mechanism@ial operating systems. We have implemented a prototype
that combine good proportional fairess scheduling beG 12> processor scheduler in Linux, and compared@i’
havior with low scheduling overhead has been difficult toLinux prototype against schedulers commonly used in
achieve in practice. For many proportiona' share Schedu|practice and research, inCIUding the standard Linux sched-
ing mechanisms, the time to select a client for executiortler, Weighted Fair Queueing [6], Virtual-Time Round-
grows with the number of clients. For server systems whicHR0bin [14], and Smoothed Round-Robin [4]. We have con-
may service |arge numbers of C”entS, the Schedu"ng overdUCted extensive simulation studies and kernel measure-
head of algorithms whose complexity grows linearly with ments on micro-benchmarks and real applications. Our re-
the number of clients can waste more than 20 percent ofults show thatGR? can provide more than an order of
system resources [2] for large numbers of clients. Furthermagnitude better proportional sharing accuracy than these
more, little work has been done to provide proportiona|0ther schedulers. Furthermore, our results show@hat
share scheduling on small-scale multiprocessor systemachieves this accuracy with lower scheduling overhead —
more than an order of magnitude less than the standard
*also in Department of IEOR, Columbia University. Linux scheduler and typical Weighted Fair Queueing im-

1 Introduction




plementations. For multiprocessors, we also provide betteweight of a group is the sum of the weights of all clients
fairness with scheduling overhead that is an order of magin the group. Groups are selected in a round-robin manner
nitude less than the standard Linux scheduler. These sesulbased on the ratio of their group weights. If a group has al-
demonstrate tha® 2 can in practice deliver better propor- ready been selected more than its proportional share of the
tional share control with lower scheduling overhead thantime, move on to the next group in the list. Otherwise, skip
these other approaches. the remaining groups in the group list and start selecting
This paper presents the design, analysis, and evalgroups from the beginning of the group list again. Since
ation of GR3. Sections 2 and 3 present th&k3 schedul-  the groups with larger weights are placed first in the list,
ing algorithm for uniprocessor and multiprocessor systemsthis allows them to get more service than the lower-weight
Section 4 analyzes the fairness and complexityz@t3.  groups at the end of the list.
Section 5 presents experimental results. Section 6 dis3.Intragroup scheduling: From the selected group, a

cusses related work. client is selected to run in a round-robin manner that ac-
counts for its weight and previous execution history.
_ ) e . 3
2 GR? Scheduling Using this client grouping strategy; R° separates

scheduling in such a way that reduces the need to sched-

Proportional share scheduling has a clear colloquial mear{‘-IIe entities with sk_evyed weight distributions.  The client
ing: given a set of clients with associated weights, a progroupmg strategy limits the number of groups that need to

portional share scheduler should allocate resources to ea{)e sqhed_uled since the number_of groups grows at worst
clientin proportion to its respective weight. Without lafs ogarlthmlt_:ally with the largest 9I|gnt weight. Even a very
generality, we can model the process of scheduling a timeIfjlrge 32-bitclient welghtwoyld limit th? number of groups
multiplexed resource among a set of clients in two stepst.0 no more than 32. The client grouping strategy also en-

1) the scheduler orders the clients in a queue, 2) the sche?yreS that all clients within a group have weight within a
uler runs the first client in the queue for time quantum actor of two. As a result, the intragroup scheduler never
which is the maximum time interval the client is allowed to needs to schedule clients with skewed weight distributions

3 i i -
run before another scheduling decision is made. We refeGR groups are simple lists that do not need to be bal

to the units of time quanta as time units (tu) in this pape'anced; they do not require any use of more complex bal-

rather than an absolute time measure such as seconds. anced tree structures.
Based on the above scheduler model, a scheduler can 3 L
achieve proportional sharing in one of two ways. One way2-1 GR” Definitions
often called fair queueing [6, 15, 24, 9, 20, 5] is to adjust
the frequency that a client is selected to run by adjusting ~ We now define the staté'R® associates with each
the position of the client in the queue so that it ends up aglient and group, and then describe in detail KGR’ uses
the front of the queue more or less often. However, adjustthat state to schedule clients. Table 1 presents a list of
ing the position of the client in the queue typically regsire terminology. InGR?, a client has three values associated
sorting clients based on some metric of fairness, and hawith its execution state: weight, deficit, and run state.fEac
a time complexity that grows with the number of clients. client receives a resource allocation that is directly prep
The other way is to adjust the size of the time quantum of dional to itsweight A client's deficit tracks the number
client so that it runs longer for a given allocation. Weighte Of remaining time quanta the client has not received from
round-robin is the most common example of this approachprevious allocations. A client’sun stateis an indication
This approach is fast, providing constant time complexityof whether or not the client can be executed. A client is
scheduling overhead. However, allowing a client to mo-funnableif it can be executed. For example for a CPU
nopolize the resource for a long period of time results inscheduler, a client would not be runnable if it is blocked
extended periods of unfairness to other clients which rewaiting for I/O and cannot execute.
ceive no service during those times. A group in GR? has a similar set of values associ-
GR? is a proportional share scheduler that matchesated with it: group weight, group order, group work, and
the O(1) time complexity of round-robin scheduling but current client. Thegroup weightis defined as the sum of
provides much better proportional fairness guarantees ithe corresponding weights of the clients in the group run
practice. At a high-level, th& R? scheduling algorithm queue. A group witlgroup orderk contains clients with
can be briefly described in three parts: weights betweer* to 28+ — 1. Thegroup workis the
1.Client grouping strategy: Clients are separated into total execution time clients in the group have received. The
groups of clients with similar weight values. Each groupcurrent clientis the most recently scheduled client in the
of orderk is assigned clients with weights betweZhto  group’s run queue.
2k+1 — 1, wherek > 0. In addition to the per client and per group state de-
2.Intergroup scheduling: Groups are ordered in a list scribed,G R? maintains the following scheduler state: time
from largest to smallest group weight, where the groupquantum, group list, total weight, total work, and current



C; | Clienti. (also called 'task’ i) The intuition behind (1) is that we would like the ra-

?i The weight assigned t0;. tio of the work of G; andG,,; to match the ratio of their

D¢, | The deficit ofC;. respective group weights aftétiz® has finished selecting

N The number of runnable clients. both groups. For each time a client fra# ; is run,GR?

&7 | The sum of the weights of all runnable would like to have runq%1 worth of clients fromG;. (1)
clients:} o ¢;- says thatZR3 should not run a client fron&; and incre-

g The number of groups. mentG;’s group work if it will make it impossible fo6;

|G| The number of clients in grou@. to catch up to its proportional share allocation by running

G; +'th Group in the ordered list of groups. one of its clients once.

G(i) | The group to whiclC; belongs. To illustrate how the intergroup scheduling works,

®s | The group weightEcieG o consider an example in which we have three cliefits

P, Shorthand notation fob;, . C>, and Cs5, which have weights of 5, 2, and 1, respec-

lofe The order of groug. tively. The GR? grouping strategy would place each

We | The work of clientC. in group G;, ordering the groups by weightG;, Gs,

We | The group work of groufg:. and Gs have orders 2, 1 and 0 and weights of 5, 2, and

Wi shorthand notation foi/, . 1 respectively. GR? would start by selecting grou@,

Wr | The sum of the group work of all groups. running clientCy, and incrementingV;. Based on (1),

%ﬂ =2< gl = 2.5, soGR? would select?; again
Table 1:GR? Terminology and run chentCl After running C1, G1's work would
be 2 so that the inequality in (1) would hold ad#R3
would then move on to the next grodp, and run client
Cy. Based on (L)%} = 2 < $ = 2, SoGR® would
group. Thegroup listis a sorted list of all groups contain- reset the current group to the largest weight gréupand
ing runnable clients ordered from largest to smallest groupun clientC;. Based on (1)1 would be run for three time
weight, with ties broken by group order. Thatal weight  quanta before selecting, again to run clienC,. After
is the sum of the weights of all runnable clients. Tthe runningC, the second timel, would increase such that
tal work is the sum of the work of all groups. Thoairrent %ﬁl =3> % _ 2 s0GR? would then move on to
groupis the most recently selected group in the group list. thé jast grouggs; and run clienCs. The resulting schedule

would then be: G1, G1, Go, G1, G1, G1, Go, Gs. Each

2.2 BasicGR? Algorithm group therefore receives its proportional allocation in ac
cordance with its respective group weight.
We will initially only consider runnable clients in our The GR? intragroup scheduling algorithm selects a

discussion of the basiG'R* scheduling algorithm. We client from the selected group. All clients within a group
will discuss dynamic changes in a client’s run state in Sechave weights within a factor of, and all client weights
tion 2.3. We first focus on the development of #i&>  in a groupG are normalized with respect to the minimum
intergroup scheduling algorithm and then discuss the depossible weightg,.;, = 27¢, for any client in the group.
velopment of the7 R? intragroup scheduling algorithm.  GR3 then effectively runs each client within a group in
The key idea behind th@ R? intergroup scheduling  round-robin order for a number of time quanta equal to the
algorithm is that we can choose the next group to schedulelient’s normalized weight, rounded down to the nearest in-
using only the state of successive groups in the group listeger value G R? keeps track of fractional time quanta that
The basic idea is given a grodp whose weightis times  are not used and accumulates them in a deficit value for
larger than the group weight of the next gratip,; in the  each client, then allocates an extra time quantum to a client
group list,GR? will select groupG; « times for every time  when its deficit reaches one.
that it selects; 1 in the group list to provide proportional More specifically, thes B3 intragroup scheduler con-
share allocation among groups. To implement the algosijders the scheduling of clients in rounds.réindis one
rithm, we maintain the the total work done by grolim  pass through a group’s run queue of clients from beginning
a variablelV;. The algorithm then repeatedly executes theto end. The group run queue does not need to be sorted

following simple routine: in any manner. During each round, tig&R? intragroup
Run a client fromG;; incrementV; algorithm considers the clients in round-robin order. For
if each runnable client;, the scheduler determines the max-
Wi+l o (1)| imum number of time quanta that the client can be selected
Witzi+1 " @i to run in this round a$¢¢’7 + D¢, (r —1)]. D¢, (r), the
then increment deficit of cllentC after roundr, is deflned recursively as
elsei =1 Dc,(r) = (r — 1)—L - (r =1,

The index: tracks the current group and is initializedlto  with D¢, (0) = 0. Thus, in each round’; is allotted one



time quantum plus any additional leftover from the previ-was not previously empty7R3 inserts the client into the
ous round, an@;, (r) keeps track of the amount of service respective group’s run queue right before the currenttlien
thatC; missed because of rounding down its allocation toand will be first serviced after all of the other clients in the
whole time quanta. We observe thak D¢, (r) < 1 af-  group have first been considered for scheduling.

ter any round- so that any clien€; will be allotted one or When a newly runnable cliert; is inserted into its
two time quanta. Note that if a client is allotted two time respective groug:(i), the group needs to be moved to its
quanta, it first executes for one time quantum and then ex2eW position on the ordered group list based on its new

ecute for the second time quantum the next time the intefd™0UP weight. The corresponding group work and group

group scheduler selects its respective group again (in gel){\_/eight need to be updated and the client’s deficit needs to

. ) ; ; be initialized. The group weight is simply incremented by
eral, following a timespan when clients belonging to other,[he client's weight. We want to scale the group work of
groups get to run). G(i) in a similar manner. Deno&’¢\¢) as the group work

The following example illustrates ho@R? schedul-

. ) - : of G(i) andWg'd as the total work before inserting client
ing works. Consider a set of six clients throughCs with C;, respectively. We then scale the group wébk;;, as

. . . . . i1 (2)
weights 12, 3, 3, 2, 2, 2 respectively. The six clients will fg]lows:

be put into two groupgs; and Gy with respective group

order 1 and 3 as followss; = {Cs, Cs, Cy, Cs, Cs} and wal qj‘i{'dJ if G(i) was empty

G2 = {C1}. The weight of the groups afe; = @, = 12. Waw) = o ;Gm )

G R? intergroup scheduling will consider the groups in this WG CEEN J otherwise

order:Gl, GQ, Gl, GQ, Gl, GQ, Gl, GQ, Gl, GQ, Gl, GQ.

G- will schedule clienC; every timeG, is considered for ~ and updatéVy = W2ld + We) — W,

service since it has only one client. Singgi,,) = 2, Also, since we have decreased the average work in
the normalized weights of clients,, Cs, Cy, Cs, andCs  the group through these operations, we need to set the
are 1.5, 1.5, 1, 1, and 1, respectively. In the beginning offeficit of C; so that the future increase in service given to
round 1 inG, each client starts with 0 deficit. As a re- the group because of this decrease should be absorbed by
sult, the intragroup scheduler will run each cliengip for 1€ New client. The goal is to have the impact of a new

) . : client insertion be as local as possible, while preserving
one time quantum during round 1. After the first round,thethe relationship among the work of the other clients and

deficit for Cz, s, Ca, C5, andCs are 0.5, 0.5, 0,0, and 0. 4r0yns. We therefore assign an initial deficit as follows:
In the beginning of round 2, each client gets anotHer
allocation. As a result, the intragroup scheduler will sele W — | Zewp | if G(7) was empty
clientsCs, Cs, Cy4, Cs, andCg to run in order for 2, 2,1, Dc, = De(i) 1rrold De(i) 1rrold )

; . . —Z 2 WEE — | =22 Wa otherwise
1, and 1 time quanta, respectively, during round 2. Rounds R

3 and 4 are similar. The sequence of clients that the sched-.. : L S
uler runs for each unit of time i€, Cy, Cs, Cy, Cy, Oy, Since this deficit is less thah the new client is mildly

compensated for having to wait an entire round until it gets
g5’ gl’ gﬁ' gl’ G2, €1, O, Oy G, €1, G, O O, 1 run, while not obtaining more credit than other, already
5, “1y L6y U1

runnable, clients.

3 . . . When a clientC; with weight ¢; becomes not
2.3 GR° Dynamic Considerations runnable, we need to remove it from the group’s runqueue.
This requires updating the group’s weight, which poten-
In the previous section, we presented the basit> tially includes moving the group in the ordered group list,
scheduling algorithm, but we did not discuss haw?  as well as adjusting the measure of work received accord-
deals with dynamic considerations that are a necessary pdhd 0 the new processor share of the group. This can be

of any on-line scheduling algorithm. We now discuss howachieved in several way{;R? is optimized to efﬁc!ently
G'R? allows clients to be dynamically created, terminated deql with the common situation when a blockeq Cl'enF may
or change run state ' ‘rapidly switch back to the runnable state again. This ap-

proach is based on “lazy” removal, which minimizes over-
Clients that are runnable can be selected for execuhead associated with adding and removing a client, while at
tion by the scheduler, while clients that are not runnableghe same time preserving the service rights and service or-
cannot. With no loss of generality, we assume that a cliender of the runnable clients. Since a client blocks when it is
is created before it can become runnable, and a client bgunning, we know that it will take another full round before
comes not runnable before it is terminated. As a resultthe client will be considered again. The only action when

client creation and termination have no effect on ¢hg3 a client blocks is to set a flag on the client, marking it for
run queues removal. If the client becomes runnable by the next time

) ) ) it is selected, we reset the flag and run the client as usual.
When a clieniC; with weight¢; becomes runnable, otherwise, we remove the client fra@(i). In the latter sit-

itis inserted into grou-(i) such tha; is betweer2?¢®  yation, as in the case of client arrivals, the group may need

and2°¢@*! — 1. If the group was previously empty, the to be moved to a new position on the ordered group list

client becomes the current client of the group. If the groupbased on its new group weight. The corresponding group



P Number of processors. 3.1 BasicGR?M P Algorithm

oF Processok.

C(g") | Client running on processar GR3M P uses the sam@ R? data structure, namely

F; Frontlog for clientC;. an ordered list of groups, each containing clients whose
Table 2:GR3M P Terminology weights are within a factor of 2 from each other. When

a processor needs to be schedul@®3M P selects the

o _ o ) client that would run next unde¥ R®, essentially schedul-
weight is updated by subtracting the client’s weight froming multiple processors from its central runqueue4s3

the gr_ou_lp weight. The ;:orr?_sp?ndln%_grc?up work is scaledcheqyles a single processor. However, there is one obsta-
In a simiiar manner as for ciientinsertion. cle to simply applying a uniprocessor algorithm on a multi-

o processor system. Each client can only run on one proces-
Weau = [ng(‘i)@oil(dﬂ , 2 sor at any given time. As a resutfR3M P cannot select
G(i)

a client to run that is already running on another processor
even if GR3 would schedule that client in the uniproces-
and the total work counter needs to be updated by the foréor case. For example, R* would schedule the same

_ 1d . _ mrold i . X ' ; ' .
?‘UlaI;VTh— Wy + V|VG(Z) W) After hav;]ng pﬁr ySlient consecutivelyz R3 M P cannot schedule that client
ormed these removal operations, we restart the schedu %E)nsecutively on another processor if it is still running.

from the largest weight group in the system. S . S .
9 ght group y To handle this situation while maintaining fairness,

D WEengverDa cheni[ blocd)ljs du;}';g_ rouni;i weh St GR3MP introduces the notion of frontlog. The front-
ci(r) = min( C}‘(T_ )+¢Tm_ =1 (Z’.Tﬂ’ )'W €€ " log F; for some clientC; running on a processap*
W (i,r) is the service that the client received during round(cj = C(p")) is defined as the number of time quanta

r until it blocked. This preserves the client’s credit in cases; . accumulated a€' gets selected b¢R? and cannot
it returns by the next round, while also limiting the deficit ., bjecause it is alreaély running ph. The frontlogF; is
to 1 so that a client cannot gain credit by blocking. How- 1o, queued up op*. !

ever, the group consumegu (its work is incremented) no Given a client that would be scheduled 8§7° but

matter how long the client runs. Therefore, the client for-. : 3
o . o .. is already running on another procesgoR> M P uses the
feits its extra credit whenever it is unable to consume it

i Sfrontlog to assign the client a time quantum now but de-
allocation. . . .
fer the client's use of it until later. Whenever a proces-

If the client fails to return by the next round, we may . finishes running a client for a time quantu@iz?® M P
remove it. Having kept the weight of the group to th? old checks whether the client has a non-zero frontlog, and, if
value for an extra round has no adverse effects on falrnesgoi continues running the client for another time quantum

despite the slight increase in service seen by the group duly 4 qecrements its frontlog by one. The frontiog mecha-

ing the last round. By scaling the work of the group andism not only ensures that a client receives its proportiona

rounding up, we determine its future allocation and thusgnare allocation, it also takes advantage of any cache affin-
make sure the group will not have received undue servic ty by continuing to run the client on the same processor.
We also immediately restart the scheduler from the first

group in the readjusted group list, so that any minor dis- When a processor finishes running a client for a time

crepancies caused by rounding may be smoothed out by%luantum and its frontlog is zero, we call the processor
’ ’ 3 . . ]
first pass through the group list, idle’. GR’?M P schedules a client to run on the idle pro

cessor by performing &R? scheduling decision on the
central queue. If the selected client is already running on
. some other processor, we increase its frontlog and repeat
3 GR’ Multiprocessor Scheduler GR3MP) the GR? schgduling, each time incrementing t%e frontlgg
We can extend?R> to act as a multi-resource scheduler of the selected Client, until we find a client that is not cur-
for a System withP processors Schedu”ng from a sin- rently running. We assign this client to the idle processor
gle, centralized queue. This simple multiprocessor schemdor one time quantum. This description assumes that there
which we refer to as7R3M P, preserves the good fair- are least’+1 clients in the system. Otherwise, scheduling
ness and time complexity properties@f:? in small-scale is easy: each client is simply assigned its own processor.
multiprocessor systems, which are increasingly common To illustrate GR3 M P scheduling, suppose we have
today, even in the form of hyperthreaded processors. Taa dual-processor system and three cligrits Co, andCs

ble 2 introduces terminology we use to desciibg? M P. of weights 3, 2, and 1, respectivelg; andCs will then

We first describe the bas@R? M P scheduling algorithm, be part of the order 1 group (assuffigis beforeC; in the
then discuss dynamic considerations. To deal with infearound-robin queue of this group), whereasis part of the
sible client weights, we then show haR>M P uses its  order 0 group. Th& R? schedule i<, Cy, Cs, C1, C1,
grouping strategy in a novel weight readjustment algorithmC3. o' will then selectC; to run, andp? selects”;. When

that is much more efficient than previous approaches [3]. ! finishes, according t&:R3, it will selectCs, once more,



whereasp? selectsC;. When p! again selects the next 3.3 GR? MP Weight Readjustment
GR?3 client, which isCy, it finds that it is already running
on p? and thus we sef; = 1 and select the next client, Since no client can run on more than one processor
which is Cs, to run onp'. Wheng? finishes running”;  at a time, no client can consume more tham/& frac-
for its second time quantum, it find§ = 1, setsF; = 0  tion of the processing in a multiprocessor system. A client
and continues running; without any scheduling decision C; with weight¢; greater thar®/ P is considerednfea-
on theG R? queue. sible since it cannot receive its proportional share alloca-
tion ¢;/®r. GR3>M P will simply assign such a client
its own processor to run on. However, since the sched-
uler uses client weights to determine which client to run,
an infeasible client’s weight must be adjusted so that it is
GR3M P basically does the same thing as tH&2  feasible to ensure that the scheduling algorithm runs cor-
algorithm under dynamic considerations. However, therectly to preserve fairnesszR3M P potentially needs to
frontlogs used iNGR3M P need to be accounted for ap- perform weight readjustment whenever a client is inserted
propriately. If some processors have long frontlogs foror removed from the runqueue to make sure that all weights
their currently running clients, newly arriving clients yna are feasible (i.e., the weight of a client is no larger tHan
not be run by those processors until their frontlogs are proef the total weight after weight readjustment is completed)
cessed, resulting in bad responsiveness for the new clients G R3M P leverages its grouping strategy to perform
Although in between any two client arrivals or departures efficient weight readjustmentGR>M P starts with the
some processors must have no frontlog, the set of such premmodified client weights and maintains a 'saved’ list of
cessors can be as small as a single processor. In this caggpups ordered by group weight based on the unmodified
newly arrived clients will end up competing with other client weights. Given the clients whose weights had been
clients already in the run queue only for those few procesadjusted, we determine the group to which each such client
sors, until the frontlog on the other processors is exhduste belongs based on its original weight, add the client to that
group and restore the group in the ordered list of groups
according to its position in the 'saved’ list. Once the agetiv
GR? group list has been restored to be an exact copy of

3.2 GR?M P Dynamic Considerations

GR3M P provides fair and responsive allocations by
creating frontlogs for newly arriving clients. Each new
client is assigned a frontlog equal to a fraction of the to- he saved group lisGZR3M P uses the following weight
tal current frontlog in the system based on its proportionaf

o eadjustment algorithm to construct the $aif infeasible
share. Each processor now ma|nta|ns-a .queue_of frontlog“ents and adjust their weights to be feasible. We denote
clients and a new client with a frontlog is immediately as-, 1] the cardinality off and by®; the sum of weights of
signed to one of the processor frontlog queues. Rather thq e clients inZ, ..., 6
running its currently running client until it completes its $ £xCel PO

) . . GR3M P starts with[ initially empty (1| = ®; =
frontlog, each processor now round robins among clients "E)) and then proceed from the group containing the largest

its frontlog queue. Given that frontlogs are small in prac- ’’. ht cli ds th inina th I
tice, round-robin scheduling is used for frontlog clierds f weight clients towards the group containing the smallest
' weight clients. For each such groGpif |G| < P—|I| and

its simplicity and fairnessG'R3 M P balances the frontlog 906 ~ PT-P[-Bg ol i Clients iiG are infeasible

load on the processors by placing new frontlog clients on P—|I|-]G] . .
§o thatGR*M P setsI = I U G and continues with the

the processor with the smallest frontlog summed across a ) i
; ; next group. Otherwise; R3 M P knows that all the clients
its frontlog clients. : ) i , :

_ . _ not in I U G are feasible and it only needs to find which,
. More precisely, whenever a cliedt; arrives, and  if any, clients fromG are infeasible. IfG| > 2(P — |I}),
it belongs in groupG(i), GR*M P performs the same G R3M P can stop searching for infeasible clients since all
group operations as in the single process®® algorithm.  clientsC € G are feasible:pe < 20611 < 2@‘%: <
GR3M P finds the processap® with the smallest front- 1 1 _

. k P7|I|¢G§ P*‘I‘(¢T ¢I)

log, then creates a frontlog for client; on " of length
F, = Fr2i, whereFr is the total frontlog on all the

Otherwise, if|G| < 2(P — |I|), GR®*M P needs to
ez’ . search througltz to determine which clients are infeasi-
Processors. L?f?j.: Ceh). Then, assuming no further o * ¢ the number of clients i is small, we can sort
clients arrive o° will round-robin betweerC’; andC; and o cjients inG by weight. Then, starting from the largest
runC; for F; andc; for £} time quanta. weight clientinG, identify each client € G as infeasible

When a client becomes not runnahf&R3 M P uses  and add to the infeasible sétf ¢ > p+|[|(q)T — ®p).
the same lazy removal mechanism usedziR>. If it is If the inequality does not hold, we are finished since all
removed from the runqueue and has a frontGR3>M P  clients of less weight tha@' will be feasible as well.
simply discards it since each client is assigned a frontlog GR3MP can alternatively use a more complicated
based on the current state of the system when it becomdsit lower time complexity divide-and-conquer algorithm to
runnable again. find the infeasible clients if. In this caseG R* M P par-



titions G around its media®’ into G'g, the set ofZ clients We analyze the fairness @@ R?> and GR3>M P by
that have weight less thatr andG s, the set ofG clients  providing bounds on the service error. To do this, we de-
that have weight larger thapc. If oo > %, fine two other measures of service error. Treup ser-
then all clients inG; are infeasible, and we therefore set Vice time erroris a similar measure for groups that quanti-
I = TUGgU{C} and recurse of¥'s to find all infeasible ~ fies the fairness of allocating the processor among groups:
clients. Otherwise, all clients i’ are feasible, and thus Ec = We — ®c ¢~ Thegroup relative service time er-
we recurse ol to find all infeasible clients. The algo- roF represents the service time error of cligitif there
rithm finishes when eithelf| = P or the set we need to Were only a single grou@ in the scheduler and is a mea-
recurse on is empty. sure of the service error of a client with respect to the work
Once all infeasible clients have been identified,don€ on behalf of its groupkc.c = Wo — b g We
GR3M P determines the sum of the weights of all feasi- first show boupds on tr_]e group service error of the inter-
ble cIients,@% — &7 — ®;. We can now compute the new 970UP scheduling algorithm. We then show bounds on the

: lative service error of the intragroup scheduling a
total share in the system ds; = —L /. namely the 9'OuPrefat ) .
y P=l"T y gorithm. Finally, we combine these results to obtain the

solution to the equatio, + 14 = . Once we have the client service error bounds for the overall scheduler. We

a(_jjuste_dq)T, \ge change all the weights for the infeasible 5|5g discuss the scheduling overhead'd® andG R* M P

clientsinf to Z-. _ _ in terms of their time complexity. We show that both algo-
Given the adjusted client weights, we alter the "ac-rithms can make scheduling decisions(x1) time with

tive’ GR? group structure to reflect the new client weights O(1) service error given a constant number of groups.
and the weight ratios among groups. Specifically, we re-

move the infeasible clients from their respective groups4.1  Analysis ofGR?

and put them all in the same group, since their adjusted

weights will be equal. Empty groups (the ones that con-ntergroup Fairness To demonstrate the fairness mech-

tained only infeasible clients) are then disconnected fromanism of G R?, we begin by assuming the weight ratios of

the group list. consecutive groups in the group list are integers. For this
case, we state and prove the following:

. . (o3 .
4 G R® Fairness and Complexity Lemmallf 7 € N, 1 < j < g, then—1 < Eg, <

(g — k)¢ for any groupG.
Proof: Let us consider the decision faced by the intergroup

We analyze the fairness and complexity 6fR* and

3 .
GR*MP . To analyze fairness, we use a more l‘ormalscheoluler after having selected some gréyp Wheniv,

notion of proportional fairness defined asrvice error 2 1 ()is still fal h
a measure widely used [8, 10, 17, 21] in the analysié)ecome$wj+1+1)<I>j+1 —1. (D)is still false (we have an

of scheduling algorithms. For simplicity, we assume that®duality), and so it will take another selection(@f before

clients are always runnable in the following analysis. G R’ will move on t0G;.1. Therefore, aftey;, is se-
We use a strict measure of service error relative tolectecli, tEe ratio O]f trr]] € worI§ ?]f the two consecutive groups

Generalized Processor Sharing (GPS) [13], an idealizegquast € ratio of their weights:

model that achieveperfect fairmess We = Wr 22, an Wi _ Win 3)

ideal state in which each client always receives service Py

exactly proportional to its share. Although all real-world In particular, let the last selected group @g; then we

scheduling algorithms must time-multiplex resources inknow (3) holds for alll < j < k. If j > k, then we know

time units of finite size and thus cannot maintain perfect(3) held afterG, ., was selected. Until the next time that

fairness, some algorithms stay closer to perfect fairnes&';+1 gets selected again and (3) holds once midfecan

than others and therefore have less service error. We quafDlY increase, withV; ., fixed. Thus,

tify how close an algorithm gets to perfect fairness using Wine - Wi _ Wipn+1 1 @)

the client service time errgrwhich is effectively the dif- B B - By D

ference between the service received by cli€nand its The right inequality in (4) is simply the negation (1),

share of the total work done by the processdic =  gjightly rearranged. For the particular case whes k,

We — éc gk A positive service time error indicates that \ye can write based on (4) just before having selectgd
a client has received more than its ideal share over a tim@yvhen,, was less byl):

interval; a negative error indicates that it has received.le W 1 W Wies 41
To be precise, the erraf- measures how much time a % +3- < q)—k < %.
clientC has received beyond its ideal allocation. The goal e F F .

of a proportional share scheduler should be to minimize theBY summing (4) ovek < j < i and adding (5), we get

®)

absolute value of the allocation error between clients withg> + 3. < 5= < —4. Vi, k < i < g. Also, from (3), we
minimal scheduling overhead. have‘g—: =i, 1<i<k.



Multiplying by ®; and summing over afl, we get 2. j > k We use (9) and the right inequality of (8) to

. obtain
= Pj1 QT P

Therefore, right aftez;, is selected, its erroEg, 3. j = k The situation right beforé&’, got selected is an
=W, — Wrgk lies betweeng—>"7_, ., @; € (0,1) and instance (withj = k) of the previous case, with the
(g—k)gj—;. Since the minimum error will occur right before observation that the neW, is the oldW}, + 1. Thus,
some selection of7;, whenW;, is less byl than in the
above analysis, we can bound the negative error byx Wi+ < Wi < Wi +1 (11)

We immediately observe that the error is maximized Pt P T Prpa
for k = 1; thus: ) o

Let us now turn our attention to finding the bounds
then—1 < Fg < for the group errors.
(g — 1) for any groqu By summing up (8) ovej betweeni andk — 1, we
get

In the general case, we get similar, but slightly W, W, Wi =1y '

weaker bounds. Eé?k<$i+z;aj’1§l<k.

Lemma 2 For any groupGy, —7(‘7—’“)(‘;_’“_1) g—; -1<

Similarly, by summing up (10) overbetweerk + 1 andi
Ec:,c <g-1.

and adding (11), we get

Proof: The proof follows reasoning similar to that of the

previous lemma, starting with some important remarks re- Z i k<

lated to selecting some grodyp;. =kt P, ‘bk
Let us negate (1) under the form:

+— k<i<g.

W
o, | ®;

We can multiply the above inequalities By to obtain:

Witl Wi+l

< (7) k—1
o, P, o 2
7 A W<Wk—<W+Z 1<i<k (12
After having selected;, G R? will selectG, ., if and only =i ®

if (7) is violated.

. _ ) _and, respectively,
First, we make the observation that (7) was invalid

just beforeG;;1 was selected, but held the previous time i—1 ®, ®,
whenG was selected. Thus, Wi — Z — < qu)— SWi+l k<i<g. (13)
j=k+1 J

W; Wit W;+1
@J < @J,H < 11) (8)  Adding (12) overl < i < k with (13) overk < i < g, and
! ! ! with the identitylV;, = Wkg—:, we get:

holds immediately aftez;,; is selected. Furthermore,
selectingG; 1 has the consequence of making (7) valid klk-l g

again, since Wr— Z Z =— < Wk— < WT+ZZ —+g k.

i=k+1 j=k+1 J =1 j=1¢
Wy L Wi Wisr 1 (14)

1
= (9 , k1 k-1, k-1 i
D, o; (1)7+1 ;T Dy D ©) We notice thagizl Zj:i D, Z’L 1 (<I> Zg 1 P; ) <

o o _ | zi“‘f<%;><<k—1>%
Also, the right inequality in (8) is true in general, smce . g
after G, was selected and (8) heldd/; could have only o, 37 =k+1 ZJ k+1 <In < Xk Za [
increased, whiléV, ., stayed fixed. Zf (@ — k — 1) = la=kllg=k=1),

Now assume that the last group to have been selected ~ (14) then yields
is Gi. Based on the above, we will derive relationshipsWy — M < Wi < Wr+(k— 1)‘1’T +9—k,
betweenW; andW;,; depending on whethgr< k,j =  or
k,orj > k. Wy Be — M%<m<m§—;+(k—1)+
(g9 — k)¢, and, sincefs <1,

1. j < k WhenGy is selected, we know that;,,; was
selected right afte¢; for all j < k, and so (8) holds O (g—k)(g—k—1) i
forall j < k. WT(I)—T— 5 <Wk<WT(I)—T—|—(g—1),




We rewrite the last relation using the definition for the er-
ror: Eg, = Wy — WT;)—; to get

(g—Fk)(g—k-1)
2

<EGk < (g_l)'

The above holds right afte¥;, is selected. To bound,
in general, we note that the minimum b¢;, can only oc-
cur right beford¥;, is incremented (grou@y, is selected),

Proof: Follows from Corollary 2, Lemma 3, and
Lemma 4 where we havgs < 1. O

In the desirable case when the group weight ratios are
integers, we have the tighter bounds of

@,

Theorem 2 If BT € N, 1<j<gthen—4 < E¢ <
g + 3 for any clientC.

Proof: Follows from Corollary 1, Lemma 3, and Lemma 4

while the maximum is reached right after the selection ofwhere we hav%% <10
Gk. Hence, subtracting 1 on the negative side concludes

the proof.0
It is clear that the lower bound is minimized when
setting k=1. Thus, we have

Corollary 2 _W% —1< Eg < g~ 1forany
groupG.

Intragroup Fairness Within a group, all weights are
within a factor of2 and the group relative error is bound
by a small constant.

Lemma 3 —3 < E¢ ¢ < 4 forany clientC € G.

Proof: The intragroup Round Robin runs the clients
within a groupG of order o in the order of the group
queue. Afterr rounds, W, re4 — Dy holds
for any clientA in G. Then,Wg = > ,.oWa =

T‘;;—% — ZAEGDA’ and SOEQG = We — ng—g =

i—g > acc Da — D¢ for any clientC € G after a round.
Depending on the position @f in the group’s queue,

the error in general will be different from the error in be-

tween rounds.

Worst-case, ifC' happens to be at the head @Gfs

queue, right after it runsio ¢ = fg—g > sccDa— Do+

dc (e ¢c 20G+1 20g+l
3¢ < Na 3, T a7a < Ne Ng2°G 5o = 4.

Similarly, C' might be at the tail of the queue, in
which case, right before it rungic ¢ = g—g Y>oacaDa—

Do —2e > 1 2c 51— =-3.0

29G 29G

2(TG+1
2°G

Overall Fairness of GR® Given the error bounds for the

Time Complexity of GR®> GR? manages to bound its
service error byO(g?) while maintaining a strictO(1)
scheduling overhead. The intergroup scheduler either se-
lects the next group in the list, or reverts to the first one,
which takes constant time. The intragroup scheduler is
even simpler, as it just picks the next client to run from
the unordered round robin list of the group. Adding and
removing a client is worst-case(g) when a group needs
to be relocated in the ordered list of groups. This could
of course be done i®(log g) time (using binary search,
for example), but the small value gfin practice does not
justify a more complicated algorithm.

The space complexitpf GR? is O(g) + O(N) =
O(N). The only additional data structure beyond the un-
ordered lists of clients is an ordered list of lengtto orga-
nize the groups.

4.2 Analysis of GR*M P

Overall Fairness of GR®*MP  Given feasible client
weights after weight readjustment, the service error for
GR3*M P is bounded below by thé'R? error, and above
by a bound which improves with more processors.

Theorem 3 —{=Ule=2 bo _ 4 < Fo < 29+ 10 +
% for any clientC.

Proof: Let us denote the total number of scheduling deci-
sions performed on th&R? queue byWr = SN 7,

whereW; is the number of time quanta th&tR® would
have allocated to client; so far. Since a client may not be

inter- and intragroup scheduling algorithms, we can anaable to consume all of this allocation and instead frontlog

lyze the overallZ R? fairness.
Lemma 4 For any clientC € G, Ec = Ec.c + g—gEg.

bc _

Proof: Ec = We — Wrgs = We — ng—g + ng—g -
Wr$e = Ecc+ $2(We — Wr3s). O

We are now ready to state the following result to

bound the service error relative to GPS of any client ingp, the neg

the scheduler to @&(g) positive service error bound and
a0(g?) negative service error bound:

Theorem 1 _W% —4 < Ec < g+ 3forany
clientC.

some of it, in generdll; = W; + Fj.

Assume first that no client has a frontlog. Then the
service received by each client rounded up to integer time
guanta is the same as in uniprocesS@t® at some time
which is a multiple of the basic time quantum. In particular,
when a clientC; just finishes running for a time quantum,

v W v W
Wi — i LJ;; <Wi—¢; L]?TL J < (g+3). Also,
ative side, right befo€g starts runninglv; —
N N
W Wil —1)(9—2) &
@% > Wi_(bizng > _ e 1)2(9 2) g; _4.

Since a client has weight no larger thé’gr, it is receiv-
ing no less than its due allocation while it is running on a
processor. Therefore, the two inequalities above show that



the error in this case is bounded by the error for the single
processor case.

Let us now consider a scheduling sequenc& &°

that consists of a subsstof clients, whergS| < P — 1.

Assume now that there are clients with frontlog. Leta; be the number of clients of groug; that are also in

= |G;NS|). Clearly,a; < |G;|. Letk = min{i|a; <
they are frontlogged, and since non-frontlogged clientdG;|}. That is,k denotes the smallest group not contained
have not skipped any quanta, it is easy to see that the neginS. Such & always exists, provided thaf > |S|, which
tive error of all clients is bounded by the negative error foris true whenv > P.
Letty, t, be an arbitrary scheduling interval 6fR3.
Also, for the frontlogged clients, their allocation is Then, writing (14) at timeg; andt, and subtracting the

Since such clients receive at least their due allocatiotewhi S (a;

the single processor case.

behind their corresponding single proceséik?® alloca-

resulting inequalities, we have (we add & account for

tion, while for the non-frontlogged clients, their posétiv having chosen an arbitrary interval which is not necessaril

error can exceed that for the single proces&®? by
g;; >~ F,; where the sum is taken over the set of front-
logged clients. Let; be a frontlogged client. We would
like to boundF;***, the maximum size of the frontlog on
C;. Writing Theorem 1 for the endpoints of the front-
log inteval (¢1,t2) where the maximum is reached, and

subtracting, we getV(ts) — W(t1) < $=(t2 — t) +

W% + 4+ (g + 3). On the other hand, because
T

the client was running continuously on one of the Procesy uble sums b

sors,Wi(ta) — Wi(t1) = S(ta — t1). Sinceq‘f; <L, we
haveFimaX = Wi(tg) — Wi(tl) — (Wz(tz) — Wl(tl)) <
(9—1)2(9—2)5_; +4+(9+3).

We can thus bound the positive error of non-
frontlogged clientsC;, by (¢ + 3), the positive er-
ror for GR?, p|US_§—; 2(7(9_1)2(9_2)5—; +4+(9+3))
where the sum is taken over the set of frontlogged
clients. Since there are at mogt — 1 frontlogged
clients, we can bound the positive error by +

3) + 2 (L==2 4 4P+ P(g+3)) < (9+3) +
LU 4 p(g47)) =29+ 10+ YD o

Time Complexity of GR>M P  The frontlogs create an
additional complication when analyzing the time complex-
ity of GR®M P . When an idle processor looks for its next
client, it runs the simpleD(1) GR? algorithm to find a
clientC;. If C; is not running on any other processor, we
are done, but otherwise we place it on the frontlog and then
we must rerun thé&' R? algorithm until we find a client that

is not running on any other processor. Since for each such
client, we increase its allocation on the processor it runs,
the amortized time complexity remaiid¥(1). Neverthe-
less, we also will bound the time that any single scheduling
decision takes. The upper bound is equal to the maximum
length of any scheduling sequence@R? consisting of
only some fixed subset df — 1 clients.

Theorem 4 The time complexity per scheduling decision
in GR?MP is bounded above b=kl (1 4
1)(g — k+1)Pwherel < k <g.

Proof: We will use the feasibility constraint on the weight
of clients,¢; < %T. We also assume thaf > P. Oth-

erwise, we are in the trivial case when each client gets its
OWn processor.
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i=k+1j=k+1 7

_ — 0]
Wr(ta —t1) < Wi(ts _tl)é +
g i1 k=1 k—1
0¥ 0¥
I SECERNS 5) SLRPES

<

=1 j=1

delimited by instances whe®;, has just been selected):

As in the proof of lemma 2, we can bound the two

w and(k — 1)2_: respectively.

Let us now turn to the first term. Sineg = |G|,

k—1

Y027 - Prym
: i P P < 3.
=1 i=1

k—1
> ®i<
=1

Therefore,

g
o= &; <
=1
k—1

D0t (g—k+ 1P <

i=1

ookl

?TZ a;, + (g —k+1)Py.
i=1

This implies

N

-1
1 Oy

B> —— (D — —
k_g—k—i—l( TP &

Factoring ou®r in (16), we get

or  (9—k+1)P
— <=
Dy P_Zizl a;

On the other hand,

k g
i=1 i=1

henceP — Zf;ll a; > ap + 1.

CLl').

Vi < k, and no client has weight larger th&’g, we have
P, < |Gl|% = ai%. Thus,

(15)

(16)

(17)

(18)



From here it follows that clients is simpler and performs better than théP) re-
oy 3 (g—k+1)P cursive partitioning.

o (19) Finally, altering the active group structure to reflect
F k the new weights, is &(P + g) operation, as two groups
Therefore, we can bound the first ter]; (t; — may need to be re-inserted in the ordered lis of groups.
tl)‘i—j, by Wi(ts — tl)(g;]:%i)lj-

We now make the observation thdfy, (to — t;) <
2ay, since the round-robin strategy employed witldif
prevents us from running more than twice each client in _ ) )
Gy N S without scheduling clients frorG,\ S as well. We ~ We have implemented 12* uniprocessor and multiproces-

5 Measurements and Results

can now boundV; as follows: sor schedulers in the Linux operating system and measured
its performance. We present some experimental data quan-
Wy < 2, (g—k+1)P n (g—FK)(g—k-1) titatively comparinga R® performance against other pop-
- ar +1 2 ular scheduling approaches from both industrial practice

and research. We have conducted both extensive simulation
studies and detailed measurements of real kernel scheduler
performance on real applications.

We present simulation results comparing the pro-
(g—k+DP (9-k)g-k-1) portional sharing accuracy @ R® and GR®M P against
WRR, WFQ, SFQ, WFQ, VTRR, and SRR. The simula-

P
14 (k-1 +g—k
Dy
Using (19), we get:

Wr < 2a

ay + 1(g ke )P 2 tor enabled us to isolate the impact of the scheduling algo-
+k-1)——+g—k+1 rithms themselves and examine the scheduling behavior of
ar + 1 these different algorithms across hundreds of thousands of
Since-“:+ < 1 anday + 1 > 1, we simplify this to different combinations of clients with different share-val
e ues. Simulation results are presented in Section 5.1.
Wr<2g—k+1)+ (9—Fk)g—k+1) We also conducted detailed measurements of real
2 kernel scheduler performance by comparing our prototype
+k-D@g—-k+1)P+g—Fk+1. GR? Linux implementation against the standard Linux

- . ) o scheduler, a WFQ scheduler, and a VTRR scheduler. The
BecauséV 7 is an integer, we can change the S”'Ct'”equa|'experiments we have done quantify the scheduling over-
H ! I 1 H 1
ity to” <’ by subtracting.. O o head and proportional share allocation accuracy of these

Thus, the Iength of any schedule consisting of at moschedulers in a real operating system environment under a
P —1 clients isO(g"P). Even when a processor has front- n,mper of different workloads. Kernel measurement re-
logs for several clients queued up on it, it will schedule ingts are presented in Section 5.2.
O(1) time, since it performs round-robin among the front- All our kernel scheduler measurements were per-

logged clients. Client arrivals and departures tékg) formed on an IBM Netfinity 4500 system with one or two
time because of the need to readjust group weights in th@33 MHz Intel Pentium Il CPUs. 512 MB RAM. and 9

saved ."St of groups. Moreoyer, i we also need t_o_ US€GB hard drive. The system was installed with the De-
the weight readjustment algorithm, we incur an add't'onalbian GNU/Linux distribution version 3.0 and all sched-

O(P) overhead on client arrivals and departures. ulers were implemented using Linux kernel version 2.4.19.
Lemma 5 The complexity of the weight readjustment al- | '€ measurements were done by using a minimally intru-
: ; sive tracing facility that writes timestamped event identi
gorithm isO(P). S _
fiers into a memory log and takes advantage of the high-
Proof: Restoring the 'saved’ group structure will worst caseresolution clock cycle counter available with the Intel CPU
touch a number of groups equal to the number of previouslproviding measurement resolution at the granularity of a
infeasible clients, which i©(P). Identifying the infeasi- few nanoseconds. Getting a timestamp simply involved
ble clients involves iterating over at moBtgroups in de-  reading the hardware cycle counter register. We measured
creasing sequence based on group order, as describedtfie cost of the mechanism on the system to be roughly 35
Section 3.3. For the last group considered, we only attempis per event.
to partition it into feasible and infeasible clients of itges The kernel scheduler measurements were performed
is less thar2 P. Since partitioning of a set can be done in on a fully functional system. All experiments were per-
linear time, and we recurse on a subset half the size, thiormed with all system functions running and the system
operation iSO(P) as well.O connected to the network. At the same time, an effort
As a side note, in practice, for smalP, the was made to eliminate variations in the test environment
O(Plog(P)) sorting approach to determining infeasible to make the experiments repeatable.
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Figure 1: WRR error Figure 2: WFQ error Figure 3: SFQ error Figure 4: VTRR error

Service Error Service Error . Service Error

195000 2000 2000 195000 2000 195000 2000
Sum of Wg?g?ggo 8000 Goo%u‘rt?l?eor of clients Sum of Wg%%?go 8000 GOONui?t?:r of clients Sum of Wg?g?ggo 8000 6OoNu‘rlT?l?eor of clients Sum of Wg?g?ggo 8000 Goo%u‘rt?l?eor of clients
Figure 5: SRR error Figure 6: GR error Figure 7:GR3>M P error Figure 8:GR3M P overhead
5.1 Simulation Studies tu. Each figure consists of a graph of the error range for

the respective scheduling algorithm. Each graph shows two

We built a scheduling simulator that measures thesurfaces representing the maximum and minimum service
service time error, described in Section 4, of a schedulefiMe error as a function oN and 7 for the same range
on a set of clients. The simulator takes four inputs, the?f values of N-and ®r. Figure 1 shows WRR's service
scheduling algorithm, the number of cliem, the total ~ time error is between-12067 tu and23593 tu. Figure 2
number of share®, and the number of client-share com- Shows WFQ's service time error is betwee tu ands19
binations. The simulator assigns shares to clients andscaltU, Which is much less than WRR. Figure 3 shows SFQ's
the share values to ensure that they add upo It then ~ Service time error is between819 tu and1 tu, which is
schedules the clients using the specified algorithm as a regfmost a mirror image of WFQ. Figure 4 shows VTRR's
scheduler would, and tracks the resulting service timererro S€TVice error is between2129 tu and10079 tu. Figure 5
The simulator runs the scheduler until the resulting schedShows SRR's service error is betweefi69 tu and369 tu.
ule repeats, then computes the maximum (most positive) In comparison, Figure 6 shows the service time er-
and minimum (most negative) service time error across theor for GR? only ranges from-2.5 to 3.0 tu. GR? has
nonrepeating portion of the schedule for the given set of smaller error range than all of the other schedulers mea-
clients and share assignments. This process is repeated feured except WFQ. GR? has both a smaller negative and
the specified number of client-share combinations. We thesmaller positive service time error than WRR, VTRR, and
compute the maximum service time error and minimumSRR. WhileGR? has a much smaller positive service error
service time error for the specified number of client-sharehan WFQ, WFQ does have a smaller negative service time
combinations to obtain a “worst-case” error range. error since it is bounded below atl. Similarly, GR? has

To measure proportional faimess accuracy, we rar@ much smaller negative service error than SFQ, though
simulations for each scheduling algorithm on 45 differentSFQ’S positive error is less since it is bounded above at
combinations ofN and &7 (32 up to 8192 clients and 1- Considering the total service error range of each sched-
16384 up to 262144 total shares, respectively). Since theler, GR? provides well over two orders of magnitude bet-

proportional sharing accuracy of a scheduler is often mosi€" Proportional sharing accuracy than WRR, WFQ, SFQ,
clearly illustrated with skewed weight distributions, asfe VTRR, and SRR. Unlike the other schedulers, these results

the clients was given a weight equal to 10 percenbef show thatG R* combines the benefits of low service time
All of the other clients were then randomly assigned share§'T0rs with its ability to schedule i@ (1) time.

to sum to the remaining 90 percent®f-. For each pair Note that as the weight skew becomes more accen-
(N, @), we ran 2500 client-share combinations and detertuated, the service error can grow dramatically. Thus, in-
mined the resulting worst-case error ranges. creasing the skew from 10 to 50 percent results in more

WFQ, SFQ, VTRR, SRR, and/R® with these skewed WFQ, and SFQ, and also significantly worse errors for
share distributions are in Figures 1 to 6. Due to space con/RR and VTRR. In contrast, the error &R is still
straints, WRQ error is not shown since the results simply Pounded by small constants2.8 and4.9.

verify its known mathematical error bounds effl and1 We also measured the service erroiaR3 M P us-
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ing this simulator configured for an 8 processor system, Figure 9 shows the increase in scheduling overhead
where the weight distribution was the same as for theas the number of clients increases varies a great deal be-
uniprocessor simulations above. Note that the client givertween different schedulers:i R? has the smallest schedul-
0.1 of the total weight was feasible, sinté < % =0.125. ing overhead. It requires roughly 300 ns to select a client to
Figure 7 shows7R®M P’s service error is between2.5  execute and the scheduling overhead is essentially cdnstan
tu and2.8 tu, slighly better than for the uniprocessor case,for all numbers of clients. While VTRR scheduling over-
a benefit of being able to run multiple clients in parallel. head is also constanyR? has less overhead because its
Figure 8 shows the maximum number of scheduling decicomputations are simpler to perform than the virtual time
sions that an idle processor needs to perform until it findsalculations required by VTRR. In contrast, the overhead
a client that is not running. This did not exceed seven, infor Linux and forO(N) WFQ scheduling grows linearly
dicating that the number of decisions needed in practice isvith the number of clients. Both of these schedulers im-
well below the worst-case bounds shown in Theorem 4. pose more than 200 times more overhead 3d¥ when
scheduling a mix of 400 client$)(log N) WFQ has much
5.2 Linux Kernel Measurements smaller overhead than Linux 6r(N') WFQ, but it still im-
poses significantly more overhead th@®?, with 8 times
more overhead tha&"R? when scheduling a mix of 400
lients. Because of the importance of constant schedul-
g overhead in server systems, Linux has switched to Ingo
olnar'sO(1) scheduler in the recently released Linux 2.6
ernel. However, the Linux 2.6 scheduler shares the poor

To evaluate the scheduling overhead @R?, we
compare it against the standard Linux scheduler, a WF
scheduler, and a VTRR scheduler. We present results fro
several experiments that quantify how scheduling overhea
varies as the number of clients increases. For the firs . . : .
experiment, we measure scheduling overhead for runnin roportional sharing behavior of Linux 2.4 that we show

a set of clients, each of which executed a simple micro-th tthg}gglsig”ssmn belowéo Prellml??rytrestlrjllts ?ASOLTQ’hOW
benchmark which performed a few operations in a while a stft runs over 59 percent faster than the Linux
2.6 scheduler on this experiment. Figure 10 shows that

loop. A control program was used to fork a specified num-_; " . )
ber of clients. Once all clients were runnable, we measureg;R MP provides the samé/(1) scheduling overhead on

the execution time of each scheduling operation that ocd multiprocessor, although the absolute time to schedule is
curred during a fixed time duration of 30 seconds Thesomewhat higher due to additional costs associated with

measurements required two timestamps for each sched ¢ htegg;r]‘gf gl mul%procesbsc;r stysltlenﬂs. The r?]sultdstf]how
ing decision, so measurement error of 70 ns are possibl a provides substantially lower overhead than

due to measurement overhead. We performed these expé e standard Linux 2.4 scheduler, which suffers from com-

iments on the standard Linux scheduler, WFQ, VTRR, anoDleXity that grows linearly with the number of clients.
GR?3 for 1 to 400 clients. As another experiment, we measured the scheduling
Figure 9 shows the average execution time require@verhead of the various schedulers farckbench [18], a

by each scheduler to select a client to execute on a uniprd2enchmark used in the Linux community for measuring
cessor system and Figure 10 shows the average executi§fheduler performance with large numbers of processes en-
time required by each scheduler to select a client to exetering and leaving the run queue at all times. It creates
cute on a dual-processor system. Results#&3, VTRR,  groups of readers and writers, each group having 20 reader
WEFQ, and Linux were obtained on uniprocessor systemtasks and 20 writer tasks, and each writer writes 100 small
and results fof; R3 M P and Linux MP were obtained run- messages to each of the other 20 readers. This is a total of
ning on a dual-processor system. Dual-processor resul000 messages sent per writer, per group, or 40000 mes-

for WFQ and VTRR are not shown since MP-ready imple-Sages per group. We ran a modified version of hackbench
mentations of them were not available. to give each reader and each writer a random weight be-

For this experiment, the particular implementationtween 1 and 40. We performed these tests on the same set

details of the WFQ scheduler affect the overhead, soof schedulers fpr 1 group up to 100 groups. Using 100
we include results from two different implementationsgrOUpS results in up to 8000 processes running. Because

of WFQ. In the first, labeled "WFQ@(N)J’, the run hackbench frequently inserts and removes clients from the

gueue is implemented as a simple linked list which must 4" dueue, the cost of glientinsertion andremovalis amore
be searched on every scheduling decision. The secona',gnlflcant factor for this benchmark.

labeled “WFQ D(log N)]", uses a heap-based priority Figure 11 shows the average scheduling overhead for
queue withO(log N) insertion time. To maintain the heap- each scheduler running on a uniprocessor system and Fig-
based priority queue, we used a fixed-length array. If thaure 12 shows the average scheduling overhead for each
number of clients ever exceeds the length of the array, aultiprocessor scheduler running on the dual-processor
costly array reallocation must be performed. Our initial ar system. The average overhead is the sum of the times spent
ray size was large enough to contain more than 400 clientgn all scheduling events, selecting clients to run and tnser
so this additional cost is not reflected in our measurementsng and removing clients from the run queue, divided by
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the number of times the scheduler selected a client to runsigned a random weight between 1 and 10 to each process.
Figure 11 shows the scheduling overhead is higheFor the Linux scheduler, shares were assigned by selecting
than the average cost per schedule in Figure 9 for all th@i ce values appropriately. Figures 13 to 18 present the re-
schedulers measured since Figure 11 includes a significagt/lts from the first experiment with one server with weight
component of time due to client insertion and removal from10 processes and all other servers with weight 1 processes.
the run queue. The overhead 16R* and VTRR remains The total load on the system for this experiment consisted
constant, while the overhead fé¥(log N) WFQ, O(N) of 600 processes running simultaneously. For illustration
WFQ and Linux grows with the number of client§& R3 purposes, only one process from each server is shown in
still has by far the smallest scheduling overhead among afihe figures. The conclusions drawn from the other experi-
the schedulers measured. Client insertion, removal, an@ents are the same, so other results are not shown due to
selection to run inGR® are independent of the number space constraints.
of clients. The cost folgR? is 3 times higher than be- GR? andGR?M P provided the best overall propor-
fore, with client selection to run, insertion, and removaltional fairness for these experiments while Linux provided
each taking approximately 300 to 400 ns. Figure 12 show#he worst overall proportional fairness. Figures 13 to 18
that GR3M P still has O(1) overhead when running on show the amount of processor time allocated to each client
the multiprocessor system, although the absolute time t@ver time for the Linux scheduler, WFQ, VTRR, a6d??.
schedule is somewhat higher than in the uniprocessor casAll of the schedulers exceptR* and GR*M P have a
The results again show th&R3M P provides substan- pronounced “staircase” effect for the search engine psoces
tially lower overhead than the standard Linux schedulerWwith share 10, indicating that CPU resources are provided
whose complexity that grows linearly with the number of in irregular bursts over a short time interval. For the appli
clients. cations which need to provide interactive responsiveness
To demonstrate>R®’s efficient proportional shar- {0 web users, this can result in extra delays in system re-
ing of resources on real applications, we briefly describeSPOnse time. The smoother curves toR’ andGR3MP
three simple experiments running web server workloaddn Figures 16 and 18 show th_é’tRS andGR?’_MP provide
using the same set of scheduler&R? and GR3M P fair resource allocation at a finer granularity than the othe
Linux uniprocessor and multiprocessor schedulers, wrQschedulers.
and VTRR. The web server workload emulates a number
of virtual web servers running on a single system. Eachg Related Work
virtual server runs the guitar music search engine used
at guitarnotes.com, a popular musician resource web sitRound robin is one of the oldest, simplest and most widely
with over 800,000 monthly users. The search engine is &sed proportional share scheduling algorithms. Weighted
perl script executed from an Apache mod-perl module thatound-robin (WRR) supports non-uniform client weights
searches for guitar music by title or author and returns ay running all clients with the same frequency but adjusting
list of results. The web server workload configured eachhe size of their time quanta in proportion to their respecti
server to pre-fork 100 processes, each running consecutivgeights. Deficit round-robin (DRR) [19] was developed to
searches simultaneously. support non-uniform service allocations in packet schedul
We ran multiple virtual servers with each one hav-ing. These algorithms have lo@(1) complexity but poor
ing different weights for its processes. In the first experi-short-term fairness, with service errors that can be on the
ment, we used six virtual servers, with one server havingrder of the largest client weight in the systefR? uses a
all its processes assigned weight 10 while all other serversovel variant of DRR for intragroup scheduling with(1)
had processes assigned weight 1. In the second expegemplexity, but also provide®(1) service error by using
ment, we used five virtual servers and processes assignéd grouping mechanism to limit the effective range of dien
to each server had respective weights of 1, 2, 3, 4, and 5. Iweights considered by the intragroup scheduler.
the third experiment, we ran five virtual servers which as- Fair-share schedulers[7, 11, 12] provide proportional
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sharing among users in a way compatible with a UNIX-O(log N). Worst-Case Weighted Fair Queueing [1] in-
style time-sharing framework based on multi-level feed-troduced eligible virtual times and can guarantee both a
back with a set of priority queues. These schedulers typlower and upper bound on error efl and +1, respec-
ically had low O(1) complexity, but were often ad-hoc tively. These algorithms provide stronger proportionatfa
and could not provide any proportional fairness guaranness guarantees than other approaches, but are more diffi-
tees. Empirical measurements show that these approacheslt to implement and still require at leaS{log N) time.
only provide reasonable proportional fairness over rela- Motivated by the need for faster scheduling algo-
tively large time intervals [7]. rithms with good fairness guarantees [4, 16], novel round-
Lottery scheduling [22] gives each client a number ofrobin scheduling variants such as Virtual-Time Round-
tickets proportional to its weight, then randomly selects aRobin (VTRR) [14] and Smoothed Round Robin (SRR) [4]
ticket. Lottery scheduling take@(log V) time and relies combine the benefits of constant-time scheduling overhead
on the law of large numbers for providing proportional fair- of round-robin with scheduling accuracy that approximates
ness. Thus, its allocation errors can be very large, tylgical fair queueing. These mechanisms provide proportional
much worse than WRR for clients with smaller weights.  sharing by going round-robin through clients in special
Fair queueing was first proposed by Demers et. always that run clients at different frequencies without hav-
for network packet scheduling as Weighted Fair Queueing to reorder clients on each schedule. Unlike WRR, they
ing (WFQ) [6], with a more extensive analysis provided can provide lower service time errors because they do not
by Parekh and Gallager [15], and later applied by Wald-need to adjust the size of their time quanta to achieve pro-
spurger and Weihl to CPU scheduling as stride schedulportional sharing. VTRR combines round-robin scheduling
ing [22]. Other variants of WFQ such as Virtual-clock [24], with a virtual time mechanism. In contrast,?*'s inter-
SFQ [9], SPFQ [20], and Time-shift FQ [5] have also beengroup scheduler relies only on weight ratios and provides
proposed. These algorithms generally assign each clientlaetter fairness properties even without grouping. SRR in-
virtual time and schedule the client with the earliest attu troduces a Weight Matrix and Weight Spread Sequence
time. These approaches all haW¢log N) time complex-  (WSS) and runs tasks simulating a binary counter. Both
ity because the clients must be ordered by virtual time. I'VTRR and SRR provide proportional sharing with(1)
has been shown that WFQ guarantees that the service tintene complexity for selecting a client to run, though insert
error for any client never falls below1 [15]. However, ing and removing clients from the run queue incur higher
WEFQ can allow a client to get far ahead of its ideal alloca-overheadO(log V) for VTRR andO(k) for SRR , where
tion and accumulate a large positive service time error ok = log ¢max. However, unlikeG R, both algorithms can
O(N), especially with skewed weight distributions. suffer from large service time errors especially for skewed
Several fair queueing approaches have been proposaeeight distributions. For example, we can show that the
for reducing thisO(N) service time error. A hierar- service error of SRR is worst-caSii V).
chical scheduling approach reduces service time error to More recently, Stratified Round Robin [16] was pro-
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posed as a low complexity solution for network packet For multiprocessor scheduling, Surplus Fair Schedul-
scheduling, and possibly CPU scheduling. The algorithning (SFS) [3] also adapts a uniprocessor algorithm,
uses a similar grouping strategy &s?3, distributing all ~ SFQ [9], to multiple processors. The authors demonstrate
clients with weight betweeg—* and2~(*~1) into class good properties of SFS in practice, but no theoretical fair-
Fy.. Stratified RR splits time into scheduling slots and thenness bounds are provided. If a selected task is already run-
makes sure to assign all the clients in clagsone slot ev-  ning on another processor, itis removed from the runqueue.
ery scheduling interval, using a credit and deficit scheméTlhis operation may be expensive and may also introduce
within a class. This is also similar 823, with the key dif-  unfairness, in particular for low overhead, round-robipety
ference that a client can run for up to two consecutive timealgorithms. In contrastz R M P provides strong fairness
units, while inGR3, a client is allowed to run only once bounds with lower scheduling overhead.

every time its group is selected regardless of its deficit. SFS introduced the notion déasibletasks along

Stratified RR has weaker fairness guarantees an¥ith a O(P)-time weight readjustment algorithm, which
higher scheduling complexity tha@R?. Statified RR as- requires howgver_that the_tasks be sorted by their original
signs each client weight as a fraction of the total processin Weight. By using its grouping strateg$,R*M P performs
capacity of the system. This results in weaker fairess-guathe same weight readjustment @(P) time without the
antees when the sum of these fractions is not close to thaeed to order clients, thus avoiding t¢log IV) overhead
limit of 1. For example, if we hav&/ = 2% + 1 clients, one  Per maintenance operation. The optimality of SFS's and
of weight0.5 and the rest of weight—(*+2) (total weight ~ OUr weight readjustment algorithms rests in preservation
=0.75), Stratified RR will run the clients in such a way that Of ordering of tasks by weight and of weight proportions
after2t+1 slots, the error of the large clientig¥, such that ~among feasible tasks, and not in minimal overall weight
this client will then run uninterrupted fa¥ tu to regainits ~ change, as [3] claims.
due service. Client weights could be scaled to reduce this
error, but with addltlonaO(_N) complexny. Stratified RR 7 Conclusions
requiresO(g) worst-case time to determine the next class
that should be selected, wheyés the number of groups. We have designed, implemented, and evaluated Group Ra-
Although hardware support can hide this complexity as1io Round-Robin scheduling in the Linux operating sys-
suming a reasonably small, predefined maximum numbeiem. We prove tha& R?* is the first and only uniproces-
of groups [16], running Stratified RR as a CPU schedulesor and multiprocessor scheduling algorithm that simulta-
in software still require$)(g) complexity. neously guarante&3(1) overhead and service error bound

GR? also differs from Stratified RR and other deficit of less tharO(N ) Whe? compared toan ideal!zed proces-
round-robin variants in its distribution of deficit. In algo sor sharing modelG:I2” achieves these benefits due to its

rithms such as DRR, SRR, Stratified RR, the variation ingrouping strategy, ratio-based intergroup scheduling, an

the deficit of all the clients affects the fairness in the sys—highly efficient intragroup round robin scheme with good

tem. To illustrate this, considéy + 1 clients, all having faimess bounds. We have also shown how _to adapt .
the same weight except the first one, whose weight is for a small-scale multlprocessor system while preserving
times larger. If the deficit of all the clients except the first the.good bogtr;gi%gn E’“metis tar:d time c?mtplgxnyl. Our tex-
one is close td, the error of the first client will be about periences wi show that It Is simple fo impiemen

N _ O(N). Therefore, the deficit mechanism itself as om-and easy to integrate into existing commercial operating

2 -
ployed in round-robin schemes doesn't aIIowforbettertharFyStems' We have measured the performand@et us

O(N) error. In contrast(ZR? ensures sure that a group ing both simulations and kernel measurements of real sys-

consumes all the work assigned to it, so that the deficit is %m performance using a prototype Linux implementation.

: . 3 .
tool used only in distributing work within a certain group, thur s:mulat(ljon re?ults Sh_fvé thbﬂftz can prct>_\/|de||;nc_)re
and not within the system. Thus, groups effectively iso- an two orders of magnitude better proportional fairness

. g L behavior than other popular proportional share scheduling
late the impact of unfortunate distributions of deficit ire th ) ; )
scheduler. This allows for the error boundsik? to de- algorithms, including WRR, WFQ, SFQ, VTRR, and SRR.

pend only on the number of groups instead of the muchou.r experimental results using ogit’ I__inux implemen-
larger number of clients tation further demonstrate th&tR? provides accurate pro-

portional fairness behavior on real applications with much

A rigorous analysis on network packet scheduling|gyer scheduling overhead than other Linux schedulers, es-
[23] suggests thad (V) delay bounds are unavoidable with pecially for larger workloads.

packet scheduling algorithms of less th@flog V) time
complexity.G R?*'s O(g?) error bound and(1) time com-
plexity are consistent with this analysis, since delay ancﬁeferences

service error are not equivalent concepts. Thus, if adapted[l] J. Bennett and H. Zhang, WF2Q: Worst-case Fair
to packet scheduling;’R* would worst-case incup(N) Weighted Fair Queueing,” iProceedings of INFOCOM
delay while preserving af(g?) service error. '96, San Francisco, CA, Mar. 1996.
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