
Group Ratio Round-Robin: O(1) Proportional Share Scheduling
for Uniprocessor and Multiprocessor Systems

Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford Stein∗, and Haoqiang Zheng
Department of Computer Science

Columbia University

Technical Report CUCS-028-04

July 2004Abstract

Proportional share resource management provides a flexi-
ble and useful abstraction for multiplexing time-shared re-
sources. We present Group Ratio Round-Robin (GR3),
the first proportional share scheduler that combines accu-
rate proportional fairness scheduling behavior withO(1)
scheduling overhead on both uniprocessor and multipro-
cessor systems.GR3 uses a novel client grouping strat-
egy to organize clients into groups of similar processor
allocations which can be more easily scheduled. Using
this grouping strategy,GR3 combines the benefits of low
overhead round-robin execution with a novel ratio-based
scheduling algorithm.GR3 can provide fairness within
a constant factor of the ideal generalized processor shar-
ing model for client weights with a fixed upper bound and
preserves its fairness properties on multiprocessor systems.
We have implementedGR3 in Linux and measured its per-
formance against other schedulers commonly used in re-
search and practice, including the standard Linux sched-
uler, Weighted Fair Queueing, Virtual-Time Round-Robin,
and Smoothed Round-Robin. Our experimental results
demonstrate thatGR3 can provide much lower scheduling
overhead and much better scheduling accuracy in practice
than these other approaches.

1 Introduction

Proportional share resource management provides a flex-
ible and useful abstraction for multiplexing processor re-
sources among a set of clients with associated weights.
However, developing processor scheduling mechanisms
that combine good proportional fairness scheduling be-
havior with low scheduling overhead has been difficult to
achieve in practice. For many proportional share schedul-
ing mechanisms, the time to select a client for execution
grows with the number of clients. For server systems which
may service large numbers of clients, the scheduling over-
head of algorithms whose complexity grows linearly with
the number of clients can waste more than 20 percent of
system resources [2] for large numbers of clients. Further-
more, little work has been done to provide proportional
share scheduling on small-scale multiprocessor systems,

∗also in Department of IEOR, Columbia University.

which are increasingly common. Over the years, a num-
ber of scheduling mechanisms have been proposed, and a
significant amount of progress has been made. However,
previous mechanisms have either superconstant overhead,
or less-than-ideal fairness properties.

We introduce Group Ratio Round-Robin (GR3), a
proportional share scheduler that provides constant fair-
ness bounds on proportional sharing accuracy withO(1)
scheduling overhead for both uniprocessor and small-scale
multiprocessor systems. In designingGR3, we observed
that accurate, low-overhead proportional sharing is easy to
achieve when scheduling a set of clients with equal pro-
cessor allocations, but is harder to do when clients require
very different processor allocations. Based on this observa-
tion,GR3 uses a novel client grouping strategy to organize
clients into groups of similar processor allocations which
can be more easily scheduled. Using this grouping strategy,
GR3 combines the benefits of low overhead round-robin
execution with a novel ratio-based scheduling algorithm.
Specifically, we show that with onlyO(1) overhead,GR3

provides fairness withinO(g2) of the ideal Generalized
Processing Sharing (GPS) model [13], whereg, the num-
ber of groups, is in practice a small constant that grows at
worst logarithmically with the largest client weight. More-
over, we show howGR3MP , an extension ofGR3, can be
successfully applied to multiprocessor systems, preserving
its worst-case time complexity and fairness properties.

GR3 is simple to implement and can be easily incor-
porated into existing scheduling frameworks in commer-
cial operating systems. We have implemented a prototype
GR3 processor scheduler in Linux, and compared ourGR3

Linux prototype against schedulers commonly used in
practice and research, including the standard Linux sched-
uler, Weighted Fair Queueing [6], Virtual-Time Round-
Robin [14], and Smoothed Round-Robin [4]. We have con-
ducted extensive simulation studies and kernel measure-
ments on micro-benchmarks and real applications. Our re-
sults show thatGR3 can provide more than an order of
magnitude better proportional sharing accuracy than these
other schedulers. Furthermore, our results show thatGR3

achieves this accuracy with lower scheduling overhead –
more than an order of magnitude less than the standard
Linux scheduler and typical Weighted Fair Queueing im-

1

plementations. For multiprocessors, we also provide better
fairness with scheduling overhead that is an order of mag-
nitude less than the standard Linux scheduler. These results
demonstrate thatGR3 can in practice deliver better propor-
tional share control with lower scheduling overhead than
these other approaches.

This paper presents the design, analysis, and evalu-
ation ofGR3. Sections 2 and 3 present theGR3 schedul-
ing algorithm for uniprocessor and multiprocessor systems.
Section 4 analyzes the fairness and complexity ofGR3.
Section 5 presents experimental results. Section 6 dis-
cusses related work.

2 GR3 Scheduling

Proportional share scheduling has a clear colloquial mean-
ing: given a set of clients with associated weights, a pro-
portional share scheduler should allocate resources to each
client in proportion to its respective weight. Without lossof
generality, we can model the process of scheduling a time-
multiplexed resource among a set of clients in two steps:
1) the scheduler orders the clients in a queue, 2) the sched-
uler runs the first client in the queue for itstime quantum,
which is the maximum time interval the client is allowed to
run before another scheduling decision is made. We refer
to the units of time quanta as time units (tu) in this paper
rather than an absolute time measure such as seconds.

Based on the above scheduler model, a scheduler can
achieve proportional sharing in one of two ways. One way,
often called fair queueing [6, 15, 24, 9, 20, 5] is to adjust
the frequency that a client is selected to run by adjusting
the position of the client in the queue so that it ends up at
the front of the queue more or less often. However, adjust-
ing the position of the client in the queue typically requires
sorting clients based on some metric of fairness, and has
a time complexity that grows with the number of clients.
The other way is to adjust the size of the time quantum of a
client so that it runs longer for a given allocation. Weighted
round-robin is the most common example of this approach.
This approach is fast, providing constant time complexity
scheduling overhead. However, allowing a client to mo-
nopolize the resource for a long period of time results in
extended periods of unfairness to other clients which re-
ceive no service during those times.

GR3 is a proportional share scheduler that matches
the O(1) time complexity of round-robin scheduling but
provides much better proportional fairness guarantees in
practice. At a high-level, theGR3 scheduling algorithm
can be briefly described in three parts:
1.Client grouping strategy: Clients are separated into
groups of clients with similar weight values. Each group
of orderk is assigned clients with weights between2k to
2k+1 − 1, wherek ≥ 0.
2.Intergroup scheduling: Groups are ordered in a list
from largest to smallest group weight, where the group

weight of a group is the sum of the weights of all clients
in the group. Groups are selected in a round-robin manner
based on the ratio of their group weights. If a group has al-
ready been selected more than its proportional share of the
time, move on to the next group in the list. Otherwise, skip
the remaining groups in the group list and start selecting
groups from the beginning of the group list again. Since
the groups with larger weights are placed first in the list,
this allows them to get more service than the lower-weight
groups at the end of the list.
3.Intragroup scheduling: From the selected group, a
client is selected to run in a round-robin manner that ac-
counts for its weight and previous execution history.

Using this client grouping strategy,GR3 separates
scheduling in such a way that reduces the need to sched-
ule entities with skewed weight distributions. The client
grouping strategy limits the number of groups that need to
be scheduled since the number of groups grows at worst
logarithmically with the largest client weight. Even a very
large 32-bit client weight would limit the number of groups
to no more than 32. The client grouping strategy also en-
sures that all clients within a group have weight within a
factor of two. As a result, the intragroup scheduler never
needs to schedule clients with skewed weight distributions.
GR3 groups are simple lists that do not need to be bal-
anced; they do not require any use of more complex bal-
anced tree structures.

2.1 GR3 Definitions

We now define the stateGR3 associates with each
client and group, and then describe in detail howGR3 uses
that state to schedule clients. Table 1 presents a list of
terminology. InGR3, a client has three values associated
with its execution state: weight, deficit, and run state. Each
client receives a resource allocation that is directly propor-
tional to its weight. A client’s deficit tracks the number
of remaining time quanta the client has not received from
previous allocations. A client’srun stateis an indication
of whether or not the client can be executed. A client is
runnable if it can be executed. For example for a CPU
scheduler, a client would not be runnable if it is blocked
waiting for I/O and cannot execute.

A group in GR3 has a similar set of values associ-
ated with it: group weight, group order, group work, and
current client. Thegroup weightis defined as the sum of
the corresponding weights of the clients in the group run
queue. A group withgroup orderk contains clients with
weights between2k to 2k+1 − 1. Thegroup work is the
total execution time clients in the group have received. The
current client is the most recently scheduled client in the
group’s run queue.

In addition to the per client and per group state de-
scribed,GR3 maintains the following scheduler state: time
quantum, group list, total weight, total work, and current

2

Ci Client i. (also called ’task’ i)
φi The weight assigned toCi.
DCi

The deficit ofCi.
N The number of runnable clients.
ΦT The sum of the weights of all runnable

clients:
∑

Cj
φj .

g The number of groups.
|G| The number of clients in groupG.
Gi i’th Group in the ordered list of groups.
G(i) The group to whichCi belongs.
ΦG The group weight:

∑

Ci∈G φi.
Φi Shorthand notation forΦGi

.
σG The order of groupG.
WC The work of clientC.
WG The group work of groupG.
Wk shorthand notation forWGk

.
WT The sum of the group work of all groups.

Table 1:GR3 Terminology

group. Thegroup list is a sorted list of all groups contain-
ing runnable clients ordered from largest to smallest group
weight, with ties broken by group order. Thetotal weight
is the sum of the weights of all runnable clients. Theto-
tal work is the sum of the work of all groups. Thecurrent
groupis the most recently selected group in the group list.

2.2 BasicGR3 Algorithm

We will initially only consider runnable clients in our
discussion of the basicGR3 scheduling algorithm. We
will discuss dynamic changes in a client’s run state in Sec-
tion 2.3. We first focus on the development of theGR3

intergroup scheduling algorithm and then discuss the de-
velopment of theGR3 intragroup scheduling algorithm.

The key idea behind theGR3 intergroup scheduling
algorithm is that we can choose the next group to schedule
using only the state of successive groups in the group list.
The basic idea is given a groupGi whose weight isx times
larger than the group weight of the next groupGi+1 in the
group list,GR3 will select groupGi x times for every time
that it selectsGi+1 in the group list to provide proportional
share allocation among groups. To implement the algo-
rithm, we maintain the the total work done by groupi in
a variableWi. The algorithm then repeatedly executes the
following simple routine:

Run a client fromGi; incrementWi

if
Wi + 1

Wi+1 + 1
>

Φi

Φi+1
(1)

then incrementi
elsei = 1

The indexi tracks the current group and is initialized to1.

The intuition behind (1) is that we would like the ra-
tio of the work ofGi andGi+1 to match the ratio of their
respective group weights afterGR3 has finished selecting
both groups. For each time a client fromGi+1 is run,GR3

would like to have run Φi

Φi+1
worth of clients fromGi. (1)

says thatGR3 should not run a client fromGi and incre-
mentGi’s group work if it will make it impossible forGi+1

to catch up to its proportional share allocation by running
one of its clients once.

To illustrate how the intergroup scheduling works,
consider an example in which we have three clientsC1,
C2, andC3, which have weights of 5, 2, and 1, respec-
tively. The GR3 grouping strategy would place eachCi

in group Gi, ordering the groups by weight:G1, G2,
andG3 have orders 2, 1 and 0 and weights of 5, 2, and
1 respectively. GR3 would start by selecting groupG1,
running clientC1, and incrementingW1. Based on (1),
W1+1
W2+1 = 2 < Φ1

Φ2
= 2.5, soGR3 would selectG1 again

and run clientC1. After runningC1, G1’s work would
be 2 so that the inequality in (1) would hold andGR3

would then move on to the next groupG2 and run client
C2. Based on (1),W2+1

W3+1 = 2 ≤ Φ1

Φ2
= 2, soGR3 would

reset the current group to the largest weight groupG1 and
run clientC1. Based on (1),C1 would be run for three time
quanta before selectingG2 again to run clientC2. After
runningC2 the second time,W2 would increase such that
W2+1
W3+1 = 3 > Φ1

Φ2
= 2, so GR3 would then move on to

the last groupG3 and run clientC3. The resulting schedule
would then be:G1, G1, G2, G1, G1, G1, G2, G3. Each
group therefore receives its proportional allocation in ac-
cordance with its respective group weight.

TheGR3 intragroup scheduling algorithm selects a
client from the selected group. All clients within a group
have weights within a factor of2, and all client weights
in a groupG are normalized with respect to the minimum
possible weight,φmin = 2σG , for any client in the group.
GR3 then effectively runs each client within a group in
round-robin order for a number of time quanta equal to the
client’s normalized weight, rounded down to the nearest in-
teger value.GR3 keeps track of fractional time quanta that
are not used and accumulates them in a deficit value for
each client, then allocates an extra time quantum to a client
when its deficit reaches one.

More specifically, theGR3 intragroup scheduler con-
siders the scheduling of clients in rounds. Around is one
pass through a group’s run queue of clients from beginning
to end. The group run queue does not need to be sorted
in any manner. During each round, theGR3 intragroup
algorithm considers the clients in round-robin order. For
each runnable clientCi, the scheduler determines the max-
imum number of time quanta that the client can be selected
to run in this round asb φi

φmin
+ DCi

(r − 1)c. DCi
(r), the

deficit of clientCi after roundr, is defined recursively as
DCi

(r) = φi

φmin
+ DCi

(r − 1) − b φi

φmin
+ DCi

(r − 1)c,
with DCi

(0) = 0. Thus, in each round,Ci is allotted one

3

time quantum plus any additional leftover from the previ-
ous round, andDCi

(r) keeps track of the amount of service
thatCi missed because of rounding down its allocation to
whole time quanta. We observe that0 ≤ DCi

(r) < 1 af-
ter any roundr so that any clientCi will be allotted one or
two time quanta. Note that if a client is allotted two time
quanta, it first executes for one time quantum and then ex-
ecute for the second time quantum the next time the inter-
group scheduler selects its respective group again (in gen-
eral, following a timespan when clients belonging to other
groups get to run).

The following example illustrates howGR3 schedul-
ing works. Consider a set of six clientsC1 throughC6 with
weights 12, 3, 3, 2, 2, 2 respectively. The six clients will
be put into two groupsG1 andG2 with respective group
order 1 and 3 as follows:G1 = {C2, C3, C4, C5, C6} and
G2 = {C1}. The weight of the groups areΦ1 = Φ2 = 12.
GR3 intergroup scheduling will consider the groups in this
order:G1, G2, G1, G2, G1, G2, G1, G2, G1, G2, G1, G2.
G2 will schedule clientC1 every timeG2 is considered for
service since it has only one client. Sinceφmin(G1) = 2,
the normalized weights of clientsC2, C3, C4, C5, andC6

are 1.5, 1.5, 1, 1, and 1, respectively. In the beginning of
round 1 inG1, each client starts with 0 deficit. As a re-
sult, the intragroup scheduler will run each client inG1 for
one time quantum during round 1. After the first round, the
deficit forC2, C3, C4, C5, andC6 are 0.5, 0.5, 0, 0, and 0.
In the beginning of round 2, each client gets anotherφi

φmin

allocation. As a result, the intragroup scheduler will select
clientsC2, C3, C4, C5, andC6 to run in order for 2, 2, 1,
1, and 1 time quanta, respectively, during round 2. Rounds
3 and 4 are similar. The sequence of clients that the sched-
uler runs for each unit of time isC2, C1, C3, C1, C4, C1,
C5, C1, C6, C1, C2, C1, C2, C1, C3, C1, C3, C1, C4, C1,
C5, C1, C6, C1.

2.3 GR3 Dynamic Considerations

In the previous section, we presented the basicGR3

scheduling algorithm, but we did not discuss howGR3

deals with dynamic considerations that are a necessary part
of any on-line scheduling algorithm. We now discuss how
GR3 allows clients to be dynamically created, terminated,
or change run state.

Clients that are runnable can be selected for execu-
tion by the scheduler, while clients that are not runnable
cannot. With no loss of generality, we assume that a client
is created before it can become runnable, and a client be-
comes not runnable before it is terminated. As a result,
client creation and termination have no effect on theGR3

run queues.

When a clientCi with weightφi becomes runnable,
it is inserted into groupG(i) such thatφi is between2σG(i)

and2σG(i)+1 − 1. If the group was previously empty, the
client becomes the current client of the group. If the group

was not previously empty,GR3 inserts the client into the
respective group’s run queue right before the current client,
and will be first serviced after all of the other clients in the
group have first been considered for scheduling.

When a newly runnable clientCi is inserted into its
respective groupG(i), the group needs to be moved to its
new position on the ordered group list based on its new
group weight. The corresponding group work and group
weight need to be updated and the client’s deficit needs to
be initialized. The group weight is simply incremented by
the client’s weight. We want to scale the group work of
G(i) in a similar manner. DenoteW old

G(i) as the group work

of G(i) andW old
T as the total work before inserting client

Ci, respectively. We then scale the group workWG(i) as
follows:

WG(i) =











⌊

W old
T

φi

Φold
T

⌋

if G(i) was empty
⌊

W old
G(i)

ΦG(i)

Φold
G(i)

⌋

otherwise

and updateWT = W old
T + WG(i) − W old

G(i).
Also, since we have decreased the average work in

the group through these operations, we need to set the
deficit of Ci so that the future increase in service given to
the group because of this decrease should be absorbed by
the new client. The goal is to have the impact of a new
client insertion be as local as possible, while preserving
the relationship among the work of the other clients and
groups. We therefore assign an initial deficit as follows:

DCi =







φi

ΦT
W old

T −
⌊

φi

ΦT
W old

T

⌋

if G(i) was empty

ΦG(i)

Φold
G(i)

W old
G(i) −

⌊

ΦG(i)

Φold
G(i)

W old
G(i)

⌋

otherwise

Since this deficit is less than1, the new client is mildly
compensated for having to wait an entire round until it gets
to run, while not obtaining more credit than other, already
runnable, clients.

When a clientCi with weight φi becomes not
runnable, we need to remove it from the group’s runqueue.
This requires updating the group’s weight, which poten-
tially includes moving the group in the ordered group list,
as well as adjusting the measure of work received accord-
ing to the new processor share of the group. This can be
achieved in several ways.GR3 is optimized to efficiently
deal with the common situation when a blocked client may
rapidly switch back to the runnable state again. This ap-
proach is based on “lazy” removal, which minimizes over-
head associated with adding and removing a client, while at
the same time preserving the service rights and service or-
der of the runnable clients. Since a client blocks when it is
running, we know that it will take another full round before
the client will be considered again. The only action when
a client blocks is to set a flag on the client, marking it for
removal. If the client becomes runnable by the next time
it is selected, we reset the flag and run the client as usual.
Otherwise, we remove the client fromG(i). In the latter sit-
uation, as in the case of client arrivals, the group may need
to be moved to a new position on the ordered group list
based on its new group weight. The corresponding group

4

P Number of processors.
℘k Processork.
C(℘k) Client running on processork.
Fi Frontlog for clientCi.

Table 2:GR3MP Terminology

weight is updated by subtracting the client’s weight from
the group weight. The corresponding group work is scaled
in a similar manner as for client insertion:

WG(i) =

⌈

W
old
G(i)

ΦG(i)

Φold
G(i)

⌉

, (2)

and the total work counter needs to be updated by the for-
mula WT = W old

T + WG(i) − W old
G(i). After having per-

formed these removal operations, we restart the scheduler
from the largest weight group in the system.

Whenever a client blocks during roundr, we set
DCi

(r) = min(DCi
(r−1)+ φi

φmin
−dW (i, r)e, 1), where

W (i, r) is the service that the client received during round
r until it blocked. This preserves the client’s credit in case
it returns by the next round, while also limiting the deficit
to 1 so that a client cannot gain credit by blocking. How-
ever, the group consumes1 tu (its work is incremented) no
matter how long the client runs. Therefore, the client for-
feits its extra credit whenever it is unable to consume its
allocation.

If the client fails to return by the next round, we may
remove it. Having kept the weight of the group to the old
value for an extra round has no adverse effects on fairness,
despite the slight increase in service seen by the group dur-
ing the last round. By scaling the work of the group and
rounding up, we determine its future allocation and thus
make sure the group will not have received undue service.
We also immediately restart the scheduler from the first
group in the readjusted group list, so that any minor dis-
crepancies caused by rounding may be smoothed out by a
first pass through the group list.

3 GR3 Multiprocessor Scheduler (GR3MP)

We can extendGR3 to act as a multi-resource scheduler
for a system withP processors scheduling from a sin-
gle, centralized queue. This simple multiprocessor scheme,
which we refer to asGR3MP , preserves the good fair-
ness and time complexity properties ofGR3 in small-scale
multiprocessor systems, which are increasingly common
today, even in the form of hyperthreaded processors. Ta-
ble 2 introduces terminology we use to describeGR3MP .
We first describe the basicGR3MP scheduling algorithm,
then discuss dynamic considerations. To deal with infea-
sible client weights, we then show howGR3MP uses its
grouping strategy in a novel weight readjustment algorithm
that is much more efficient than previous approaches [3].

3.1 BasicGR3MP Algorithm

GR3MP uses the sameGR3 data structure, namely
an ordered list of groups, each containing clients whose
weights are within a factor of 2 from each other. When
a processor needs to be scheduled,GR3MP selects the
client that would run next underGR3, essentially schedul-
ing multiple processors from its central runqueue asGR3

schedules a single processor. However, there is one obsta-
cle to simply applying a uniprocessor algorithm on a multi-
processor system. Each client can only run on one proces-
sor at any given time. As a result,GR3MP cannot select
a client to run that is already running on another processor
even if GR3 would schedule that client in the uniproces-
sor case. For example, ifGR3 would schedule the same
client consecutively,GR3MP cannot schedule that client
consecutively on another processor if it is still running.

To handle this situation while maintaining fairness,
GR3MP introduces the notion of afrontlog . The front-
log Fj for some clientCj running on a processor℘k

(Cj = C(℘k)) is defined as the number of time quanta
for Cj accumulated asCj gets selected byGR3 and cannot
run because it is already running on℘k. The frontlogFj is
then queued up on℘k.

Given a client that would be scheduled byGR3 but
is already running on another processor,GR3MP uses the
frontlog to assign the client a time quantum now but de-
fer the client’s use of it until later. Whenever a proces-
sor finishes running a client for a time quantum,GR3MP
checks whether the client has a non-zero frontlog, and, if
so, continues running the client for another time quantum
and decrements its frontlog by one. The frontlog mecha-
nism not only ensures that a client receives its proportional
share allocation, it also takes advantage of any cache affin-
ity by continuing to run the client on the same processor.

When a processor finishes running a client for a time
quantum and its frontlog is zero, we call the processor
’idle’. GR3MP schedules a client to run on the idle pro-
cessor by performing aGR3 scheduling decision on the
central queue. If the selected client is already running on
some other processor, we increase its frontlog and repeat
the GR3 scheduling, each time incrementing the frontlog
of the selected client, until we find a client that is not cur-
rently running. We assign this client to the idle processor
for one time quantum. This description assumes that there
are leastP +1 clients in the system. Otherwise, scheduling
is easy: each client is simply assigned its own processor.

To illustrateGR3MP scheduling, suppose we have
a dual-processor system and three clientsC1, C2, andC3

of weights 3, 2, and 1, respectively.C1 andC2 will then
be part of the order 1 group (assumeC2 is beforeC1 in the
round-robin queue of this group), whereasC3 is part of the
order 0 group. TheGR3 schedule isC2, C1, C2, C1, C1,
C3. ℘1 will then selectC2 to run, and℘2 selectsC1. When
℘1 finishes, according toGR3, it will selectC2 once more,

5

whereas℘2 selectsC1. When℘1 again selects the next
GR3 client, which isC1, it finds that it is already running
on ℘2 and thus we setF1 = 1 and select the next client,
which is C3, to run on℘1. When℘2 finishes runningC1

for its second time quantum, it findsF1 = 1, setsF1 = 0
and continues runningC1 without any scheduling decision
on theGR3 queue.

3.2 GR3MP Dynamic Considerations

GR3MP basically does the same thing as theGR3

algorithm under dynamic considerations. However, the
frontlogs used inGR3MP need to be accounted for ap-
propriately. If some processors have long frontlogs for
their currently running clients, newly arriving clients may
not be run by those processors until their frontlogs are pro-
cessed, resulting in bad responsiveness for the new clients.
Although in between any two client arrivals or departures,
some processors must have no frontlog, the set of such pro-
cessors can be as small as a single processor. In this case,
newly arrived clients will end up competing with other
clients already in the run queue only for those few proces-
sors, until the frontlog on the other processors is exhausted.

GR3MP provides fair and responsive allocations by
creating frontlogs for newly arriving clients. Each new
client is assigned a frontlog equal to a fraction of the to-
tal current frontlog in the system based on its proportional
share. Each processor now maintains a queue of frontlog
clients and a new client with a frontlog is immediately as-
signed to one of the processor frontlog queues. Rather than
running its currently running client until it completes its
frontlog, each processor now round robins among clients in
its frontlog queue. Given that frontlogs are small in prac-
tice, round-robin scheduling is used for frontlog clients for
its simplicity and fairness.GR3MP balances the frontlog
load on the processors by placing new frontlog clients on
the processor with the smallest frontlog summed across all
its frontlog clients.

More precisely, whenever a clientCi arrives, and
it belongs in groupG(i), GR3MP performs the same
group operations as in the single processorGR3 algorithm.
GR3MP finds the processor℘k with the smallest front-
log, then creates a frontlog for clientCi on ℘k of length
Fi = FT

φi

ΦT
, whereFT is the total frontlog on all the

processors. LetCj = C(℘k). Then, assuming no further
clients arrive,℘k will round-robin betweenCj andCi and
runCi for Fi andCj for Fj time quanta.

When a client becomes not runnable,GR3MP uses
the same lazy removal mechanism used inGR3. If it is
removed from the runqueue and has a frontlog,GR3MP
simply discards it since each client is assigned a frontlog
based on the current state of the system when it becomes
runnable again.

3.3 GR3 MP Weight Readjustment

Since no client can run on more than one processor
at a time, no client can consume more than a1/P frac-
tion of the processing in a multiprocessor system. A client
Ci with weightφi greater thanΦT /P is consideredinfea-
sible since it cannot receive its proportional share alloca-
tion φi/ΦT . GR3MP will simply assign such a client
its own processor to run on. However, since the sched-
uler uses client weights to determine which client to run,
an infeasible client’s weight must be adjusted so that it is
feasible to ensure that the scheduling algorithm runs cor-
rectly to preserve fairness.GR3MP potentially needs to
perform weight readjustment whenever a client is inserted
or removed from the runqueue to make sure that all weights
are feasible (i.e., the weight of a client is no larger than1

P

of the total weight after weight readjustment is completed).
GR3MP leverages its grouping strategy to perform

efficient weight readjustment.GR3MP starts with the
unmodified client weights and maintains a ’saved’ list of
groups ordered by group weight based on the unmodified
client weights. Given the clients whose weights had been
adjusted, we determine the group to which each such client
belongs based on its original weight, add the client to that
group and restore the group in the ordered list of groups
according to its position in the ’saved’ list. Once the active
GR3 group list has been restored to be an exact copy of
the saved group list,GR3MP uses the following weight
readjustment algorithm to construct the setI of infeasible
clients and adjust their weights to be feasible. We denote
by |I| the cardinality ofI and byΦI the sum of weights of
the clients inI,

∑

C∈I φC .
GR3MP starts withI initially empty (|I| = ΦI =

0), and then proceed from the group containing the largest
weight clients towards the group containing the smallest
weight clients. For each such groupG, if |G| < P −|I| and
2σG > ΦT −ΦI−ΦG

P−|I|−|G| , then all the clients inG are infeasible,

so thatGR3MP setsI = I ∪ G and continues with the
next group. Otherwise,GR3MP knows that all the clients
not in I ∪ G are feasible and it only needs to find which,
if any, clients fromG are infeasible. If|G| ≥ 2(P − |I|),
GR3MP can stop searching for infeasible clients since all
clientsC ∈ G are feasible:φC < 2σG+1 ≤ 2 1

|G|ΦG ≤
1

P−|I|ΦG ≤ 1
P−|I|(ΦT − ΦI).

Otherwise, if|G| < 2(P − |I|), GR3MP needs to
search throughG to determine which clients are infeasi-
ble. If the number of clients inG is small, we can sort
all clients inG by weight. Then, starting from the largest
weight client inG, identify each clientC ∈ G as infeasible
and add to the infeasible setI if φC > 1

P−|I|(ΦT − ΦI).
If the inequality does not hold, we are finished since all
clients of less weight thanC will be feasible as well.

GR3MP can alternatively use a more complicated
but lower time complexity divide-and-conqueralgorithm to
find the infeasible clients inG. In this case,GR3MP par-

6

titionsG around its medianC into GS , the set ofG clients
that have weight less thanφC andGB , the set ofG clients
that have weight larger thanφC . If φC >

ΦT −ΦI−ΦGB

P−|I|−|GB| ,
then all clients inGB are infeasible, and we therefore set
I = I ∪GB ∪ {C} and recurse onGS to find all infeasible
clients. Otherwise, all clients inGS are feasible, and thus
we recurse onGB to find all infeasible clients. The algo-
rithm finishes when either|I| = P or the set we need to
recurse on is empty.

Once all infeasible clients have been identified,
GR3MP determines the sum of the weights of all feasi-
ble clients,Φf

T = ΦT − ΦI . We can now compute the new
total share in the system asΦT = P

P−|I|Φ
f
T , namely the

solution to the equationΦf
T + I x

P
= x. Once we have the

adjustedΦT , we change all the weights for the infeasible
clients inI to ΦT

P
.

Given the adjusted client weights, we alter the ’ac-
tive’ GR3 group structure to reflect the new client weights
and the weight ratios among groups. Specifically, we re-
move the infeasible clients from their respective groups,
and put them all in the same group, since their adjusted
weights will be equal. Empty groups (the ones that con-
tained only infeasible clients) are then disconnected from
the group list.

4 GR3 Fairness and Complexity

We analyze the fairness and complexity ofGR3 and
GR3MP . To analyze fairness, we use a more formal
notion of proportional fairness defined asservice error,
a measure widely used [8, 10, 17, 21] in the analysis
of scheduling algorithms. For simplicity, we assume that
clients are always runnable in the following analysis.

We use a strict measure of service error relative to
Generalized Processor Sharing (GPS) [13], an idealized
model that achievesperfect fairness: WC = WT

φC

ΦT
, an

ideal state in which each client always receives service
exactly proportional to its share. Although all real-world
scheduling algorithms must time-multiplex resources in
time units of finite size and thus cannot maintain perfect
fairness, some algorithms stay closer to perfect fairness
than others and therefore have less service error. We quan-
tify how close an algorithm gets to perfect fairness using
the client service time error, which is effectively the dif-
ference between the service received by clientC and its
share of the total work done by the processor:EC =
WC − φC

WT

ΦT
. A positive service time error indicates that

a client has received more than its ideal share over a time
interval; a negative error indicates that it has received less.
To be precise, the errorEC measures how much time a
clientC has received beyond its ideal allocation. The goal
of a proportional share scheduler should be to minimize the
absolute value of the allocation error between clients with
minimal scheduling overhead.

We analyze the fairness ofGR3 and GR3MP by
providing bounds on the service error. To do this, we de-
fine two other measures of service error. Thegroup ser-
vice time erroris a similar measure for groups that quanti-
fies the fairness of allocating the processor among groups:
EG = WG − ΦG

WT

ΦT
. Thegroup relative service time er-

ror represents the service time error of clientC if there
were only a single groupG in the scheduler and is a mea-
sure of the service error of a client with respect to the work
done on behalf of its group:EC,G = WC − φC

WG

ΦG
. We

first show bounds on the group service error of the inter-
group scheduling algorithm. We then show bounds on the
group relative service error of the intragroup scheduling al-
gorithm. Finally, we combine these results to obtain the
client service error bounds for the overall scheduler. We
also discuss the scheduling overhead ofGR3 andGR3MP
in terms of their time complexity. We show that both algo-
rithms can make scheduling decisions inO(1) time with
O(1) service error given a constant number of groups.

4.1 Analysis ofGR3

Intergroup Fairness To demonstrate the fairness mech-
anism ofGR3, we begin by assuming the weight ratios of
consecutive groups in the group list are integers. For this
case, we state and prove the following:

Lemma 1 If Φj

Φj+1
∈ N, 1 ≤ j < g, then−1 < EGk

≤

(g − k) Φk

ΦT
for any groupGk.

Proof: Let us consider the decision faced by the intergroup
scheduler after having selected some groupGj . WhenWj

becomes(Wj+1 +1)
Φj

Φj+1
−1, (1) is still false (we have an

equality), and so it will take another selection ofGj before
GR3 will move on toGj+1. Therefore, afterGj+1 is se-
lected, the ratio of the work of the two consecutive groups
equals the ratio of their weights:

Wj

Φj

=
Wj+1

Φj+1
. (3)

In particular, let the last selected group beGk; then we
know (3) holds for all1 ≤ j < k. If j > k, then we know
(3) held afterGj+1 was selected. Until the next time that
Gj+1 gets selected again and (3) holds once more,Wj can
only increase, withWj+1 fixed. Thus,

Wj+1

Φj+1
≤

Wj

Φj

≤
Wj+1 + 1

Φj+1
−

1

Φj

. (4)

The right inequality in (4) is simply the negation (1),
slightly rearranged. For the particular case whenj = k,
we can write based on (4) just before having selectedGk

(whenWk was less by1):

Wk+1

Φk+1
+

1

Φk

≤
Wk

Φk

≤
Wk+1 + 1

Φk+1
. (5)

By summing (4) overk < j < i and adding (5), we get
Wi

Φi
+ 1

Φk
≤ Wk

Φk
≤ Wi+1

Φi
∀i, k < i ≤ g. Also, from (3), we

haveWk

Φk
= Wi

Φi
∀i, 1 ≤ i < k.

7

Multiplying by Φi and summing over alli, we get

WT +
1

Φk

g
∑

i=k+1

Φi ≤ Wk

ΦT

Φk

≤ WT + g − k. (6)

Therefore, right afterGk is selected, its errorEGk

= Wk − WT
Φk

ΦT
lies between 1

ΦT

∑g

i=k+1 Φi ∈ (0, 1) and

(g−k) Φk

ΦT
. Since the minimum error will occur right before

some selection ofGk, whenWk is less by1 than in the
above analysis, we can bound the negative error by−1. 2

We immediately observe that the error is maximized
for k = 1; thus:

Corollary 1 If Φj

Φj+1
∈ N, 1 ≤ j < g, then−1 < EG <

(g − 1) for any groupG.

In the general case, we get similar, but slightly
weaker bounds.

Lemma 2 For any groupGk, − (g−k)(g−k−1)
2

Φk

ΦT
− 1 <

EGk
< g − 1.

Proof: The proof follows reasoning similar to that of the
previous lemma, starting with some important remarks re-
lated to selecting some groupGj .

Let us negate (1) under the form:

Wj + 1

Φj

≤
Wj+1 + 1

Φj+1
(7)

After having selectedGj , GR3 will selectGj+1 if and only
if (7) is violated.

First, we make the observation that (7) was invalid
just beforeGj+1 was selected, but held the previous time
whenGj was selected. Thus,

Wj

Φj

≤
Wj+1

Φj+1
<

Wj + 1

Φj

(8)

holds immediately afterGj+1 is selected. Furthermore,
selectingGj+1 has the consequence of making (7) valid
again, since

Wj

Φj

+
1

Φj

≤
Wj+1

Φj+1
+

1

Φj

≤
Wj+1

Φj+1
+

1

Φj+1
. (9)

Also, the right inequality in (8) is true in general, since
afterGj+1 was selected and (8) held,Wj could have only
increased, whileWj+1 stayed fixed.

Now assume that the last group to have been selected
is Gk. Based on the above, we will derive relationships
betweenWj andWj+1 depending on whetherj < k, j =
k, or j > k.

1. j < k WhenGk is selected, we know thatGj+1 was
selected right afterGj for all j < k, and so (8) holds
for all j < k.

2. j > k We use (9) and the right inequality of (8) to
obtain

Wj+1

Φj+1
<

Wj + 1

Φj

≤
Wj+1 + 1

Φj+1
(10)

3. j = k The situation right beforeGk got selected is an
instance (withj = k) of the previous case, with the
observation that the newWk is the oldWk + 1. Thus,

Wk+1

Φk+1
<

Wk

Φk

≤
Wk+1 + 1

Φk+1
(11)

Let us now turn our attention to finding the bounds
for the group errors.

By summing up (8) overj betweeni andk − 1, we
get

Wi

Φi

≤
Wk

Φk

<
Wi

Φi

+

k−1
∑

j=i

1

Φj

, 1 ≤ i < k.

Similarly, by summing up (10) overj betweenk + 1 andi
and adding (11), we get

Wi

Φi

−

i−1
∑

j=k+1

1

Φj

<
Wk

Φk

≤
Wi

Φi

+
1

Φi

, k < i ≤ g.

We can multiply the above inequalities byΦi to obtain:

Wi ≤ Wk

Φi

Φk

< Wi +

k−1
∑

j=i

Φi

Φj

, 1 ≤ i < k. (12)

and, respectively,

Wi −

i−1
∑

j=k+1

Φi

Φj

< Wk

Φi

Φk

≤ Wi + 1, k < i ≤ g. (13)

Adding (12) over1 ≤ i < k with (13) overk < i ≤ g, and
with the identityWk = Wk

Φk

Φk
, we get:

WT−

g
∑

i=k+1

i−1
∑

j=k+1

Φi

Φj

< Wk

ΦT

Φk

≤ WT +

k−1
∑

i=1

k−1
∑

j=i

Φi

Φj

+g−k.

(14)
We notice that

∑k−1
i=1

∑k−1
j=i

Φi

Φj
=

∑k−1
i=1 (1

Φi

∑i

j=1 Φj) <
∑k−1

i=1 (ΦT

Φi
) < (k − 1)ΦT

Φk
.

Also,
∑g

i=k+1

∑i−1
j=k+1

Φi

Φj
≤

∑g
i=k+1

∑i−1
j=k+1 1 =

∑g
i=k+1(i − k − 1) = (g−k)(g−k−1)

2 .
(14) then yields

WT − (g−k)(g−k−1)
2 < Wk

ΦT

Φk
< WT +(k−1)ΦT

Φk
+g−k,

or
WT

Φk

ΦT
− (g−k)(g−k−1)

2
Φk

ΦT
< Wk < WT

Φk

ΦT
+ (k − 1) +

(g − k) Φk

ΦT
, and, sinceΦk

ΦT
≤ 1,

WT

Φk

ΦT

−
(g − k)(g − k − 1)

2
< Wk < WT

Φk

ΦT

+(g−1).

8

We rewrite the last relation using the definition for the er-
ror: EGk

= Wk − WT
Φk

ΦT
to get

−
(g − k)(g − k − 1)

2
< EGk

< (g − 1).

The above holds right afterGk is selected. To boundEGk

in general, we note that the minimum ofEGk
can only oc-

cur right beforeWk is incremented (groupGk is selected),
while the maximum is reached right after the selection of
Gk. Hence, subtracting 1 on the negative side concludes
the proof.2

It is clear that the lower bound is minimized when
setting k=1. Thus, we have

Corollary 2 − (g−1)(g−2)
2

φG

ΦT
− 1 < EG < g − 1 for any

groupG.

Intragroup Fairness Within a group, all weights are
within a factor of2 and the group relative error is bound
by a small constant.

Lemma 3 −3 < EC,G < 4 for any clientC ∈ G.

Proof: The intragroup Round Robin runs the clients
within a groupG of orderσG in the order of the group
queue. After r rounds, WA = r ΦA

2σG
− DA holds

for any client A in G. Then, WG =
∑

A∈G WA =

r ΦG

2σG
−

∑

A∈G DA, and soEC,G = WC − WG
φC

ΦG
=

φC

ΦG

∑

A∈G DA − DC for any clientC ∈ G after a round.
Depending on the position ofC in the group’s queue,

the error in general will be different from the error in be-
tween rounds.

Worst-case, ifC happens to be at the head ofG’s
queue, right after it runs,EC,G = φC

ΦG

∑

A∈G DA − DC +
φC

2σG
< NG

φC

ΦG
+ φC

2σG
< NG

2σG+1

NG2σG
+ 2σG+1

2σG
= 4.

Similarly, C might be at the tail of the queue, in
which case, right before it runs,EC,G = φC

ΦG

∑

A∈G DA −

DC − φC

2σG
> −1 − φC

2σG
> −1 − 2σG+1

2σG
= −3. 2

Overall Fairness ofGR3 Given the error bounds for the
inter- and intragroup scheduling algorithms, we can ana-
lyze the overallGR3 fairness.

Lemma 4 For any clientC ∈ G, EC = EC,G + φC

ΦG
EG.

Proof: EC = WC − WT
φC

ΦT
= WC − WG

φC

ΦG
+ WG

φC

ΦG
−

WT
φC

ΦT
= EC,G + φC

ΦG
(WG − WT

ΦG

ΦT
). 2

We are now ready to state the following result to
bound the service error relative to GPS of any client in
the scheduler to aO(g) positive service error bound and
aO(g2) negative service error bound:

Theorem 1 − (g−1)(g−2)
2

φC

ΦT
− 4 < EC < g + 3 for any

clientC.

Proof: Follows from Corollary 2, Lemma 3, and
Lemma 4 where we haveφC

ΦG
≤ 1. 2

In the desirable case when the group weight ratios are
integers, we have the tighter bounds of

Theorem 2 If Φj

Φj+1
∈ N, 1 ≤ j < g then−4 < EC <

g + 3 for any clientC.

Proof: Follows from Corollary 1, Lemma 3, and Lemma 4
where we haveφC

ΦG
≤ 1. 2

Time Complexity of GR3 GR3 manages to bound its
service error byO(g2) while maintaining a strictO(1)
scheduling overhead. The intergroup scheduler either se-
lects the next group in the list, or reverts to the first one,
which takes constant time. The intragroup scheduler is
even simpler, as it just picks the next client to run from
the unordered round robin list of the group. Adding and
removing a client is worst-caseO(g) when a group needs
to be relocated in the ordered list of groups. This could
of course be done inO(log g) time (using binary search,
for example), but the small value ofg in practice does not
justify a more complicated algorithm.

The space complexityof GR3 is O(g) + O(N) =
O(N). The only additional data structure beyond the un-
ordered lists of clients is an ordered list of lengthg to orga-
nize the groups.

4.2 Analysis ofGR3MP

Overall Fairness of GR3MP Given feasible client
weights after weight readjustment, the service error for
GR3MP is bounded below by theGR3 error, and above
by a bound which improves with more processors.

Theorem 3 − (g−1)(g−2)
2

φC

ΦT
− 4 < EC < 2g + 10 +

(g−1)(g−2)
2P

for any clientC.

Proof: Let us denote the total number of scheduling deci-
sions performed on theGR3 queue byWT =

∑N

i=1 Wi,
whereWi is the number of time quanta thatGR3 would
have allocated to clientCi so far. Since a client may not be
able to consume all of this allocation and instead frontlog
some of it, in generalWi = Wi + Fi.

Assume first that no client has a frontlog. Then the
service received by each client rounded up to integer time
quanta is the same as in uniprocessorGR3 at some timet
which is a multiple of the basic time quantum. In particular,
when a clientCi just finishes running for a time quantum,

Wi − φi

∑

N

j=1
Wj

ΦT
≤ Wi − φi

∑

N

j=1
bWjc

ΦT
≤ (g + 3). Also,

on the negative side, right beforeCi starts running,Wi −

φi

∑

N

j=1
Wj

ΦT
≥ Wi −φi

∑

N

j=1
dWje

ΦT
≥ − (g−1)(g−2)

2
φi

ΦT
−4.

Since a client has weight no larger thanΦT

P
, it is receiv-

ing no less than its due allocation while it is running on a
processor. Therefore, the two inequalities above show that

9

the error in this case is bounded by the error for the single
processor case.

Assume now that there are clients with frontlog.
Since such clients receive at least their due allocation while
they are frontlogged, and since non-frontlogged clients
have not skipped any quanta, it is easy to see that the nega-
tive error of all clients is bounded by the negative error for
the single processor case.

Also, for the frontlogged clients, their allocation is
behind their corresponding single processorGR3 alloca-
tion, while for the non-frontlogged clients, their positive
error can exceed that for the single processorGR3 by
φk

ΦT

∑

Fj where the sum is taken over the set of front-
logged clients. LetCi be a frontlogged client. We would
like to boundFmax

i , the maximum size of the frontlog on
Ci. Writing Theorem 1 for the endpoints of the front-
log inteval (t1, t2) where the maximum is reached, and
subtracting, we getW (t2) − W (t1) ≤ φi

ΦT
(t2 − t1) +

(g−1)(g−2)
2

φi

ΦT
+ 4 + (g + 3). On the other hand, because

the client was running continuously on one of the proces-
sors,Wi(t2) − Wi(t1) = 1

P
(t2 − t1). Since φi

ΦT
≤ 1

P
, we

haveFmax
i = W i(t2) − W i(t1) − (Wi(t2) − Wi(t1)) ≤

(g−1)(g−2)
2

φi

ΦT
+ 4 + (g + 3).

We can thus bound the positive error of non-
frontlogged clientsCk by (g + 3), the positive er-
ror for GR3, plus φk

ΦT

∑

((g−1)(g−2)
2

φi

ΦT
+ 4 + (g + 3))

where the sum is taken over the set of frontlogged
clients. Since there are at mostP − 1 frontlogged
clients, we can bound the positive error by(g +

3) + φk

ΦT
((g−1)(g−2)

2 + 4P + P (g + 3)) ≤ (g + 3) +
1
P

((g−1)(g−2)
2 + P (g + 7)) = 2g + 10 + (g−1)(g−2)

2P
. 2

Time Complexity of GR3MP The frontlogs create an
additional complication when analyzing the time complex-
ity of GR3MP . When an idle processor looks for its next
client, it runs the simpleO(1) GR3 algorithm to find a
client Ci. If Ci is not running on any other processor, we
are done, but otherwise we place it on the frontlog and then
we must rerun theGR3 algorithm until we find a client that
is not running on any other processor. Since for each such
client, we increase its allocation on the processor it runs,
the amortized time complexity remainsO(1). Neverthe-
less, we also will bound the time that any single scheduling
decision takes. The upper bound is equal to the maximum
length of any scheduling sequence ofGR3 consisting of
only some fixed subset ofP − 1 clients.

Theorem 4 The time complexity per scheduling decision
in GR3MP is bounded above by(g−k)(g−k+1)

2 + (k +
1)(g − k + 1)P where1 ≤ k ≤ g.

Proof: We will use the feasibility constraint on the weight
of clients,φi ≤ ΦT

P
. We also assume thatN > P . Oth-

erwise, we are in the trivial case when each client gets its
own processor.

Let us now consider a scheduling sequence ofGR3

that consists of a subsetS of clients, where|S| ≤ P − 1.
Let ai be the number of clients of groupGi that are also in
S (ai = |Gi∩S|). Clearly,ai ≤ |Gi|. Letk = min{i|ai <
|Gi|}. That is,k denotes the smallest group not contained
in S. Such ak always exists, provided thatN > |S|, which
is true whenN ≥ P .

Let t1, t2 be an arbitrary scheduling interval ofGR3.
Then, writing (14) at timest1 and t2 and subtracting the
resulting inequalities, we have (we add a1 to account for
having chosen an arbitrary interval which is not necessarily
delimited by instances whenGk has just been selected):

WT (t2 − t1) ≤ W k(t2 − t1)
ΦT

Φk

+

g
∑

i=k+1

i−1
∑

j=k+1

Φi

Φj

+ 1 +
k−1
∑

i=1

k−1
∑

j=i

Φi

Φj

+ g − k.

As in the proof of lemma 2, we can bound the two
double sums by(g−k)(g−k−1)

2 and(k − 1)ΦT

Φk
respectively.

Let us now turn to the first term. Sinceai = |Gi|,
∀i < k, and no client has weight larger thanΦT

P
, we have

Φi ≤ |Gi|
ΦT

P
= ai

ΦT

P
. Thus,

k−1
∑

i=1

Φi ≤

k−1
∑

i=1

ai

ΦT

P
=

ΦT

P

k−1
∑

i=1

ai. (15)

Therefore,

ΦT =

g
∑

i=1

Φi ≤

k−1
∑

i=1

Φi + (g − k + 1)Φk ≤

ΦT

P

k−1
∑

i=1

ai + (g − k + 1)Φk.

This implies

Φk ≥
1

g − k + 1
(ΦT −

ΦT

P

k−1
∑

i=1

ai). (16)

Factoring outΦT in (16), we get

ΦT

Φk

≤
(g − k + 1)P

P −
∑k−1

i=1 ai

(17)

On the other hand,

k
∑

i=1

ai ≤

g
∑

i=1

ai = |S| ≤ P − 1 (18)

henceP −
∑k−1

i=1 ai ≥ ak + 1.

10

From here it follows that

ΦT

Φk

≤
(g − k + 1)P

ak + 1
(19)

Therefore, we can bound the first term,W k(t2 −

t1)
ΦT

Φk
, by W k(t2 − t1)

(g−k+1)P
ak+1 .

We now make the observation thatW k(t2 − t1) ≤
2ak, since the round-robin strategy employed withinGk

prevents us from running more than twice each client in
Gk ∩ S without scheduling clients fromGk\S as well. We
can now boundWT as follows:

WT ≤ 2ak

(g − k + 1)P

ak + 1
+

(g − k)(g − k − 1)

2

+1 + (k − 1)
ΦT

Φk

+ g − k.

Using (19), we get:

WT ≤ 2ak

(g − k + 1)P

ak + 1
+

(g − k)(g − k − 1)

2

+(k − 1)
(g − k + 1)P

ak + 1
+ g − k + 1.

Since ak

ak+1 < 1 andak + 1 ≥ 1, we simplify this to

WT < 2(g − k + 1) +
(g − k)(g − k + 1)

2
+(k − 1)(g − k + 1)P + g − k + 1.

BecauseWT is an integer, we can change the strict inequal-
ity to ′ ≤′ by subtracting1. 2

Thus, the length of any schedule consisting of at most
P − 1 clients isO(g2P). Even when a processor has front-
logs for several clients queued up on it, it will schedule in
O(1) time, since it performs round-robin among the front-
logged clients. Client arrivals and departures takeO(g)
time because of the need to readjust group weights in the
saved list of groups. Moreover, if we also need to use
the weight readjustment algorithm, we incur an additional
O(P) overhead on client arrivals and departures.

Lemma 5 The complexity of the weight readjustment al-
gorithm isO(P).

Proof: Restoring the ’saved’ group structure will worst case
touch a number of groups equal to the number of previously
infeasible clients, which isO(P). Identifying the infeasi-
ble clients involves iterating over at mostP groups in de-
creasing sequence based on group order, as described in
Section 3.3. For the last group considered, we only attempt
to partition it into feasible and infeasible clients of its size
is less than2P . Since partitioning of a set can be done in
linear time, and we recurse on a subset half the size, this
operation isO(P) as well.2

As a side note, in practice, for smallP , the
O(P log(P)) sorting approach to determining infeasible

clients is simpler and performs better than theO(P) re-
cursive partitioning.

Finally, altering the active group structure to reflect
the new weights, is aO(P + g) operation, as two groups
may need to be re-inserted in the ordered lis of groups.

5 Measurements and Results

We have implementedGR3 uniprocessor and multiproces-
sor schedulers in the Linux operating system and measured
its performance. We present some experimental data quan-
titatively comparingGR3 performance against other pop-
ular scheduling approaches from both industrial practice
and research. We have conducted both extensive simulation
studies and detailed measurements of real kernel scheduler
performance on real applications.

We present simulation results comparing the pro-
portional sharing accuracy ofGR3 andGR3MP against
WRR, WFQ, SFQ, WF2Q, VTRR, and SRR. The simula-
tor enabled us to isolate the impact of the scheduling algo-
rithms themselves and examine the scheduling behavior of
these different algorithms across hundreds of thousands of
different combinations of clients with different share val-
ues. Simulation results are presented in Section 5.1.

We also conducted detailed measurements of real
kernel scheduler performance by comparing our prototype
GR3 Linux implementation against the standard Linux
scheduler, a WFQ scheduler, and a VTRR scheduler. The
experiments we have done quantify the scheduling over-
head and proportional share allocation accuracy of these
schedulers in a real operating system environment under a
number of different workloads. Kernel measurement re-
sults are presented in Section 5.2.

All our kernel scheduler measurements were per-
formed on an IBM Netfinity 4500 system with one or two
933 MHz Intel Pentium III CPUs, 512 MB RAM, and 9
GB hard drive. The system was installed with the De-
bian GNU/Linux distribution version 3.0 and all sched-
ulers were implemented using Linux kernel version 2.4.19.
The measurements were done by using a minimally intru-
sive tracing facility that writes timestamped event identi-
fiers into a memory log and takes advantage of the high-
resolution clock cycle counter available with the Intel CPU,
providing measurement resolution at the granularity of a
few nanoseconds. Getting a timestamp simply involved
reading the hardware cycle counter register. We measured
the cost of the mechanism on the system to be roughly 35
ns per event.

The kernel scheduler measurements were performed
on a fully functional system. All experiments were per-
formed with all system functions running and the system
connected to the network. At the same time, an effort
was made to eliminate variations in the test environment
to make the experiments repeatable.

11

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-10000
 0

 10000
 20000

Service Error

Figure 1: WRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

 0
 200
 400
 600
 800

Service Error

Figure 2: WFQ error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-800
-600
-400
-200

 0

Service Error

Figure 3: SFQ error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-3000
 0

 3000
 6000
 9000

Service Error

Figure 4: VTRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-400
-200

 0
 200
 400

Service Error

Figure 5: SRR error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-2

 0

 2

Service Error

Figure 6: GR3 error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

-2

 0

 2

Service Error

Figure 7:GR3MP error

 2000 4000 6000 8000
Number of clients

 65000
 130000

 195000
 260000

Sum of weights

 0
 2
 4
 6
 8

 10

Scheduling Decisions per Task Selection

Figure 8:GR3MP overhead

5.1 Simulation Studies

We built a scheduling simulator that measures the
service time error, described in Section 4, of a scheduler
on a set of clients. The simulator takes four inputs, the
scheduling algorithm, the number of clientsN , the total
number of sharesΦT , and the number of client-share com-
binations. The simulator assigns shares to clients and scales
the share values to ensure that they add up toΦT . It then
schedules the clients using the specified algorithm as a real
scheduler would, and tracks the resulting service time error.
The simulator runs the scheduler until the resulting sched-
ule repeats, then computes the maximum (most positive)
and minimum (most negative) service time error across the
nonrepeating portion of the schedule for the given set of
clients and share assignments. This process is repeated for
the specified number of client-share combinations. We then
compute the maximum service time error and minimum
service time error for the specified number of client-share
combinations to obtain a “worst-case” error range.

To measure proportional fairness accuracy, we ran
simulations for each scheduling algorithm on 45 different
combinations ofN and ΦT (32 up to 8192 clients and
16384 up to 262144 total shares, respectively). Since the
proportional sharing accuracy of a scheduler is often most
clearly illustrated with skewed weight distributions, oneof
the clients was given a weight equal to 10 percent ofΦT .
All of the other clients were then randomly assigned shares
to sum to the remaining 90 percent ofΦT . For each pair
(N, ΦT), we ran 2500 client-share combinations and deter-
mined the resulting worst-case error ranges.

The worst-case service time error ranges for WRR,
WFQ, SFQ, VTRR, SRR, andGR3 with these skewed
share distributions are in Figures 1 to 6. Due to space con-
straints, WF2Q error is not shown since the results simply
verify its known mathematical error bounds of−1 and1

tu. Each figure consists of a graph of the error range for
the respective scheduling algorithm. Each graph shows two
surfaces representing the maximum and minimum service
time error as a function ofN andΦT for the same range
of values ofN andΦT . Figure 1 shows WRR’s service
time error is between−12067 tu and23593 tu. Figure 2
shows WFQ’s service time error is between−1 tu and819
tu, which is much less than WRR. Figure 3 shows SFQ’s
service time error is between−819 tu and1 tu, which is
almost a mirror image of WFQ. Figure 4 shows VTRR’s
service error is between−2129 tu and10079 tu. Figure 5
shows SRR’s service error is between−369 tu and369 tu.

In comparison, Figure 6 shows the service time er-
ror for GR3 only ranges from−2.5 to 3.0 tu. GR3 has
a smaller error range than all of the other schedulers mea-
sured except WF2Q. GR3 has both a smaller negative and
smaller positive service time error than WRR, VTRR, and
SRR. WhileGR3 has a much smaller positive service error
than WFQ, WFQ does have a smaller negative service time
error since it is bounded below at−1. Similarly, GR3 has
a much smaller negative service error than SFQ, though
SFQ’s positive error is less since it is bounded above at
1. Considering the total service error range of each sched-
uler,GR3 provides well over two orders of magnitude bet-
ter proportional sharing accuracy than WRR, WFQ, SFQ,
VTRR, and SRR. Unlike the other schedulers, these results
show thatGR3 combines the benefits of low service time
errors with its ability to schedule inO(1) time.

Note that as the weight skew becomes more accen-
tuated, the service error can grow dramatically. Thus, in-
creasing the skew from 10 to 50 percent results in more
than a fivefold increase in the error magnitude for SRR,
WFQ, and SFQ, and also significantly worse errors for
WRR and VTRR. In contrast, the error ofGR3 is still
bounded by small constants:−2.8 and4.9.

We also measured the service error ofGR3MP us-

12

ing this simulator configured for an 8 processor system,
where the weight distribution was the same as for the
uniprocessor simulations above. Note that the client given
0.1 of the total weight was feasible, since0.1 < 1

8 = 0.125.
Figure 7 showsGR3MP ’s service error is between−2.5
tu and2.8 tu, slighly better than for the uniprocessor case,
a benefit of being able to run multiple clients in parallel.
Figure 8 shows the maximum number of scheduling deci-
sions that an idle processor needs to perform until it finds
a client that is not running. This did not exceed seven, in-
dicating that the number of decisions needed in practice is
well below the worst-case bounds shown in Theorem 4.

5.2 Linux Kernel Measurements

To evaluate the scheduling overhead ofGR3, we
compare it against the standard Linux scheduler, a WFQ
scheduler, and a VTRR scheduler. We present results from
several experiments that quantify how scheduling overhead
varies as the number of clients increases. For the first
experiment, we measure scheduling overhead for running
a set of clients, each of which executed a simple micro-
benchmark which performed a few operations in a while
loop. A control program was used to fork a specified num-
ber of clients. Once all clients were runnable, we measured
the execution time of each scheduling operation that oc-
curred during a fixed time duration of 30 seconds. The
measurements required two timestamps for each schedul-
ing decision, so measurement error of 70 ns are possible
due to measurement overhead. We performed these exper-
iments on the standard Linux scheduler, WFQ, VTRR, and
GR3 for 1 to 400 clients.

Figure 9 shows the average execution time required
by each scheduler to select a client to execute on a unipro-
cessor system and Figure 10 shows the average execution
time required by each scheduler to select a client to exe-
cute on a dual-processor system. Results forGR3, VTRR,
WFQ, and Linux were obtained on uniprocessor system,
and results forGR3MP and Linux MP were obtained run-
ning on a dual-processor system. Dual-processor results
for WFQ and VTRR are not shown since MP-ready imple-
mentations of them were not available.

For this experiment, the particular implementation
details of the WFQ scheduler affect the overhead, so
we include results from two different implementations
of WFQ. In the first, labeled “WFQ [O(N)]”, the run
queue is implemented as a simple linked list which must
be searched on every scheduling decision. The second,
labeled “WFQ [O(log N)]”, uses a heap-based priority
queue withO(log N) insertion time. To maintain the heap-
based priority queue, we used a fixed-length array. If the
number of clients ever exceeds the length of the array, a
costly array reallocation must be performed. Our initial ar-
ray size was large enough to contain more than 400 clients,
so this additional cost is not reflected in our measurements.

Figure 9 shows the increase in scheduling overhead
as the number of clients increases varies a great deal be-
tween different schedulers.GR3 has the smallest schedul-
ing overhead. It requires roughly 300 ns to select a client to
execute and the scheduling overhead is essentially constant
for all numbers of clients. While VTRR scheduling over-
head is also constant,GR3 has less overhead because its
computations are simpler to perform than the virtual time
calculations required by VTRR. In contrast, the overhead
for Linux and forO(N) WFQ scheduling grows linearly
with the number of clients. Both of these schedulers im-
pose more than 200 times more overhead thanGR3 when
scheduling a mix of 400 clients.O(log N) WFQ has much
smaller overhead than Linux orO(N) WFQ, but it still im-
poses significantly more overhead thanGR3, with 8 times
more overhead thanGR3 when scheduling a mix of 400
clients. Because of the importance of constant schedul-
ing overhead in server systems, Linux has switched to Ingo
Molnar’sO(1) scheduler in the recently released Linux 2.6
kernel. However, the Linux 2.6 scheduler shares the poor
proportional sharing behavior of Linux 2.4 that we show
in the discussion below. Preliminary results also show
that GR3 still runs over 30 percent faster than the Linux
2.6 scheduler on this experiment. Figure 10 shows that
GR3MP provides the sameO(1) scheduling overhead on
a multiprocessor, although the absolute time to schedule is
somewhat higher due to additional costs associated with
scheduling in multiprocessor systems. The results show
that GR3MP provides substantially lower overhead than
the standard Linux 2.4 scheduler, which suffers from com-
plexity that grows linearly with the number of clients.

As another experiment, we measured the scheduling
overhead of the various schedulers forhackbench [18], a
benchmark used in the Linux community for measuring
scheduler performance with large numbers of processes en-
tering and leaving the run queue at all times. It creates
groups of readers and writers, each group having 20 reader
tasks and 20 writer tasks, and each writer writes 100 small
messages to each of the other 20 readers. This is a total of
2000 messages sent per writer, per group, or 40000 mes-
sages per group. We ran a modified version of hackbench
to give each reader and each writer a random weight be-
tween 1 and 40. We performed these tests on the same set
of schedulers for 1 group up to 100 groups. Using 100
groups results in up to 8000 processes running. Because
hackbench frequently inserts and removes clients from the
run queue, the cost of client insertion and removal is a more
significant factor for this benchmark.

Figure 11 shows the average scheduling overhead for
each scheduler running on a uniprocessor system and Fig-
ure 12 shows the average scheduling overhead for each
multiprocessor scheduler running on the dual-processor
system. The average overhead is the sum of the times spent
on all scheduling events, selecting clients to run and insert-
ing and removing clients from the run queue, divided by

13

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 s
ch

ed
ul

in
g

co
st

 (
us

)

Number of clients

GR3
VTRR
WFQ [O(log N)]
WFQ [O(N)]
Linux

Figure 9: Average scheduling
cost (UP)

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400

A
ve

ra
ge

 s
ch

ed
ul

in
g

co
st

 (
us

)

Number of clients

GR3 MP
Linux MP

Figure 10: Average schedul-
ing cost (MP)

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(u

s)

Number of Groups

GR3
VTRR
WFQ [O(log N)]
WFQ [O(N)]
Linux

Figure 11: Hackbench
scheduling cost (UP)

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
(u

s)

Number of Groups

GR3 MP
Linux MP

Figure 12: Hackbench
scheduling cost (MP)

the number of times the scheduler selected a client to run.
Figure 11 shows the scheduling overhead is higher

than the average cost per schedule in Figure 9 for all the
schedulers measured since Figure 11 includes a significant
component of time due to client insertion and removal from
the run queue. The overhead forGR3 and VTRR remains
constant, while the overhead forO(log N) WFQ, O(N)
WFQ and Linux grows with the number of clients.GR3

still has by far the smallest scheduling overhead among all
the schedulers measured. Client insertion, removal, and
selection to run inGR3 are independent of the number
of clients. The cost forGR3 is 3 times higher than be-
fore, with client selection to run, insertion, and removal
each taking approximately 300 to 400 ns. Figure 12 shows
that GR3MP still has O(1) overhead when running on
the multiprocessor system, although the absolute time to
schedule is somewhat higher than in the uniprocessor case.
The results again show thatGR3MP provides substan-
tially lower overhead than the standard Linux scheduler,
whose complexity that grows linearly with the number of
clients.

To demonstrateGR3’s efficient proportional shar-
ing of resources on real applications, we briefly describe
three simple experiments running web server workloads
using the same set of schedulers:GR3 and GR3MP
Linux uniprocessor and multiprocessor schedulers, WFQ,
and VTRR. The web server workload emulates a number
of virtual web servers running on a single system. Each
virtual server runs the guitar music search engine used
at guitarnotes.com, a popular musician resource web site
with over 800,000 monthly users. The search engine is a
perl script executed from an Apache mod-perl module that
searches for guitar music by title or author and returns a
list of results. The web server workload configured each
server to pre-fork 100 processes, each running consecutive
searches simultaneously.

We ran multiple virtual servers with each one hav-
ing different weights for its processes. In the first experi-
ment, we used six virtual servers, with one server having
all its processes assigned weight 10 while all other servers
had processes assigned weight 1. In the second experi-
ment, we used five virtual servers and processes assigned
to each server had respective weights of 1, 2, 3, 4, and 5. In
the third experiment, we ran five virtual servers which as-

signed a random weight between 1 and 10 to each process.
For the Linux scheduler, shares were assigned by selecting
nice values appropriately. Figures 13 to 18 present the re-
sults from the first experiment with one server with weight
10 processes and all other servers with weight 1 processes.
The total load on the system for this experiment consisted
of 600 processes running simultaneously. For illustration
purposes, only one process from each server is shown in
the figures. The conclusions drawn from the other experi-
ments are the same, so other results are not shown due to
space constraints.

GR3 andGR3MP provided the best overall propor-
tional fairness for these experiments while Linux provided
the worst overall proportional fairness. Figures 13 to 18
show the amount of processor time allocated to each client
over time for the Linux scheduler, WFQ, VTRR, andGR3.
All of the schedulers exceptGR3 and GR3MP have a
pronounced “staircase” effect for the search engine process
with share 10, indicating that CPU resources are provided
in irregular bursts over a short time interval. For the appli-
cations which need to provide interactive responsiveness
to web users, this can result in extra delays in system re-
sponse time. The smoother curves forGR3 andGR3MP
in Figures 16 and 18 show thatGR3 andGR3MP provide
fair resource allocation at a finer granularity than the other
schedulers.

6 Related Work

Round robin is one of the oldest, simplest and most widely
used proportional share scheduling algorithms. Weighted
round-robin (WRR) supports non-uniform client weights
by running all clients with the same frequency but adjusting
the size of their time quanta in proportion to their respective
weights. Deficit round-robin (DRR) [19] was developed to
support non-uniform service allocations in packet schedul-
ing. These algorithms have lowO(1) complexity but poor
short-term fairness, with service errors that can be on the
order of the largest client weight in the system.GR3 uses a
novel variant of DRR for intragroup scheduling withO(1)
complexity, but also providesO(1) service error by using
its grouping mechanism to limit the effective range of client
weights considered by the intragroup scheduler.

Fair-share schedulers [7, 11, 12] provide proportional

14

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 13: Linux uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 14: WFQ uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 15: VTRR uniprocessor

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 16:GR3 uniprocessor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 17: Linux multiprocessor

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300

C
P

U
 A

llo
ca

tio
n

(s
)

Time (s)

Weight 10
Weight 1
Weight 1
Weight 1
Weight 1
Weight 1

Figure 18:GR3MP multiprocessor

sharing among users in a way compatible with a UNIX-
style time-sharing framework based on multi-level feed-
back with a set of priority queues. These schedulers typ-
ically had low O(1) complexity, but were often ad-hoc
and could not provide any proportional fairness guaran-
tees. Empirical measurements show that these approaches
only provide reasonable proportional fairness over rela-
tively large time intervals [7].

Lottery scheduling [22] gives each client a number of
tickets proportional to its weight, then randomly selects a
ticket. Lottery scheduling takesO(log N) time and relies
on the law of large numbers for providing proportional fair-
ness. Thus, its allocation errors can be very large, typically
much worse than WRR for clients with smaller weights.

Fair queueing was first proposed by Demers et. al.
for network packet scheduling as Weighted Fair Queue-
ing (WFQ) [6], with a more extensive analysis provided
by Parekh and Gallager [15], and later applied by Wald-
spurger and Weihl to CPU scheduling as stride schedul-
ing [22]. Other variants of WFQ such as Virtual-clock [24],
SFQ [9], SPFQ [20], and Time-shift FQ [5] have also been
proposed. These algorithms generally assign each client a
virtual time and schedule the client with the earliest virtual
time. These approaches all haveO(log N) time complex-
ity because the clients must be ordered by virtual time. It
has been shown that WFQ guarantees that the service time
error for any client never falls below−1 [15]. However,
WFQ can allow a client to get far ahead of its ideal alloca-
tion and accumulate a large positive service time error of
O(N), especially with skewed weight distributions.

Several fair queueing approaches have been proposed
for reducing thisO(N) service time error. A hierar-
chical scheduling approach reduces service time error to

O(log N). Worst-Case Weighted Fair Queueing [1] in-
troduced eligible virtual times and can guarantee both a
lower and upper bound on error of−1 and +1, respec-
tively. These algorithms provide stronger proportional fair-
ness guarantees than other approaches, but are more diffi-
cult to implement and still require at leastO(log N) time.

Motivated by the need for faster scheduling algo-
rithms with good fairness guarantees [4, 16], novel round-
robin scheduling variants such as Virtual-Time Round-
Robin (VTRR) [14] and Smoothed Round Robin (SRR) [4]
combine the benefits of constant-time scheduling overhead
of round-robin with scheduling accuracy that approximates
fair queueing. These mechanisms provide proportional
sharing by going round-robin through clients in special
ways that run clients at different frequencies without hav-
ing to reorder clients on each schedule. Unlike WRR, they
can provide lower service time errors because they do not
need to adjust the size of their time quanta to achieve pro-
portional sharing. VTRR combines round-robin scheduling
with a virtual time mechanism. In contrast,GR3’s inter-
group scheduler relies only on weight ratios and provides
better fairness properties even without grouping. SRR in-
troduces a Weight Matrix and Weight Spread Sequence
(WSS) and runs tasks simulating a binary counter. Both
VTRR and SRR provide proportional sharing withO(1)
time complexity for selecting a client to run, though insert-
ing and removing clients from the run queue incur higher
overhead:O(log N) for VTRR andO(k) for SRR , where
k = log φmax. However, unlikeGR3, both algorithms can
suffer from large service time errors especially for skewed
weight distributions. For example, we can show that the
service error of SRR is worst-caseO(kN).

More recently, Stratified Round Robin [16] was pro-

15

posed as a low complexity solution for network packet
scheduling, and possibly CPU scheduling. The algorithm
uses a similar grouping strategy asGR3, distributing all
clients with weight between2−k and 2−(k−1) into class
Fk. Stratified RR splits time into scheduling slots and then
makes sure to assign all the clients in classFk one slot ev-
ery scheduling interval, using a credit and deficit scheme
within a class. This is also similar toGR3, with the key dif-
ference that a client can run for up to two consecutive time
units, while inGR3, a client is allowed to run only once
every time its group is selected regardless of its deficit.

Stratified RR has weaker fairness guarantees and
higher scheduling complexity thanGR3. Statified RR as-
signs each client weight as a fraction of the total processing
capacity of the system. This results in weaker fairness guar-
antees when the sum of these fractions is not close to the
limit of 1. For example, if we haveN = 2k +1 clients, one
of weight0.5 and the rest of weight2−(k+2) (total weight
= 0.75), Stratified RR will run the clients in such a way that
after2k+1 slots, the error of the large client is−N

3 , such that
this client will then run uninterrupted forN tu to regain its
due service. Client weights could be scaled to reduce this
error, but with additionalO(N) complexity. Stratified RR
requiresO(g) worst-case time to determine the next class
that should be selected, whereg is the number of groups.
Although hardware support can hide this complexity as-
suming a reasonably small, predefined maximum number
of groups [16], running Stratified RR as a CPU scheduler
in software still requiresO(g) complexity.

GR3 also differs from Stratified RR and other deficit
round-robin variants in its distribution of deficit. In algo-
rithms such as DRR, SRR, Stratified RR, the variation in
the deficit of all the clients affects the fairness in the sys-
tem. To illustrate this, considerN + 1 clients, all having
the same weight except the first one, whose weight isN
times larger. If the deficit of all the clients except the first
one is close to1, the error of the first client will be about
N
2 = O(N). Therefore, the deficit mechanism itself as em-
ployed in round-robinschemes doesn’t allow for better than
O(N) error. In contrast,GR3 ensures sure that a group
consumes all the work assigned to it, so that the deficit is a
tool used only in distributing work within a certain group,
and not within the system. Thus, groups effectively iso-
late the impact of unfortunate distributions of deficit in the
scheduler. This allows for the error bounds inGR3 to de-
pend only on the number of groups instead of the much
larger number of clients.

A rigorous analysis on network packet scheduling
[23] suggests thatO(N) delay bounds are unavoidable with
packet scheduling algorithms of less thanO(log N) time
complexity.GR3’s O(g2) error bound andO(1) time com-
plexity are consistent with this analysis, since delay and
service error are not equivalent concepts. Thus, if adapted
to packet scheduling,GR3 would worst-case incurO(N)
delay while preserving anO(g2) service error.

For multiprocessor scheduling, Surplus Fair Schedul-
ing (SFS) [3] also adapts a uniprocessor algorithm,
SFQ [9], to multiple processors. The authors demonstrate
good properties of SFS in practice, but no theoretical fair-
ness bounds are provided. If a selected task is already run-
ning on another processor, it is removed from the runqueue.
This operation may be expensive and may also introduce
unfairness, in particular for low overhead, round-robin type
algorithms. In contrast,GR3MP provides strong fairness
bounds with lower scheduling overhead.

SFS introduced the notion offeasible tasks along
with a O(P)-time weight readjustment algorithm, which
requires however that the tasks be sorted by their original
weight. By using its grouping strategy,GR3MP performs
the same weight readjustment inO(P) time without the
need to order clients, thus avoiding theO(log N) overhead
per maintenance operation. The optimality of SFS’s and
our weight readjustment algorithms rests in preservation
of ordering of tasks by weight and of weight proportions
among feasible tasks, and not in minimal overall weight
change, as [3] claims.

7 Conclusions
We have designed, implemented, and evaluated Group Ra-
tio Round-Robin scheduling in the Linux operating sys-
tem. We prove thatGR3 is the first and only uniproces-
sor and multiprocessor scheduling algorithm that simulta-
neously guaranteesO(1) overhead and service error bound
of less thanO(N) when compared to an idealized proces-
sor sharing model.GR3 achieves these benefits due to its
grouping strategy, ratio-based intergroup scheduling, and
highly efficient intragroup round robin scheme with good
fairness bounds. We have also shown how to adaptGR3

for a small-scale multiprocessor system while preserving
the good bounds on fairness and time complexity. Our ex-
periences withGR3 show that it is simple to implement
and easy to integrate into existing commercial operating
systems. We have measured the performance ofGR3 us-
ing both simulations and kernel measurements of real sys-
tem performance using a prototype Linux implementation.
Our simulation results show thatGR3 can provide more
than two orders of magnitude better proportional fairness
behavior than other popular proportional share scheduling
algorithms, including WRR, WFQ, SFQ, VTRR, and SRR.
Our experimental results using ourGR3 Linux implemen-
tation further demonstrate thatGR3 provides accurate pro-
portional fairness behavior on real applications with much
lower scheduling overhead than other Linux schedulers, es-
pecially for larger workloads.

References

[1] J. Bennett and H. Zhang, “WF2Q: Worst-case Fair
Weighted Fair Queueing,” inProceedings of INFOCOM
’96, San Francisco, CA, Mar. 1996.

16

[2] R. Bryant and B. Hartner, “Java technology, threads, and
scheduling in Linux”IBM developerWorks Library Paper,
IBM Linux Technology Center, Jan. 2000.

[3] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. “Surplus
fair scheduling: A proportional-share CPU scheduling algo-
rithm for symmetric multiprocessors,” inProceedings of the
Fourth ACM Symposium on Operating System Design and
Implementation, Oct. 2000, pp. 45-58.

[4] G. Chuanxiong, “SRR: An 0(1) Time Complexity Packet
Scheduler for Flows in Multi-Service Packet Networks,” in
Proc. of ACM SIGCOMM ’01, Aug. 2001, pp. 211–222.

[5] J. Cobb, M. Gouda, and A. El-Nahas, “Time-Shift Schedul-
ing - Fair Scheduling of Flows in High-Speed Networks,” in
IEE/ACM Transactions on Networking, 1998, pp. 274-285.

[6] A. Demers, S. Keshav, and S. Shenker, “Analysis and Sim-
ulation of a Fair Queueing Algorithm,” inProceedings of
ACM SIGCOMM ’89, Austin, TX, Sept. 1989, pp. 1–12.

[7] R. Essick, “An Event-Based Fair Share Scheduler,” inPro-
ceedings of the Winter 1990 USENIX Conference, USENIX,
Berkeley, CA, USA, Jan. 1990, pp. 147–162.

[8] E. Gafni and D. Bertsekas, “Dynamic Control of Session
Input Rates in Communication Networks,” inIEEE Trans-
actions on Automatic Control, 29(10), 1984, pp. 1009–1016.

[9] P. Goyal, H. Vin, and H. Cheng, “Start-Time Fair Queue-
ing: A Scheduling Algorithm for Integrated Services Packet
Switching Networks,” inIEEE/ACM Transactions on Net-
working, Oct. 1997, pp. 690–704.

[10] E. Hahne and R. Gallager, “Round Robin Scheduling for
Fair Flow Control in Data Communication Networks,” Tech.
Rep. LIDS-TH-1631, LIDS, MIT, Dec. 1986.

[11] G. Henry, “The Fair Share Scheduler,”AT&T Bell Labora-
tories Technical Journal, 63(8), Oct. 1984, pp. 1845–1857.

[12] J. Kay and P. Lauder, “A Fair Share Scheduler,”Communi-
cations of the ACM, 31(1), Jan. 1988, pp. 44–55.

[13] L. Kleinrock, Queueing Systems, Volume II: Computer Ap-
plications. New York: John Wiley & Sons, 1976.

[14] J. Nieh, C. Vaill, H. Zhong, “Virtual-time round-robin:
An O(1) proportional share scheduler,” inProceedings of
the 2001 USENIX Annual Technical Conference, USENIX,
Berkeley, CA, June 25–30 2001, pp. 245–259

[15] A. Parekh and R. Gallager, “A Generalized Processor Shar-
ing Approach to Flow Control in Integrated Services Net-
works: The Single-Node Case,”IEEE/ACM Transactions on
Networking, 1(3), June 1993, pp. 344–357.

[16] J. Pasquale and S. Ramabhadran, “Stratified Round Robin:
A Low Complexity Packet Scheduler with Bandwidth Fair-
ness and Bounded Delay,”Proceedings of ACM SIGCOMM
’03, Karlsruhe, Germany, August 2003.

[17] K. Ramakrishnan, D. Chiu, and R. Jain, “Congestion Avoid-
ance in Computer Networks with a Connectionless Network
Layer, Part IV: A Selective Binary Feedback Scheme for
General Topologies,” TR. DEC-TR-510, DEC, Nov. 1987.

[18] Hackbench: A New Multiqueue Scheduler Bench-
mark. http://www.lkml.org/archive/2001/
12/11/19/index.html Message to Linux Kernel
Mailing List, December 2001.

[19] M. Shreedhar and G. Varghese, “Efficient Fair Queueing
Using Deficit Round-Robin,” inProceedings of ACM SIG-
COMM ’95, 4(3), Sept. 1995, pp. 231–242.

[20] D. Stiliadis, and A. Varma, “Efficient Fair Queueing Al-
gorithms for Packet-Switched Networks,” inIEEE/ACM
Transactions on Networking, Apr. 1998, pp. 175–185.

[21] R. Tijdeman, “The Chairman Assignment Problem,”Dis-
crete Mathematics, 32, 1980, pp. 323–330.

[22] C. Waldspurger,Lottery and Stride Scheduling: Flexible
Proportional-Share Resource Management. PhD thesis, De-
partment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Sept. 1995.

[23] J. Xu and R. Lipton, “On Fundamental Tradeoffs be-
tween Delay Bounds and Computational Complexity in
Packet Scheduling Algorithms,” inProceedings of ACM
SIGCOMM ’02, Pittsburgh, PA, August 2002.

[24] L. Zhang, “Virtual Clock: A New Traffic Control Algorithm
for Packet Switched Networks,” inACM Transactions on
Computer Systems, 9(2), May 1991, pp. 101–125.

17

