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A Hierarchical Associative Architecture
for the Parallel Evaluation of
Relational Algebraic Database Primitives

David Elliot Shaw

Artificial Intelligence Laboratory
Stanford University

October 1979

Abstract

Algorithms are described and analyzed for the efficient evaluation of the primitive
operators of a relational algebra on a proposed non-von Neumann machine bascd
on a hierarchy of associative storage devices. This architecture permits an O(log n)
decrease in time complexity over the best known evaluation methods on a conven-
tional computer system, without the use of redundant storage, and using currently
available and potentially competitive technology. In many cases of practical im-
port, the proposed architecture may also permit a significant improvement (by
a factor roughly proportional to the capacity of the primary associative storage
device) over the performance of previously implemented or proposed database
machine architectures based on associative secondary storage devices.
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1. Introduction

At the heart of the system which we are implementing as pazt of our thesis
research is a process of description-based retrieval in which all documeants in a
collection which mateh a KRIL-liks description on the basis of information ex-
tracted from a domain-specific knowledge base. The limited size of the document
collection which will be used to develop and test our thesis system should maks
the matching task computationally traciable within the context of cur research
effort. It is precisely in the case of a very large and conceptually heterogeneous
collection of structured eatities (in our application, decumeants), however, where
the arguments for our coacspiual descripsion maiching techniques are strongest.
If these techniques are to be seriously considered as promising tools {or retrieval
problems of practical significance, we must thus carefully consider the effeci of an
inerease of several orders of magnitude in the size of the target collection. The
retrieval strategy which is pecrhaps most obvious, in which the search description
is matehed successively against each candidate description in the target collection
(which would ordinarily reside on secondary storage), carries penalties in efficiency
which, although probably manageable in the course of a research project, are likely
to be prohibitive in the context of applications which might invoive several millien
target descriptions.

There are a number of possxbxhhcs for the efficient implementation on a very
large scale of the sort of description matching with which we are concerned. Oune
approach might invoive the careful design of specially-tailored indexing and access
schemes in software [or execution on a “ccnventional” computer system architec-
ture, at the ccst of considerable scfiware complexity and 3 somewhat inflexible
attention to the details of the particular descriptive scheme under consideration.
In this paper, however, we will consider certain alternative hardware architectures
as a basis for a very general and efficient approach to large-scale meaning-based
retrieval.

One of the most difficult issues which oftea seems to be eacountered by the
designers of complex special-purpcse hardware, particularly in the research en-
vironment, involves the tradeo betweesn consideraticns of efficiency and ezonomy
for the initially conceived application, on the one hand, and issues of geaerality,
flexibility and mutability in the facs of incompletely specified and evolutionarily
changing system requirements, on the other. In particular, any attempt to reducs
conczptual matching to a small set of primitive cperations for which efficient
special-purpose hardware mechanisms seem appropriate necessarily involves care-
ful consideration of the degres to which a given design decision may complicate
the addition or modification of new descripter types, matching criteria, aad data

2



representation schemes, should such characteristics subsequently be changed on
the basis of early research results. In this paper, we have adopted a fairly con-
servative approach in this regard, [oregoing the exploitation of certain special
properties of our descriptive formalism which might in fact have been used to
obtain further efficiencies if flexibility were not a concern, and providing in some
instances mechanisms which are somewhat more general than those which would
be strictly required for our immdediate implementation.

What has emerged is an architecture which, while quite different from that
of a traditional von Neumann computer system, nonetheless speaks to a fairly
wide class of problems outside the immediate province of conceptual matching. In
particular, we have described a computer system [or the parallel evaluation of the
primitives of a relational algebra, as described by Codd [1971]—specifically, the
operators project, equi-join, select, restrict, union, intersect, and set difference.
The system architecture which we will describe is thus intended to be applicable
to a wide range of problems of considerable current practical concern in the field of
database management, and in particular, to the design of efficient systems based
on the relational model of data.

The proposed architecture is organized as a two-level hierarchy of associative
storage devices—the smaller and faster level of which will be called primary, and
the larger and slower, secondary. In the course of evaluating each relational primi-
tive, the entire database is associatively probed using logic associated with the
secondary storage devices themselves. In the case of all but two of the operators,
selected segments of the relevant data are then transferred in succession {rom
secondary to primary associative storage for further processing. This paper will
outline the organization of the architecture we are proposing, and will describe and
analyze algorithms for evaluation of each of the relational algebraic primitives,
both in the case where the arguments can fit entirely within primary storage (which
we call internal evaluation), and where they reside on secondary storage (external
evaluation).

Section 2 of this paper reviews the essential elements of a relational algebra.
In Section 3, we survey previous work on the design of associative processors and
database machines to provide a context for the introduction of our architecture.
Section 4 provides a functional description of the central hardware components
involved in our design. The notation to be used in analyzing the performance of
our algorithms for evaluation of the primitive relational operators is introduced in
Section 5. The algorithms for internal evaluation are presented in Section 6, along
with an average-case analysis of their time complexity. The procedures for exter-
nal evaluation (most of which make use of the internal evaluation routines) are
described in Section 7. In Section 8, two alternative schemes are described for the
partitioning of the argument relations into appropriate segments and their transfer
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into primary storage, 3 time-critical part of the procass of external evaluation. The
lattar of these two schemes, which would appear to be preferable whea appropriate
hardware is available, is analyzed in some detail. Our results are summarized in
Section §; the reader may wish o glance briedy at this section before proceeding

with the bedy of the paper.




2. The Relational Algebra

Therelational model of data, astypically formulated by researchersin database
management systems, has its roots in two seminal papers by Codd [1970, 1972).
In this context, the term relation is used to denote a set of structured entities
called tuples which, within a single relation, share a common attribute structure.
More formally, we may define a normalized relation of degree n as a set of tuples,
where each tuple is an element of the cartesian product of n (not necessarily dis-
tinct) sets—called the underlying domains of the relation—of non-decomposable
entities. (In some practical database applications, it may be useful to allow the
appearance of “null values” in various at{ributes of certain tuples in the case where
certain information is not available; apart from brief mention of one complication
introduced by this convention, however, we will not be concerned in this paper
with the problems of null values.) Since relations are sets, we may refer to the
number of elemeats—in this case, tuples—in a relation as the cardinality of that
relation.

Intuitively, relations may be thought of as “tables”, in which each “row
represents one tuple and each column represents one of the n (simple) attributes
of that relation. It is conventional to either name or number the attributes of a
relation for convenience in referring either to a whole “column™ of the relation,
or to the value of the attribute in question within a particular tuple. In some
discussions (and in particular, in much of this paper), it is also useful to group
several attributes (some possibly repeated) together, referring to them jointly as a
compound attribute. The term normalized reflects the “type distinction” between
underlying domain elements, which may serve as the values of attributes, and
tuples and relations, which may not. (A single tuple thus can not be used to
directly represent a hierarchically nested data structure.)

The relational algebra which forms the central focus of this paper is based on
a small set of algebraic operators enumerated by Codd [1972] which take one or
more relations (along with certain “control” information) as arguments, returning
a single new relation as their value. This set of primitives includes the ordinary set
operations—union, intersection and set difference—which, with one restriction,
are defined for relations in much the same way as for other sets, along with several
structured operators, which make reference to the internal attribute structure of the
constituent tuples. For completeness, the unstructured set operations are reviewed
in Section 2.1. The two fundamental structured operators, project and join, are
then introduced in Sections 2.2 and 2.3, respectively. Several other structured
operations which may in fact be derived from project, join and the unstructured
set operations, but which serve certain particularly important functions in many
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practical applications of relational algebraic systems, are then discussed in Section
2.4, )

2.1 The unstructured set operations

The three binary sei operators union, interseciion and szt difereacs are defined
in a relational algebraic system in the same way as [or sets in general, with one
exception: the relaticnal version of each is defined only when the two relations
which serve as its operands are union-compatible. Two relations are said to be
uniocn-compatible if and oaly if they are o the same degres n and the underlying
domains of the i-th simple atiributes of the two relations are the same for all 4,
1<i<n). ) .

We thus define the union of two union-compatible relations R; and 3, denoted
(Ri UR3), as a relation consisting of exactly those tuples which are an element of
Ry, of R3, or both. The intersection (R NR;) is defined as that relation containing
all tuples found in both R; and Rj. Finally, the set difference (R; — R;) is defined
to consist of exactly these tuples of R; which are not¢ present in R;.

2.2 Project

In preparation for our definition of the projection operator, we first introduce
some additional notation. First, we adopt the convention that a list of primitive
domain elemeats enclosed by angle brackets (“(" and “)") will designate a new
tuple containing the specified elements as the values of its simple attributes, in
the order listed. Futhermore, if r is a tuple of some n-ary relation R, we will
define r{j] to be the value of the j-th attributz of r, (1 < 7 < n). It will be
convenient to extend this notation to allow expressicns such as r{A], where A is
a compound atiribute of R consisting of the m (oot necessarily distinct) simple
attributes numbered jj, /a,.. ., Jm, defined such that (r{A]) represeats the new tuple

(ri, rlaly - oo rlim)-

We may now deiine the projection of a relation R over the compound atiribute

A as the sat
{(r{A]:rer}

Note that we have defined the projection operator in such a way that simple at-
tributes within the compound attribute A may be replicated in the course of projec-
tion. Depending on certain details in the definition of the join cperaticn (Secticn
2.3), this convention may have impeortant thesretical consequencss afecting the
expressive power of the resulting algebra.

The projection operator may be thought of as a sort of “vertical subsetting”
operation, in which




1. the “non-projected” attributes of each tuple in the argument relation are
eliminated,

2. the remaining attributes may be permuted and/or replicated, and

3. any duplicate tuples which result [rom the elimination of values which formerly
distinguished diferent tuples are then removed.

In most implementations on a von Neumann machine, the first two functions
can be implemented using a simple and computationally inexpeasive procedure
whose complexity is linear in the cardinality of the argument relation. The elimina-
tion of redundant tuples, on the other hand, may be surprisingly time-consuming,
particularly when the argument relation is large. In fact, one common convention
in some von Neumann implementations is to relax the requirement that relations
be true sets, allowing the introduction of duplication during some or all projections.
This approach introduces the [ollowing problems, however:

1. the maintenance of duplicate tuples may lead to combinatorially explosive
growth in the cardinality of the intermediate results of a complex query, and

2. functions sensitive to the repetition of identical tuples—the calculation of
numerical counts and statistical measures, for example—will not yield accurate
results if redundant tuples are not first eliminated.

One of the goals of the architectures discussed in this paper is the implemen-
tation of true projection without the high cost of redundant tuple elimination.

2.3 Join

Definition of the join operation requires the definition of one additional construct:
the concatenation of two tuples. If r| is a tuple of a relation R, having degree ny,
and m is a tuple of relation Ry, having degree ng, the concatenation (ri|r) of
and r; is defined to be the new (n; -+ ng)-tuple

(ri(1), ru[2], - i, r2(1], m2(2), -« 2[ma])

Several variations of the join operator are commonly discussed in the litera-
ture; we will begin by defining a particularly important variant known as the equi-
join. The equi-join of two relations R; and Rj over the compound attributes A;
and A, respectively (each assumed to be composed of the same number of simple
attributes, with corresponding simple attributes having underlying domains which
are comparable under the equality predicate) is defined as

{(n|m)irieRs A meRs A rifA|] = nmfAs]}
7



A] and A; are referred to as the (compouad) join atéributes. and will have special
significance in the architeciures intreduced in this paper. In the case where A; and
Aq are the degenerate compound atiributes containing ao simple attributes, equi-
join reduces to the exteaded cartesian preduct of tae tuples of R} and Ry—that
is, to the set of all possible concatenations of cne tuple from R; with one {rom
Rj3. The more general join operation may be intuitively thougit of as a process
of filtering the extended cariesian product of R} and R by removing {rom the
result all conjoined tuples whose respective join atiributes have different values.
(The computational method suggested by this interpretation, of course, would in
geaeral be impractically inefficient.)

It should be acknowledged that our definition of the equi-join operator Ica.ves
unanswered certain questions which, although net immediataly relevant to the
concsrns of this paper, are commonly encountered in practical database applica-
tions. One such problem arises in the case where null values are allowed to appear
in the join attributes, since it is generally not appropriate to treat two tuples as
matching in the case whers their join attributes are both null. Consideration of
the varicus approaches which have besn advanced {or the accomedation of this
case will not {all within the scope of this paper, however.

The join operation is in general extremely expeasive on a wnventzonal ven
Neumann machine, sincs the tuples of R; and Rz must be paired for equality
with respect to the join atiributes before the extanded cartesian preduct of each
group of “matching” tupies can be computed. In the absancs of physical clustering
with respect to the join atiributes (whcose ideatity may vary in different joins
over the same pair of relations), or the use of various techniques requiring a large
amount of redundant storage, joining is typically accomplished most efficieatly on
3 von Neumann machine by pre-sorting the two argument relations with respect
to the join felds. The order of the tuples following the sort is aciually gratuitous
information {rom the viewpoint of the join operation. From a strictly formal
perspeciive, the requirements of a join—that the tuples be paired in such 3 way
that the values of the join attribute match—are significantly weaker than those
of a sort, which requires that the resulting set be sequencsd according to the those
values. The distincticn is mcot in the case of 3 von Neumann machine, where no
better general solution to this pairing problem than sorting is presently known.
One of the design goals of the architecture described in this paper, however, is to
make use of the weaker constraints involved in the definition of the join operation
to obviate the nesd for either pre-sorting or the extravagant use of redundant
storage.

One common variant of the equi-join operator is the natural join, in which
one of the two join atiributes, which are redundantly represented in the result
relation in the case of equi-join, is eliminated (as if by projection). Qur architectiure
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supports the natural join with a simple modification of the internal equi-join algo-
rithm described in Section 8.2. A more general form of join often discussed in the
literature is the 8-join, whose definition is similar to that of the equi-join, but with
the equality predicate replaced by a more general binary predicate 4. (In Codd’s
definition, 6 is defined to be one of the arithmetic operations =, #, <, <, >
or =>.) Considerations for the efficient evaluation of the general §-join operator
differ in several respects from those involved in evaluating the equi-join. We will
not discuss this more general case in the present paper.

2.4 Other operations

Each of the relational algebraic operators described in this section can in fact be
derived from the structured operators project and join and the three unstructured
set operators, and are defined here for one or both of the following reasons:

. 1) The operator embodies a special case of one or more of the previously defined
primitives which might admit the possibility of either a less complex, or a more
efficient, hardware implementation

2) The operator represents an important and {requently encountered use of some
composition of the primitives defined earlier

One derived operation which occurs frequently in both practical and theoreti-
cal discussions, and which has a special role in most of the hardware designs
which we will discuss, is called selection. Most algorithms and architectures for
“associative retrieval” are based closely on what is essentially a process of relational
selection. The select operator also plays an important role in the architectures
we propose in this paper, although unlike most associative processor designs, our
architecture explicitly addresses the problems of efficiently imnlementing other
relational operators as well. The select operator returns a sutset of its single
argument relation consisting of all tuples which satisfy a list of attribute/value
pairs. The select operator may thus be regarded as a natural join of the argument
relation with a singleton relation (a relation consisting of exactly one explicitly
specified tuple) over all attributes of the singleton. More precisely, the result of a
selection from relation R with compound attribute A and value tuple V is

{rireRATA] =V} ,

where the corresponding A and V domains are again assumed to be compatible

with respect to equality.
Another important derived operation is known as restriction. While restric-
tion, like the join operator, is sometimes defined in terms of a general 8, we will
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again be concerned only with the case where § is the binary equality predicate.
The restriction of a relation R over the compound atiributes A; and Az (both
composed of simple atiributes of F) is defined as

{rreR A r{A]] = r{A2])}

In its mest common form, where the compound atiributes A] and Az are each
composead of exactly one simple attribute, the restriction operator returns all tuples
of its argumeant relation in which the values of the two specified attributes are
equal. Although restriction can be defined solely in terms of the join and project
operators, an implementation based in a straight{orward way on this derivaticn
would be considerably more complex and inefficieat than one specifically iailored
to support the restrict operator. Restriction is an impertant encugh operation in
practice that we have ireated the capacity for direct (and efficient) evaluation of
restrictive expressions as a significant design objective. ‘

Finally, we must acknowledge a derived operation which has considerable
theoretical and practical importance in many applications, but to which we have
devoted little special attention in our evaluation of alternative architectures. This
operation, called division, is used to achieve the efects of universal quantification
within the queries of a language based on the relational calculus (Cedd [1972])
and may well be worthy of special attention in course of designing a generally-
. applicable relational databaszs machine. Since it is not clear at this point that the
design of our thesis system will require that this sort of operation be implemented .
efficiently in its full generality, however, the relational divisicn cperator will not be
‘given the same sort of special consideration in this paper as the octher two derived
operators described above.
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3. Relevant Previous Work

In this section, we will briefly survey certain areas in the literature of com-
puter architecture which have central relevance to our own investigations. Because
the great majority of the recent work on specialized architectures for database
management applications—our own included—has drawn heavily on earlier work
involving the design of content-addressable memories and asscciative processors,
we will begin our review, in Section 3.1, with a rough taxonomy and description
of the most important classes of associative processing devices. In Section 3.2,
we will consider several of the best known proposals [or, and actual prototype im-
plementations of, what might be called true database machines: systems oriented
toward fairly specific functions deemed relevant to actual database management
applications.

3.1 Associative processors

At the risk of oversimplification, it is probably safe to say that virtually all ex-
isting and proposed database machine architectures have drawn their power {rom
the utilization of a high degree of some variety of hardware parallelism at some
level within the system. The different techniques for achieving such parallel com-
putation are often distinguished according to a classification scheme suggested by
Flynn [1972], which characterized the conventional sequential processor as a Single
Instruction Stream Single Data Stream (SISD) machine, as contrasted with the
most common mechanisms for parallel computation, among which he distinguished
three different organizations:

1. Multiple Instruction Stream Single Data Stream (MISD) machines, typified by
the pipeline processing approach.

2. Single Instruction Stream Multiple Data Stream (SDMD) machines, in which a
single operation is performed in parallel by a number of independent processing
units at any given time.

3. Multiple Instruction Stream Multiple Data Stream (MIMD) machines, which
function as a numbér of independent, but communicating processors, each of which
is capable of maintaining its own instruction and data streams.

Alternative classificatory schemes for parallel machines have also been proposed
(eg., Murtha and Beadles [1964]). For a more thorough discussion of the taxonomy
of parallel processors in general, the reader is referred to Thurber and Wald [1973].

11



Within the class of SIMD machines, two important subclasses are typically
recognized. (Again, however, other classifications are possible; ses, for example,
Higbie [1973].) Members of the firsi subclass, exemplified by such machines as
ILLIAC IV, are known as array procsssors, in which the data are processed in
parallel using the conventional mechanism of coordinate addressing. The second
subelass consists of the associaiive processors, which access their data in a content
addressable manner. Although each of the varieties of parallel procassing which
we have described above may ultimately play an important role within practical
database machines, cur primary concsrn in this paper will be with the family of
associative prceessors. .

In general, we will define an asscciative processor to be a machine which is able
to access selected items stored in memory in parallel on the basis of their contents.
We will also require that items be accessible by partial maich, so that selected
elements of the “key” field can be “masked out” in the course of content-based
addressing. (In many associative processors, the match criteria may be specified
in using predicates other than equality—arithmetic comparison operatars, for ex-
ample; we will not require this capability as part of our definition of an associative
processor, however.) While the parallel modification of content-selected responders
is supported directly by a hardware multiwrite capability, output {rom an associa-
tive processor in the case where there is more than one responder presents a more
complicated problem. A number of designs have besn proposed and evaluated for
reading out a single responder in the event of a multiple match. Typically (though
not always) this responder is chosen arbitrarily on the basis of physical pesition

~within the associative memory. Although much work has been done in the area
of multiple match resolution, we will not be concerned with such problems in this
paper.

While the distribution of intelligences among memory elements is central to
the operation of all associative processors, the degres of that distribution—more
specifically, the number of storage elements associated with each comparison logic
unit— varies widely among the various classes of associative devices. In the-
remainder of this section, we will review the major categories of associative proces-
sor architecture, distinguished by the extent of distributicn of the precessing logic.
A survey by Yau and Fung [1S77] provides an outline of asscciative processor
architecture in somewhat more depth thaa will be pessible here. The areais treated
even more thoroughly in an outstanding beok by Fester [1878].

The greatest degres of distribution is found in the fully paralle! associative
processors, in which comparison logic is associated with every bit of storage. The
fastest of these machines are the fully paralle! word-organized asscciative proces-
sors, whose hardware complexity, however, has resulted in their implementation
only experimentally, and on a very small scale.

12




A second class of fully parallel designs is represented by the distributed logic
associative processors. In the original distributed logic associative processor design
introduced by Lee [1962), one comparison logic unit is associated with each charac-
ter of storage. (In some variants, the comparison logic unit is instead associated
with a small, fixed-size set of adjacent characters.) In all of the distributed logic
associative processors based on Lee's design, each cell is capable of storing a small
amount of '“state” information in addition to the symbol data itself. The design
includes a control unit which communicates with all cells in parallel using a com-
mon databus. Each cell, however, is connected not only to this public bus, but also
to its immediate right and left neighbors, thus forming a rail along which control
and state information can be propagated.

With some simplification and disregard for detail, a string of data stored in
a contiguous set of character cells is retrieved as follows. Initially, the control
system “broadcasts” a special “word header” character which precedes all strings
stored in memory. Each matching header cell is then instructed to enable its
right neighbor for comparison against the first character in the search string. All
matching first characters in turn enable their right neighbors for matching against
the next character, and so on until the search string is exhausted. The set of
matching strings is now easily identified, and may be modified or output. A num-
ber of variations on Lee's original distributed logic design have been proposed
to deal efficiently with certain operations {requently required in the course of in-
formation retrieval, parallel arithmetic manipulations, etc. (eg., Lee and Paull
[1983); Gaines and Lee [1965]; Crane and Githens {1965]). The content addressing
mechanisms incorporated in PEPE, one of the first large-scale associative processor
implementations, may also be regarded as derivative of Lee's design.

Among the numerous distributed logic designs which have been suggested,
the Tree Channel Processor architecture proposed by Lipovski [1869; 1970] for
the construction of very large primary associative processors is worthy of special
mention. In Lipovski's design, the cells are themselves capable not only of passive
comparison and simple propagation, but (in a particular mode of operation) of
the active execution of certain control functions. The cells are organized in a tree
structure, with “adjacent” cells connected by two separate rails and a “locally”
common channel. In contrast to the strictly public bus used in the basic dis-
tributed logic design, this channel may be dynamically partitioned, thus isolating
one or more subtrees which can then function as separate processing units. (In this
respect, the Tree Channel Processor might in fact be considered a unconventional
MIMD machine.) The Tree Channel Processor is designed to permit extremely high
bandwidth parallel input and output and to greatly reduce certain propagation
time bottlenecks associated with many applications of distributed logic processors.

Let us now turn our attention to a class of associative processors characterized
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by secmewhat less exteasive distribution of intelligence: the bit-serial asscciative
precessors. [n this class of machines, first proposad by Shoeman 1960}, the contant
addressable memory is organized into (often fairly large) words, and comparisen
legic is associated with each word. In contrast with the fully parallel word or-
ganized prccsssors, however, each logic unit is capable of manipulating only a
single bit pesition within the word at a given time, resulting in a reducticn in
required procsssor logic roughly proportional to the number of bits per word, at
the ccst of a corresponding decrease in spesd. At each point in time, one “bit
slice” exteading through all words is thus accessible for parailel processing. A
small amount of storage associated with each word is typically used to retain state
information betwe=n operations on successive bit slices in support of the primitive
content search and multi-write capabilities of asscdiative procsssing.

Since the intreduction of Shooman's “orthegonal computer”, bit-serial as-
sociative devices having a wide variety of charactaristics have besn propesed by
a number of researchers, including Kaplan [1963], Ewing and Davies [1984] and
Chu (1985]. The design of STARAN [Rudelph, 1972; Batcher, 1974}, Geedyear
Aerospace Corporation’s large-scale asscciative processor, is based on a group of
“multidimensicnal access memories” which implemeat both bit-slice (for associa-
tive processing) and ordinary word slics (for input and output) access capabilities
using standard random access memory chips. Amoag the other bit-serial associa-
tive processors which have besn developed for practical use are the OMEN series
.[Higbie, 1972}, designed by Sanders Asscciates, The Raytheon Associative/Array
Processor (abbreviated RAP, but not to be confused with the Relational Assaciative
Processor, a database machine bearing the same acronym which will be discussed
in Section 3.2) [Couranz, Gerhardt and Young, 1974], the Exteaded Content
Addressed Memory (ECAM) [Anderson and Kain, 1976], and the Hughes Aircraft
Asscciative Linear Array Processor, (ALAP) [Finnila, 1977).

Another class of less-than-fully-parallel content-addressable devices is com-
prised of the word-serial assceiative procassors [Young, 1962; Crofut and Sottile,
1568; Rux, 1969, in which all bits of a single word are compared in parallel, but
the set of words is examined sequentially. Word-serial machines thus function in
much the same way as a pregram locp on a conventional voa Neumann machine
in which each word in memory is examined in turn for partial match and modified
or output as appropriate. The word-serial associative architecture, however, ob-
viates the nesd to fetch and decode the instruciions which would be required to
perform such functions in sofiware on an ordinary von Neumann machine. While
the word size of 3 word-serial machine might in principle be chosen large enough
to make word-serial techniques competitive in spesd with bit-serial schemes, the
number of words is generally much larger than the number of bits per word, thus
typically making word-serial techniques much slower in practice. Although this
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speed disadvantage has thus far tended to discourage practical applications of the
word-serial approach in favor of distributed logic and bit-serial techniques, current
prospects for inexpensive, high density, noninertial circulating storage devices
(future generations of bubble memories or charge-coupled devices, for example)
may make the word-serial approach worthy of serious consideration for large-scale
associative processing applications.

At the low end of the associative logic distribution spectrum is the class of
block-oriented, or segment sequential associative processors (also sometimes called
partially associative devices), which offer much larger capacities than the devices
discussed thus {ar, but at a significant penalty in speed. Most commonly, such
devices are based on a rotating storage device (a disk, for example) having one or
more heads per track of storage, so that each piece of stored information passes
under some head exactly once during each revolution of the device. In the simplest
such designs, one search and modification logic unit is associated with each head
(and thus with each track), permitting one associative operation to be performed
on each revolution.

The first logic-per-track associative devices of which we are aware were
proposed by Slotnick [1970] and Parker [1971]. Parhami {1972] designed an associa-
tive processor called RAPID (for Rotating Associative Processor for Information
Dissemination), which functioned in much the same way as a slow distributed logic
memory, but with only one search operation possible per revolution, and with
information propagation in one direction only. Different block-oriented associative
processor designs have been proposed by Minsky [1972], Healy, Lipovski and Doty
[1972], and others. Because the need for large-scale storage is essential to data base
management applications, parallel head-per-track disk devices, or their equivalent,
have a central role in the majority of the database machine designs discussed in
Section 3.2.

While the block-oriented associative processors are usually regarded as rep-
resenting the “low end"” of the logic distribution spectrum within the family of
associative processor architectures, certain system designs based on an even lower
degree of distribution, but nonetheless sharing some of the features of an orthodox
associative processor, might be worth mentioning in passing. One such approach
is illustrated by the modified head-per-track disk drives incorporated in the DBC
architecture (discussed in Section 3.2), in which the contents of one cylinder may be
associatively probed in a single revolution. An even lower degree of logic distribu-
tion which nonetheless speaks to some of the concerns of associative processing is
represented by the design proposed by Lang, et al. (1977] for the evolutionary en-
hancement of conventional disk-based systems—the authors' proposal was in f{act
presented in the context of an architecture like that of the IBM System/370—f{or
increased efficiency’in database applications. Their scheme involved the association
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of one small, intelligenat unit called 3 “DASD processor” with each direct access
storage device. Each such precassor would be capable of searching [or records based
on the values in arbitrarily specified (as oppesed to fixed-paosition) fields when so
instructed by a special channel commaad. Analysis predicted significant perfor-
mance improvement over more conveational system architectures, particularly in
the case of heavy transaction trafic.

In the following section, we will review some of the ways in which the various
classes of asscciative procsssors have been applied to the specific problems of
database managemeant.

3.2 Database machines

Several authors have surveyed the emerging field of database machine architecture
from various perspectives, and adopting various scopes, within the past several
years. Linde, Gates, and Peag [1973] wers among the first to point out the poten-
tial advantages of asscciative processor-based architectures for real-time database
management applications. Berra [1974] reviewed the state of the art as of 1974,
and critically examined the potential for such applications, pointing out a number
of positive and negative aspects of the application of associative processors to
database management. Anderson [1976] and Baum and Hsiao [1976] provided later
overviews of trends in the field, the latter predicting the emergencs of hierarchi-
cally organized systems, with each level containing [unctionally specialized search
and data manipulation modules. Lowenthal [1977] offered a taxonomy [or distin-
guishing thres different kinds of processors specialized for data base management
‘in distributed environmesnts, which he called intelligeat coatrollers, backends and
datacomputers. Hsiao and Madnick [1977) and Berra [1977] also survey and provide
references to the field of data base machine architecture. In this section, we will
review the best known eforts to date in the area of database machine architecture.

One of the earliest actual implementations of an asscciative processor-based
system geared toward database management applications was [FAM (DeFiore and
Berra [1973]), developed on an experimental prototype basis for the Rome Air
Development Center. This implemeatation of IFAM was based on a 2048-word,
48-bit, word parallel, bit serial associative processor called AM, developed by
Geedyear. The capabilities of [FAM were closely tied to the primitive assccia-
tive operations; in relational terms, tuples could be retrieved cnly by selection
(although with inequality and “within-range” comparisons in addition to simple
equality). Although limited in storage capacity by comparison to later block-
oriented asscciative processor-based database machines, [FAM served to concretely
illustrate the potential utility of associative operations in database management
applications.
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Moulder [1973] described an implementation of a hierarchical database manage-
ment system based on STARAN (described in Section 3.1) and a parallel head-per-
track disk drive. Using a technique similar to that described by DeFiore, Stillman
and Berra [1971], the hierarchical data structures chosen for data representation
were converted into a single level data base to permit the use of the associative
processing capacities of the hardware. Retrieval was again by selection based on
equality or inequality (but not ranges) over various attributes. The database was
partitioned into a number of physical disk sectors which were sucessively read into
the STARAN memory arrays in a high speed parallel fashion, where they were
searched using the associative capabilities of STARAN. The time required in the
case of typical queries to perform these associative searches within the STARAN
arrays was found to be small enough that every other sector could be searched
in the course of one revolution of the disk, so that the whole data base could be
searched in two revolutions (about 78 msec in the prototype system).

One of the first large-scale research efforts directed toward the development of
a specialized system containing many of the features critical to database manage-
ment is represented by the CASSM project, active at the University of Florida -
since 1972. CASSM [Su, Copeland and Lipovski, 1973; Copeland, Lipovski and
Su, 1973; Lipovski, 1978] is a block-oriented design oriented specifically toward
a hierarchical data model, providing a direct hardware implementation of hierar-
chical data structures, which are linearized in a top-down, left-to-right manner;
CASSM is capable of supporting the relational and network (Codasyl DBTG)
models as well, however.

In the terminology of CASSM, the system architecture includes a collection
of identical cells, each consisting of a processing element and a circulating se-
quential memory element (a disk track or a circularly organized CCD or bubble
memory device, for example). Each processing element can communicate with
its two immediate neighbors, in support of the storage of files and records which
overlap physical segments of the secondary storage device. Associated with each
cell are two heads: one used for reading, and one for writing data. After being
read by the first head, data is pipelined through a chain of processing logic, each
portion of which serves a specialized function. CASSM includes special features for
searching complex data structures such as sets, ordered sets, trees, variable length
character strings and directed graphs. Among the distinctive features of CASSM
is the fact that both programs and data are stored on the associative secondary
storage device. Both an assembly language [Su, Chen and Emam, 1978] and a
high-level nonprocedural language [Su and Emam, 1978] have been developed for
programming the CASSM system. A single cell prototype system was completed
in 1976. Since that time, efforts have concentrated on the implementation of and
experimentation with a software simulation of a multi-cell CASSM system.
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The best-known database machine designed specifically for efficient support of
the relaticnal medel of data is probably RAP (for Relational Asscciative Processor),
developed at the University of Torento [Ozkarahan, Schuster and Smith, 1974,
1973; Schuster, Ozkarahan and Smith, 1976; Ozkarahan, 1978]. RAP is designed as
a backead database precesser for a general purpese computer, accapting {rom the
latter a set of primitive commands relevant to the evaluation of relational queries.
Like CASSM, the RAP architecture is organized around a set of ideatical calls, ...ch
consisting of a processor and a bleck of circulating memeory, and capable of various
retrieval, insertion, deletion and update functions. All cells are connected to a
common controller, which includes a statistical arithmetic unit. Simple inter-cail
communication {acilities are provided [or priority poiling in the course of output.
The front end computer is used to translate difereat query languages into RAP
primitives, to handle various input/output processes, for query scheduling, and
for various [unctions related to the maintenancs of protection, security and data
integrity. The RAP language interfacs is described by Kerschberg, Ozkarahan and
Pacheco [1978] and Ozkarahan and Schuster [1S78].

An analytical comparative performanca evaluation [Ozkarahan, Schuster and
Sevecik, 1977] revealed advantages in spesd ranging between one and three orders of
magnitude by comparison with a hypothetical conventional system using inverted
lists—with the very important excaption of the join operation, where only a slight
improvement was found. (Note that it is just this sort of operation for which our
own architeciure offers the greatest potential advantages.) Spezific aspects of the
performance of of RAP are examined by Nakano [1978| and Ozkarahan, Schuster
‘and Sevcik (1977]. The RAP sysiem has now evolved for several years, with the

‘latest version, called RAP.2 [Schuster, Nguyen, Ozkarahan, and Smith, 1979,
embedying several significant changes. First, a general purpose microprocassor has
been employed f[or implementation of the previously hardwired controller. Second,
the RAP.2 design is strongly orieated toward the use of CCD memories instead of
head-per-track disk devices. The instzuction set has also been medified socmewhat
in RAP.2 to make it more uniform and flexible, and to add czrtain additional
capabilities. Enhancements based on analogues of multipregramming and virtual
memory organizations have besn proposed by Ozkarahan and Seveik [1577].

Another architecture specifically oriented toward the relational database medel
is emboedied in a proposed database machine called RARES (Lin and Smith, 1873;
Lin, Smith and Smith, 1576]. The RARES design is disiinguished primarily by
the adopticn of an orthogonal storage layout, in which individual tuples are dis-
tributed across (and not along) the tracks of the parallel head-per-track secendary
storage device, with one byie sicred on each track. In the orthegonal sicrage
scheme, 3 given relaticn thus occupies all tracks within a particular sector of the
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disk device (whose extent depends on the size of the relation), rather than com-
pletely filling a corresponding number of tracks. One motivation for the orthogonal
scheme adopted in the RARES design is to reduce the incidence of contention in
cases where more than one tuple is identified in parallel for output. Among the
other advantages cited for this scheme are a reduction in the amount of storage
necessary to hold each tuple in the course of associative comparison and certain
efficiencies in the execution of operations on relations in which a sorted order must
be maintained.

The relational database machine architectures which we have thus far con-
sidered have primarily addressed the problems of evaluating a single relational
primitive operation. An organization called DIRECT [DeWitt, 1979], on the other
hand, is directed to a broader set of problems, dealing with such questions as intra-
and inter-query concurrency and database integrity in a multiple-process relational
database environment. DIRECT is a virtual-memory, MIMD (see Section 3.1) sys-
tem, currently being implemented using a number of DEC LSI-11/03 microproces-
sors, along with CCD-based associative storage units. The microprocessors and
CCD modules are connected using a special cross-point switch design, with the
number of processors assigned to the evaluation of a given query determined
dynamically based on certain statistics of the query and the relations-involved.

At Ohio State University, an architecture has been proposed for a very-large-
scale database system based on the use of a number of interconnected subsystems
specialized for different aspects of the process of database management. This sys-
tem, called DBC (for database computer) [Baum and Hsiao, 1976; Hsiao, 1977;
Banerjee, Baum, Hsiao and Kannan, 1979, is designed to support all three data
models, communicating with a general-purpose computer through a very high level
language oriented toward the data base management {unctions for which DBC is
intended. The design of DBC was strongly influenced by several kinds of data
protection concerns, and includes specialized mechanisms for the imposition of
related constraints. ,

The system is composed of two sets of processor and memory components,
configured as closed loops, and interconnected (both to each other and to the general
purpose computer to which DBC is subordinated) by a database command and
control processor. The first, called the data loop, contains a mass memory based on
a number of modified moving-head disk drives, along with a specialized processing
unit called the security filter processor. The second, called the structure loop, is
comprised of a block-oriented associative storage unit (envisioned to be constructed
using CCD or bubble technology) called the structure memory, another special-
ized processing unit called the structure memory information processor, and two
other specialized modules called the keyword transformatioa unit and the index
translation unit. '
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The moving-head disk drives are medified to provide for simultanecus output
from all tracks in a givena cylinder in parallel. (Such drives have in faci recently
bee=n announced by Ampex Corporaticn [1978], and are apparently not expected
to be priced far above the ccsti of unmedified moving-head drives.) Associated
with each track is a ¢rack informatioa processor, capable of associative comparisen
operations. Thus, a single cylinder can be searched asscciatively by DBC in much
the same way as were the [ull contents of secondary storage in the asscciative head-
per-track devicss discussed earlier. Information which is used to locate the relevant
cylinders to search is stored in the structure memory unit, which is designed for
very {ast access and processing by the siructure memeory information procasser,
in conjunction with the keyword transiormation and index translation units. A
more detailed description of the siructure memory, structurs memory information
processor, keyword transformation unit and index translation unit are provided
by Hsiac and Kannan [1978] and Hsiao, Kannaa and Kerr [1977]. The design of
the mass memory, sascurity filter and associated units are detailed in Hsiao and
Kannan [1878a).

Other proposals for specialized database architectures include XDMS [Canady,
et al.,, 1974] a network-oriented SISD architecture originating at Bell Laborataries,
-and an approach to the implementation of a relational database system suggested
by McGregor, Thompson and Dawson [1978].
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4. The Proposed Architecture

As noted in the introduction, our proposed architecture is configured as a
hierarchy of associative storage devices. At the top of this hierarchy is the primary
associative memory (PAM), a fairly fast content-addressable memory of relatively
limited capacity. (For concreteness, the reader might imagine a PAM containing
between 10K and 1M bytes, and requiring somewhere between 100 nanoseconds
and 10 microseconds per associative probe.) PAM might be realized with a large-
scale distributed logic memory, or with a suitable bit-serial or word-serial design.
There is reason to believe that recent progress in distributed logic architectures,
device-level fault-tolerant designs and waler-scale integration could scon make
such a memory unit feasible for wide application. '

Two primitive PAM operations, each requiring a single associative probe, will
be involved in our analysis: mark all and retrieve and mark first. In both cases, all
tuples of a specified relation for which the value of a selected compound attribute
is found equal to a particular constant are associatively identified. The mark all
operation writes a one or zero in a specified flag bit of each such matching tuple
using a parallel hardware multiwrite. The retrieve and mark first operation sets a
specified flag bit within a single tuple chosen arbitrarily from among the responders
and copies the value of that tuple to storage external to PAM, but accessible to
the controlling processor.

As an alternative to physical content-addressability, the algorithms which
we will describe could be modified to accomodate a “pseudo-associative” PAM,
constructed using, say, random access memory and high-bandwidth special pur-
pose hash coding hardware. In general, however, argument and intermediate result
relations would have to be re-hashed (on different attributes) prior to every al-
gebraic evaluation, adding a significant (and less predictable, as seen from the
wide discrepancy between average and worst case hashing behavior) amount of
time to the algorithms presented in Chapter 8.

The secondary associative memory (SAM) is intended to be a larger, slower
content-addressable device. (A capacity of between 1 and 100M bytes and an
associative operation time of between 1 and 100 milliseconds should adequately
exemplify our design.) Physically, SAM might be realized using an intelligent
circulating storage device such as a parallel head-per-track disk with a modest
amount of logic associated with each track, or a non-inertial circulating storage
device constructed using CCD or bubble memory storage technology, and having
similar logic associated with each storage loop. (The ability to temporarily suspend
circulation in individual storage loops in the latter class of device could in fact
be utilized to improve somewhat on the external evaluation results reported in
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this paper, although such enhancaments are not within the scope of our present
discussion.) It is assumed that the relative speeds of PAM and SAM are such that a
quantity of data sufficieat to fill PAM can be transferred [rom PAM to SAM in the
course of a single SAM revolutica. Although the combined poteatial bandwidth of
the set of intelligent heads associated with the SAM device coculd in principle be
extremely high, the average bandwidth in the course of a external evaluation will
ordinarily be much lower. Given adequate buiffering capabilities, the algerithms
which we will describe should thus preseat no unusually stringeat requirements on
the communication channe! betwesa SAM and PAM.

Ameng the specific capabilities assumed {or the “per-irack” logic of aa ac-
ceptable SAM devics is the ability to cutput or mark all tuples for which the values
of selected attributes are found equal to a constaat or to the value of some other
attribute within that tuple, or to be within some specified range of values. Note
that SAM is thus capable of evaluating the select and restrict operators direztly,
without recourse to “internal evaluation™ within PAM. Each per-track legical unit
is also assumed to have a sufficient quantity of random aczess buffer memory to
hold the tuple currently passing under its head until a determination can be made,
on the basis of selective or restrictive criteria, as to whether it satisfied the current
match criteria.

The specifications which we have thus far considered for SAM are quite similar
to these of such actual rotating associative processors as those used in the RAP
and CASSM systems. One of the techniques we will describe (in Secticn 8.1),
however, also requires that each per-track processing unit have a small amount of
random access memory dedicated to the tabulation of 3 “domain histegram”. In
addition, this algorithm requires that the unit be capable of determining whether
each tuple satisfies one of 3 set of (not more than a small fixed number of) range
specifications. In the alternative algorithm (described in Section 8.2), the per-track
logic unit is instead assumed to have the capability of sequentially computing a
hashing function on selected attribute values of each tuple which “passes under”
the associated head (or its functional equivalent), and of outputting all tuples for
which the resulting hashed value Talls within a specified range.

The analytic portion of this paper assumes a fixed time for an asscciative -
probe of the entire conteats of SAM, as is the case [or the sort of block-criented
associative processcrs discussed in Section 3.1 and employed in such database ar-
chitectures 3s CASSM, RAP and RARES (Secticn 3.2). Our external evaluaticn
algorithms are also applicable, however, to the kind of mcdified moving-head disk
devices employed in the DBC design (Section 3.2), thus supporting very large daza
base applications. In order to adapt the complexity results reported in Section 7 to
a SAM of this sort, in which only part of the database is associatively accessible on
each rotation, a constant term would be added to the external evaluation time- of
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each of the seven primitives. In addition, the complexity of these results would be
increased (by a formally linear, although in practice probably quite small) factor
in the event the argument relation(s) were allowed to exceed the capacity of the
cylinder or cylinders capable of simultaneous parallel examination (at least in the
absence of a significant modification of our algorithm). To simplify our discussion,
however, the remainder of this paper will assume that SAM is a fixed probe time
associative device of sufficient capacity to store both argument relations.

The seven relational algebraic primitives with which we are concerned may be
evaluated most quickly when the argument relation(s) can fit into PAM— the case
we have referred to as internal evaluation. (Similarly, we will use the terms internal
projection, internal equi-join, etc., to refer to the evaluation of specific relational
operators in the case where their argument relation(s) fit entirely within SAM.)
External evaluation is performed whenever the argument relation(s) fit in SAM,
but not in PAM, and in most cases involves the reading into PAM of successive
segments of the argument relation(s), each of which is (are) processed according to
the corresponding internal evaluation algorithms. Note that this implies that each
tuple of the argument relations is processed only once in primary storage, in con-
trast with the best currently known general techniques for the external evaluation
of most of the algebraic primitives under consideration on a conventional non-
associative system.

In addition to the two associative devices involved in our design, we assume the
existence of a general purpose processor serving as a controller for the evaluation
process, and responsible for the performance or delegation to other specialized units
of all collateral functions (input language translation, input/output control, etc.)
which would be involved in a practical implementation. Adequate buffering would
also be required at several points within the design we are proposing. Although we
will give little explicit attention to such issues in the present paper, it should be
acknowledged that the detailed design of a useful realization of the architecture we
propose would require careful consideration of the nature and capacities of these

resources.
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5. Notation

The fcllowing noctation will be used in our analysis of the algorithms for the
internal and extarnal evaluation of the relational algebraic primitives:

Fixed system parameters:

P Size in bytes of the primary associative memory (PAM)

S Size in bytes of the secondary assodiative memory (SAM)

T, Time [or an associative probe (returning one matching tuple) in PAM
T, Time for one revolution of SAM

Functions of the argument relation(s):

e(R) cardinality of the relation R

HR) (fixed) size of the tuples of R in bytes

d(A,R) number of distinct values of the (compound) attribute A in R
r cardinality of the result relation

Because the quantity P/¢{R) (roughly speaking, the ‘tuple capacity’ of PAM)
plays an important role in our analysis, we will also define a derived function a(R)
with this value.

It should be noted that ris being treated as an independent variable, although
it is in fact determined by the composition of the argument relations. There are
several ways in which this functional dependencz might have besa explicitly em-
badied in our analysis if we had chosen to do so. We might have used, for example,
a fixed value estimating the average number of occurrencss of any given join at-
tribute value, or for a more careful analysis, a particular statistical distribution
of such values might have been assumed. While such an analysis might well help
to identily certain interesting properties of the proposed algorithms when applied
tc argument relations having various properties, we have chosen in the present
analysis to forego the considerable added complexity involved in explicitly examin-
ing such relationships, treating the cardinality of the result relation as a constant
and indicating verbally its relationship to the arguments where appropriate.

When there is no danger of confusion, we will sometimes omit the relation
argument R.
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8. Internal Evaluation

Our algorithms for internal evaluation of the project and join operators will
be expressed in a hypothetical parallel programming language having a Pascal-like
format, but extended to include four high-level associative processing primitives.
The first is the parallel set command, used to set a specified flag to true in each
tuple satisfying certain conditions; all flags are set in parallel using a single mark
all operation, requiring one associative probe. This command has the form

parallel set (flag) in all (tuple variable) of (relation) with (conditions)

where (conditions) is a Boolean combination of predicates involving the variable
(tuple variable). The format of the parallel clear command is identical to that of
parallel set, but sets the specified flags to false.

The third associative processing primitive is the for each control structure,
which has the form

for each (tuple variable) with (conditions) [set (fag) and] do (statement)

where the “set ... and" clause is optional. Unlike the parallel set and parallel clear
statements, execution of a for each loop is sequential (although each iteration of the
loop involves the performance of parallel associative probes). During each itera-
tion, a single retrieve and mark first operation is performed, during which (tuple
variable) is instantiated with an arbitrarily chosen tuple satisfying (conditions).
If a “set ... and" clause is specified, the appropriate (flag) is set within this tuple;
(statement), which may be either a simple statement or a “begin ... end” block,
and which may set flags affecting the value of (conditions), is then executed with
the current binding of (tuple variable). Iteration terminates when no further tuples
of the specified relation satis{y (conditions).
The final primitive is a conditional statement, which has the form

if [not] exists (tuple variable) with (conditions) [set (flag) and] do (statement)
where not is optional. This statemnent executes a retrieve and mark first operation,

executing (statement) if any tuple satisfies (conditions) (or in the case where not
is specified, if no tuple satisfies (conditions)).
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procedurs projeci{R, A);
for each t of R
with not flag do (r <= 1 probes)

begin (r times)

output t{A];

parallel set flag (r probes)
inall #of R
with ¢[A] = t{A];

ead;

Algorithm 1. Internal Project

8.1 Project

The procsdure {or internally projecting a relation il over a compound atiribute A
is detailed in Algorithm 1.
From the execution counts, it can be seen thai internal projection requires

time
(2r + )T}

in addition to the time required to extract the projected compound atiribute
of, and cutput, each of the r result tuples, both non-associative [unctions which
could be overlapped with the following associative probe. As noted in Section 2.2,
projection can be quite expensive on a von Neumann machine, particularly in the
case where the argument relation is large. The utility of the proposed architec-
ture for the evaluation of the relational project operator thus lies not only in the
fact that it requires time independent of the size of the the argument relation
(being proportional only to the cardinality of the result relation, which can never
be larger, and is often much smaller), but also that it implicitly eliminates the
possibility of tuple duplication, obviating the nesd for sorting, for example, to
remove redundant result tuples.
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procedure join{R}, R3, A, A3);
for each ¢; of R

with not flag
set flag and do (d(A;,R;) + | probes)
begin (d(Al,Rl) times)

distribute(t;, Ra, A1, A2);
for each t] of R;
with ¢][A;] = & [A)]
and not flag
set flag and do (c(R,) probes)
dfstributc(t'l,Rg,Al,Ag); (c(Rl) —_ d(Al,Rl) times)
end;

procedure distridute(t;, Ry, A}, A);
begin (c{R1) times)
for each i3 of Ry
with (4] = 41[A)]
and not flag
set flag and do (r 4+ ¢{R,) probes)
output (1 [A1] | talAa]);
parallel clear flag
in all {; of R;
with {{Aq] = ¢1[A]; (c{R,) probes)

end;

Algorithm 2. Internal Join

8.2 Join

Algorithm 2 computes the equi-join (or with the indicated modification, the natural
join) of relations R; and R; over the compound attributes A and A, respectively.

Intuitively, the join algorithm functions as follows: First, an arbitrary R;
tuple is retrieved and marked. The extended cartesian product of all (associatively
retrieved) R; and Rj tuples having the same value in their respective compound
join attributes as this arbitrarily selected tuple is then output. Another arbitrary
R tuple is then arbitrarily selected from among those which have not yet been
processed, and the above procedure repeated until all R, tuples have been ex-
hausted, at which point the equi-join is complete. The process of forming the
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exteaded cartesian product involves a nested itzration over all matching R; (in the
outer lcop) and R; (in the subfunction distriduie) tuples, each of which is retrieved
in a fixed amount of time, without regard to its position in memory, by virtue of
_ the content-addressibility of PAM. Excluding the time required for concatenation

and output,

(r + 3cfRy) + d(AL i) + 1)T,

is required for internal evaluation of the join operator.

Note that the asymmetry of this algorithm with respect to the roles played
by the two argument relations permits a (possibly quite significant) increase in
efficiency in the case where the relative sizes of the two argumeat relations is
known or inexpeasively computable. Some of the existing designs which might
be chosen for a particular physical implemeatation of PAM are in fact capable of
providing, in a single associative operation, a count of the number of responders
to an associative probe. When this capability is provided, the above algorithm
may be precaded by two counting probes (on all R; and R; tuples) to determine
the smaller relation. When such relative size informaticn is available, R| should
in practice generally be chosen to be the smaller of the two relations in order to
minimize the size of the ¢{R,) and d(R;) terms, since d(R,) might in practiczs be
expected to be directly related (or at least not strongly inversely related) to o(R;).
This observation is particularly significant in the commeon special case where the
two argument relations are of very different sizes. As it happens, our external
algorithm for the evaluation of two very large relations A and B admits the pos-
sibility of assigning A segmeats to R; during some of the internal cycles, and B
segments during others. At the cost of a very minor complication of the procedures
for transier from SAM into PAM, the algorithm can thus in some cases be made
to perform more efficiently than would be the case if either A or B were “bound”
to Ry for the duration of the join, yielding a medest improvement cn the above
results. ' "

As in the case of projection, it is insiructive to compare the propesed assccia-
tive equi-join algorithm to the best known general algorithms for this operation
on a conventicnal von Neumann machine, which, as sesn {rom the discussion in
Section 2.3, are of O(nlcg n) complexity in the absence of physical clustering with
respect to the join atiributes or the use of exteasive storage redundar - On the
machine we have described, on the other hand, tuples can be set in correspon-
dence using a procadure of lower computational complexity than sorting, yiclding
a joining time which is linear in the cardinality of the smaller argument relation,
the number of distinct join atiribute values in this relation, and the size of the
result relation. (As we shall ses in Section 7.3, linear complexity is preserved in
the external algorithm for equi-join as well.)
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Lest these results be misinterpreted, it should be emphasized the worst case
behavior of this algorithm (or indeed, of any algorithm involving sequential output,
_regardless of the underlying architecture) may still be quite bad when the result
relation is very large. Specifically, if for all {jeR; and 4eR,,

t1[A1] = ta[A2) = te

for some single constant tuple ¢, the cardinality of the result relation will be equal
to the product of the cardinalities of the two input relations. Given reasonable
assumptions reflecting the typical use of the join operation, however, the architec-
ture and algorithm which we have described offer a very significant increase in
efficiency.

It is worth noting that the algorithm we have described assumes access only
to a structural model of the data, and not to any of the semantic characteristics
of the stored relations (both terms being understood in the senses applied in the
relational database literature). In fact, such semantic information, if available,
could be used to significantly improve on several important special cases of the
above join algorithm. As an example, consider the case where the compound join
attribute is in fact a primary key of R, Ry or both— that is, where the value of
the join attribute uniquely identifies a single tuple of the relation. In this case, the
associative probe used to terminate the above the for each control structures is
unnecessary, resulting in a saving of roughly half of the necessary probes within
the innermost two loops of the algorithm. In many problems, the availability
of domain-specific knowledge might permit certain other kinds of improvements
on these results. Although an adequate analysis of the manner in which such
additional sources of information might be profitably integrated into our approach
is unfortunately beyond the scope of our present discussion, it is worth noting
that the very general case of evaluation on the basis of purely structural charac-
teristics, to which our attention is currently directed, may often in practice ignore
information sources which might lead to increased efficiencies.
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procedurs seleci{R, A, V);
for each t of R
with t{A] =V
and not flag
set flag and do (r <4 1 probes)
output {;

Algorithm 3. Internal Select (with sequential output)

8.3 Select

The algorithm for selection is quite straightforward within the architecture we
have specified, since the asscciative reirieval primitive which defines the behavior
of PAM itsell serves what is essentially a selective function. If, in a particular
application, it is not nec=ssary to sequentially enumerate and cutput the result
"of a selection, but only to mark the included tuples, (as may in fact be the case
_in the evaluation of many complex queries), the operator in fact requires only a
single probe, and takes exactly time T}, independent of the size of the argument
relation. When sequential output is required, the salection from relation R with
compound atiribute A equal to value tuple V is defined as in Algorithm 3. It is
easily seen that r <}~ 1 probes are required, so that the time required for a single
selection with sequential output is simply

(r<+1)T;

It should be noted that the time required for selection with sequeatial output is
again independent of the size of the argument relation.
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procedure restrict(R, Aj, Az); -

for each i of R
with not flag do (d(A1,R;) 4 1 probes)
begin (d(A1, R;) times)

for each t/ of R
with ¢/[A|] = t[A|]
and [Ag] = ¢[A)]

and not flag
set flag and do (r 4 d(A1,R1) probes)
output ¢ (r times)
parallel set flag
in all ¢ of R
with t"[A|] = t{A;] of R (d(A1,R;) probes)
end;

Algorithm 4. Internal Restrict

6.4 Restrict

The procedure for internal restriction is detailed in Algorithm 4. Initially, an
arbitrary tuple is chosen from the argument relation. If the A; and Az values of
this tuple are equal, one tuple having this value for both A; and A; is output
during each successive probe until exhaustion. At this point, all tuples having
that value for their A; attribute are flagged, and the process is repeated on all
unflagged tuples. The total time required for internal restriction is

(2d(ALR1) + )T,

It is worth mentioning that the addition of certain hardware capabilities to
the PAM device may substantially decrease the complexity of internal restriction.
If the hardware permits the associative retrieval of all tuples in which a Boolean
disjunction of attribute-value pairs is specified, for example, the parallel set in-
struction can be changed to flag all tuples in which the value of either A} or A
is equal to t[A;]; the elimination of such tuples may exclude from consideration
some of the d(A;,R;) tuples having distinct A; values without the need for a
separate associative probe in the outer loop. A more significant improvement may
be possible if the PAM device itself supports the associative retrieval of tuples
having identical values in specified fields; in this case, internal restriction has the
same complexity as selection.
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procedure union{R;, Ra);
begin
for each ¢| of R,
- with not flag
set flag and do (c{R;) + | probes)
begin (c{Ry) times)
output ¢y
paralld set flag (c{R;) probes)
in all {3 of Ry
with i = §;
end;
for each 4 of Ry
with not flag set flagand do  (r —¢{R;) + | probes)
output (ig;

end;

Algorithm 5. Internal Unicn

8.5 Union

The algorithm for the union of relations R; and R3, assuming as usual the require-

- ment [or sequential cutput of the result relation, has two stages. First, each tuple
of R; is cutput in succession, and each one which also cccurs in Rj is asscciatively
‘marked to avoid duplication in the result relation. Second, all unmarked Rj tuples
are output. The procedure is detailed in Algorithm 5. From the execution counts,
it may be se=n that the algorithm requires time

(r 4 cfRy) + 2)T,

It should be noted that, as in the case of the join operator, this algerithm is
asymmetric with respect to Ry and R3, and is more efficient when R is chosen to
be the smaller of the two argument relations. The techniques discussed in Secticon
6.2 may thus be employed to optimize the efficiency of the evaluation of unicn on
the basis of the relative sizes of its argument relations.
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procedure intersect(R, Ry);
begin
for each ¢, of R,
with not flag
set flag and do (¢(R1) <+ 1 probes)
if exists {3 in Ry (c(R1) probes)
with {3 = ¢t; do
output ¢;

Algorithm 8. Internal Intersect

8.8 Intersect

In Algorithm 68, which computes the intersection of relations R; and Ry, each tuple
of R is examined in turn, and an associative probe is performed to determine
whether the tuple in question is also a member of Ry. It is easily seen that

(2¢(Ry) 4+ 1)T}

is required to intersect two relations in PAM. Again, the dependence of our result
on the choice of R; should be noted. Selection of the smaller argument relation
for R, is in fact somewhat more important in the case of set intersection than set
union because of the larger relative contribution of the cardinality of R; to total
execution time.

It is interesting to compare our algorithm for set intersection with the one
presented for the join operator. Note that set intersection may be regarded as
a special case of natural join in which the compound join attributes are exactly
the set of all attributes of the argument relations. In the case of intersection,
though, we know that no two tuples in an argument relation can have the same
value for this compound join attribute, since relations are in fact sets, and are
thus prohibited from containing duplicate tuples as elements. This is precisely the
sort of “additional information" discussed earlier which must, in the case of the
general join, be determined by reference to the semanticsof the particular database
at hand. Because this information is available on purely structural grounds in
the case of intersection, our intersect algorithm avoids the probe which is always
necessary to detect exhaustion of all R tuples having the current join attribute
value. In the case of those join attribute values which match some R; tuple, an
additional probe is saved over the case of the general join, for much the same
reason.
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Recent work by Trabb-Pardo [1978] on the complexity of sa¢ intersecticn on a
von Neumann machine suggests another intaresting perspective on our assceiative
algorithm for intersection. Trabb-Pardo considersd two sirategies for representing
and intersecting sets of unstructured elemeants (as distinguished from tuples having
internal atiribute-value struciurs, as in the relational algebra). The first involves
the representation of sets as ¢ries, which are intersacted through a procass of paral-
lel traversal. The second approach, which permits exiremely fast intersections, is
closely related to our own algorithm, but uses hashing functions to approximate
the procsss of asscciative retrieval on a von Neumann machine. Like our aigorithm,
Trabb-Pardo's hashed intarsection algorithm searcaes {or the preseace of each R;
tuple, in turn, within R3, and intersects in time lineariy proportional to the smaller
argument relation.

In the case of intersection (as opposed to the more general join operator),
Trabb-Pardo’'s “pseudo-associative” intersection algorithm in fact appears to offer
comparable performance to the associative scheme described here. It isin the more
general case of the natural join, where result tuples may be geaerated based on
a partizl match between the corresponding attributes of the argument relations,
that the argument for 2 non-von Neumann architecture is strongest. Extending
the use of hashed search to the case of the general natural join in the most obvious
way would require that each tuple be hashed in more than one way to provide
for natural joins over different compound attributes. Since the set of compound
atiributes on which a join might be based is equivalent to the powerset over the
simple attributes, the number of such hashings is in {act exponential in the number
of simple atiributes. At the cost of a non-standard, but econcomically feasible,
hardware design, the architecturs and algorithms which we have described permit
the straightforward and efficient generalization of the associative approach to set
intersection to the more general case of the relational join.
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procedure setDifference(Ry, Ra);
begin
for each t; of R;
with not flag
set flag and do (c(R1) + 1 probes)
if not exists t2in Ry (c(R1) probes)
with {; = ¢ do
output ¢;;

Algorithm 7. Internal Set Difference

8.7 Set difference

The algorithm for set difference (Algorithm 7), where R, is the set minuend and
R, is the set subtrahend, is quite similar to that for intersection: As in the case of

intersection, evaluation of the set difference operator requires time

(2<(Ry) + U)Tp

but does not offer the freedom to choose Ry for maximum efficiency.
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7. External Evaluation

In this section, we will describe the algorithms for evaluating the relational
algebraic primitives in the case where the argumeat relation(s) excesd the capacity
of PAM. The saven relational operators may be divided into thres categories ac-
cording to the general manner in which they are externally evaluated. The first
category includes the two unary operators select and restrici, whose external
evaluation algorithms are the least complex (both in the sease of perspicacity and
efficiency) of the seven. The second category contains the single remaining unary
operator, project, whose external evaluation is made more complex by the need
to avoid duplicate result tuples. The final categery is comprised of the four binary
operators, equi-join, union, intersection and sat difference, whosa tuples are sat
into correspondencs using a generalization of the category two algorithm.

Thealgorithms for evaluation of the operatarsin the second and third categories
are each based on the partitioning of the argumeat relation (or in the case of
category three, relations) into disjoint buckets (or disjoint shared buckets, in
category three). Typically, one such bucket (which, in the case of the category two
operators, will in general include tuples from both argument relations) is trans-
ferred intoc PAM during each successive revolution of SAM, and the corresponding
internal operation performed. In each case, partitioning is accomplished by as-
sociatively examining the values of some (compound) key attribute in the argument
relation(s), defined as follows for each of the categery two and thres algorithms.
In the case of projection, the key is the (compound) projected attribute of the
single argument relation. For an external join, the (compound) join attribute in
each of the two argument relations ars defined as the keys. In the case of the three
conveational sat operators (union, intersaction and sat diferencs), all atiributes
in the argument relations are included in the key.

In this section, we will describe and analyze the algorithms for transferring
successive segments of large argumeat relations from SAM into PAM in the case of
the operators belonging to the first, second and third external evaluation catezories,
respectively.

7.1 Select and Restrics

Selection and restriction difer from the cther relational algebraic cperations in
that they can be evaluated using only the per-track legic of the SAM device,
and hence do not require that succassive segments of their argumeant relation be
read into PAM for internal evaluatioa. Very little nead be said about the external
evaluation of the select operator, since the retrieval of all tuples of a given relation
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having values from selected attributes which match explicitly specified constants
is in fact the central primitive operation characterizing a SAM device. As in the
case of CASSM, RAP and RARES, our architecture thus performs external selec-
tion in constant time, independent of the size of the argument relation, assuming
only that the argument relation is no larger than the capacity of the secondary
associative storage device, and that the size of the result relation is does not exceed
the bandwidth and buffering limitations of the system. Under these assumptions,
a single selection requires time T, the time for one revolution of SAM. Indecd,
our assumptions raise a number of interesting practical questions which must be
considered by the designer of a practical system; these issues have been raised
by other database machine researchers, however, and will not be given further
attention in the current paper.

As noted in Section 4, the our specifications for the SAM device also permit
the restriction operator to be performed entirely within the SAM device, since the
per-track logic is itsell capable of testing for equality among the attributes of a
single tuple. In contrast with the case of internal evaluation, external restriction
thus has the same complexity as external selection, requiring time 7, under the
assumptions specified above.

7.2 Project

As we have noted earlier in this paper, it is the problem of redundant tuple elimina-
tion which makes projection a substantial computational task in most applications.
‘In the case where the argument relation is no larger than the capacity of PAM,
redundant tuples are implicitly eliminated in the course of the internal projection
algorithm. In order to extend the projection algorithm to the problem of external
evaluation, however, we must first partition the large argument relation into a set
of key-disjoint buckets. Buckets are defined as non-intersecting subsets of tuples
from a given relation; a set of buckets is called key-disjoint if no bucket contains
any tuple whose key—which in the case of projection is the value of the projected
compound attribute—is the same as that of some tuple belonging to a different
bucket.

In most cases, the partitioning and transfer algorithms described in Section
8 will tend to produce buckets no larger than the capacity of PAM. Given such
a partitioning of the argument relation, external projection is effected by reading
each bucket into PAM in succession and using the fast associative capabilities
of PAM to project the tuples over the key. In the case where a bucket exceeds
the capacity of PAM, the procedure is complicated somewhat, although the ag-
gregate effect of such “PAM overflows” on the efficiency of the external evaluation
algorithm will be negligible under most conditions.
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To illustrate the notion of key-disjoint buckets, let us consider a projection
over the second atiribute of the following binary, integer-valued relation, which
we will assume to be stored on SAM:

SN RN ROSRRS)
LW WIN -

Extracting the second attribute without removing duplications yields two
instances of the value 1, one of the value 2, twa of the value 3 and three of the
value 7. Supposing (unrealistically, of course) that PAM has a capacity of five
such two-atiribute tuples, we might bring all tuples having a key value of either
1 or 7 into PAM during a single cycle for internal projection. It is significant that
the values represented in a givea PAM load need not be contigucus; indeed, the
values | and 7 are non-contiguous within the projected domain of cur example.
It is required only that if any tuples having the key 1 are brought into PAM on
some givena cycle, then—in the abseace of PAM overflow—all such tuples are in
fact collected on the same cycle.

Let us now consider the medifications necessary to this algerithm in order to
accomoedate any instances of PAM overflows, occuring when a single bucket exceeds
the capacity of PAM. The simplest (and by far the most common) case is that of a
partition which excaeds the size of PAM by less than 50%, and can thus be divided
into three sub-buckets A, B and C, any two of which can fit into PAM at a given
time. During one SAM revolution, sub-buckets A and B are transferred into PAM
and projected over the attribute in question. During the next SAM revelution,
the tuples of sub-bucket B are replaced in PAM by those of sub-bucket C, and
following ancther intarnal evaluation phase, those of sub-buckst A are replaced
by those of sub-buckat 5. In this manner, all pessible pairs of sub-buckets, and
hence, all possible pairs of tuples, are submitted to internal projection in PAM at
some point. Geaeralizing this precedure to the case where z tuples are assigned
to a given bucket (z > a), a total of

n{n — 1)
2

SAM revoluticns are found to be required, where
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n=[%] (6 <z < x0)

In the worst case (corresponding to the situation where all key values fall within a
given segment, and must thus be assigned to the same partition), external projection
thus has a complexity of O(n?) (albeit with very small constants). In most cases,
however, the partitioning and transfer algorithms which we will consider should
insure that the effects of PAM overflow are dominated by the lower-complexity
terms.

It should be clear that the operation of partitioning the argument relation into
key-disjoint buckets on the basis of matching values of the compound key attribute
is at the heart of the process of efficient external projection. Because a similar
partitioning process, based on the key attributes of both argument relations, is
involved in the external evaluation of the equi-join, union, intersection and set
difference operators, we have chosen to consider the details of partitioning as a

separate topic in Section 8.

7.3 Join, union, intersect and set difference

As is the case for projection, external evaluation of the equi-join, union, intersec-
tion and set difference operators can not be performed efficiently within the SAM
device alone. Again, it is necessary to transfer successive portions of the argument
relations into PAM for internal evaluation on the basis of associatively identified
characteristics of the key attributes. In the case of category three evaluation,
though, each bucket is in general comprised of tuples from both of the two argu-
ment relations whose keys satisly the current criteria for that bucket. The two
argument relations are thus partitioned into what we shall call key-disjoint shared
buckets, which may be regarded as a variant of the notion of key-disjoint buckets
introduced in the previous section.

Specifically, a shared bucket is defined as a set of tuples {rom either or both of
the argument relations R; and Rj. Again, the partitioning and transfer algorithms
described in Section 8 insure that the size of the great majority of such buckets
(including both R; and R; tuples) will not exceed the capacity of PAM. A set of
shared buckets is called key-disjoint if no bucket contains any tuple whose key is
the same as that of some tuple belonging to a different bucket. It should be recalled
that the key of an equi-join is the (possibly compound) join attribute, while in
the case of the unstructured set operators, the key is comprised of all attributes
taken together. In the latter case, the key-disjointness condition thus reduces to
the requirement that no bucket contain a tuple of one argument relation which is
also present within some other bucket (necessarily as part of the other argument
relation.)
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As an example, consider the case of an equi-jein of the [cllowing two integer-
valued relations R; and R; aover the second atiribute of R and the first atiribute

of R3:
Ry

LS OSR T C WONIR T
Leuldlded

Rg:

(7 8
V)
& 3)
{2 8
AL 5

Assuming again a PAM capacity of 5 binary tuples, one possible partitioning
would assign to the first bucket all R; tuples whose second attribute has either 1 or
3 as its value and all R; tuples whose first atiribute has either 1 or 3 as its value—
specifically, the R; tuples (31}, (93), (41) and (23), together with the R tuple
(15). (It is perhaps worth mentioning at this point that the identity of the relation
to which each such tuple belongs must be included as part of its represcatation
within PAM.) The second bucket might contain all tuples having 7 as the value
of the join attribute, with a final bucket for keys of value 2 or 6. Again, it should
be noted that the keay values included within a given bucket nesd not fall within
a single contiguous range. Indesd, the efficiency of one of the two partitioning
algorithms described in the [ollowing section is dependeat on the admissability of
non-contiguously defined bucksts.

The procedurs for recovery from PAM overfiows in the course of external
joining is somewhat differeat from that employed in external projection. The
algorithm divides both R; and R; into sub-buckets, each no larger than half the
capacity of PAM; each pair of sub-buckets, one chesea from R aad ene {rom R,,
is then transferred into PAM in successica. If =; tuples from R; and =z; tuples {rom
Rj are assigned to the bucket in question (=] <+ 23 > a), this recovery precedure

40



requires exactly ning SAM revolutions, where

and

ny =

2z
a(Ry)

2z
a(R3)
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8. Partitioning and Transfes

Since the external evaluation of each of the relational algebraic operators with
the exception of seleciion and resiriction is dependeat on the partitioning of the
argument relation into key-disjoint (possibly shared) buckets, we now turn our
attention to the manner in which this process may be eficieatly exscuted. We will
consider {wo techniques for partitioning large argument relatioas into key-disjeint
buckets. The two schemes, which we call the domain histogram and hashing
metheds, impese scmewhat differeat requirements on the legic and memory which.
must be associated with each {unctional head, and differ slightly in efficiency.
Independent of its merits as a practical algorithm for incorporation in an actual
system, the domain histogram methed is of interest by virtue of its relationship to
previous work on asscciative sorting techniques. The process of domain histogram
partitioning will be considered in this context in Section 8.1. When supported by
the available per-track hardware, however, the hash partitioning scheme, described
in Section 8.2, should geaerally be somewhat faster, and is also more amenable to

statistical analysis.

8.1 Domain histogram partitioning

The domain histogram methed is closely related to 3 technique introduced by Lin
[1977] for sorting external files stored on an associative head-per-track disk devics
such as SAM. Lin's bucke? sort algorithm assumes, as does our scheme, that the file
can be stored entirely on the associative disk devics, and thus that each data entity
passes under an intelligent procassing unit exactly once per revolution. The scheme
functions in a manner analegous to that we have described for external evaluation
of the relational algebraic operators, reading one buckeat [rom the external file into
a primary random access memory during each succassive revolution of the disk. By
contrast with the relational operators, however, the task of sorting requires that
each partition be comprised of tuples whose sort domain—the compound atiribute
whose value is to determine the sorted order—contains contiguous values. Note
that if the sort domain values wers known a priori to be uniformly distributed
over some range (Tmin, Zmaz), the file could be divided into h = (c/a) buckets, each
cantaining & tuples of relation R (ignoring a {ew boundary ccnditions), with the
1-th inter-buckst boundary being

-~ —

Zmin + (-:naz 3:'.5.:1)"
h

Each such bucket would correspond to one contiguous range of sort domain values,
so that successive buckeis could be read into primary storage in a monotenic
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sequence of their sort key ranges, then internally sorted, and the resulting file
output in fully-sorted order.

Unfortunately, most files of practical interest deviate substantially from this
assumption of uniform sort domain distribution. Lin's solution involves dividing
the domain into a large number of equal-sized intervals whose size is small by
comparison with P. During a single preliminary revolution of the associative disk
device, a count is taken of the number of tuples of R whose sort domain values
fall within the bounds of each of these smaller intervals, forming what is called a
domain histogram. The lowest-valued k intervals are then combined to form the
first bucket, with k chosen as large as possible such that the resulting bucket would
fit within available primary storage (based on the counts of each such interval
and the fixed tuple size). This first bucket is then tranferred into primary storage
for internal sorting. On each successive revolution of the associative disk device,
another such bucket is identified in a similar manner and read into primary storage.

As an example, consider the case of a file of 10-byte tuples whose integer-
valued sort domain is bounded by the values 0 and 99. We might first divide the
domain into ten equal intervals, and obtain the following counts for the number
of tuples whose sort domain values fall within each interval:

[ @1, z4]: oount

[0, 9 53
(10, 19): 81
(20, 29): 27
(30, 39): 59
[ 40, 49]: 2
(50, 59): 14
[ 60, 69 : 11
(70, 79): 28
[80, 89): 38
(90, 99): 9l

Assuming 2000 bytes of available storage, the first three intervals, together
occupying (53 4+ 81 <+ 27) 10 = 1610 bytes, would constitute the first bucket.
Thus on the first revolution (following the one required for histogram creation),
all tuples whose sort domain values fell between 0 and 29 would be read into
primary storage in the order they were encountered on the disk.. The algorithm
for internal projection would then be applied to this first bucket of tuples, and the
result output. On the next revolution, all tuples in the five intervals bounded by
(30, 89) would be read and processed internally; the third bucket would consist of
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all tuples within the bounds of the final interval

The asscciative buckaé sort algorithm can be applied to the problem of key-
disjoint partitioning and transfer by using the key of the argument relation (in
the case of projection) or relations (in the case of join, unicn, intersecticn and
set differencs) in the same way as the sort domain is used in the bucket sort algo-
rithm. As it happens, though, the loosening of the contiguity coastraint in faver
of the weaksr requiremeats of kay-disjcint partitioning makes possible a modest
refinement of this technique when applied to the relational algebraic operatars.
Note that if the interval bounded by (80, 83] is added to the first partition (which,
unlike the interval immediately following the first partiticn, would not result in
a PAM overflow), and the eatire third partition thea merged with the second
(which would now have enough reom), only two SAM revolutions (plus the one
for histogram construction) would be required to pass the relation through PAM.
The contiguity requirement thus makes it necessary to expend one extra SAM
revolution by comparison with a diferent assignment of intervals to buckets which
would be pessible in the abseace of this requirement. Indeed, Lin has observed
that the average bucket size obtained using the buckst sort algorithm may be as
small as half the capacity of the available primary store in a worst case situation,
resulting in up to twice the optimal aumber of disk revolutions.

The task of finding an optimum partitioning of the relation {rom the view-
point of minimizing the required number of SAM revolutions is an example of
a bin packing problem, whese exact solution is unlortunately NP-complete. In
practice, however, one of several known linear time heuristic algorithms for non-

_optimal, but typically reasonably effective, bin packing can be used to improve the

“performance of the partitioning of relations using domain histograms. (As these
algorithms se=m to constitute a separable and fairly well reported area of work, -
they will not be given further attention in this paper.)

‘Having identified a group of interval sets which do a reasonable job of con-
trolling the number of buckats, all tuples whose key falls within the set of interval
ranges which define 3 particular buckat must be retrieved during a single revolution
of SAM. This imposes sironger requirements on the capabilities of the per-irack
logic than these required by the unoptimized algorithm, since more than one range
specification must be checked for each tuple which passes under the head. Although
there are several possible ways in which this operation might be performed, moss:
depend cn a fixed limit on the number of non-contiguous ranges used to define
each bucket, thus constraining the bin packing problem in an interesting way.

Thre= factors are worth mentioning with regard to the cheics of interval size.
First, the expected amount of wasted PAM space after bin packing (manifested
in a larger number of buckets, and hence, additional SAM revolutions) is directly
related to the size of the intervals. Second, the likelihood that those tuples whese
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keys fall within a single interval will exceed the capacity of PAM (thus causing a
PAM overflow regardless of the chosen partitioning) varies inversely with interval
size. Note, however, that there is no interval size small enough to guarantee that
no overflow will occur; the recovery procedures outlined in Section 7 are necessary
to provide for the occurence of PAM overflow, however unlikely.

Finally, we note that the choice of an extremely small interval size is not
without substantial cost, as each per-track logical unit would almost certainly (at
least within the context of the designs we have considered) require a quantity
of random access memory bearing an inverse linear relationship to interval size.
To see why this is the case, note that the total number of interval count incre-
ments required during the first (histogram creation) revolution of SAM is exactly
¢ (assuming, for simplicity, a single argument relation). The bandwidth necessary
to perform all of these increments directly on one single-ported random access
memory could easily be several orders of magnitude too great in a typical practical
application. All of the solutions which we have considered seem to be essentially
equivalent to the provision of a number of random access words within each per-
track unit which is equal to the maximum number of intervals into which the
domain can be divided. The individual subtotals from each per-track logical unit
may then be summed to obtain the final counts for each interval. (Although the
time required for this final summation is proportional to the number of SAM heads
in the absence of n-argument adding hardware, this delay, which occurs only once
per operator evaluation, should ordinarily be insignificant by comparison with the
cost of associative retrieval.)

In attempting to rigorously evaluate the average case behavior of the domain
histogram method, we are faced with the need to make fairly strong (and problematic,
given our limited current understanding of the actual and potential use of such
systems) assumptions about the incidence of PAM overflow. In the case of the
hash partitioning method, on the other hand, a much weaker set of assumptions
yields an analytically tractable model for use in computing the average case cost—
which in fact turns out to be linear and small—of PAM overflows. Since the hash
partitioning technique is probably superior in most applications to the method
currently under discussion (at least under the assumption of suitable per-track
logical capabilities), we will thus omit a detailed average case analysis of the
overflow scheme as applied to domain histogram partitioning, but include such a
treatment in our analysis of the hash-based scheme.

8.2 Hash partitioning

Let us now turn our attention to the hash-based scheme for partitioning and
transferring the argument relation. The intent of this algorithm is to manage
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the problem of non-uniform distribution of the key by assigning tuples to PAM-
sized buckets using a hashing function. The algorithm requires that each per-track
unit be capable of sequentially computing a hashing funciion ca the compound
attribute in questicn, and of outputting all tuples for which the resulting hashed
value falls within a specified range. Because the algorithm dees not require the
ability for a dynamic choics of the range of the hash function, the requirement for
real-time hashing is well within the capabilities of the sort of simple and inexpen-
sive hardware which would be required in a practical per-track logical unit. One
implementation, for example, would combine the entire compound attribute into a
single, fixed length “signature word” (of, say, 18 bits), by computing the exclusive
or of each two-byte segment with the curreat accumulated signature word as it
passes under the head. In the discussion which [cllows, we assume that the hashing
function maps all keys onto a range [0,Hna).

In the interest of simplicity, we will first consider the case of a single rela-
tional argumesnt. In the first step of the algorithm for category two hash-based
partitioning, the range of the hash function is divided into A equal hash intervals,

where 7 (14 We
e

a

W (for “waste factor”) is a fixed system parameter, ordinarily much smaller than
one. The number of hash intervals is thus chosea to be slightly larger than the size
of the relation in “PAM-{ulls”, (We assume that the size in bytes of each stored
relation is immediately available or easily determinable, so that this operation
requires negligible time.) During each SAM revolution, all tuples whose keys hash
to a value within a single hash interval are transferred into PAM, providing their
combined size does not exceed the capacity of PAM.

In the absencs of overflows, exactly h SAM revolutions, requiring time AT, are
necessary to transfer all buckets of the argumeant relation(s) into PAM. Whenever
=, the number of tuples assigned to the current bucket, is greater than (¢/R) by a
factor of more than W, however, an overflow occurs, resulting in the expenditurs
of more than one SAM revolution for the bucket in question; the exact number of
revolutions depends on the ratio of z to (c/h). In the general case where an average
of v exira “overflow revclutions” are required per bucket, the time required is
exactly

(1 4+ v)AT,
The caatral concern of ocur analysis is the derivation of an upper bound cn the
average case value of v.

By comparison with the domain hisiogram algeritim, the randeomizing preperty

of the hashing scheme permits a relatively accurate statistical evaluation of the
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number and extent of PAM overflows to be expected in the course of hash par-
titioning without excessively stringent assumptions regarding the distribution of
the key values. (Our analysis is dependent, of course, on the assumption that the
distribution of hash values, given a large set of keys, will be close to uniform over
the range (1, Hnaz); this may not in fact always be the case.) The analysis is based
on the treatment of the partitioning process as a set of ¢ independent Bernoulli
trials, one for each tuple in the relation, with each trial defined as successful if
the tuple in question falls within the current hash interval, and as unsuccessful
otherwise. The number of tuples which will be assigned to any given bucket is
thus a binomially distributed random variable whose probability of being equal
to some particular value k is exactly

HOICH

Unless there is a very small number of tuples per PAM load, this function is well
approximated by the Gaussian distribution

¢(‘:”) - \/%ac—"—tfﬁ

having mean

3
I
b o I3

and variance .
2 __ =
o° = (l h)n

Furthermore, both n and ¢® approach

a

T+ W

as c grows large, and are thus asymptotically independent of the size of the argu-
ment relations.

Note that this approximation differs from that most commonly employed
in analyzing hash coding behavior in database management applications (see
Wiederhold [1977], for example). In the more common use of hashing, the ex-
pected value of z is typically quite small, so that the corresponding function is
better approximated by a Poisson distribution. When the 7 is reasonably large,
however, a normal distribution provides a better approximation. As a practical
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rule of thumb, the Gaussian approximation, which is justified in the limit by the
DeMoivre-Laplacs theorem, is very good whenever the quantity

62

is less than about 0.1, which should be true in mast conceivable practical cases.
The expected number of overfow revolutions may thus be esiimated by

) 3'(1.+ 1) /4"’*‘”‘/’ z—n
U == g —2—— ia/2 ¢(—a—) dz

For purposes of obtaining a simple upper bound, the discrete summatica may
be eliminated by substituting 2z/a for ¢ within each term, sc that a constant
expression equal to the lower limit of integration is replaced by the variable of
integration within that range, which must necessarily be larger. This yields

< [HerHe)
- (-21;)2{(2& + (2 + a))(l - @(%Z)) + (2 3«)¢(°¢'§' ;’)} ,

where

o= [ _slidy |

—c

which has no clesed form solution, but whose values for specific = are available in

tabular form.
v is thus independent of the size of the argumeat relations, and sincz 4 varies

linearly with argument size, the time

for partitioning and transfer is of linear complexity in the size of the argument
relations. (Sincs the algorithm for internal projeciion is alsa linear, the correspond-
ing external algorithms are linear.) The time required is, however, inversely related
to W, the waste [actor, and directly related to g, the capacity in tuples of PAM.
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Calculations using a range of typical ¢, ¢, P and h values suggest that a very
modest W (say, on the order of 0.1) should generally suffice to make the cost of
overflow recovery negligible by comparison with the complexity component due
to the transfer of non-overflowing buckets.

The algorithm for hash-based external evaluation of the join, union, intersect
and set difference operators is analogous to the one described for external projec-
tion. In the case of the category two operators, the number of hash intervals, A,

is set equal to R &
h= [ (14 W)(;((Rﬁ + 2&3)]

Analysis of the average case time complexity of the category two operators is
similar to that presented above [or projection, the primary differences being due
to substitution of nyny for n(n —1)/2 as the number of SAM revolutions required
for recovery from PAM overflow. As in the case of projection, such overflows make
only a linear contribution to the cost of category two evaluation.

In practice, the time required for evaluation of both the category one and
category two operators should ordinarily be quite close to the sum of

1. the time required for a number of SAM revolutions equal to the size of the
argument relation (or in the case of category two, the combined size of the two
argument relations) in “PAM-fulls”, and

2. the time required for internal evaluation of the operator in question.

In the case where the argument relation(s) are large, this may represent a
very substantial improvement on the results attainable using a database machine
based on an associative secondary storage device alone, as in the RAP, CASSM

and RARES desigans.
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9. Summary

In this paper, we have proposed a non-von Neumaan machine architecture
for the efficient large-scale evaluation of relational algebraic database primitives.
The design is based on a conteat-addressable primary storage unit called PAM
and a3 rotating lcgic-per-track associative device called SAM, both based on exist-
ing, and in the near future, economically feasible, technclogy. The machine we
have described functions in much the same way as several propesed and already-
implemeated database machines for the operations of selection and restriction, but
appears to offer a significant performaaces advantage in the case of project, join,
and the unstructured sst operatars.

Specifically, the time required for extarnal selection and resiriction is inde-
pendent of the size of the argument relation, being equal to the time for one
revolution of SAM under the assumptions enumerated in the paper. This result
substantially improves upon the best known general algorithms for evaluating
these operations on a von Neumann machine, but is essentially equivalent to those
obtained on mecst of the database machines reviewed in Section 3.2. The time
required for external projection, join, union, intersection and set difference, on the
other hand, is roughly that required for a number of SAM revolutions equal to
the combined size of the argument relations in “PAM-fulls” plus the (also linear)
time required for internal evaluation of the operatorin question. This latter result
represents an O(log n) improvemeat over tae best presently known metheds on 2
von Neumann machine, and appears to offer a large linear factor improvement
(roughly proportional to the capacity of PAM) over the best reported results in-
volving a specialized database machine architecture having comparable hardware
complexity.

It must be acknowledged, however, that we have leit many details unspecified,
have made a number of assumptions which ought to be carefully examined, and
have not yet performed the sorts of detailed comparisons that weuld justify a
confideat claim that the architeciure we have described is in fact mere suitable for
practical application than these already propesed in the literature. It is hoped that
the readers of this paper will contribute to the process of critical review necessary
to adequately assess the merit of the approach we have suggested.
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