
MobiDesk: Mobile Virtual Desktop Computing

Ricardo Baratto Shaya Potter Gong Su Jason Nieh
Department of Computer Science

Columbia University
{ricardo, spotter, gongsu, nieh }@cs.columbia.edu

Columbia University Technical Report CUCS-014-04, March 2004

Abstract

We present MobiDesk, a mobile virtual desktop comput-
ing hosting infrastructure that leverages continued improve-
ments in network speed, cost, and ubiquity to address the
complexity, cost, and mobility limitations of today’s per-
sonal computing infrastructure. MobiDesk transparently
virtualizes a user’s computing session by abstracting under-
lying system resources in three key areas: display, oper-
ating system and network. MobiDesk provides a thin vir-
tualization layer that decouples a user’s computing session
from any particular end user device and moves all applica-
tion logic from end user devices to hosting providers. Mo-
biDesk virtualization decouples a user’s computing session
from the underlying operating system and server instance,
enabling high availability service by transparently migrat-
ing sessions from one server to another during server main-
tenance or upgrades. We have implemented a MobiDesk
prototype in Linux that works with existing unmodified ap-
plications and operating system kernels. Our experimental
results demonstrate that MobiDesk has very low virtualiza-
tion overhead, can provide a full-featured desktop experi-
ence including full-motion video support, and is able to mi-
grate users’ sessions efficiently and reliably for high avail-
ability, while maintaining existing network connections.

1 Introduction

Continuing advances in hardware technology have enabled
the proliferation of faster, cheaper, and more portable per-
sonal computers to support increasingly mobile users. As
personal computers become more ubiquitous in large cor-
porate and academic organizations, the total cost of owning
and maintaining them is becoming unmanageable. These
computers are increasingly networked, which only compli-
cates the management problem with the need to constantly
upgrade and patch to protect them and their data against
a myriad of viruses and other attacks propagated through
the network. Furthermore, as mobile users transport their
portable computers from one place to another, it is not un-

common for these machines to be damaged or stolen, result-
ing in the loss of any important data stored on those ma-
chines. Even in the best case when such data can be re-
covered from backup, the time consuming process of recon-
stituting the state of the lost machine on another device re-
sults in a huge disruption in critical computing service for
the user.

We introduce MobiDesk, a mobile virtual desktop com-
puting hosting infrastructure that leverages rapid improve-
ments in network bandwidth, cost, and ubiquity to ad-
dress the limitations of the current personal computing
model. With wire-speed network technologies scaling at
faster Moore’s exponents than silicon, MobiDesk leverages
the network to decouple a user’s desktop computing session
from the end user device by moving all application logic
from end user devices to hosting providers. End user de-
vices are simply used for sending user input to the hosting
provider and displaying output from the hosting provider,
allowing them to be simple stateless clients. Input and out-
put associated with a computing session can be easily redi-
rected to any end user device. MobiDesk also decouples a
user’s desktop computing session from the underlying op-
erating system and server instance, allowing a user’s entire
computing environment to be migrated transparently from
one server to another. This enables a server to be brought
down for maintenance and upgraded in a timely manner with
minimal impact on the availability of a user’s computing
services. Once the original machine has been updated, the
user’s computing session can be migrated back and continue
to execute even though the underlying operating system may
have changed. MobiDesk ensures that any network connec-
tions associated with the user’s computing session are main-
tained even as the session is migrated from one machine to
another. MobiDesk provides these benefits without modify-
ing, recompiling, or relinking applications or operating sys-
tem kernels. MobiDesk requires no changes to clients other
than being able to execute a simple user-space application to
process and display input and output.

MobiDesk provides a mobile virtual desktop computing
environment by introducing a thin virtualization layer be-
tween a user’s computing environment and the underlying

1

system. MobiDesk focuses on virtualizing three key system
resources, display, operating system, and network resources.
MobiDesk virtualizes display resources by providing a vir-
tual display driver interface and framebuffer that efficiently
encodes and redirects display updates from the server to an
end user device. MobiDesk virtualizes operating system re-
sources by providing a virtual private namespace for each
desktop computing session that offers a host-independent
virtualized view of an operating system, enabling the ses-
sion to be transparently migrated from one server to an-
other. MobiDesk virtualizes network resources by providing
virtual address identifiers for connections and a transport-
independent proxy mechanism to preserve all network con-
nections associated with a user’s computing session even it if
is migrated from one server to another inside the MobiDesk
server infrastructure.

The MobiDesk hosted desktop computing approach pro-
vides a number of important benefits over current computing
approaches:

• Independence from desktop failures: Because applica-
tion state and user computing environments are main-
tained by MobiDesk in a hosting provider, users are
isolated from local desktop failures. There is no lo-
calized computing state that needs to be recovered.
Furthermore, such devices can be inexpensive stateless
machines that never need to be backed up or restored.

• Transparent user mobility: Because all persistent user
state is maintained on the servers, users are able to
move freely among any client access devices and pick
up right where they left off.

• Global computing access: As a result of the widespread
proliferation of Internet-connected devices, MobiDesk
users can access their desktop computing environments
from around the world on whatever computing infras-
tructure happens to be available.

• High availability application services in the presence
of server downtime and upgrades: Because applica-
tions are decoupled from the server hardware and un-
derlying operating system instance, applications can be
moved anywhere and in particular migrated off faulty
hosts, and before host maintenance and upgrades, so
applications continue to run with minimal downtime.
Today, maintaining and upgrading a server can result in
long periods of service downtime, whereas MobiDesk
enables hardware and operating systems to be upgraded
in a timely manner with minimal impact on application
service availability – by migrating applications to an-
other machine that has already been updated. With Mo-
biDesk, system administrators no longer need to sched-
ule downtime in advance and in cooperation with all the
users, thereby closing the vulnerability window of un-
repaired systems. Once the original machine has been

updated, applications can be migrated back, if appro-
priate.

• Reliable computing for legacy applications and com-
modity systems: Because MobiDesk is designed to
work with unmodified legacy applications and com-
modity operating systems, it offers the potential to
bring about more reliable computing without giving up
the large investments already made in the existing soft-
ware base.

• Persistence and continuity of business logic: By mov-
ing away from the current model of simply backing up
file data to secure remote locations, and instead protect-
ing entire computing environments by running hosting
providers in secure remote locations, MobiDesk can
enable academic, business, and government institutions
to function much more effectively in times of crisis.
Restoring an organization’s local computing infrastruc-
ture from backup consequent to a crisis is an extremely
slow, time-consuming process that is increasingly in-
effective given the scale of IT infrastructure being de-
ployed today. MobiDesk offers a different, improved
model of continuous uptime, especially during a crisis,
when infrastructure availability is most crucial.

• On-demand access to scalable computational re-
sources beyond the desktop: By multiplexing a large
pool of shared computational resources among many
users, an individual can gain access to substantially
more resources than can be afforded on one’s local
desktop computer, analogous to “grid computing” but
in a technologically simpler fashion for the average
user to exploit. The resources given to a user can be
scaled up or down as necessary. Instead of having to
throw away their existing local desktop machines ev-
ery time they need more compute power, users just ask
their service provider to scale up their resource alloca-
tion. More importantly, such scalable computing power
is available on demand and can be allocated immedi-
ately even in times of crisis when computing resources
may be most needed.

• Makes available a wider range of application services:
Given the cost of computer software, many users often
cannot afford more than a few, heavily used applica-
tions on their desktops. MobiDesk can provide a wider
range of affordable application services on multiple op-
erating system platforms by amortizing the costs of ap-
plications over a large number of users. Since not all
applications will be in use by all users at one time, sta-
tistical multiplexing can serve a larger number of users
with fewer software licenses. Just as MP3 download
services have enabled less-known musicians to dis-
tribute their music, MobiDesk enables a greater diver-
sity of software developers to provide innovative soft-

2

ware and distribute it to users via the computing service
provider – potentially leading to new business models
that benefit software developer, service provider and
consumer alike.

• Support for secure, low-cost client access devices:
Client access devices just need to be able to connect
to the Internet. They do not need to provide com-
plex computing functionality, making it unnecessary
to continuously upgrade to more powerful desktop ma-
chines. Simpler, lower cost, possibly longer battery-life
client access devices can be made more readily avail-
able for such a service. These devices may come in
many shapes and sizes, from desktop machines with
megapixel displays to handheld devices with pocket-
sized screens. Furthermore, MobiDesk provides a
model that can more easily secure low-cost client de-
vices since they do not store persistent, sensitive data.

• Bridging the information gap: Contrasting with the
current society of information climate “haves” and
“have-nots,” MobiDesk can be accessed by low-cost
client devices to deliver secure service on a subscrip-
tion basis offering a societally better way of providing
access to computing as widely as possible. Remote
computing and storage services can be paid for us-
ing a subscription-based or use-based economic model
that follows current Internet access or telephone pric-
ing policies. A MobiDesk provider could supply basic
computing, including a complete suite of desktop pro-
ductivity tools, for just a few dollars a month. Video-
on-demand service, online gaming, and other multi-
media services could be obtained from the same or
other providers for additional small fees. Furthermore,
the more centralized service and management model
provides lower total cost of ownership across all ap-
plications, making computing more widely affordable.
More importantly, MobiDesk enables client devices to
be easier to manage and use by removing the local sys-
tem complexity associated with current software up-
grade cycles, making computing more accessible to a
wider population of users.

This paper presents the design and implementation of
MobiDesk. Section 2 briefly presents the overall MobiDesk
system architecture and usage model. Section 3 describes
the MobiDesk display virtualization mechanism. Section
4 describes the MobiDesk operating system virtualization
mechanism. Section 5 describes the MobiDesk network vir-
tualization mechanism. Section 6 presents experimental re-
sults measuring MobiDesk system performance and associ-
ated overhead in the context of real desktop computing ap-
plications. Section 7 discusses related work. Finally, we
present some concluding remarks.

��������
�

�����	
��	����

���
	�

��

�������

�����	
��	����

�������

�����

�������	����

���
	�

�
����

���

	��
��	����
������

Figure 1: MobiDesk architecture

2 Overview of System Architecture

MobiDesk is architected as a proxy-based server cluster sys-
tem, comparable to systems deployed today by application
service providers. The overall architecture of the system is
depicted in Figure 1. MobiDesk is composed of a proxy,
a group of backend session servers connected in a LAN, a
storage server infrastructure, and a number of external, het-
erogeneous clients through which users access the system.

The proxy acts as a front-end that admits service requests
from clients across the Internet, and dispatches the requests
to the appropriate backend application servers. The proxy
exposes a single entry point to the clients, operates at layer
7, and employs suitable admission and service dispatching
policies. The backend compute servers host completely vir-
tualized environments within which the computing sessions
of MobiDesk’s users run. The network storage server in-
frastructure is used for all persistent file storage. The clients
are merelyinputingandoutputingdevices connected to the
servers across the Internet.

Users interact with their MobiDesk sessions through a
thin-client stylesession viewer, a simple device or applica-
tion that relays the user’s input and the session’s output be-
tween the client and the server through a secure encrypted
channel. Each user in the system is assigned a username and
password. When a user first logs into MobiDesk, the proxy
performs appropriate authentication, and connects her to a
MobiDesk session server. The server creates a virtual and
private environment, that is populated with a complete set
of operating system resources and desktop applications. To
the user, the session appears no different than to logging into
a private computer. When the client disconnects, the session
continues to run on the MobiDesk server, unless the user ex-
plicitly logs out. On future connections, the session will be
in the same state it was when the user last disconnected from

3

MobiDesk.
By providing a virtual, private environment for each user,

MobiDesk is able to dynamically relocate sessions to meet
load balancing, system maintenance and/or quality of ser-
vice requirements. Sessions can be checkpointed and mi-
grated transparently at any point in time. To keep track of
the sessions as migration occurs, MobiDesk implements a
session cookiemechanism. As new sessions are created, the
proxy generates a unique cookie that is passed to the host-
ing servers and associated with the new session. Whenever a
session is migrated, the destination server uses the cookie to
inform the proxy of the new location. Finally, the next time
the user logs in, the proxy will use the cookie to identify the
server where the user’s session is being hosted.

To provide a private, mobile environment for user ses-
sions, MobiDesk virtualizes three key resources: display,
operating system, and network. MobiDesk virtualization is
designed to work with existing unmodified applications, op-
erating system kernels, and network infrastructure and pro-
tocols. The three components work in concert to create
a completely virtualized environment for client computing
sessions.

MobiDesk virtualizes the server display by providing a
virtual display driver that intercepts drawing commands
from user’s applications, and translates the commands into
a display protocol between the client and the server. Mo-
biDesk display virtualization focuses on the importance of
latency-sensitive design for interactive computing and antic-
ipates the kind of high-bandwidth network access that is be-
coming increasingly cost-effective and accessible in WAN
environments [2]. For example, South Korea is building a
nationwide Internet access infrastructure to make speeds up
to 100 Mbps available to the home by 2010 [17].

MobiDesk operating system virtualization provides a vir-
tual, private namespace for each hosted client computing
session. For example, each computing session has its own
host-independent view of a complete set of OS resources
such as PID/GID, IPC, memory, file system, and devices,
etc. MobiDesk virtualization operates at a finer granularity
than virtual machine approaches such as VMware [39] by
virtualizing individual computing sessions instead of com-
plete operating system environments. As a result, comput-
ing sessions can be decoupled from the underlying operating
system and migrated to other servers to maintain high avail-
ability even in the presence of server hardware and operating
system maintenance and upgrades.

MobiDesk network virtualization provides persistent net-
work connections for client computing sessions even as they
move among servers in a MobiDesk cluster. All connec-
tions operate through the MobiDesk proxy. Similar to oper-
ating system virtualization, MobiDesk virtualizes network
connections by a virtual and private namespace for transport
connection identifiers, such as IP address and port number,
on both the proxy and the servers. These virtual identifiers

remain constant and are simply translated to the underly-
ing physical network identifiers as a session moves amongst
servers at different physical network locations. MobiDesk
network virtualization provides persistent connections from
mobile client computing sessions to outside hosts without
running any software on the outside hosts and without any
changes to the existing network infrastructure.

3 Display Virtualization

To make MobiDesk a viable replacement to the traditional
desktop computing model, MobiDesk needs to be able to
deliver the complete set of unmodified desktop applications
to end users with good performance. MobiDesk must work
within the framework of existing display systems, intercept-
ing display commands from unmodified applications and
redirecting these commands to remote clients. To provide
good WAN performance, MobiDesk must intercept display
commands at an appropriate abstraction layer to provide
sufficient information to optimize the processing of display
commands in a latency-sensitive manner. Furthermore, to
support transparent user mobility and eliminate client ad-
ministration complexity, MobiDesk should support the use
of thin, stateless clients by ensuring that all persistent dis-
play state is stored in the MobiDesk server infrastructure.

Given that traditional display systems are structured in
multiple abstraction layers, there are a number of possible
ways in which MobiDesk can interact with existing display
systems. We can loosely categorize display system struc-
ture into three layers: application, middle-ware, and hard-
ware. The application layer is the top display system layer
with which applications interact. It presents a high-level
model of the overall characteristics of the display system
and includes descriptions of the operation and management
of windows, input mechanisms, and display capabilities of
the system. These capabilities may range from basic 2D dis-
play, to complex operations involving transparency, blends,
3D transformations and the display of multimedia content.
The middle-ware layer sits between the high-level applica-
tion display layer and the low-level video hardware layer.
Its responsibility is to create a hardware-independent ab-
straction of the display hardware to meet the requirements
of the display system and its applications. To maintain con-
sistency across hardware with differing abilities, it is provi-
sioned with fallback mechanisms and software routines that
can implement missing hardware features. The video hard-
ware layer is a a low-level, hardware-dependent layer that
exposes the video hardware to the display system. It is im-
plemented as a set of device drivers responsible for translat-
ing between the middle-ware’s abstract display operations
and the commands understood by the display hardware.

MobiDesk rules out using the application and middle-
ware layers for intercepting display commands for the fol-

4

lowing important reasons. MobiDesk does not intercept
at the application layer because that requires a significant
amount of application logic and computational power on the
client for translating high-level commands. This would limit
the range of MobiDesk’s target client architectures. Inter-
cepting at the application layer also results in direct syn-
chronization between applications and the client, which can
reduce display performance in higher latency WAN environ-
ments. MobiDesk also does not intercept at the middle-ware
layer because that would require MobiDesk to reimplement
substantial display system functionality instead of leverag-
ing continuing advances in existing middle-ware implemen-
tations such as XFree86.

MobiDesk display virtualization is instead designed as a
virtual video device driver that intercepts display commands
at the video hardware layer. MobiDesk provides a sepa-
rate virtual video device for each computing session. Rather
than sending display commands to local display hardware,
MobiDesk’s virtual video driver packages up display com-
mands associated with a user’s computing session and sends
them over the network to a remote client. For this purpose,
MobiDesk implements a simple, low-level, minimum over-
head protocol, as described in Table 1. The protocol mimics
the operations most commonly found in display hardware,
allowing clients to do little more than forward protocol com-
mands to their local video hardware, reducing the latency of
display processing. To provide security, all protocol traf-
fic is encrypted using the standard RC4 [33] stream-cipher
algorithm. MobiDesk’s video hardware layer approach al-
lows it to take full advantage of existing infrastructure and
hardware interfaces, while maximizing client resources and
requiring minimal computation on the client. Furthermore,
new video hardware features can be supported with at most
the same amount of work necessary for supporting them in
traditional desktop display drivers. While there is some loss
of semantic display information at the low level video de-
vice driver interface, our experiments with desktop applica-
tions such as web browsers indicate that the vast majority
of application display commands issued can map directly to
standard video hardware primitives. Furthermore, we show
in Section 6 that the simpler display virtualization used by
MobiDesk can provide superior display performance com-
pared to other approaches.

To deliver good performance in WAN environments, the
MobiDesk display virtualization architecture couples its
virtual video device driver approach with other latency-
sensitive display mechanisms. In particular, MobiDesk ex-
ports client display hardware resources to the server and
leverages such resources to reduce the latency of display
processing. For example, MobiDesk provides direct video
support by leveraging alternative YUV video formats na-
tively supported by almost all off-the-shelf video card avail-
able today. Video data can be simply transferred from
server to client video hardware, which automatically does

Command Description
RAW Display raw pixel data at a given

location and size
COPY Copy frame buffer area to speci-

fied coordinates
SFILL Fill an area with a given pixel

color value
BITMAP Fill a region using a bitmap im-

age
PFILL Tile a pixmap rectangle in a

given region

Table 1: MobiDesk Protocol Display Commands

inexpensive, high-speed, color-space conversion and scal-
ing. As another example, MobiDesk leverages cursor draw-
ing support available with almost every video card in use
today. MobiDesk uses local cursor drawing in response to
mouse movements and maintains local cursor state at the
client. Cursor changes still come from the server, but Mo-
biDesk improves system response time by avoiding network
latency with any cursor drawing that does not result in cur-
sor changes.

MobiDesk provides two important server-side mecha-
nisms for improving performance in WAN environments.
One MobiDesk mechanism is the use of a server-push model
for sending display updates to the client. As soon as display
updates are generated on the server, they are delivered to the
client. MobiDesk does not require clients to explicitly re-
quest display updates, which add additional network latency
to command processing. Another MobiDesk mechanism is
the use of display command scheduling to improve the re-
sponsiveness of the system. MobiDesk display virtualiza-
tion employs aShortest-Remaining-Size-First (SRSF)pre-
emptive command scheduler, that is analogous to Shortest-
Remaining-Processing-Time (SRPT). SRPT is known to be
optimal for minimizing mean response time [5], a primary
goal for an interactive system. In display applications, short
jobs are normally associated with text and general GUI lay-
out components, which are critical to the usability of the
system. On the other hand, large jobs are normally lower
priority “beautifying” GUI elements, such as image decora-
tions, desktop backgrounds and web page banners.

Finally, MobiDesk supports thin, stateless display clients
by storing at all times, all session state at the respective Mo-
biDesk server. Although the MobiDesk takes advantage of
client resources when available, all client state used by Mo-
biDesk is considered temporary and destroyed upon client
disconnect. When a remote client connects to the MobiDesk
infrastructure, the server running the user’s computing ses-
sion transfers the current session state to the client. For the
duration of the connection, the client forwards input events

5

to the server, which in turn forwards display updates back to
the client. The client at no point has an intermediate session
state differing from the server. When the client eventually
disconnects, it leaves no state behind in the local computer.

4 Operating System Virtualization

To enable users’ computing sessions to freely migrate from
one MobiDesk server to another, MobiDesk encapsulates
each session with a host-independent virtualized view of the
operating system. MobiDesk operating system virtualiza-
tion provides the same application interface as the underly-
ing operating system so that legacy applications can execute
in the context of a session without any modification. Pro-
cesses within a session can make use of all available oper-
ating system services, just like processes executing in a tra-
ditional operating system environment. Unlike a traditional
operating system, each virtualized session provides a self-
contained unit that can be isolated from the system, check-
pointed to secondary storage, migrated to another machine,
and transparently restarted. This is made possible because
each computing session has its own private, virtual names-
pace. All operating system resources are only accessible to
processes running in a session through the session’s private,
virtual namespace.

A session namespace is private in that only processes
within the session can see the namespace. It is private in
that it masks out resources that are not contained within
the session, including processes outside of the session. Pro-
cesses inside a session appear to one another as normal pro-
cesses that can communicate using traditional IPC mecha-
nisms. Other processes outside a session do not appear in
the namespace and are therefore not able to interact with
processes inside a session using IPC mechanisms such as
shared memory and signals. Instead, processes outside the
session can only interact with processes inside the session
using normal RPC mechanism that support process commu-
nication across machines.

A session’s namespace is virtual in that all operating sys-
tem resources including processes, user information, files,
and devices are accessed through virtual identifiers within
a session. These virtual identifiers are distinct from host-
dependent resource identifiers used by the operating sys-
tem. The session’s virtual namespace provides a host-
independent view of the system by using virtual identifiers
that remain consistent throughout the life of a process in the
session, regardless of whether the session moves from one
system to another. Since the session’s namespace is sepa-
rate from the underlying operating system namespace, the
session’s namespace can preserve this naming consistency
for its processes even if the underlying operating system
namespace changes, as may be the case in migrating pro-
cesses from one machine to another.

The session’s private, virtual namespace enables pro-
cesses running in a session to migrate together as a group.
Processes in a session have a consistent, host-independent
view of the underlying operating system. Operating system
resource identifiers such as process IDs (PIDs) must remain
constant throughout the life of a process to ensure its cor-
rect operation. However, when a process is moved from one
operating system to another, there is no guarantee that the
underlying operating system will provide the same identi-
fiers to a migrated process; those identifiers may in fact al-
ready be used by other processes in the system. The ses-
sion’s namespace addresses these issues by providing con-
sistent, virtual resource names in place of host-dependent
resource names such as PIDs. Names within a session are
trivially assigned in a unique manner in the same way that
traditional operating systems assign names, but such names
are localized to the session. Since the namespace is private
to a given session, there are no resource naming conflicts for
processes in different sessions. There is no need for the ses-
sion’s namespace to change when the session is migrated,
which allows sessions to ensure that identifiers remain con-
stant throughout the life of the process, as required by legacy
applications that use such identifiers. Similarly, the private
virtual namespace enables sessions to be securely isolated
from each other by providing complete mediation to all op-
erating system resources. Since the only resources within
each session are the ones that are accessible to a particular
user, including his files and processes, if another user’s ses-
sion would get exploited, it would be unable to harm any
other user’s session.

4.1 Session Virtualization

Sessions are supported using virtualization mechanisms that
translate between the session’s virtual resource identifiers
and operating system resource identifiers. Every resource
that a process in a session accesses is through avirtual name
which corresponds to an operating system resource identi-
fied by aphysical name. When an operating system resource
is created for a process in a session, such as with process
or IPC key creation, instead of returning the correspond-
ing physical name to the process, the session’s virtualization
layer catches the physical name value, and returns a private
virtual name to the process. Similarly, any time a process
passes a virtual name to the operating system, the virtual-
ization layer catches it and replaces it with the appropriate
physical name. The key virtualization mechanisms used are
a system call interposition mechanism and thechroot util-
ity with file system stacking for file system resources.

Session virtualization employs system call interposition
to wrap existing system calls to check and replace argu-
ments that take virtual names with the corresponding phys-
ical names before calling the underlying original system
call. Similarly, the wrapper is used to capture physical name

6

identifiers that the original system calls return and return
corresponding virtual names to the calling process running
inside the session. Session virtual names are maintained
consistently as a session migrates from one machine to an-
other and are remapped appropriately to underlying physical
names that may change as a result of migration. Session sys-
tem call interposition also masks out processes inside of a
session from processes outside of the session to remove any
interprocess host dependencies across the session boundary.
System call interposition is used to virtualize operating sys-
tem resources including process identifiers, keys and identi-
fiers for IPC mechanisms such as semaphores, shared mem-
ory, and message queues, and network addresses.

Session virtualization employs thechroot utility and
file systems stacking to provide each session with its own
file system namespace that can be separate from the regu-
lar host file system. The session file system can be com-
posed from loopback mounts from the host for sessions that
are only checkpointed and restarted on the same machine.
Similarly, one can make use of a portable hard drive that
one moves between the different hosts one wants to migrate
within. More commonly, the session’s file system is com-
posed from remote mounts via a network file system such as
NFS so that the same files can be made consistently avail-
able as a session is migrated from one machine to another.
More specifically, when a session is created or moved to
a host, a private directory named according to the session
identifier is created on the host to serve as a staging area
for the session’s virtual file system. Within this directory,
the various network-accessible directories that the session is
configured to access will be mounted from a network file
server. For example, from a Unix-centric viewpoint, this
set of directories could include/etc , /lib , /bin , /usr ,
and/tmp . Thechroot system call is then used to set the
staging area as the root directory for the session, thereby
achieving file system virtualization with negligible perfor-
mance overhead. This method of file system virtualization
provides an easy way to restrict access to files and devices
from within a session. This can be done by simply not in-
cluding file hierarchies and devices within the session’s file
system namespace. If files and devices are not mounted
within the session’s virtual file system, they are not accessi-
ble to the session’s processes.

Because commodity operating systems are not built to
support multiple namespaces, a security issue that session
virtualization must address is that there are many ways to
break out of a standard chrooted environment, especially if
one allows thechroot system call to be used by processes
in a session. The session’s file system virtualization enforces
the chrooted environment and ensures that the session’s file
system is only accessible to processes within the given ses-
sion by using a simple form of file system stacking to im-
plement a barrier. This barrier directory prevents processes
within the session from traversing it. Since the processes

can’t traverse the directory, they can’t access files outside of
the session’s file system namespace.

In order for a session to fully replace a regular com-
puter, the session has to allow processes to run as the priv-
ileged root user. For instance, programs such asping and
traceroute that need to create raw sockets andpasswd
that is used to change system resources need to run with
privilege. Because the root’s UID 0 is treated specially by
the operating system kernel, session virtualization also treats
UID 0 processes inside of a session in a special way to pre-
vent them from breaking the session abstraction, accessing
resources outside of the session, and causing harm to the
host system. While a session can be configured for admin-
istrative reasons to allow full privileged access to the under-
lying system, we focus on the case of sessions for running
application services which do not need to be used in this
manner. Session do not disallow UID 0 processes, which
would limit the range of application and services that could
be run inside a session. Instead, sessions provide restrictions
on such processes to ensure that they function correctly in-
side of a session.

While a process is running in user space, the UID it runs
as doesn’t have any effect. Its UID only matters when it tries
to access the underlying kernel via one of the kernel entry
points, namely devices and system calls. Since a session
already provides a virtual file system that includes a virtual
/dev with a limited set of secure devices, the device entry
point is already secured. The only system calls of concern
are those that could allow a root process to break the session
abstraction. Only a small number of system calls can be
used for this purpose. Session virtualization classifies these
system calls into three classes that need to be protected.

The first class of system calls are those that only affect
the host system and serve no purpose within a session. Ex-
amples of these system calls include those that load and un-
load kernel modules or that reboot the host system. Since
these system calls only affect the host, they would break the
session security abstraction by allowing processes within it
to make system administrative changes to the host. System
calls that are part of this class are therefore made inaccessi-
ble by default to processes running within a session.

The second class of system calls are those that are forced
to run unprivileged. Just like NFS, by default, squashes root
on a client machine to act as usernobody , session virtu-
alization forces privileged processes to act as thenobody
user when it wants to make use of some system calls. Ex-
amples of these system calls include those that set resource
limits and ioctl system calls. Since system calls such
assetrlimit andnice can allow a privileged process
to increase its resource limits beyond predefined limits im-
posed on session processes, privileged processes are by de-
fault treated as unprivileged when executing these system
calls within a session. Similarly, theioctl system call
is a system call multiplexer that allows any driver on the

7

host to effectively install its own set of system calls. Since
the ability to audit the large set of possible system calls is
impossible given that sessions may be deployed on a wide
range of machine configurations, session virtualization con-
servatively treats access to this system call as unprivileged
by default.

The final class of system calls are calls that are required
for regular applications to run, but have options that will give
the processes access to underlying host resources, breaking
the session abstraction. Since these system calls are required
by applications, the session checks all their options to ensure
that they are limited to resources that the session has access
to, making sure they aren’t used in a manner that breaks the
session abstraction. For example, themknod system call
can be used by privileged processes to make named pipes or
files in certain application services. It is therefore desirable
to make it available for use within a session. However, it
can also be used to create device nodes that provide access
to the underlying host resources. To limit how the system
call is used, the session system call interposition mechanism
checks the options of the system call and only allows it to
continue if it’s not trying to create a device.

4.2 Session Migration

To maintain user computing session availability even in the
presence of server downtime due to hardware and operating
system upgrades, MobiDesk provide a checkpoint-restart
mechanism that allows sessions to be migrated across ma-
chines running different operating system kernels. Upon
completion of the upgrade process, the respective MobiDesk
session and its applications can be restored on the origi-
nal machine now with an upgraded operating system. We
assume here that the systems have not been compromised
and that any kernel security holes on the unpatched system
have not yet been exploited on the system; migrating across
kernels that have already been compromised is beyond the
scope of this paper.

We also limit our focus to migrating between machines
with a common CPU architecture with kernel differences
that are limited to maintenance and security patches. These
patches often correspond to changes in the minor version
number of the kernel. For example, the Linux 2.4 kernel
has more than twenty minor versions. Even within minor
version changes, there can be significant changes in kernel
code. For example, comparing across different Linux 2.4
kernel versions, all of the files for the VM subsystem were
changed at some point since extensive modifications were
made to implement a completely new page replacement
mechanism in Linux. Many of the Linux kernel patches
contain security vulnerability fixes, which are typically not
separated out from other maintenance patches. We similarly
limit our focus to scenarios where the application’s execu-
tion semantics, such as how threads are implemented and

how dynamic linking is done, do not change. On the Linux
kernels this is not an issue as all these semantics are en-
forced by user-space libraries. Whether one uses kernel or
user threads, or one how libraries are dynamically linked
into a process is all determined by the respective libraries on
the file system. Since the session has access to the same file
system on whatever machine it is running on, these seman-
tics stay the same.

To support migration across different kernels, MobiDesk
use a checkpoint-restart mechanism that employs an inter-
mediate format to represent the state that needs to be saved
on checkpoint. On checkpoint, the intermediate format rep-
resentation is saved and digitally signed to enable the restart
process to verify the integrity of the image. Although the in-
ternal state that the kernel maintains on behalf of processes
can be different across different kernels, the high-level prop-
erties of the process are much less likely to change. We cap-
ture the state of a process in terms of higher-level seman-
tic information specified in the intermediate format rather
than kernel specific data in native format to keep the format
portable across different kernels. For example, the state as-
sociated with a Unix socket connection consists of the direc-
tory entry of the Unix socket file, its superblock information,
a hash key, and so on. It may be possible to save all of this
state in this form and successfully restore on a different ma-
chine running the same kernel. But this representation of a
Unix socket connection state is of limited portability across
different kernels. A different high-level representation con-
sisting of a four tuple, virtual source pid, source fd, virtual
destination pid, destination fd is highly portable. This is be-
cause the semantics of a process identifier and a file descrip-
tor is typically standard across different kernels, especially
across minor version differences.

The intermediate representation format used by Mo-
biDesk for migration is chosen such that it offers the de-
gree of portability needed for migrating between different
kernel minor versions. If the representation of state is too
high-level, the checkpoint-restart mechanism could become
complicated and impose additional overhead. For example,
the MobiDesk system saves the address space of a process
in terms of discrete memory regions called VM areas. As
an alternative, it may be possible to save the contents of
a process’s address space and denote the characteristics of
various portions of it in more abstract terms. However, this
would call for an unnecessarily complicated interpretation
scheme and make the implementation inefficient. The VM
area abstraction is standard across major Linux kernel revi-
sions. MobiDesk view the VM area abstraction as offering
sufficient portability in part because the organization of a
process’s address space in this manner has been standard
across all Linux kernels and has never been changed since
its inception.

MobiDesk further support migration across different ker-
nels by leveraging higher-level native kernel services to

8

transform intermediate representation of the checkpointed
image into an internal representation suitable for the target
kernel. Continuing with the previous example, MobiDesk
restore a Unix socket connection using high-level kernel
functions as follows. First, two new processes are created
with virtual PIDs as specified in the four tuple. Then, each
one creates a Unix socket with the specified file descriptor
and one socket is made to connect to the other. This proce-
dure effectively recreates the original Unix socket connec-
tion without depending on many kernel internal details.

This use of high-level functions helps in general portabil-
ity of using MobiDesk for migration. Security patches and
minor version kernel revisions commonly involve modify-
ing the internal details of the kernel while high-level primi-
tives remain unchanged. As such services are usually made
available to kernel modules through exported kernel symbol
interface, the MobiDesk system is able to perform cross-
kernel migration without requiring modifications to the ker-
nel code.

The MobiDesk checkpoint-restart mechanism is also
structured in such a way to perform its operations when pro-
cesses are in a state that checkpointing can avoid depending
on many low-level kernel details. For example, semaphores
typically have two kinds of state associated with each of
them: the value of the semaphore and the wait queue of pro-
cesses waiting to acquire the corresponding semaphore lock.
In general, both of these pieces of information have to be
saved and restored to accurately reconstruct the semaphore
state. Semaphore values can be easily obtained and re-
stored through GETALL and SETALL parameters of the
semctl system call. But saving and restoring the wait
queues involves manipulating kernel internals directly. The
MobiDesk mechanism avoids having to save the wait queue
information by requiring that all the processes be stopped
before taking the checkpoint. When a process waiting on a
semaphore receives a stop signal, the kernel immediately re-
leases the process from the wait queue and returns EINTR.
This ensures that the semaphore wait queues are always
empty at the time of checkpoint so that they do not have
to be saved.

To provide proper support for MobiDesk virtualization
when migrating across different kernels, we must ensure
that that any changes in the system call interfaces are prop-
erly accounted for. As MobiDesk has a virtualization layer
using system call interposition mechanism for maintaining
namespace consistency, a change in the semantics for any
system call intercepted by MobiDesk’s session abstraction
could be an issue in migrating across different kernel ver-
sions. But such changes usually do not occur as it would
require that the libraries be rewritten. In other words, Mo-
biDesk virtualization is protected from such changes in a
similar way as legacy applications are protected. However,
new system calls could be added from time to time. Such
system calls could have implications to the pea encapsu-

����������	
����
��	����	

����
�������	
��������

��

�����������
����
��	�����

�

�
��
��

�����
������

�����
��
����
��	�
���	
����
�

����
��	�
���	
����
�

����
����
���	
����
�

����
����
���
����	
�

����
��	�
���
����	
�

Figure 2: Key problems of connection migration

����������	
����
��	����	

����
�������	
��������

��

�����������
����
��	�����

�

�
��
��

����
��	�
���	
����
�

����
��	�
���	
����
�

����
����
���	
����
�

����
����
���
����	
�

����
��	�
���
����	
�

���
�����
�

����
����
�

�����	�
��������

Figure 3: Mobidesk network virtualization mechanism

lation mechanism. For instance, across all Linux 2.4 ker-
nels, there were two new system calls,gettid andtkill
for querying the thread identifier and for sending a signal to
a particularly thread in a thread group, respectively, which
needed to be accounted for to properly virtualize MobiDesk
across kernel versions. As these system calls take identifier
arguments, they were simply intercepted and virtualized

5 Network Virtualization

Networking support for MobiDesk sessions must address
two issues:

• Multiple sessions on the same MobiDesk server may
run the same service, e.g., two session may both run the

9

apache server. However, only one of them can listen on
port 80.

• Ongoing network connections of a session must be pre-
served when the session is migrated from one Mo-
biDesk server to another.

When all MobiDesk servers are in the same subnet, the
two issues can be addressed relatively easily using exist-
ing technologies with minor enhancements from MobiDesk.
Each MobiDesk session is assigned a unique IP address
from a pool maintained by a DHCP server when it’s first
created. From example, the MobiDesk servers may occupy
IP address range 192.168.1.2 - 192.168.1.50, and the rest of
192.168.1.5 - 192.168.1.254 may be assigned to MobiDesk
sessions. The IP address assigned to a session is created as
an alias of the hosting server’s primary IP address. Mul-
tiple aliases, each corresponding to a different MobiDesk
session, can be created on a MobiDesk server. MobiDesk
privatizes the aliases such that a session only sees its own
alias and therefore cannot interfere traffic of other sessions
on the same server.

Since each session has its own IP address, two sessions on
the same server can both listen to port 80, bound to their in-
dividual private IP address. When a session is migrated from
one server to another, the private IP address of the session
remains unchanged; it is simply (re)created as an alias of the
new hosting server’s primary IP address. ARP resolves the
MAC address change at the link layer and the migration is
transparent to network layer and above. Ongoing network
connections of the session therefore stay intact.

While it is possible to have the entire private network be-
hind the proxy to be in a single subnet regardless of its size,
it is often desirable to have separate subnets for scalability
and management reasons. In this case, when a session is
migrated across subnets, its private IP address can longer
persist since it cannot be simply created as an alias of the
new hosting server’s primary IP address, which is on a dif-
ferent subnet. As a result, two types of problems can occur,
as we illustrate in Figure 2. Note that we omit port numbers
for simplicity.

We see that when the session1 with IP10 migrates from
server IP1 to IP2, its transport connection [IP10, IP0] must
persist but its IP address IP10 cannot since IP2 is on a differ-
ent subnet; therefore creating an inconsistency. In addition,
after session1 with IP10 migrates to server IP2, another ses-
sion2 may reuse IP10 on server IP1 (or another server) and
creates another connection [IP10, IP0]; therefore creating a
conflict since the proxy will see two identical connections
[IP0, IP10].

To address the inconsistency problem on the MobiDesk
server, MobiDesk associates each session with two IP ad-
dresses, one is a virtual address exposed to transport and
above layers and the other is a physical address seen only at
network and below layers. The virtual address stays constant

for the lifetime of the session while the physical address
changes whenever the session migrates. The physical ad-
dress is obtain from a DHCP server as in the case of a single
subnet but must change when the session is migrated across
subnets. There are two ways to assign the virtual address.
By default, the virtual address is equal to the initial physi-
cal address when the session is created and stays unchanged
thereafter. Alternatively, the virtual address can be a prede-
fined value that is constant across all sessions. MobiDesk
translates the virtual address to the current physical address
(and vice versa) when the session migrates. For example,
in Figure 3, after migration, session1’s virtual address IP10
is unchanged while its physical address is assigned by the
DHCP server to be IP20 and created as an alias on server
IP2. The proxy translates [IP0, IP10] into [IP0, IP20] while
the server IP2 translates [IP20, IP0] into [IP10, IP0]. Since
the virtual address never changes, the migration is transpar-
ent to transport and above layers.

One potential solution to the conflict problem on the Mo-
biDesk proxy is to require that a physical address, once as-
signed to a session, is never reused until the session fin-
ishes even after the session has migrated to another subnet.
This however results in undesirable dependency of a session
on a trail of addresses if it’s migrated many times and new
connections are open between each migration. MobiDesk’s
solution is to privatize virtual addresses, i.e., to associate
virtual addresses with separate private virtual network in-
terfaces which provide per-connection address namespace.
Instead of having all connections share the same physical
interface, each connection is assigned its own private virtual
network interface card (VNIC). A VNIC is simply a soft-
ware emulation of a NIC at the link layer that appears ex-
actly the same as a NIC to network and above layers. As a
result, two connections using the same virtual IP address due
to address reuse can peacefully coexist on the same server;
since they are bound to their own private VNIC.

To support per-connection address space, MobiDesk aug-
ments the traditional connection tuple with connection la-
bels to identify the VNIC to which a connection is bound.
A connection has two labels, independently and uniquely
chosen by the MobiDesk proxy and the server at the time
when the connection is setup. The two sides also exchange
their labels at connection setup time. Before a session is mi-
grated, the labels are not used since the tuple along is enough
to identify the connections of the session. After a session is
migrated, both sides will attach its peer’s label learned at
connection setup time for all connection between them. The
labels allow the connections to be uniquely identified even
when a session’s previous physical address is reused. We
illustrate these ideas using the example in Figure 3.

In Figure 3, when the connection [IP0, IP10] was setup
for session1 while it was on server IP1, the proxy creates a
VNIC for the connection and sends its label1 for the con-
nection. to server IP1; similarly, session1 on server IP1

10

also sends its label for the connection to the proxy (the ac-
tual label exchange is not shown). Before session1 was
migrated, its virtual address, which equals its physical ad-
dress IP10, cannot be reused by other sessions ; therefore
virtual address alone is enough to identify the connection
[IP0, IP10] and labels are not used in the absence of mi-
gration. After session1 is migrated to server IP2, however,
all packets from session1 to the proxy will have the label1
attached to them and allows the proxy to uniquely identify
the connection [IP0, IP10] that belongs to session1, instead
of anther session2 that reuses address IP10. For example,
when session2 reuses address IP10 and creates a connection
[IP10, IP0] between server IP1 and the proxy after session1
is migrated, the proxy will now have no problem letting
both connections coexist peacefully; since even though they
have exactly the same tuple [IP0, IP10] (at transport layer),
they each are bound to a different VNIC (with the same
address IP0), therefore no conflict occurs in the transport
layer. Remember that when session2 creates its connection
[IP0, IP10], connection labels will be exchanged between
server IP1 and the proxy (not shown). But since session2
hasn’t been migrated, the labels are not used and the con-
nection is solely identified by the tuple [IP0, IP10]. In other
words, packets belonging to session2’s connection will not
have label attached while packets belonging to session1’s
connection will have label1 attached. This allows the proxy
to correctly identify both connections and perform virtual-
physical translation as needed, e.g., session1’s connection is
mapped to [IP0, IP20] while no mapping is necessary for
session2’s connection.

6 Experimental Results

We have implemented a prototype MobiDesk system in
Linux. Our prototype consists of a Linux virtual display
driver that works with XFree86 and a loadable kernel mod-
ule for operating system and network virtualization. Our
prototype demonstrates that MobiDesk can be implemented
with no changes to the Linux kernel. We present some ex-
perimental results using our Linux MobiDesk prototype to
quantify its overhead and demonstrate its performance on
various desktop computing applications.

Figure 4 shows the isolated network test-bed we used for
our experiments. The test-bed consists of eight IBM Netfin-
ity 4500R machines and a Micron desktop PC. The Netfinity
machines each had a 933Mhz Intel Pentium-III CPU and
512MB RAM, and all of them were connected via giga-
bit Ethernet. The Micron desktop PC had a 450Mhz Intel
Pentium-II CPU and 128MB RAM, and was used as the Mo-
biDesk client. Four of the machines served as a MobiDesk
server infrastructure consisting of one NFS file server, one
proxy server running a delegate 8.9.2 general-purpose appli-
cation level proxy, and two computing session servers. One

�������

��	
�
����������� 	
�

��
��
�

��
��
�

�
���

������

������
������

�������

����
���

�����������

�������������

������
��

Figure 4: Experimental testbed

machine was connected on the client-side of the MobiDesk
proxy and was used as a NISTNet 2.0.12 WAN emulator
which could adjust the network characteristics seen by the
client. Four machines were connected to the client-side of
the WAN emulator, one Micron PC used as a MobiDesk
client, a second used as an external web server, a third
used as a packet monitor running Ethereal Network Ana-
lyzer 0.9.13 for measurement purposes, and the last used as
a client for network virtualization overhead measurements.
All of the machines ran Debian Linux, with the two comput-
ing session servers running Debian Stable with a Linux 2.4.5
kernel and Debian Unstable with a Linux 2.4.18 kernel, re-
spectively. The MobiDesk client machine was installed with
a dual-boot configuration and also ran Microsoft Windows
XP Professional.

6.1 MobiDesk Virtualization Overhead

To measure the cost of MobiDesk’s operating system vir-
tualization, we used a range of micro benchmarks and real
application workloads and measured their performance on
our Linux MobiDesk prototype and a vanilla Linux system.
Table 2 shows the seven micro-benchmarks and four appli-
cation benchmarks we used to quantify MobiDesk’s operat-
ing system virtualization overhead as well as the results for a
vanilla Linux system. To obtain accurate measurements, we
rebooted the system between measurements. Additionally,
the system call micro-benchmarks directly used the TSC
register available Pentium CPUs to record timestamps at the
significant measurement events. Each timestamp’s average
cost was 58 ns. The files for the benchmarks were stored
on the NFS server. All of these benchmarks were performed
in a chrooted environment on the NFS client machine run-
ning Debian Unstable with a Linux 2.4.18 kernel. Figure
5 shows the results of running the benchmarks under both
configurations, with the vanilla Linux configuration normal-
ized to one. Since all benchmarks measure the time to run
the benchmark, a small number is better for all benchmarks
results.

The results in Figure 5 show that the operating system

11

Name Description Linux
getpid averagegetpid runtime 350 ns
ioctl average runtime for the FIONREAD

ioctl
427ns

shmget-
shmctl

IPC Shared memory segment holding
an integer is created and removed

3361 ns

semget-
semctl

IPC Semaphore variable is created and
removed

1370 ns

fork-
exit

process forks and waits for child which
calls exit immediately

44.7 us

fork-sh process forks and waits for child to run
/bin/sh to run a program that prints
“hello world” then exits

3.89 ms

Apache Runs Apache under load and measures
average request time

1.2 ms

Make Linux Kernel compile with up to 10
process active at one time

224.5s

Postmark Use Postmark Benchmark to simulate
Sendmail performance

.002s

MySQL “TPC-W like” interactions benchmark 8.33s

Table 2: Application Benchmarks

virtualization overhead is small. MobiDesk incur less than
10% overhead for most of the micro-benchmarks and less
than 4% overhead for the application workloads. The over-
head for the simple system callgetpid benchmark is only
7% compared to vanilla Linux, reflecting the fact that vir-
tualization for these kinds of system calls only requires an
extra procedure call and a hash table lookup. The most
expensive benchmarks for MobiDesk issemget+semctl
which took 51% longer than vanilla Linux. The cost re-
flects the fact that our untuned MobiDesk prototype needs
to allocate memory and do a number of namespace transla-
tions. Theioctl benchmark also has high overhead, be-
cause of the 12 separate assignments it does to protect the
call against malicious root processes. This is large com-
pared to the simple FIONREADioctl that just performs
a simple dereference. However, since theioctl is simple,
we see that it only adds 200 ns of overhead over anyioctl .
For real applications, the most overhead was only four per-
cent which was for the Apache workload, where we used
the http load benchmark [25] to place a parallel fetch
load on the server with 30 clients fetching at the same time.
Similarly, we tested MySQL as part of a web-commerce sce-
nario outlined by TPC-W with a bookstore servlet running
on top of Tomcat with a MySQL back-end. The MobiDesk
overhead for this scenario was less than 2% versus vanilla
Linux.

To measure the cost of MobiDesk’s network virtualiza-
tion, we used netperf 2.2pl4 to measure MobiDesk network
I/O overhead versus vanilla Linux in terms of throughput,
latency, CPU utilization, and connection setup. We ran the
netperf client on the Netfinity client and the netperf server on
one of the MobiDesk compute servers. We used the Netfin-
ity client for these experiments instead of the MobiDesk

 0

 0.5

 1

 1.5

 2

fo
rk

ex
ec

fo
rk

ex
it

fo
rk

sh

ge
tp

id

io
ct

l

se
m

ge
t

sh
m

ge
t

P
os

tM
ar

k

A
pa

ch
e

M
ak

e

M
yS

Q
L

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

Plain Linux

 0

 0.5

 1

 1.5

 2

fo
rk

ex
ec

fo
rk

ex
it

fo
rk

sh

ge
tp

id

io
ct

l

se
m

ge
t

sh
m

ge
t

P
os

tM
ar

k

A
pa

ch
e

M
ak

e

M
yS

Q
L

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

MobiDesk

Figure 5: Operating System Virtualization Overhead

client to so that all machines used for the network virtual-
ization measurements were connected via gigabit Ethernet.
To ensure that we were accurately measuring the perfor-
mance overheads of our systems as opposed to raw network
link performance, we used gigabit Ethernet for our experi-
ments so that the network link capacity could not be satu-
rated easily. All connections from the netperf client to the
netperf server were made through the delegate proxy. We
compared the performance of three different system config-
urations: Vanilla, MobiDesk1, and MobiDesk2. The Vanilla
system is a stock Linux system without MobiDesk loaded
into the kernel. The MobiDesk1 and MobiDesk2 are sys-
tems with MobiDesk loaded. On MobiDesk1, no connec-
tions are migrated and hence only connection virtualiza-
tion is performed; on MobiDesk2, all connections are mi-
grated and hence both connection virtualization and virtual-
physical mapping are performed.

Figures 6 to 8 show the results for running the net-
perf throughput experiment, latency experiment, and con-
nection setup experiment. CPU utilization measurements
are omitted here since they show similar overhead results.
The throughput experiment simply measures the throughput
achieved when sending messages of varying sizes as fast as
possible from the client to the server. Figure 6 shows the
throughput overhead for the three systems we tested. We can
see that MobiDesk1 performs very close to Vanilla, with an
overhead of about 1.4Mbits/second. MobiDesk2 shows the
throughput overhead due to the virtual-physical mapping,
which is around 10Mbits/second.

The latency experiment measures the inverse of the trans-
action rate, where a transaction is the exchange of a request
message of size 128 bytes and a reply message of varying
sizes between the client and the server over a single con-
nection. Figure 7 shows the latency overhead for the three
systems we tested. The results bear the same characteris-

12

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

MobiDesk Throughput Overhead

Vanilla

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

MobiDesk Throughput Overhead

MobiDesk1

 100

 150

 200

 250

 300

 350

 400

 450

 500

 32 64 128 256 512 1024 2048 4096

T
hr

ou
gh

tp
ut

 (
M

bi
ts

/s
)

Message Size (bytes)

MobiDesk Throughput Overhead

MobiDesk2

Figure 6: Virtualization Throughput Overhead

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

MobiDesk Latency Overhead

MobiDesk2

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

MobiDesk Latency Overhead

MobiDesk1

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 32 64 128 256 512 1024 2048 4096

R
ou

nd
 T

rip
 T

im
e

(u
s)

Message Size (bytes)

MobiDesk Latency Overhead

Vanila

Figure 7: Virtualization Latency Overhead

tic as that for the throughput overhead. Performance differ-
ence between Vanilla and MobiDesk1 is about 9.4 microsec-
onds; while latency due to the virtual-physical mapping in
MobiDesk2 can be observed to be around 40 microseconds.
Note that there is a strange increase of latency at message
size 128 bytes. The cause of this behavior is not clear to
us. Interestingly, a strange drop of transaction rate is also
observed in our connection setup measurement we will be
presenting in the next section. We conjecture that it might
have something to do with how the delegate proxy manages
its buffers.

The TCP connection setup experiment is the same as the
latency experiment except that a new connection is used for
every request/response transaction. This experiment simu-
lates the interaction between a client and server in which
many short-lived connections are opened and closed. Figure
8 shows the TCP connection setup overhead for Vanilla and
MobiDesk1. Note that since connection setup occurs before
migration, there is no virtual-physical mapping overhead as-
sociated with connection setup, therefore this measurement

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

MobiDesk Connection Setup Overhead

Vanilla

 350

 400

 450

 500

 550

 600

 650

 700

 32 64 128 256 512 1024 2048 4096

C
on

ne
ct

io
n

S
et

up
 (

tr
an

sa
ct

io
ns

/s
)

Message Size (bytes)

MobiDesk Connection Setup Overhead

MobiDesk1

Figure 8: TCP Connection Setup Overhead

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

CITRIX VNC SunRay MobiDesk PC

La
te

nc
y

(s
)

Platform

100Mb-0ms
100Mb-33ms

Figure 9: Web benchmark: Average per page latency

is not applicable to MobiDesk2. From the figure we can see
that the overhead is fewer than 10 transactions per second.

6.2 MobiDesk Application Performance

To evaluate MobiDesk performance on real desktop applica-
tions, we conducted experiments to measure the display per-
formance of MobiDesk for web and multimedia applications
and the migration performance of MobiDesk in moving a
user’s desktop computing session from one server to an-
other. To measure display performance, we compared Mo-
biDesk against running applications on a local PC. We also
compared MobiDesk running with XFree86 4.3.0 against
other popular commercial thin-client systems, including Cit-
rix MetaFrame XP for Windows [1], VNC 3.3.7 for Linux
[29], and Sun’s SunRay 2.0 [37]. All of the thin-client sys-
tems except SunRay, used the Micron PC as the client and a
Netfinity server as the server. SunRay used a SunRay I hard-
ware thin client and a Solaris 9 v210 server since it does not
run with the common hardware/software configuration used

13

1.00

10.00

100.00

1000.00

10000.00

CITRIX VNC SunRay MobiDesk PC

D
at

a
S

iz
e

(K
B

)

Platform

100Mb-0ms
100Mb-33ms

Figure 10: Web benchmark: Average per page data transfer

by the other systems.
We evaluated display performance using two popular

desktop application scenarios, web browsing and video
playback. Web browsing performance was measured using
a Mozilla 1.4 browser to run a benchmark based on the Web
Text Page Load test from the Ziff-Davis i-Bench benchmark
suite [43]. The benchmark consists of a sequence of 54 web
pages containing a mix of text and graphics. The browser
window was set to 1024x768 for all platforms measured.
Video playback performance was measured using a video
player to play a 34.75 s video clip of original size 352x240
pixels displayed at 1024x768 full screen resolution. We used
the packet monitor in our testbed to measure benchmark
performance on the thin-client systems using slow-motion
benchmarking [20], which allows us to quantify system per-
formance in a non-invasive manner by capturing network
traffic. The primary measure of web browsing performance
was the average page download latency. The primary mea-
sure of video playback performance was video quality [20],
which accounts for both playback delays and frame drops
that degrade playback quality. For example, 100 percent
video quality means that all video frames were displayed at
real-time speed. On the other hand, 50 percent video quality
could mean that half the video frames were dropped when
displayed at real-time speed or that the clip took twice as
long to play even though all of the video frames were dis-
played.

For both benchmarks, we measured all systems in two
representative network scenarios: LAN, with an available
bandwidth of 100Mbps and no introduced latency (100Mb-
0ms), and WAN, with 100 Mbps available bandwidth and
33 ms added latency (100Mb-33ms), for a 66 ms round trip
time. Our WAN network environment mimics the network
characteristics of high bandwidth wide area networks, such
as the Internet2. For the WAN tests we increased the default
TCP window size for both server and client for the platforms
that used TCP. SunRay was unaffected by this since it uses

0%

20%

40%

60%

80%

100%

CITRIX VNC SunRay MobiDesk PC

V
id

eo
 Q

ua
lit

y

Platform

100Mb-0ms
100Mb-33ms

Figure 11: Video benchmark: Video Quality

UDP.
Figures 9 and 10 show the web browsing performance

results in terms of the perceived latency, and average per
page data transfer, respectively. Figures 11 and 12 show the
video playback performance results in terms of the video
quality and total data transferred, respectively. Figure 10
shows that the local PC is the most bandwidth efficient plat-
form for web browsing, but Figure 9 shows that MobiDesk
provides the smallest web page download latencies. Mo-
biDesk outperforms the local PC in part because it leverages
the faster server provided by the MobiDesk infrastructure to
process web pages more quickly than the local PC running
the web browser on its slower client. The results show that
MobiDesk’s latency-sensitive design provides faster perfor-
mance than any of the other platforms. The worst web
browsing platform is Citrix MetaFrame, which adopts a
more high-level display approach that results in poor WAN
performance because of the tight coupling required between
the application running on the server and the Citrix viewer
running on the client. VNC has the second worst WAN web
browsing performance in part because it relies on a client
pull model for sending display updates as opposed to Mo-
biDesk’s server push model, which avoids round trip laten-
cies providing better interactive response time. In addition,
as a response to the limited WAN network conditions VNC
adaptively uses more efficient compression algorithms, thus
reducing its data transfer, but increasing its latency, and
worsening its overall web browsing performance.

Figure 12 shows that the local PC is also the most band-
width efficient platform for video playback, but Figure 11
shows that MobiDesk provides perfect video quality in the
same manner as the local PC. Figure 11 also shows that all
of the other platforms deliver very poor video quality. They
suffer from their inability to distinguish video data from nor-
mal display updates and apply ineffective compression algo-
rithms on the video data, which are unable to keep up with
the stream of updates being generated. In contrast, the re-

14

1.00

10.00

100.00

1000.00

10000.00

CITRIX VNC SunRay MobiDesk PC

D
at

a
S

iz
e

(M
B

)

Platform

100Mb-0ms
100Mb-33ms

Figure 12: Video benchmark: Total data transferred at 24fps

sults show that MobiDesk’s ability to leverage local client
video hardware in delivering video using alternative YUV
formats provides substantial performance benefits over other
thin-client systems. VNC provides the worst overall perfor-
mance primarily because of its use of a client pull model in-
stead of MobiDesk’s server push model. In order to display
each video frame, the VNC client needs to send an update
request to the server. Clearly, video frames are generated
faster than the rate at which the client can send requests to
the server. Finally, Figure 12 shows that MobiDesk’s 100%
video quality does not imply high resource utilization. The
total data transferred translates into a bandwidth utilization
of roughly 24Mbps. While VNC and Citrix consume less
bandwidth, their video quality is too low to provide useful
video delivery.

To measure real application performance in terms of the
cost of MobiDesk migration, we migrated a complete KDE
desktop computing environment from one MobiDesk server
to another. The applications running in the KDE comput-
ing session when it is migrated are described in Table 3.
The KDE session had over 30 different processes running,
providing the desktop applications, as well as substantial
underlying window system infrastructure, including inter-
application sharing, a rich desktop interface managed by a
window manager with a number of applications running in
a panel such as the clock. To demonstrate our MobiDesk
prototype’s ability to migrate a complete computing ses-
sion across Linux kernels with different minor versions, we
checkpointed the KDE session on the 2.4.5 kernel client ma-
chine and restarted it on the 2.4.18 kernel machine. For
this experiment, the workloads were checkpointed to and
restarted from local disk. The resulting checkpoint and
restart times were less than a second, .85 s and .94 s, re-
spectively. The checkpointed image was only 35 MB for a
full desktop computing session, which can be easily com-
pressed using bzip2 down to 8.8 MB. Our results show that
MobiDesk can be used to provide fast migration of comput-

Applications Description
MobiDesk Remote display server
KDE Entire KDE 2.2.2 environment, including win-

dow manager, panel and assorted background
daemon and utilities

SSH openssh 3.4p1 client inside a KDE konsole ter-
minal connected to a remote host

Shell The Bash 2.05a shell running in a konsole ter-
minal

KGhostView A PDF viewer with a 450k 16 page PDF file
loaded

Konqueror A modern standards compliant web browser
that is part of KDE

KOffice The KDE word processor and spreadsheet pro-
grams

Table 3: Migrated KDE Desktop Computing Session

ing sessions among MobiDesk servers with modest check-
point state.

7 Related Work

MobiDesk provides a utility-computing infrastructure for
desktop computing. Other utility computing approaches
have been proposed, primarily in the context of web services
and grid computing [12, 13]. For example, IBM’s Oceano
project [3] proposed the use of a pool of web servers that
could be reallocated to different customers based on their
usage. Web services utilities focus on web applications and
grid computing utilities focus on scientific applications and
other applications written specifically for grids. These ap-
proaches do not support hosting general desktop computing
environments, which is the focus of MobiDesk. Plan9 [23]
also provides an infrastructure-based approach to desktop
computing, but does not provide the same kind of mobility
support with unmodified applications and operating system
kernels. More generally, IBM’s on-demand computing and
Hewlett-Packard’s utility computing initiative also demon-
strate industry interest and trends toward a utility computing
model.

MobiDesk display virtualization provides a display model
similar to other thin-client approaches [1, 10, 29, 32, 37].
However, these approaches were not designed for WAN
environments with higher network latencies. Approaches
such as Citrix MetaFrame operate using higher-level display
primitives that are designed more for low bandwidth envi-
ronments but can result in worse WAN performance [16].
MobiDesk’s virtual device driver approach is most similar
to SunRay [37], but MobiDesk provides more effective map-
ping of display commands to protocol primitives to signif-
icantly improve performance. MobiDesk also employs ad-
ditional mechanisms for latency-sensitive design including
command scheduling that make its design more suitable for
WAN environments.

15

MobiDesk operating system virtualization is similar to
the Zap system [21], which supports transparent migration
across systems running the same kernel version. Unlike Zap,
MobiDesk is designed explicitly for supporting user com-
puting sessions and supports transparent migration across
different minor kernel versions, which is essential for pro-
viding application availability in the presence of operating
system security and maintenance upgrades. Many other
systems have been proposed to support process migration
[28, 19, 4, 30, 11, 6, 9, 18, 26, 24, 8], but these systems
do not provide general migration across independent com-
modity operating systems of unmodified legacy applications
which use standard operating system services. TUI [34] is
one of the few systems that provides support for process
migration across machines running different operating sys-
tems and hardware architectures. Unlike MobiDesk, TUI
has to compile applications on each platform using a spe-
cial compiler and does not work with unmodified legacy ap-
plications. Virtual machine monitors (VMMs) provide an
alternative virtualization approach that can be used to mi-
grate an entire operating system environment [31]. Unlike
MobiDesk, VMMs decouple processes from the underlying
machine hardware, but tie them to an instance of an oper-
ating system. As a result, VMMs cannot migrate processes
apart from that operating system instance and cannot con-
tinue running those processes if the operating system in-
stance ever goes down, such as during security upgrades.
In contrast, MobiDesk decouple process execution from the
underlying operating system which allows it to migrate pro-
cesses to another system when an operating system instance
is upgraded.

MobiDesk network virtualization provides mobile com-
munication support. Many other approaches have been de-
veloped for network mobility [7, 14, 15, 22, 27, 35, 36, 38,
40, 41, 42]. However, with the exception of [41], none
of them is designed with process migration integration in
mind. These approaches often also require network infras-
tructure support to address general mobility issues (e.g.,
locating a mobile host) that do not apply to the applica-
tion environment of MobiDesk. Transport layer solutions
such as [35, 36] can provide fine-grain connection migration
without additional network infrastructure support. However,
they require modifying the transport protocol (TCP in par-
ticular) itself, making them more difficult to deploy. Appli-
cation layer solutions such as [27, 41, 42] can also provide
fine-grain connection migration without additional network
infrastructure support; neither do they require modifying the
transport protocol. However, the migration is emulated by
closing the old TCP connection and opening a new one.
The emulation requires double buffering at the application
layer to account for in-flight data that have been received
by TCP but not yet delivered to the application; since these
data are lost when the old connection is closed. This re-
sults in substantial network I/O overhead [41] even when

the connections are not migrated. In contrast, MobiDesk
employs a novel low-overhead virtualization mechanism in-
tegrated with process migration that provides network mo-
bility without requiring network infrastructure support and
transport protocol change.

8 Conclusions

We have introduced MobiDesk, an architecture for central-
ized hosting of desktop computing sessions. MobiDesk
hosts computing sessions within virtualized and private en-
vironments by abstracting three key resources: display, op-
erating system and network. Display virtualization allows
MobiDesk to provide fast remote access to sessions across
LAN and WAN environments. Operating system virtualiza-
tion allows MobiDesk to migrate sessions among hosting
servers to provide high availability computing in the pres-
ence of server maintenance and upgrades. Network virtu-
alization allows MobiDesk to transparently maintain persis-
tent connections to unmodified outside hosts, even as a ses-
sion migrates from one server to another.

We have implemented and evaluated the performance of a
MobiDesk prototype in Linux. Our implementation demon-
strates that MobiDesk can support unmodified applications
in hosted computing sessions without any changes to operat-
ing system kernels, network infrastructure, or network pro-
tocols. Our experimental results with real applications and
hosted desktop computing sessions show that MobiDesk has
low virtualization overhead, can migrate computing sessions
with subsecond checkpoint/restart times, and provides supe-
rior display performance over other remote display systems.
MobiDesk is unique in its ability to offer a complete desk-
top experience remotely with full-motion video support. It
can even provide better performance than running a desktop
session on a local PC for more resource constrained clients.
Given its performance and centralized hosting model, Mo-
biDesk provides the foundation for a utility computing in-
frastructure that can dramatically reduce the management
complexity and costs of desktop computing.

References

[1] Citrix ICA Technology Brief. Technical White Paper,
Boca Research, Boca Raton, FL, 1999.

[2] The 100x100 Project. http://
100x100network.org/ .

[3] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, and
M. Kalantar. Oceano: SLA based Management of a
Computing Utility. InProceedings of IFIP/IEEE Inter-
national Symposium on Integrated Network Manage-
ment, May 2001.

16

[4] Y. Artsy, Y. Chang, and R. Finkel. Interprocess com-
munication in charlotte.IEEE Software, pages 22–28,
Jan 1987.

[5] N. Bansal and M. Harchol-Balter. Analysis of SRPT
scheduling: investigating unfairness. InSIGMET-
RICS/Performance, pages 279–290, 2001.

[6] A. Barak and R. Wheeler. MOSIX: An Integrated Mul-
tiprocessor UNIX. InProceedings of the USENIX Win-
ter 1989 Technical Conference, pages 101–112, San
Diego, CA, Feb. 1989.

[7] P. Bhagwat and C. Perkins. A Mobile Networking Sys-
tem based on Internet Protocol (IP). InProceedings of
USENIX Symposium on Mobile and Location Indepen-
dent Computing, pages 69–82, Cambridge, MA, Aug.
1993.

[8] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and
J. Walpole. MPVM: A migration transparent version
of PVM. Computing Systems, 8(2):171–216, 1995.

[9] D. Cheriton. The V distributed system.Communica-
tions of the ACM, 31(3):314–333, Mar 1988.

[10] B. Cumberland, K. Schauser, and M. Munke.Mi-
crosoft Windows NT Server 4.0, Terminal Server Edi-
tion: Technical Reference. Microsoft Press, Redmond,
WA, Aug. 1999.

[11] F. Douglis and J. Ousterhout. Transparent process mi-
gration: Design alternatives and the sprite implemen-
tatio. Software - Practice and Experience, 21(8):757–
785, Aug. 1991.

[12] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Archi-
tecture for Distributed Systems Integration. InOpen
Grid Service Infrastructure WG, Global Grid Forum,
June 2002.

[13] D. Gannon, R. Bramley, G. Fox, S. Smallen, A. Rossi,
R. Ananthakrishnan, F. Bertrand, K. Chiu, M. Far-
rellee, M. Govindaraju, S. Krishnan, L. Ramakrish-
nan, Y. Simmhan, A. Slominski, Y. Ma, C. Olariu, and
N. Rey-Cenvaz. Programming the Grid: Distributed
Software Components, P2P and Grid Web Services for
Scientific Applications. InCluster Computing, vol-
ume 5, 2002.

[14] J. Ioannidis, D. Duchamp, and G. Q. Maguire. IP-
based Protocols for Mobile Internetworking. InPro-
ceedings of ACM SIGCOMM, pages 235–245, 1991.

[15] D. B. Johnson and C. Perkins. Mobility support in
ipv6. draft-ietf-mobileip-ipv6-16.txt, IETF, Mar. 2002.

[16] A. Lai and J. Nieh. Limits of Wide-Area Thin-Client
Computing. InProceedings of the ACM International
Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS 2002), pages 228–239,
Marina del Rey, CA, June 2002.

[17] D. Legard. Korea to build 100Mbps In-
ternet system. InforWorld, Nov.18 2003.
http://www.infoworld.com/article/
03/11/18/HNkorea_1.html .

[18] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and migration of unix processes in the con-
dor distributed processing system. Technical Report
1346, University of Wisconsin Madison Computer Sci-
ences, Apr. 1997.

[19] S. J. Mullender, G. v. Rossum, A. S. Tanenbaum,
R. v. Renesse, and H. v. Staveren. Amoeba a dis-
tributed operating system for the 1990s.IEEE Com-
puter, 23(5):44–53, May 1990.

[20] J. Nieh, S. J. Yang, and N. Novik. Measuring Thin-
Client Performance Using Slow-Motion Benchmark-
ing. ACM Transactions on Computer Systems (TOCS),
21(1):87–115, Feb. 2003.

[21] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The De-
sign and Implementation of Zap: A System for Mi-
grating Computing Environments. InProceedings of
the Fifth Symposium on Operating Systems Design and
Implementation (OSDI 2002), Boston, MA, Dec. 2002.

[22] C. Perkins. IP Mobility Support for IPv4, revised.
draft-ietf-mobileip-rfc2002-bis-08.txt, Internet Draft,
Sept. 2001.

[23] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Technical White Paper, Bell Labo-
ratories, Murray Hill, New Jersey, 1995.

[24] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent checkpointing under unix. InProceedings
of Usenix Winter 1995 Technical Conference, pages
213–223, New Orleans, LA, Jan 1995.

[25] J. Poskanzer. http://www.acme.com/
software/http_load/ .

[26] J. Pruyne and M. Livny. Managing checkpoints for
parallel programs. In2nd Workshop on Job Scheduling
Strategies for Parallel Processing (In Conjunction with
IPPS ’96), Honolulu, Hawaii, Apr. 1996.

[27] X. Qu, J. X. Yu, and R. P. Brent. A Mobile TCP Socket.
In International Conference on Software Engineering
(SE ‘97), San Francisco, CA, Nov. 1997.

17

[28] R. Rashid and G. Robertson. Accent: A communica-
tion oriented network operating system kernel. InPro-
ceedings of the 8th Symposium on Operating System
Principles, pages 64–75, Dec 1984.

[29] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing.IEEE Inter-
net Computing, 2(1):33–38, Jan-Feb 1998.

[30] M. Rozier, V. Abrossimov, F. Armand, I. Boule,
M. Gien, M. Guillemont, F. Herrman, C. Kaiser,
S. Langlois, P. Ĺeonard, and W. Neuhauser. Overview
of the Chorus distributed operating system. InWork-
shop on Micro-Kernels and Other Kernel Architec-
tures, pages 39–70, Seattle WA (USA), 1992.

[31] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the migration of
virtual computers. InProceedings of the 5th Sympo-
sium on Operating Systems Design and Implementa-
tion, December 2002.

[32] R. W. Scheifler and J. Gettys.X Window System. Dig-
ital Press, third edition, 1992.

[33] B. Schneier.Applied Cryptography. John Wiley and
Sons, second edition, 1996.

[34] P. Smith and N. C. Hutchinson. Heterogeneous process
migration: The Tui system.Software – Practice and
Experience, 28(6):611–639, 1998.

[35] A. C. Snoeren and H. Balakrishnan. An End-to-End
Approach to Host Mobility. InProceedings of 6th In-
ternational Conference on Mobile Computing and Net-
working (MobiCom’00), Boston, MA, Aug. 2000.

[36] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Mi-
gratory TCP: Highly available internet services using
connection migration. InProceedings of ICDCS, pages
17–26, 2002.

[37] Sun Ray Integrated Solutions.http://www.sun.
com/products/sunray1/ .

[38] F. Teraoka, Y. Yokote, and M. Tokoro. A Network Ar-
chitecture Providing Host Migration Transparency. In
Proceedings of ACM SIGCOMM, Sept. 1991.

[39] VMware, Inc.http://www.vmware.com .

[40] P. Yalagandula, A. Garg, M. Dahlin, L. Alvisi, and
H. Vin. Transparent Mobility with Minimal Infrastruc-
ture. InTechnical Report 01-30, University of Texas at
Austin, June 2001.

[41] V. C. Zandy and B. P. Miller. Reliable Network
Connections. InProceedings of 8th ACM Interna-
tional Conference on Mobile Computing and Network-
ing (Mobicom ’02), Atlanta, GA, Sept. 2002.

[42] Y. Zhang and S. Dao. A Persistent Connection Model
for Mobile and Distributed Systems. In4th Interna-
tional Conference on Computer Communications and
Networks (ICCCN), Las Vegas, NV, Sept. 1995.

[43] i-Bench version 1.5, Ziff-Davis, Inc. http://
i-bench.zdnet.com .

18

