
A Virtual Environment for Collaborative Distance Learning
With Video Synchronization

Suhit Gupta

Columbia University
Dept. of Computer Science
New York, NY 10027, US

001-212-939-7184
suhit@cs.columbia.edu

Gail Kaiser
Columbia University

Dept. of Computer Science
New York, NY 10027, US

001-212-939-7000
kaiser@cs.columbia.edu

Abstract
We present a 3D collaborative virtual environment,
CHIME, in which geographically dispersed students can
meet together in study groups or to work on team
projects. Conventional educational materials from
heterogeneous backend data sources are reflected in the
virtual world through an automated metadata extraction
and projection process that structurally organizes
container materials into rooms and interconnecting doors,
with atomic objects within containers depicted as
furnishings and decorations. A novel in-world authoring
tool makes it easy for instructors to design environments,
with additional in-world modification afforded to the
students themselves, in both cases without programming.
Specialized educational services can also be added to
virtual environments via programmed plugins. We present
an example plugin that supports synchronized viewing of
lecture videos by groups of students with widely varying
bandwidths.

Key Words
Collaborative environments, metadata, visualization,
video synchronization

1. Introduction

Learning is in large part a social activity [22]. Enabling
social interaction among students is of paramount
importance in courses based on team projects, where a
high degree of cooperation is required, but challenging to
achieve among distance learners. There has been research
in the field of collaborative environments for seamless
association between non-collocated users. Approaches
have ranged from asynchronous systems like email and
synchronous applications like instant messaging to more
sophisticated approaches like collaborative virtual
environments (CVEs) where users can visualize their
teammates in a MUD (multi-user domain) environment.

CHIME (Columbia Hypermedia IMmersion
Environment) is a CVE that supports groupspaces [12],
enabling, users to interact with one another through
avatars and manipulating objects in the world that are
mapped to user-specified backend data sources.
Instructors set up the collaborative information space by
supplying CHIME with references to data sources they

wish to visualize. The server then extracts metadata from
the specified source (metadata is just data about data [6]).
It is this metadata that is ultimately visualized, after 3D
model information is applied to it based on either preset
defaults or instructor-specified visualizations. The world
itself serves quite effectively as an authoring tool, can be
viewed and manipulated by teams of users, and can be
augmented at runtime allowing users to pull in related
educational information as needed.

CHIME includes a general plugin framework supporting
special tools, such as remote laboratory resources, but to
date only one substantial example has been implemented.
This plugin, VECTORS (Video Enhanced Collaboration
for Team Oriented Remote Synchronization), enables a
group of distance learning students to watch lecture
videos in synchrony, seeing “the same thing at the same
time” semantically, even though users with different
bandwidths may see different frame sequences. This
plugin framework intends to address similar goals to MIT
iLabs (http://i-lab.mit.edu), which focuses on web-
accessible labs for science and engineering courses.

The above models helped create a framework well-suited
for distance education. We present CHIME’s user view,
followed by the architectural components that enable our
in-world authoring mechanisms, and describe two
generations of the video synchronization facility. We
discuss related work and conclude with future directions.
Due to space constraints, all figures are at the end.

2. CHIME User View

CHIME logs the user onto the system (Figure 1) by taking
the user’s access credentials from the client and
forwarding to the server. The user finds herself in an
empty starting room from where she can choose to enter a
pre-built space (one or more rooms) by opening one of the
existing doors, or start building a new space.

Once a space is populated, objects in the world can be
clicked on, moved to different locations, or right-clicked
to access more information. One can move objects from
one room to another without affecting the backend data
sources. This is highly advantageous, as an instructor
could set up the initial space for a class, choosing a
variety of educational materials from many heterogeneous

data sources, but reflected according to a “theme” in one
homogenous environment. Students can then rearrange
them as desired (as permitted by access controls). Their
changes are reflected to all users.

Additionally, each user has her own 2.5D overview map
of the world to help with navigation. To enhance the
group experience, instant messaging and chat are built in.
Each user is also provided with a history of her actions, to
make it easy to navigate back to a previous room.
Example screenshots can be seen in Figures 2, 3 and 4.

3. CHIME Architecture and Components

CHIME is a framework for distributed metadata-based
information management and visualization environments,
designed to enable sharing of heterogeneous applications
and data in a homogeneous virtual world. Our key insight
is to not directly map the actual data into the world, which
typically would involve substantial programming, but
instead to automatically extract metadata about the data
specified and visualize that metadata according to pre-
programmed 3D objects. This also saves the system from
downloading large amounts of data a priori and/or
mirroring it in a local repository. The actual data is
retrieved over the Internet only when a user actually
accesses it, and then shown separately in the appropriate
data-specific editor or viewer (as in a Web browser).

FRAX – CHIME is composed of a centralized server
component and many distributed 3D client front-ends.
When data is selected to be added to a virtual world, the
CHIME server invokes its metadata extraction engine,
FRAX (File Recognize And XMLify). FRAX is a general
purpose metadata extraction and management toolset and
API. While it was engineered primarily to satisfy
CHIME’s requirements, it can also serve as a standalone
component. FRAX addresses two key challenges: 1. the
extraction of relevant metadata from an extensible set of
data sources; and 2. the efficient management and caching
of relevant metadata. Analogous to a Web browser,
FRAX attempts to communicate with the indicated data
source using one of many preconfigured protocols
(HTTP, FTP, SQL, etc.). Once the connection has been
established, it uses MIME type matching to determine the
kind of component that needs to be used in order to
extract metadata. FRAX then uses one of several pre-
written components to extract metadata from the data
source. Further FRAX components can be written by
extending the default interface provided with the system.
The metadata extracted by the component is represented
as an XML document to capture structural relationships
and provide a rich source of information to the server.

VEM - The extracted metadata is parsed and placed in a
database where 3D model information (stored in
3DStudio’s .3DS format) is assigned by the server’s
Virtual Environment Modeler (VEM), based on an
administrator’s or instructor’s provided preset defaults.

VEM’s 3D model repository can be extended by a
graphics artist. The assignment of the 3D representation
can be done via simple mapping rules or according to
complex “themes” (visually related collections of 3D
objects). Container relationships or hypermedia links that
may exist in the data can be followed, upon author
request, and are represented as doors. The new space
created beyond the door is populated with data
representing the containee(s) or followed link. Therefore,
instructors (or TAs) can quickly and easily set up the
environment they want for their students.

The updated contents of the virtual world are then pushed
to currently connected clients in the affected area, if any;
the virtual world can thus be modified while in use. This
is accomplished using an Internet-scale, publish-subscribe
event system, U. Colorado’s Siena [7].

4. In-World Authoring

An author identifies each data source to include in the
world with a URI-like reference and user credentials, for
FRAX metadata extraction. The author then specifies the
VEM mapping between classes of metadata objects and
3D models. The client displays the appropriate 3D
objects, typically according to built-in layout algorithms.
However, the author of a space can provide specific
layout information for each of the objects, and can also
incrementally update object class-to-3D model mappings
as desired. All this is done while the authoring user is “in”
the virtual world. If a space is modified while other
clients are in the affected room(s), the scene is redrawn
for them (after prompting to avoid disorientation).

An instructor would typically create the world and
populate it with class materials, such as the course
website and documents required for completion of
assignments and projects. Consider container type objects,
e.g., representing directories in the backend source. When
the instructor double-clicks within CHIME, the directory
is automatically reflected in a new room extending from
the previous room, and populated with all the objects
mapped from those directories. Thus, a hierarchy in the
virtual environment mirrors (the metadata of) the original
data source. An instructor can also define files to be
containers of application-specific attributes. For instance,
an HTML file can contain links, images and text; a Word
document could be comprised of images, tables, text and
equations. Some data, of course, are represented as atomic
objects, either furnishings or decorations in rooms. Given
a FRAX component for extracting metadata from each
(sub) element as well as VEM 3D objects with which to
represent them, CHIME can visualize any data type. Since
a CVE does not have to match real world geometry, one
can have an arbitrarily complex world layout – although
simple is recommended.

The above process allows student users as well as
instructors to create rooms, add new objects inside rooms,

etc., to the degree permitted by the access controls
defined by the instructor (or administrator). User changes
are seen by other users in the same space.

5. Lecture Video Synchronization

One of our goals was to integrate video synchronization
for groups of students. The Columbia Video Network
(CVN) offers taped courses over the Internet, primarily to
MS candidates in the engineering school. These courses
work well when the class is simply a series of lectures and
homework assignments that do not require group work.
However, for courses like Software Engineering, where a
large team project is one of the pedagogical requirements,
CVN is unable to deliver an experience comparable to
that of on-campus students, since the students registered
for CVN courses are geographically dispersed and often
never meet each other in person. Further, CVN students
can benefit from study groups for non-project courses,
where they might want to watch lecture videos together
and discuss them while in progress (or “paused”).

Students are not required by CVN to have the same
bandwidth or computation resources. To facilitate
synchronized video feeds to diverse clients, we deliver
pre-processed semantically structured videos over the
heterogeneous Internet links to heterogeneous platforms
in an efficient and adaptive manner. The semantic
structuring of the CVN lecture videos is done by an
algorithm developed by Kender and Liu [17], who pre-
process the taped lectures and extract a series of jpeg
images that are representative of the entire video segment.
Instead of following approaches like those employed in
commercial multimedia applications like Real Player or
QuickTime that drop every nth frame upon encountering
network lag, which may have the negative side-effect of
dropping important segments of the video, their process
produces several levels of key frame density, each feed
targeted at a different bandwidth level. Their algorithms
are optimized for typical lecture videos, with a particular
emphasis on capturing unobstructed views of full
blackboards. (They are not intended for rapidly changing
action such as sports clips.) Given the resulting set of
video streams, each stream consisting of the best
representation of the content for a particular bandwidth
level, our goal was to give each user the best possible set
of frames while staying synchronized with other users
simultaneously watching the same video.

Our approach is three-fold:
1. Prefetch as many of the key frames as possible at the
highest possible quality to each client before a pre-
determined meeting time for the group. However, videos
may be watched immediately without any prior notice.
2. Probe the clients’ bandwidth as well as their video
cache, and report these results periodically.
3. React to bandwidth changes in real time by lowering or
raising the client to a lower or higher quality feed.

All the video stream feeds are made available by the
video server (distinct from the main CHIME server).
Probing is done by using software probes [14] [15], with
reports of any changes sent to the respective clients.
Based on which video frames it has in cache, its current
position in the video and its current bandwidth, the client
determines the highest quality frame it can retrieve in the
time remaining before it must be viewed, and downloads
it. This continues until the end of the video. If a client
finds itself lagging, it automatically drops to a lower
quality stream in order to catch up, and will move to a
higher resolution feed when possible. See Figures 5 and 6.

We used a testbed of up to 10 clients with clock speeds
ranging from 400MHz to 3GHz, and connection speeds
ranging from 56Kbit modems up to 100Mbit Ethernet.
The videos always synchronized between all 10 clients
within an error of 4.38 seconds, i.e., at no point was any
client-viewed frame more than 4.38 seconds ahead or
behind any other. However, after approx. 7 minutes,
independent of which video was playing, the testbed
started showing more of a disparity on the laptops without
native 3D hardware support built in – which therefore
have to render the virtual environment in Software mode.

The problem appears to be caused by a combination of
inefficiencies in the 3D graphics engine (CHIME uses the
open-source Crystal Space, http://crystal.sourceforge.net),
and the fact that the video synchronization uses the same
peer-to-peer UDP streams among clients that are also
used to track user movements in the virtual world. The
server knows where all the users are at any given time,
but only at a room level granularity. As mentioned earlier,
all communication between the server and the clients
takes place over the event system. However, since user
position synchronization is a high frequency process, the
publish/subscribe system did not make for a good vehicle
for this job, especially since the event system would add a
substantial filtering and routing latency to each event even
if it was as simple as coordinates in 3-space. The server
instead sends every client an updated list of users (clients)
in the same room and the client then sends position
updates to each of these other clients over a UDP stream.
This peer-to-peer model is a proven one that works well
for commercial massively multiplayer game systems [13],
but broke down with the video synchronization overload

Our lab then developed another video synchronization
system, AI2TV (Adaptive Interactive Internet Team
Video) [21], which operates independently of the 3D
world in another window on the user’s desktop. It uses the
same video server with the same semantically compressed
videos. Here an “autonomic” feedback control loop
monitors the clients and dynamically adjusts their
configurations. AI2TV inserts sensors [14] into the video
clients to determine what frames are actually being
shown, and the actual bandwidth. All sensor data is input
to a workflow engine that instantiates and coordinates
local actuators to dynamically adjust for each client the

selection of which compression level and which next
frame to pull from the video server. The workflow also
instructs clients to prefetch from possibly higher
resolution streams into their caches during idle time, e.g.,
when the video is “paused”. Experimental trials showed
much higher “goodness”, our metric weighting aggregate
resolution and skew. The next step is to integrate AI2TV
into CHIME, to approximate the view of Figures 5 and 6.

6. Related Work

One key concern of research in educational technology
has been social interactions, e.g., attempts to improve the
user interfaces to enable seamless communication with
others [2] [22]. Such research has focused on identifying
potential indicators of effective collaboration and the
types of problems that may result from insufficient group
interaction and support [8]. Prasolova-Førland discusses
the mechanisms employed to improve social awareness in
education [22] [23] and has found that traditional
collaborative technical tools like ICQ and email are not
enough, and the mechanisms offered by CVEs provide a
promising supplement to the mechanisms in use already.

Brouras et al. [3] [4] describe a robust CVE that supports
education. However, their environment can only be
modified by editing VRML files whenever new materials
need to be introduced. This requires technical expertise
that a typical instructor may not possess, and changes
cannot be made to the world while in use. Okada et al.
[19] present a system that supports setting up a CVE for
ecological education. While users can add virtual areas at
runtime, the setup process is tedious: The user is
responsible for uploading all the data about the
environment she wishes to create as well as giving layout
information to the server. CHIME overcomes this by
doing all the data extraction and assembly for the user.

Oliveira et al. [20] bring the idea of CVE-based
collaborative learning to industrial training and e-
commerce. Their environment supports video on demand,
but without synchronized video playback - so trainees can
only discuss videos they have watched separately. J. Liu
et al. [16] describe a system similar to our video
synchronization plugin. However, they are primarily
concerned with the QoS of the video, and therefore their
approach involves compression techniques working with
Mpeg-7 video. They do not address embedding their
video stream in a CVE or a collaborative tool of any sort.

An earlier version of CHIME followed a largely different
architecture and was designed to support distributed
software development environments [11] [12]. The users
then were software project team members, possibly
geographically dispersed, but virtually collocated within
the same “room” or adjoining “rooms” of a 3D world.
The layout and contents of such a groupspace represented
the software project artifacts and/or the on-going software
process. Doppke et al. investigated a similar idea [10], but

with a text-based user interface.

Kaplan et al. [18] describe their Orbit system, which
supports a groupspace model - although not a CVE and
without data or metadata visualization. Orbit best
provides access to data that is physically located on its
server. While they do allow references to external data,
this is limited to a Web link without ability to incorporate
what is at the end of the link. CHIME supports multiple
protocols over which to connect to backend data sources.

Finally, a significant advantage of 3D CVEs over other
kinds of collaborative environments is the ability for users
to simultaneously “see” what several of their peers are
doing in the groupspace. Remote desktop sharing does not
scale to watching different users doing different things
with different data. Compared to other CVEs, educational
or otherwise, the CHIME approach provides a seamless
in-world, real-time authoring environment readily
accessible to non-programming instructors and students –
while also supporting programming of advanced services
such as group-synchronized lecture videos.

7. Conclusions and Future Work

We have presented a 3D collaborative virtual
environment for use in distance learning education.
External on-line materials are analyzed upon a user’s
request and corresponding metadata is automatically
reflected in the layout and contents of the virtual world at
runtime, without programming. Users view and
manipulate the internal contents of such materials with the
usual local application programs, as in a Web browser.
CHIME also enables groups of users to view lecture
videos synchronously, with “pause” and other VCR
functions, over diverse and fluctuating bandwidths.

There are, however, some limitations. The 3D
environment is extremely resource intensive with respect
to the CPU and graphics card. This is mainly due to our
use of dynamic rather than static 3D objects in the Crystal
Space 3D engine. We aim to work with the developers of
the engine to help alleviate some of the loads, although
many prospective laptop users will likely update to new
laptops with 3D chipsets. We also need to improve the
way users view the state of their peers in the environment,
e.g., to show a graphical depiction of avatars actually
holding or manipulating the objects those users are
working with. At present selecting the user indicates in
text what she is doing, and selecting an object states in
text which user if any is using it. Finally, benchmark tests
have shown that the Siena event system, used for
CHIME’s client/server updates, can process only about
400 events per second per event router. We are converting
to the Elvin event system (http://elvin.dstc.edu.au), a
higher performance system that claims to transmit as
many as 80,000 events per second, to improve scalability.

8. Figures

Figure 1 –Client requesting user credentials

Figure 2 - Objects populating a typical room

Figure 3 - Unlabelled doors ready to become links

Figure 4 - Multiple rooms

Figure 5 - Lecture video and team member

Figure 6 - Video orientation and perspective

9. Acknowledgements

We would like to thank John Kender and other members
of his High-Level Vision Lab for their assistance in
developing the video synchronization plugins. Peppo
Valetto, Dan Phung and Matias Pelenur helped develop
the second-generation AI2TV plugin, presented separately
in [21]. We would also like to thank other past and
present members of the Programming Systems Lab,
particularly Steve Dossick and Denis Abramov, for their
work on earlier versions of CHIME. PSL is funded in part
by National Science Foundation grants CCR-0203876,
EIA-0202063 and EIA-0071954, and by Microsoft
Research.

10. References

[1] R. Barzilay, N. Elhadad, K.R. McKeown, “Sentence
Ordering in Multidocument Summarization”, Human
Language Technology Conference, Mar 2001.
[2] S.D. Benford et al., “VR-VIBE: A Virtual
Environment for Co-operative Information Retrieval”,
Computer Graphics Forum, 1995.
[3] C. Bouras, A. Philopoulos, T. Tsiatsos, “e-Learning
through Distributed Virtual Environments”, Journal of
Network and Computer Applications, Academic Press,
July 2001.
[4] C. Bouras et al., “An Educational Community Using
Collaborative Virtual Environments”, ICWL 2002: 180-
191.
[5] T. Capin et al., “Avatars in Networked Virtual
Environments”, John Wiley, 1999.
[6] P. Caplan, “You Call It Corn, We Call It Syntax-
Independent Metadata for Document-Like Objects”, The
Public-Access Computer Systems Review, 6(4):19-23
(1995).
[7] A. Carzaniga, D.S. Rosenblum, A.L. Wolf,
“Achieving Expressiveness and Scalability in an Internet-
Scale Event Notification Service”, 19th ACM Symposium
on Principles of Distributed Computing. July 2000.
[8] T. Daradoumis, F. Xhafa, J. Manuel Marquès,
“Evaluating Collaborative Learning Practices in a Virtual
Groupware Environment” CATE, 2003.
[9] P. Dillenbourg, “What do you mean by collaborative
learning?” Cognitive and Computational Approaches,
Oxford: Elsevier, 1999, pp. 1-19.
[10] J.C. Doppke, D. Heimbigner, A.L. Wolf, “Software
Process Modeling and Execution within Virtual
Environments”, ACM Transactions on Software
Engineering and Methodology, 7(1):1-40, Jan 1998.
[11] S.E. Dossick and G.E. Kaiser, “CHIME: A
Metadata-Based Distributed Software Development
Environment”, Joint 7th European Software Engineering
Conference and 7th ACM SIGSOFT International

Symposium on the Foundations of Software Engineering,
Sep 1999.
[12] S.E. Dossick, “Groupspace Services for Information
Management and Collaboration”, PhD Thesis, Columbia
University Department of Computer Science, CUCS-001-
2000, Nov 2000.
[13] S. Fiedler, M. Wallner, M. Weber, “A
Communication Architecture for Massive Multiplayer
Games”. NetGames, 2002.
[14] G. Kaiser et al., “An Approach to Autonomizing
Legacy Systems”, Workshop on Self-Healing, Adaptive
and Self-MANaged Systems, Jun 2002.
[15] G. Kaiser and G. Valetto, “Ravages of Time:
Synchronized Multimedia for Internet-Wide Process-
Centered Software Engineering Environments”, 3rd ICSE
Workshop on Software Engineering over the Internet,
June 2000.
[16] J. Liu, B. Li, Y.Q. Zhang, “Adaptive Video Multicast
over the Internet”, IEEE Multimedia, 10(1):22-31,
Jan/Feb 2003.
[17] T. Liu and J.R. Kender, “A Hidden Markov Model
Approach to the Structure of Documentaries”, CVPR '00
Workshop on Content-Based Access of Image and Video
Librarie, 2000.
[18] T. Mansfield et al., “Evolving Orbit: a progress
report on building locales”, Group97, Nov 1997.
[19] M. Okada, H. Tarumi, T. Yoshimura, “Distributed
virtual environment realizing collaborative environment
education”, Symposium on Applied Computing archive,
Proceedings of the 2001 ACM symposium on Applied
computing, Las Vegas, Nevada, United States Pages: 83 –
88, 2001.
[20] C. Oliveira, X. Shen, N. Georganas, “Collaborative
Virtual Environment for Industrial Training and e-
Commerce”, Workshop on Application of Virtual Reality
Technologies for Future Telecommunication Systems,
IEEE Globecom 2000 Conference, Nov.-Dec. 2000.
[21] D. Phung et al. “Using Workflow to Optimize QoS
for Collaborative Client Video Synchronization” Tech
Report, 2004, Computer Science Dept., Columbia
University – TR# cucs-009-04.
[22] E. Prasolova-Førland, “Supporting Social Awareness
in Education in Collaborative Virtual Environments”,
International Conference on Engineering Education,
2002.
[23] E. Prasolova-Førland, “Supporting Awareness in
Education: Overview and Mechanisms”, ICEE, 2002.
[24] S. Singhal, M. Zyda, “Networked Virtual
Environments: Design and Implementation”, ACM Press,
1999.
[25] G. Valetto, G. Kaiser, G.S. Kc, “A Mobile Agent
Approach to Process-based Dynamic Adaptation of
Complex Software Systems”, 8th European Workshop on
Software Process Technology, June 2001.

