
The Zodiac Policy Subsystem: a Policy-Based
Management System for a High-Security MANET

Yuu-Heng Cheng, Scott Alexander, Alex Poylisher
Telcordia Technologies

{yhcheng,salex,sher}@research.telcordia.com

Mariana Raykova, Steven M. Bellovin
Columbia University

{mariana,smb}@cs.columbia.edu

Abstract—Zodiac (Zero Outage Dynamic Intrinsically
Assurable Communities) is an implementation of a high-
security MANET, resistant to multiple types of attacks,
including Byzantine faults. The Zodiac architecture poses
a set of unique system security, performance, and usabil-
ity requirements to its policy-based management system
(PBMS). In this paper, we identify theses requirements,
and present the design and implementation of the Zodiac
Policy Subsystem (ZPS), which allows administrators to
securely specify, distribute and evaluate network control
and system security policies to customize ZODIAC be-
haviors. ZPS uses the Keynote language for specifying all
authorization policies. We lso present a simple extension
of the Keynote language to support obligation policies.

Index Terms—policy-based management; MANET; se-
curity;

I. INTRODUCTION

With the development of increasingly complex sys-
tems, policies are widely used to allow users a level of
customization and automation of a system without the
need for rebuilding or restarting. Existing policy-based
management systems (PBMS) define customization for
access control (e.g., [1], [2]), obligated behavior ([3],
[4]), flow control, but do not address architecture secu-
rity.

In this paper, we describe the Zodiac Policy Subsys-
tem (ZPS) which supports all of the above policy types.
Additionally, ZPS must operate within an environment
designed to heighten security in networks including
MANETs. Most existing policy systems are defined with
centralized policy control (e.g., [5]), where security is
provided by the network authentication process, though
some may utilize authentication information as part of
the policy condition.

This material is based upon work supported by the Defense
Advanced Research Projects Agency and Space and Naval Warfare
Center, San Diego, under Contract No. N66001-08-C-2012.

In Section II, we describe the architecture of Zodiac,
and in Section III the requirements of a policy-based
management for Zodiac. In Sections IV and V, we
describe the architecture and ongoing implementation of
the Zodiac Policy Subsystem (ZPS). Section VI summa-
rizes the problems addressed by the current design and
indicates the directions of future work.

The main contributions of this paper are:

• identification of the security, performance and us-
ability requirements of PBMS for high-security
MANETs;

• description of major architectural and design solu-
tions to meet most requirements; and

• description of selected aspects of the implementa-
tion.

II. THE ZODIAC HIGH-SECURITY MANET

The DARPA Intrinsically Assurable MANET (IA-
MANET) program [6] aims to develop a “clean-slate”
approach to mobile ad hoc networking emphasizing
security. The approach must support network informa-
tion integrity, availability, reliability, confidentiality, and
safety. The network should enforce authentication and
authorization of all actions with deny by default, resis-
tance to Byzantine faults and insider threats, and define
a selected set of functionality implemented in trusted
hardware.

Zodiac (Zero Outage Dynamic Intrinsically Assurable
Communities) [7] is our solution that addresses the
IAMANET requirements. Zodiac is based on a novel
security and communication building block, the Dynamic
Community of Interest (DCoI). A DCoI is a dynamic
group of networked nodes running an instance of a
distributed application or a supporting service.

DCoIs are implemented as virtual machine containers
within a node. This design limits the effect of a success-
ful attack within one DCoI as resources are allocated

Technical Report CUCS-023-09

per container and processes have no direct access to the
processes or files and data outside of their container.

The DCoI concept is illustrated in Figure 1, where
nodes 1 and 2 belong to DCoI A, nodes 2 and 3 to
DCoI B, and nodes 1, 2 and 3 belong to DCoI C.
A container defines a security boundary around the
node resources for a single DCoI. Infrastructure is the
device-level resource controller for the actual CPUs,
memory and lower layers of the network stack (MAC and
below) of the node and containers. A single application
and its supporting Zodiac subsystems, such as Group
and Cryptographic Services (GCS), Routing, Naming
Service, etc., run within a DCoI container. The rationale
for DCoIs is described in detail in [7] and is outside of
the scope of this paper.

Zodiac Node 1

Infrastructure

Container
C

Container
A

Zodiac Node 3

Infrastructure Container
C

Container
B

Zodiac Node 2

Infrastructure

Container
C

Container
A

Container
B

Stack

Transport
QoS

Routing

Service

GCS
Naming
Policy
Host

Application

DCOI C

DCOI A

DCOI B

Fig. 1: The Zodiac Architecture

The communication between Zodiac nodes within a
DCoI is protected by its encryption, authentication and
authorization mechanisms. A node ignores communica-
tions which it is not a member of. The encryption and
membership is managed by the GCS in each DCoI.

III. ZODIAC POLICY REQUIREMENTS

The behavior of the Zodiac stack and services must
be automatically customizable at run-time as manual
reconfiguration is impractical in the target operating
conditions. While there are certain “rules” that must be
statically built into the stack and services (e.g., all traffic
must be encrypted), other aspects (e.g., the list of poten-
tial DCoI members) are specific to the deployed system
and usage of a particular DCoI. The need to provide
customization to a high-security MANET requirement
lead to a unique set of requirements for the Zodiac Policy
Subsystem (ZPS):

• low CPU, memory and bandwidth use,
• support of the dynamic nature of DCoIs,
• minimal dependence of a node on another node for

policy enforcement,
• operations are denied by default,
• policy author and recipient must be authenticated,
• policy integrity must be ensured in storage and

distribution,
• the operation of the policy-based management sys-

tem must not breach exfiltration constraints, and
• access to resources used both by containers and

within a container must be policy-managed.
Both computational (CPU, memory) and communi-

cation resources in Zodiac can be very limited. Thus,
ZPS’s processing footprint must be small, and policies
themselves must be encodable in concise form.

The ZPS user interface (UI) needs to allow admin-
istrators to create and update policies under the stress.
Apart from UI design, this necessitates a highly usable
policy language.

In addressing Byzantine attacks, it is very undesirable
to allow a management system on a compromised node
to execute operations on a remote node. Each node must
have the authority and responsibility to enforce policy to
protect itself and the network.

In a permit-all, explicit-deny authorization scheme,
only the the known operations can be denied, so the
set of permitted operations is unknown, which opens
attack possibilities. Conversely, in a deny-all, explicit-
permit scheme one can permit the exact minimal set of
operations necessary. Additionally, unanticipated actions
are denied, thus avoiding the issue that unanalyzed
actions may result in security holes in the system. This
is basic rationale for a deny-all scheme in a secure
environment.

It is important to authenticate the author because only
an explicit set of users are trusted to create policies. All
the Zodiac nodes need to have the same perspective of
which set of users are considered as trusted.

In policy distribution, individual policies must not be
corrupted and be up-to-date. The set of policies enforced
in all containers of the same DCoI must be identical
and self-consistent. This comprises the policy integrity
requirements.

The last requirement is to minimize the opportunity for
exfiltration between DCoIs, so policy distribution should
only occur within DCoIs.

ZPS also relies upon other Zodiac subsystems for
its own operation. For example, policy distribution is
conducted using the Zodiac stack and policy signing and

2

Technical Report CUCS-023-09

verification relies on GCS to provide the keys.

IV. ZPS DESIGN

We have designed ZPS to address the requirements
above. In this section, we describe the design decisions
in detail, including the types of policies supported,
architecture, components, and mechanisms for policy
integrity protection and distribution.

A. Types of policies

ZPS supports both authorization and obligation poli-
cies [3]. Because of the default deny-all authorization
requirement, only positive authorization is supported.
Policies are further categorized into:

• DCoI policies which affect only a single DCoI, e.g.,
the membership list for the DCoI.

• Shared resource policies which affect the use of
shared resources within a node required for a DCoI,
e.g., bandwidth allocations among DCoIs for QoS
assurance. 1

• Node policies which determine the behavior of an
entire node, e.g. the maximum number of DCoIs
that can be instantiated on a given node.

The category is predetermined and orthogonal to the
authorization/obligation categorization. In addition to the
information assurance benefits (e.g., policy distribution),
the categorization helps us determine the conflict do-
mains of the different policies.

B. ZPS Architecture

ZPS is a fully decentralized policy system. Each ZPS
instance evaluates its own set of policies and makes
decisions to control the managed components, within a
container. The only communication over the network is
the policy contents. An alternative solution is to dispatch
policy decisions from one or several locations over the
network. For Zodiac, a fully decentralized solution is
preferred as:

• policy contents do not change nearly as frequently
as policy decision results,

• low network latency is far less critical for policy
contents as it is for policy decisions, and

• it is easier to support need-to-know policy evalua-
tion and Byzantine fault tolerance.

Policy content is, of course, sensitive on its own.
Knowing the access control policies, for example, may

1Due to the complexity of security concerns on information exfil-
tration, the current implementation does not support conflict detection
for policies that control shared resources.

reveal the usage of a DCoI. Because of this sensitivity,
we not only protect policies in transit, but also ensure
that even if our protections fail, the set of policies to
which an attacker has access is minimized.

As described above, each DCoI is instantiated inside
of a container. ZPS is duplicated in each container as in
Figure 2. This design reduces the ability of an attacker
both to inspect policies from other containers and to
affect the behavior of containers other than the one to
which she has gained control.

Zodiac Node

Infrastructure

Container B

Stack/
Service

ZPS

ZPS

…

Container A

Stack/
Service

ZPS

Shared
Policy Container

ZPS

Fig. 2: Components within a Zodiac node

The Infrastructure on a Zodiac node serves as the
operating system that controls access to the network and
manages creation/deletion of DCoIs. Communications
between ZPS instances are constrained to occur along
the paths created and enforced by Infrastructure. This
helps reduce the opportunity for unauthorized access to
policy information.

The ZPS instances that reside in a container, the shared
policy container, and Infrastructure evaluates policies
for the DCOI, shared DCOI resources, and the node
respectively.

C. ZPS Components

The basic functional components of the ZPS are the
same as in the proposed IETF policy-based management
architecture [5], which includes:

• A Policy Decision Point (PDP): evaluates the stored
policies when triggered by a request (passive) or an
event (proactive). The decision made is then passed
to the PEP.

• A Policy Enforcement Point (PEP): enforces policy
decisions. Usually the PEP resides in the subsystem
that the policy system manages.

• Policy Repository (PR): stores the policies used in
the policy system.

Figure 3 depicts the information flow for the basic
functional components. The feedback loop allows the
PDP to retrieve information from the managed system

3

Technical Report CUCS-023-09

when evaluating policies and automate behaviors of the
managed system; though not part of the IETF-proposed
architecture, it is commonly used, particularly with obli-
gation policies.

Feedback

Managed System

Policy Repository (PR)
• Store policies

Policy Decision Point (PDP)
• Passive and proactive policy evaluation

Policy Enforcement Point (PEP)
• Reject/Accept operations
• Reconfigure system

Fig. 3: A general-purpose policy-based management system
with feedback

ZPS adopts this general architecture with three addi-
tional components:

• A Policy User Interface (PUI) allows policy author-
ities (administrators) to create and modify policies.
In a military deployment, the PUI is enabled only
on specific nodes determined by the mission.

• A Conflict Detection Point (CDP) detects conflicts
between a newly created or modified policy against
the exiting set of stored policies.

• A Policy Distribution Interface (PDI) is used to
securely distribute and receive policies over the
network.

Figure 4 shows the ZPS components and their relation-
ships with other Zodiac subsystems within a container.
The policy management components (collectivly is the
ZPS) contain the logic to control the policy-managed
components (Zodiac stack and services). Each policy-
managed components implements the PEP that enforces
the operations imported by the ZPS. These operations
were carefully determined in the Countermeasure Char-
acterizations (CMC) analysis [8].

The PDP manages the Zodiac system by reacting to
requests and events from other subsystems, evaluating
matching policies and directly invoking PEP operations.
The requests include authorization and configuration
requests. Services that started later than the ZPS can
acquire its settings via a configuration requestion. Ad-
ditional meta-information are used for ZPS for conflict
detection which is described in Section V.

Events are defined to provide situation awareness for
the Zodiac system. They serve as feedback information

to the PDP. The usage of the events needs to be carefully
designed. Carelessly designed events can cause system
instability. For example, if an event causes the system
to publish the same event, the system will be trapped
in a endless loop. Currently ZPS only recognizes the
event that identifies the current information operations
conditions (INFOCON). We specify obligation policies
to apply different communication mechanism for the
DCoI based on different INFOCON level.

Policy management components
Policy

User Interface

Conflict
Detection Point

Policy
Distribution
Interface

Policy
Respository

Policy
Decision

Point (PDP)

policy mgmt
ops remotely defined

policies
ops

policies
active

policies

distributed event bus

external
events

events

Transport

Infrastructure

Routing

QoS

Zodiac stack

Naming

Host
Services

Group
Services

Zodiac services

events

events

PEPPEP

PEP

PEP

PEP

PEP

PEP

policy
requests

policy
actions/

responses

Policy-managed components

Fig. 4: ZPS components within a container

Policies are inputed into ZPS from either the PUI or
PDI and are stored in the Policy Repository after the
Policy Deconfliction Component ensures that the policies
are conflict-free.

D. Policy Signing and Revocation

An attacker could subvert the system by providing
her own policy to facilitate an attack if ZPS accepts
policy from any source. Therefore ZPS should be able
to identify and trust the author of each policy. ZPS
also needs to support over-the-air policy updates by the
commanders and their delegates in the field.

In order to protect policy integrity and authenticate
the policy author, all Zodiac policies are signed directly
or indirectly by trusted entities. We assume that the
trusted entity creates policies that follow the operational
intent. Nevertheless, some operator errors are prevented
by policy conflict detection.

In the PDP engine, an implicit condition for matching
policies is the validity of the policy signature. The
validity of both the signature and the signer’s privilege
is verified upon each policy request since trusted entities
may change over time (due to change of roles for
adversary action, e.g., node capture). The former check

4

Technical Report CUCS-023-09

relies on the existing encoding algorithms, and the latter
check is implemented using a certificate revocation list
[9]. ZPS relies on GCS to perform these operations as
part of its responsibility for all the cryptographic and key
management in Zodiac.

For a system with a significant number of policies,
verifying the policy signature for each policy upon
each request may not be efficient. The policy evaluation
performance may be optimized by removing policies
with invalid signatures before storing the policy or upon
revoking a certificate.

E. Policy Distribution

After initial network deployment, administrators may
need to create a new policy or modify/remove an existing
one. A modified policy set then needs to be distributed
to all nodes belonging to the same DCoI. Since MANET
connectivity can be unstable, the distribution mechanism
should be able to handle intermittent connections.

When a node is temporarily out of reach, that node
should obtain the modified policy set when connectivity
is resumed. ZPS uses the reliable transport services
provided by Zodiac to ensure that a policy set is cor-
rectly delivered once it is determined that distribution is
required.

Since ZPS manages Zodiac based on the policy con-
tents, the policy set for a DCoI needs to be consistently
duplicated among all DCoI members. Thus, policy distri-
bution needs to be integrated with the group membership
maintenance, i.e., GCS. When a node joins a DCoI,
GCS notifies ZPS to distribute the policy set to the
new node after a successful security protocol exchange.
When a node leaves the DCoI, the ZPS in that node will
remove all policies as the container is also destroyed.
The security protocol is described in [10].

During the lifetime of a DCoI, policy updates are
distributed via multicast to all members with simple syn-
chronization mechanisms for tolerating unstable network
connectivity. In a future implementation, we also plan to
re-key when policy distribution occurs. In order to get
the new key, a node must have a copy of the current
policy set. In current implementation, Zodiac statically
positions policies with the correct signatures.

V. IMPLEMENTATION

In this section, we discuss the ZPS policy language,
implementation of the policies in Zodiac and the spe-
cific policy structure that the language entails. We also
describe policy evaluation, detection of policy conflicts
and the subsequent deconfliction steps.

A. Policy Language Selection

The policy definition syntax aims to satisfy the re-
quirements in Section II. We adopted an existing policy
language and extended it to suit the needs of ZODAIC
as opposed to developing a new policy language from
scratch because an existing languages could be leveraged
to meet our requirements. This approach gave us a head
start on higher-level design issues.

Three existing policy language that we considered are
Keynote [2], Ponder1 [3] and XACML [1]. Although all
three provided the basic functionality for the policy sub-
system modulo some extensions, we considered Keynote
the best fit, based on the following considerations.

To address the dynamic nature of ZODAIC DCoIs,
policy syntax usability is an important design criterion.
Specifically, policies should have a format intuitive for
a human operator under stressful conditions. The syntax
and the representation of policies in XACML is quite
verbose in plain text and is not designed for human
reading or transmission over limited bandwidth. Defin-
ing an abstract XML syntax incorporated with XSLT
can simplify the language; compressing the plain text
can reduce the required bandwidth. However, this also
implies additional computing power required for policy
evaluation and distribution. This does not fit either the
usability requirement or the low resource consumption
requirement.

The policy syntax of both Keynote[11] and Ponder1 is
quite intuitive. Additionally, the code size of the Keynote
PDP is comparatively small [12] and has low memory
and CPU requirements.

Another important consideration in the ZPS design
that we want to be able to verify the integrity of
policies and their authorized issuers and thus prevent
any injection of faulty policies that can corrupt the
behavior of the managed system. Therefore we require
that all policies are signed. Although signing can be
done independently of the policy syntax and verification
can be done outside the evaluation process, a better
approach is to incorporate the signatures as part of the
policy syntax and make verification inseparable from
the evaluation. While Ponder1 does not facilitate policy
signatures in its syntax, Keynote allows policies to be
signed by their issuer and enforces signature verification
at evaluation time.

Following the above reasoning, we chose Keynote as a
base for the ZPS implementation. It offers an evaluation
environment where the default state is denial and policies
specify the authorizations and actions allowed in the

5

Technical Report CUCS-023-09

system. We extended Keynote to allow specification of
obligation policies. Based on occurrence of particular
events, policy evaluation returns corresponding multi-
dimensional vectors containing specifications for con-
figuration parameter changes or actions that need to be
executed by PEPs.

Listing 1 is an example of an authorization policy in
Keynote. The authorizer’s public key has the privilege
to create policies for GCS; the corresponding signature
is given at line 12. The “Conditions:” label (lines 8-
11) states that node identified as from “blue track” and
belonging to “group A, B, or C” is allowed to join the
DCoI named “Chat.” I.e., when the authorization request
presents attributes that match the condition listed before
→, the response to this request is “true.”

Listing 1: An authorization policy
1KeyNote−V e r s i o n : 2

Comment : J o i n p o l i c y f o r Chat DCoI
3A u t h o r i z e r : GSKEY

Local−c o n s t a n t s : GSKEY = ” r s a−base64 : MEgCQQCzLyQcAxiREa74XwuG\
57nU9YiAvICDew6GzeW8D2sAZvlvld8kol\

xrPvOTODOHNinVmE 90 tg8bPYqrQqwEgj\
761jAgMBAAE=”

C o n d i t i o n s : (DCOI == ” Chat ”) &&
9(group == ”A” | | group == ”B” | | group == ”C”) &&

(t r a c k == ” b l u e ”) &&
11(r e q u e s t == ” j o i n ”) −> ” t r u e ” ;

S i g n a t u r e : ” s i g−r s a−md5−base64 : DT24V+XKt / hcQ1oerIjFBJTl6QNES\
13+XgRDzE00vx2 / LGM4ZC8RCGS34zw60nW\

WgSP3alGkv1Kuse+y /Y/ UiMfA==”

Original Keynote supports only authorization policies;
we extended the implementation to support obligation
polices. An example is shown in Listing 2. Following the
same structure as that for the authorization policies, the
condition on the left of → denotes the attribute matching
(lines 7 and 9); the list on the right describes enforcement
of specific settings in this container.

When the alert level is “ALPHA,” use the settings
for routing described in line 8; when the alert level is
“BRAVO,” use the settings for routing described in line
10. The attributes in lines 8 and 10 are implicit in the
order of: dispersity degree, dispersity level, multicast
type, routing within DCoI only, flooding degree, and
maximum TTL.

Listing 2: An obligation policy
KeyNote−V e r s i o n : 2

2Comment : Rou t ing p o l i c i e s f o r r e s p o n d i n g t o d i f f e r e n t sys tem s t a t u s
A u t h o r i z e r : GSKEY

4Local−c o n s t a n t s : GSKEY = ” r s a−base64 : MEgCQQCzLyQcAxiREa74XwuG7\
nU9YiAvICDew6GzeW8D2sAZvlvld8kolxrPv\

6OTODOHNinVmE90tg8bPYqrQqwEgj61jAgMBAAE=”
C o n d i t i o n s : (app domain == ” r o u t i n g ”) && (a l e r t l e v e l == ”ALPHA”)

8−> [” 1 ” ; ” 0 ” ; ” f l o o d ” ; ” f l o o d ” ; ” yes ” ; ” 0 ” ; ” 1 6 ”] ;
(app domain == ” r o u t i n g ”) && (a l e r t l e v e l == ”BRAVO”)

10−> [” 3 ” ; ” 2 ” ; ” f l o o d ” ; ” f l o o d ” ; ” yes ” ; ” 1 ” ; ” 3 2 ”] ;
S i g n a t u r e : ” s i g−r s a−md5−base64 : VEciojrcxNvWPRdGj5tXxd0t3+SR2\

12FvuhagloHb3g3fUzWwCPBB / EwG3P / xzxSxTrvhf6 / hYD9spzo\
4 / PbJFGw==”

Though the Keynote language supports any combi-
nation of conditions, a potential security concern is

using the negate operation (syntactically, the exclamation
character ’!’) in the condition. This is because ZPS
policies are permissive policies, that is, policies specify
only the outcome or the operations that are permit-
ted. Unexpected outcomes and declined operations are
simply not mentioned in the policies. To illustrate this
concern, we change the condition in the policy of Listing
3; specifically, the condition for track is changed to
“not purple.” In a system with only “blue” and “purple”
tracks, the change makes no difference. However, when
a new track, say “red”, is introduced to the system, the
policy implicitly permits both the “red” and “blue” tracks
to join the DCOI, which is potentially undesirable.

Listing 3: Example of negate condition
1. . .

C o n d i t i o n s : (DCOI == ” Chat ”) &&
3(group == ”A” | | group == ”B” | | group == ”C”) &&

(t r a c k != ” p u r p l e ”) &&
5(r e q u e s t == ” j o i n ”) −> ” t r u e ” ;

. . .

Though we make negative conditions in Keynote a
sytax error, from a usability perspective, a better UI can
assist the user by reverting the negative condition to a
possitive set when editing a policy.

B. Policy Conflicts

Although we generally expect that policies are speci-
fied in a consistent manner, in a complex system where
multiple operators can modify policies at runtime, con-
flicting policies may be distributed and cause a unde-
sirable system behavior. As discussed in [13] and [14],
there may be various sources of conflicts for policies.
We analyze what type of conflicts may occur for ZPS
and how they may be resolved.

The first important point when considering policy
conflicts in Zodiac is that we are dealing only with
positive authorization policies. This alone eliminates
some types of conflicts that occur between negative and
positive authorization policies [13]. However, this does
not resolve all possible conflicts.

The simplest type of conflict for ZPS is having differ-
ent policy decisions for the same attribute in different
policies (syntax-level conflict). This can result from
policy definitions and/or updates coming from different
sources.

Another potential conflict type that goes beyond the
syntax is the use of overlapping attribute domains, es-
pecially for authorization policies. The attributes used
in policies may be based on different characteristics
such as organizational divisions, roles, and common
attributes. These attributes provides the policy author a

6

Technical Report CUCS-023-09

convenient and flexible language set to define policies
and improves usability. However, conflicts occur when
different attributes refer to the same context.

Company

Unit A

Dept Y Dept X

Unit B

Dept M Dept N

Policy 1: unit==“A” && operation==“access” && building==“B” -> “true”
Policy 2: department==“Y” && operation=“access” && floor==“3” -> “true”

Fig. 5: Organization Example for Meta Policy

For example, two policies are given for a company
which has two units and several departments in each
unit. Figure 5 illustrates the unit and department rela-
tionship. The first policy states that unit A is allowed
to access only floors in building B, and the second
states that department Y is allowed to access floor 3
of any building. Department Y is in unit A. This type of
conflict (overlapping domains) can be detected when the
PBMS has the knowledge of the organizational structure
and building/floor containment (attribute relationships),
as discussed in [13]. The relationships between the
attributes are considered as meta-policies in ZPS imple-
menation.

The Keynote policy condition syntax is DNF, which,
when parsed is represented as parse trees. The inter-
nal nodes of the tree include logic (AND, OR) and
assignment operators (==, <, etc.) The leaf nodes are
condition variables and their values as shown in Figure 6.
Syntax level conflicts can be detected by looking at the
subtrees rooted at AND nodes and detecting conflicting
assignments of the same variables (marked with ellipses).

In the case of overlapping domain conflicts, the do-
main structure can be represented with a similar DNF
parse tree that has as its AND subtrees any maximal
combination of overlapping domains. Searching for in-
tersections of size at least two between the AND subtrees
of the policy parse tree and the domain structure tree, we
can detect conflicts arising from overlapping domains.

The policies in ZPS specify actions allowed in the
managed system under certain conditions or the con-
figuration parameters for the system. However, some
combinations of conditions and/or parameter values may
not be allowed because they do not conform to the
desired behavior of ZODAIC components. Examples

AND

OR

AND

==

A unit building B Y dept floor 3

== == ==

Fig. 6: Policy condition parse tree

include: specification of zero bandwidth allocation to
a service and, at the same time, permission for traffic
generation; or setting a flooding degree for routing to
7 for a DCoI that has only 6 potential members. We
call these incompatible combinations of conditions and
parameters policy interdependencies for the ZPS. They
represent a conflict both when they exist in the same
policy and when they are defined across policies with
overlapping domains. Here we can represent again the
combination of conflicting parameter assignment with
parse trees and look for an overlap between them the
domain trees and the policy trees as a method of conflict
detection.

C. Other issues

Zodiac system requires deny by default. But some
operations, e.g. bootstrap, needs to be permit by default
and denied afterwards. These specific operations are not
part of the general policy system.

VI. CONCLUSION AND FUTURE WORK

A high-security MANET poses several new challenges
for the design of its PBMS. First, strict enforcement of
communication restrictions necessitates a highly decen-
tralized network management, even within a node, with
a PBMS instance for each DCoI, shared resources and
secure infrastructure. This in turn, creates more pressure
on the resource consumption of a given instance, as node
resources are typically scarce. Secondly, high security
requires explicit protection of policy integrity in transit,
authentication of policy creators and authorization before
a policy is enforced. Thirdly, policies must be made
available to the PBMS instances in a timely manner to
ensure enforcement. Given the dynamic nature of DCoI
creation and the intermittent connectivity in MANETs,
this requires appropriate policy distribution mechanisms.

7

Technical Report CUCS-023-09

Fourthly, the general policy deconfliction problem is
complicated by the fully decentralized nature of policy
creation and enforcement, and by the need to deconflict
DCoI-only policies against shared resource and node
policies within each node.

Some of the above challenges have been addressed
in the presented ZPS design as summarized next. It is
likely that some solutions that fit the security-related
requirements of ZPS are applicable to other network
environments, e.g. wireline networks.

• Authentication and Authorization: Each Zodiac
node is given a certificate assigned by a centralized
trusted entity. The identity information includes
the role of the node in the management hierarchy.
The certificate is used to build a chain of trust to
acquire other credentials and authorizations (e.g.,
DCoI membership) and to provide an identity to its
peers.

• Integrity: This includes the integrity of policies
themselves and the integrity of PDP decisions. All
policies are signed by their author or modifiers
which enforces policy integrity in transit. PDP
decision integrity is enforced by considering only
authenticated policies and by placement of PDPs
locally rather than across the network. ZPS utilizes a
certificate revocation list to maintain the authorized
set of policy signers. Policies that are deployed
with a proper signature can be revoked from the
repository.

• Confidentiality: Confidentiality indicates that spe-
cific information is known only by the information
provider and its intended receiver. Besides network
encryption for policy distribution, each DCoI con-
tainer has its own PBMS instance to process policy
information.

• Availability: MANET link layer communication can
be highly unreliable. As policies need to be dis-
tributed to all nodes in a DCoI, ZPS uses appropri-
ate reliable protocols (unicast or multicast). Though
ZPS denies all operations by default, bootstrap
processes are permitted to ensure the ability to setup
initial communication between nodes.

Addressing deconfliction for DCoI policies that con-
cern shared resources within in a node and the security
requirements for information exfiltration is an on-going
effort. Additional work is planned on the automated
suggestion of potential conflict resolutions to facilitate
policy authors’ decision making, an intuitive user inter-
face, and further updates to the Keynote language and

PDP. In the near future, we plan to leverage the Zodiac
secure transport mechanisms to distribute policies.

REFERENCES

[1] “eXtensible Access Control Markup Language (XACML),
Version 2.0, OASIS Standard,” 2005. [On-
line]. Available: http://docs.oasis-open.org/xacml/2.0/access
control-xacml-2.0-core-spec-os.pdf

[2] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis,
“The KeyNote Trust-Management System Version 2,” RFC
2704 (Informational), Sep. 1999. [Online]. Available: http:
//www.ietf.org/rfc/rfc2704.txt

[3] N. Damianou and N. Dulay, “The Ponder Policy Specification
Language,” in Lecture Notes in Computer Science. Springer-
Verlag, 2001, pp. 18–38.

[4] R. Chadha, Y.-H. Cheng, J. Chiang, G. Levin, S.-W. Li,
A. Poylisher, L. LaVergne, and S. Newman, “Scalable policy
management for ad hoc networks,” in In Proceedings of MIL-
COM 2005 : the Military Communications Conference, 2005.

[5] R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for
Policy-based Admission Control,” RFC 2753 (Informational),
Jan. 2000. [Online]. Available: http://www.ietf.org/rfc/rfc2753.
txt

[6] “Intrinsically Assurable Mobile Ad-Hoc Network (IA-
MANET),” DARPA BAA. [Online]. Available: http:
//www.darpa.mil/sto/solicitations/IAMANET/

[7] S. Alexander, B. DeCleene, J. Rogers, and P. Sholander, “Re-
quirements and architectures for intrinsically assurable mobile
ad hoc networks,” in Military Communications Conference,
2008. MILCOM 2008. IEEE, 2008.

[8] H. O. Lubbes, “Countermeasure characterizations: building
blocks for designingsecure information systems,” in DARPA
Information Survivability Conference and Exposition II, 2001.
DISCEX ’01. Proceedings, vol. 1, 2001, pp. 103–115.

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley,
and W. Polk, “Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile,” RFC
5280 (Proposed Standard), May 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5280.txt

[10] H. Harney, U. Meth, A. Colegrove, and G. Gross, “GSAKMP:
Group Secure Association Key Management Protocol,” RFC
4535 (Proposed Standard), Jun. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4535.txt

[11] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “Keynote: Trust
management for public-key infrastructures (position paper),”
in Proceedings of the 6th International Workshop on Security
Protocols. London, UK: Springer-Verlag, 1999, pp. 59–63.

[12] “The Keynote Trust-Management System,” Implementation
download. [Online]. Available: http://www1.cs.columbia.edu/
∼angelos/keynote.html

[13] E. C. Lupu and M. Sloman, “Conflicts in policy-based
distributed systems management,” IEEE Trans. Softw. Eng.,
vol. 25, no. 6, pp. 852–869, 1999.

[14] J. D. Moffett and M. S. Sloman, “Policy conflict analysis
in distributed system management,” Journal of Organizational
Computing, 1993. [Online]. Available: citeseer.ist.psu.edu/
moffett93policy.html

8

http://docs.oasis-open.org/xacml/2.0/access_control -xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control -xacml-2.0-core-spec-os.pdf
http://www.ietf.org/rfc/rfc2704.txt
http://www.ietf.org/rfc/rfc2704.txt
http://www.ietf.org/rfc/rfc2753.txt
http://www.ietf.org/rfc/rfc2753.txt
http://www.darpa.mil/sto/solicitations/IAMANET/
http://www.darpa.mil/sto/solicitations/IAMANET/
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc4535.txt
http://www1.cs.columbia.edu/~angelos/keynote.html
http://www1.cs.columbia.edu/~angelos/keynote.html
citeseer.ist.psu.edu/moffett93policy.html
citeseer.ist.psu.edu/moffett93policy.html

	Introduction
	The Zodiac High-security MANET
	Zodiac Policy Requirements
	ZPS Design
	Types of policies
	ZPS Architecture
	ZPS Components
	Policy Signing and Revocation
	Policy Distribution

	Implementation
	Policy Language Selection
	Policy Conflicts
	Other issues

	Conclusion and future work
	References

