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Abstract

This report studies the performance impact of using TLS aaresport protocol for SIP servers. We evaluate the cost & TL
experimentally using a testbed with OpenSIPS, OpenSSL,Lamak running on an Intel-based server. We analyze TLS costs
using application, library, and kernel profiling, and use phofiles to illustrate when and how different costs are firezij such
as bulk data encryption, public key encryption, private Kegryption, and MAC-based verification.

We show that using TLS can reduce performance by up to a faftaearly 20 compared to the typical case of SIP over
UDP. The primary factor in determining performance is weethnd how TLS connection establishment is performed, dubeto
heavy costs of RSA operations used for session negotidfibis. depends both on how the SIP proxy is deployed (e.g., as an
inbound or outbound proxy) and what TLS options are used,(mgtual authentication, session reuse). The cost of syriune
key operations such as AES or 3DES, in contrast, tends to ladl.sm

Network operators deploying SIP over TLS should attempt &ximize the persistence of secure connections, and will nee
to assess the server resources required. To aid them, wl@ravmeasurement-driven cost model for use in provisiosg
servers using TLS. Our cost model predicts performanceinitB percent on average.

|I. INTRODUCTION

Session Initiation Protocol (SIP) [34] is an applicatiopdasignaling protocol for creating, modifying, and teriaimg media
sessions in the Internet. Major standards bodies inclu@®BP, ITU-T, and ETSI have all adopted SIP as the core siymali
protocol for services such as VolP, conferencing, Video @m@nd (VoD), presence, and Instant Messaging (IM). Likesioth
Internet services, SIP-based services may be suscemitdenide variety of security threats including social thseataffic
attacks, denial of services, service abuse [2], [17], [fle©f the main reasons that permit for these threats is thenmomuse
of insecure SIP signaling such as SIP-over-UDP, which plesino signaling confidentiality, integrity, or autheniciGiven
a trace of SIP traffic, one can see who is communicating witbrmjhwhen, for how long, and sometimes even what is being
said (e.g., in SIMPLE [4]). It has also been shown that evemroercial VoIP services may be prone to large-scale voice
pharming [40], where victims are directed to fake interactvoice response systems or human representatives fatisens
information.

Transport Layer Security (TLS) [8], [9] is a widely used Imtet security protocol occupying a layer between the appito
and the reliable TCP transport. There is also a Datagram DO%.$) [31] protocol that provides similar security funatalities
but runs over the unreliable UDP transport. The current $eification [34] lists TLS as a standard method to secure SIP
signaling. Various other organizations and industrialsmytiums have also suggested or mandated the use of TLS or SI
signaling. For example, the SIP Forum [1] mandated TLS fterconnecting enterprise and service provider SIP netsviork
its specification document.

However, while interest in securing SIP is growing [28],umdtlarge scale deployment of SIP-over-TLS has not yet aedur
One important reason is the common perception that runmingpalication over TLS is costly compared to running dinectl
over TCP (or UDP in the case of SIP). VoIP providers will beitaed to deploy TLS until they understand the resource
provisioning and capacity planning required. Thus we needniderstand how much using TLS with SIP actually costs.

This report makes the following contributions:

« We present an experimental performance study of the imgacsinog TLS on SIP servers. Our study is conducted using
OpenSIPS with OpenSSL on Linux on an Intel-based server. Wkiate the cost of TLS under four SIP proxy usage
scenarios: proxy chain, outbound proxy, inbound proxy, landl proxy. We show that using TLS can reduce performance
by up to a factor of nearly 20 compared to the typical case Bf &ler UDP.

« We use application, library, and kernel profiles to examareglyze, and explain performance differences. The profiles
illustrate how costs are incurred under different scemsaféog., extra RSA [33] overheads when mutual authenticasio
used) and how they can be reduced (e.g., RSA costs disappesr session reuse is performed). They also show some
results unique to SIP (e.g., bulk crypto costs of AES [22] DES [19] are small), and how some overheads are due to
mechanisms (e.g., kernel overhead, SSL state managera#m) than simply crypto algorithms such as RSA or AES.



« We provide a cost model to aid network administrators thatcansidering transitioning to SIP over TLS. The cost model
estimates server resource costs of TLS to help provisioamg dimensioning of servers. Our cost model accurately
predicts performance within 15 percent on average.

Previous studies on TLS performance have either focused - &¥dr Web servers [3], [5], [15], [42] or policy-based netio
management (COPS) [41]. SIP protocol behavior is diffefesrh these protocols in several ways. SIP messages tend to be
small, whereas Web downloads can be quite large. SIP proaiesncur client-side TLS costs since they can act as clients
other servers. Finally, SIP servers have a much wider rahgermection management behavior than other servers, asd th
connection management is the primary issue in determinic§ dverheads, due to the heavy costs of RSA operations used
for session negotiation. Symmetric key operations such&S ér 3DES are trivial in comparison. Implementation isstess
also be significant; we found several performance problenBp@enSIPS and OpenSSL, despite the fact that they are widely
used and relatively mature.

The net result is that the performance cost of deploying Si& @LS instead of UDP can be significant, depending on
how the SIP proxy is deployed (e.g., as an inbound or outbquogy) and how TLS is configured (e.g., with or without
mutual authentication or session reuse). Network opesa@an minimize this cost by attempting to maximize the ptsise
of secure sessions, but still need to be aware of the overbieatlizing TLS.

The remainder of this paper is structured as follows. Sectigorovides some background on TLS and SIP. Section Il
describes the experimental testbed used for our expersm®attion IV presents our results in detail. Section V dg&bur
cost model. Section VI describes related work and we corclndection VII. Appendix A provides additional background
on security and cryptography in TLS. Appendix B provideswa feore operating system configuration modifications. Append
C presents the mapping tables between function names anfilepesults used in our profiling analysis. Appendix D dsses
a performance fix for the proxy software in establishing Tid8mections.
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Fig. 1. TLS Handshake Message Flows

Il. BACKGROUND

For space reasons, we assume the reader is familiar witb Seirity concepts of confidentiality, integrity, and aautticity,
and how they are provided using public key and symmetric kgptography. We assume the reader is generally aware of
public key algorithms such as RSA; symmetric key cipherhiagc AES, and 3DES; and signed message authentication codes
such as MD5 and SHA-1. More detail on cryptography can beddaon appendix A and [36].

A. TLS Operation Overview

For space reasons, we provide a very brief description off ttfe protocol. For more details, please see [9], [30]. We $ocu
on the aspects relevant to our study, namely session estatdint and its attendant RSA public key costs.

TLS operation consists of two phases: the handshake phdsheubulk data encryption phase. The handshake phase allows
the parties to negotiate the algorithms to be used durirggTthS session, authenticate the other party and preparéhtireds
secret for the bulk data encryption phase.

All the algorithms used in a TLS session, including thosekiey exchange, bulk data encryption and message digest, are
specified by a cipher suite. As an example, TRSA WITH_AES_128 CBC_SHA is one cipher suite indicating that RSA



public key algorithm is used for shared secret key exchangeaathentication; 128-bit AES in CBC mode is used for bulk
data encryption; and SHA-1 is used as the message digesitialgdo compute the message authentication code (MAC).

The normal message flow in the TLS handshake phase is iledtma Figure 1(a). First the client initiates the handshake
with a Cl i ent Hel | o0 message. This message contains the protocol version, ghercsuite and compression methods that
the client supports and a random number and timestamp t@ipresplay attacks. The server responds witeaver Hel | o
message, which specifies the protocol version and the cilitr and compression methods that the server chooses to use
among those proposed by the client. T3e ver Hel | o0 message also contains a timestamp and random number a$ et o
keying material, and optionally sessi on_i d which the client can later use to resume the session. Thersigren sends the
Certi fi cat e message which is the server's X.509 certificate containtsgublic key and optionally a chain of certificates
belonging to the authorities in the certificate hierarchye Tollowing Ser ver Hel | oDone message indicates the server has
sent all message in this stage. Upon receiving the senentiicate, the client authenticates the server by vergyia certificate
using the CA's public key. The client then generatepra_nast er _secr et , and encrypts it using the server's public
key obtained from the server’s certificate. This encrygte@ nast er _secret is sent in thed i ent KeyExchange
message to the server. The server decryptpthe mast er _secr et using its own private key. Both the server and client
then compute arast er _secr et they share based on the sapree_mast er _secret. Thenast er _secr et is further
used to generate the shared symmetric keys for bulk datgpiam and message authentication. In addition, the chert
server also exchange tlédnangeCi pher Spec message, which indicates that the sender has switched ety negotiated
algorithms. Finally, thé=i ni shed message contains a MAC digest of the negotiateslt er _secr et and the concatenated
handshake message that have been sent to the other partfi fihehed message is used to ensure the integrity of the
handshake.

In the normal TLS handshake, only the client authenticdtesérver. In situations where the server also wishes teatitiate
the client, TLS provides a mutual authentication mode, shinwFigure 1(b), which allows what is called mutual authestion.

In the mutual authentication mode, after the server serds\itn certificate to the client, the server sends an additiona
Certificat eRequest message to request the client’s certificate. The clientored® with two additional messages, a
Certi fi cat e message containing the client certificate with the cliertlipukey, and aCerti fi cat eVeri f y message
containing a digest signature of the handshake messagesdshyy the client’s private key. Since only a client holdihg t
correct private key can sign the message, the server caerdigdte the client using the client’s public key.

Cryptographic operations can be costly. In general, pukdig cryptographic operations such as RSA are much more
expensive than shared key cryptography. This is why TLS psibdic key cryptography to establish the shared secret ey i
the handshake phase, and then uses symmetric key crypbygnaih the negotiated shared secret as the key. TLS offers a
session reuse mode where the two parties can avoid neggtidepr e_nast er _secr et if it has been done previously
within some time threshold. It is important to distinguisle hotion of aconnection versus asession in TLS. A TLS connection
corresponds to one specific communication channel whickipiedlly a TCP connection; while a TLSession is associated
with a negotiated set of algorithms and the establistmadt er _secr et based on there_nast er _secr et . Multiple
connections may be mapped to the same session, all shar@ntieesst of algorithms and timeast er _secr et , but each with
a different symmetric key for bulk data encryption. The aotbf session reuse indicates the reuse of a previously iaégmbt
set of cryptographic algorithms and thast er _secr et . The handshake message flow for TLS session reuse is shown in
Figure 1(c). The first time the client and server communicdtey establish a new connection and a new session. Therserve
stores the session information including the algorithmiah@nd themast er _secr et for later reference. The session is
identified by asessi on_i d which is conveyed to the client during the initial handshekthe Ser ver Hel | 0 message. The
next time the client needs to establish a connection, it selude the previousessi on_i d in theC i ent Hel | o0 message.
The server agrees to session reuse by specifying the sass on_i d in the respondinger ver Hel | o message. The TLS
handshake will then proceed @angeCi pher Spec message anBli ni shed message directly, avoiding the re-computation
of apre_master_secret. The session reuse timeout is configurable based on theityeassumptions of how long it
takes to break the key by brute-force.

B. SP Overview

SIP defines two basic types of entities: User Agents (UAs)samders. UAs represent SIP end points. SIP servers coffisist o
registrar servers for location management, and proxy seffee message forwarding. SIP messages are divided inteests
(e.g.,I NVI TE and BYE to create and terminate a SIP session, respectively) apdnsss (e.g.200 OK for confirming a
session setup). The set of messages including a requestlarsdagsociated responses is called a SIP transaction.

SIP message forwarding, known as proxying, is a criticalcfiom of the SIP infrastructure. This forwarding process is
provided by proxy servers and can be either stateless @fgtaStateless proxy servers do not maintain state infooma
about the SIP session and therefore tend to be more scatdtweever, many standard application functionalities, sash
authentication, authorization, accounting, and call ifagk require the proxy server to operate in a stateful modé&dsping
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Fig. 2. SIP Stateful Proxying with Authentication

different levels of session state information. Therefave, focus on stateful SIP proxying in this report. Figure 2veb@
typical message flow of stateful SIP proxying with autheattam enabled.

Two SIP UAs, designated by User Agent Client (UAC) and UseertgServer (UAS) represent the caller and callee of a
multimedia session. The hashed circle around the proxyates that this is the server that we are measuring (“systetaru
test”). In this example, the UAC wishes to establish a sessiith the UAS and sends anNVI TE message to the proxy.
The proxy server enforces an optional proxy authenticafig@ture and responds with407 Proxy Aut henti cati on
Requi r ed message, challenging the UAC to provide credentials thatyviégs claimed identity (e.g., based on MD5 digest
algorithm). The UAC then retransmits thé\VI TE message with the generated credentials inAbehor i zat i on header.
After receiving and verify the UAC credential, the proxy dera100 TRYI NG message to inform the UAC that the message
has been received and that it needs not worry about hop-pydtcansmissions. The proxy then looks up the contact addre
for the SIP URI of the UAS and, assuming it is available, failgathe message. The UAS, in turn, acknowledges receipt
of the I NVI TE message with 480 RI NG NG message and ring the callee’s phone. When the callee acpiaks up the
phone, the UAS sends out200 OK. Both the180 RI NG NG and 200 OK messages make their way back to the UAC
through the proxy. The UAC then generatesAK message for the00 OK message. Having established the session, the
two endpoints communicate directly, peer-to-peer, usingedia protocol such as RTP [38]. However, this media sesties
not traverse the proxy, by design. When the conversatiomishied, the UAC “hangs up” and generateB¥E message that
the proxy forwards to the UAS. The UAS then responds witt08 OK which is forwarded back to the UAC.

SIP proxy authentication is an optional operation, typjcdbne between a UA and its first hop SIP proxy server. While
the example above shows a single SIP proxy along the pathraictipe it is common to have multiple proxy servers in the
signaling path. The message flow with multiple proxies wal &imilar, except that the proxy authentication is usualtlyo
applicable to the first hop.

C. Connection Management with SIP/TLS

SIP can operate over different transport protocols, bdiabie and unreliable. Since TLS requires a reliable transand
TCP is the dominant reliable transport protocol in the Imégyall our evaluations use TCP. A TCP connection is firsti#sthed
between endpoints, and then a TLS handshake occurs to ategtite TLS session. Once the TLS session is established, the
SIP signaling messages will be passed to the TLS layer amyped.

When a connection oriented transport such as TCP is used;otivgection management policy needs to be defined. In a
multi-hop SIP server network scenario, it is generally prable to maintain a single long-lasting connection betw®e
interconnected proxy servers. All SIP messages betweetwihvg@roxy servers that go through the same existing conorecti
can avoid the per-session connection handshake overheaontrast, if the proxy server is connected with a SIP UAC or
UAS directly, the proxy typically has to establish sepamatanections with each of them since they are located on a&par
hosts. Given these observations, we group the possible e8iférsconnection management configurations into four wffe
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modes as shown in Figure 1I-C. Figure 3(a) showsptaxy chain mode, where the proxy server interconnects two other proxy
servers in a chain fashion. Only one connection is neededdoh neighboring proxy server in this case. Figure 3(b) show
the outbound proxy scenario, where the proxy accepts multiple connections WACs but only establishes a single outgoing
connection with another proxy server. Figure 3(c) is ithigound proxy scenario, where the proxy server under test accepts a
single connection from an upstream proxy server and estasi multiple connections to individual UASes. In Figurd)3(
the proxy server under test connects UACs and UASes direxily therefore accepts both incoming connections andesreat
outgoing connections simultaneously.

SIP proxies usually support all these four modes of oparatious this characterization is somewhat logical rathanth
physical. For example, a SIP proxy operating in the middla giroxy chain does not necessarily interconnect only a sing|
pair of proxy servers; it could well connect a number of diéf® proxy pairs. Similarly, an outbound proxy might corinec
to more than one upstream proxy. The four modes thus desitribéull range of connection management behavior for SIP
proxies, from completely persistent connections to a ssetllof nodes (the proxy chain mode) to non-persistent caiomesc
where each call requires a connection setup and teardoero(tal proxy mode). In addition, the inbound and outboursksa
distinguish where connections are passively acceptedr{tfend case) vs. those that are created (the outbound &&bée
in practice real proxy behavior will lie somewhere in the diaof these extremes, the characterization lets us exphare
design space fully.

Since we run TLS over TCP, the connection management sosndescribed for TCP is equally applicable to the TLS case,
but with one addition: the session reuse case. Thus therthiae possible options for TLS. First is creating a new sessi
from scratch, requiring both a new TCP connection and a ne® 3éssion. Second is using a persistent existing sessitin, wi
an established TLS session and TCP connection. Third isirgtwan earlier TLS session, requiring a new TCP connection
but performing TLS session reuse rather than a full new TLsSisa.

IIl. EXPERIMENTAL METHODOLOGY

Here we discuss the software and hardware utilized in ouerxgnts. We also present any software tuning performed.
Several subtle software bugs were exposed by driving theesysvith high loads that had a large number of TCP or TLS
connections. We also describe the necessary changes asdMixenade where appropriate. Additional information about
operating system parameter configuration is provided inefylix B.

A. Test Matrix and Evaluated Test Cases

The biggest advantage of differentiating the four SIP secemnection modes (chain, outbound, inbound, local prasy)
in Section 1I-C is to reduce the complexity and reveal actaitributing components of the system in different scerzari
Indeed, each of the first three connection modes allows ugdmiae a different aspect of the system in terms of TLS cost
evaluation. For the proxy chain scenario, since there is dditianal connection establishment cost once the siggatias
started, it allows us to solely evaluate the cost impactrmalin TLS bulk data encryption. The outbound and inbourakypr
scenarios include per-session connection managemengfdahe allowing us to assess the additional cost impactcisteal
with the TLS handshake phase, where the proxy server actsea¥liS client side and the TLS server side, respectively.
Finally, the forth connection mode, local proxy mode, giussan overall view combining all the aspects involved in th&t fi
three scenarios.



TABLE |
OVERALL TESTMATRIX

TCPI/TLS TLS TLS TLS SIP

Multiple Session Mutual Cipher | UAC

Configuration Connections Reuse Authentication | Suite | Auth.

Left | Right | Left | Right | Left | Right

Proxy Chain N N N N N N any B
Outbound Proxy| Y N B N B N any B
Inbound Proxy N Y N B N B any B
Local Proxy Y Y B B B B any B

Given the four connection management mode characternizatie can obtain the whole test scenario space by enumerating
all the configuration variables. To better understand thesibte test cases, we show a unified logical component grafiteo
testbed in Figure 4. The proxy server in the middle represtra server under test. Its function is logically split to ASJlike
component (UAS), which interacts with the UAC in the left (UAL), and a UAC-like component (UA§) which interacts
with the UAS in right side (UAZ). The whole testbed is split into the left path and the righihp which consists of the left
pair and the right pair of the UAC and UAS, respectively.

In proxy chain and local proxy modes, the UA@nd UAS; represent the actual UAC and UAS. In outbound proxy mode,
the UAC;, represents the actual UAC but the UASepresents the UAS-like component of the incoming proxyesethat
is connected to the proxy server under test. In inbound prorge, the UAG represents the UAC-like component of the
outgoing proxy server that is connected to the proxy sermeleutest, and the UASrepresents the actual UAS.
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Fig. 4. Logical component graph of the SIP testbed

Different number of configuration variables is available different scenarios. When UDP is used as the transporbpogt
the only configuration variable we concern about is whetHé [Boxy authentication is enabled. The cases with TCP and
TLS transport are much more complicated because of the cionemanagement possibilities as discussed in Sectigéh II-
TCP and TLS tests may use single connection or multiple atfiovemode, and may have SIP proxy authentication enabled
or disabled. If TLS is used, there are also the TLS sessiosetellL.S mutual authentication, TLS cipher suite as configuma
variables. In Table | we list the mapping between the confiion options and the four proxy connection modes for the TCP
and TLS cases.

The “Left” and “Right” in the table represents the “Left Patind “Right Path” as in Figure 4. The content entry value “N”
means “No”, value “Y” means “Yes”, and B means both “Yes” aiNb” are applicable. The only options applicable for TCP in
Table | are the multiple connections option and the SIP prauxtpentication option. For TLS, we can summarize three lemp
configuration rules for all scenarios from Table [: first, wha path (either the left or the right one) is in single conioect
mode (meaning value “N” for the “Multiple Connections” eyjtr connection handshake specific options do not apply. When
a path (either the left or the right one) is in multiple conticets mode (meaning value “Y” for the “Multiple Connectidns
entry), all connection handshake specific options applgoBe, the TLS cipher suite options apply to all scenariostdllthe
SIP proxy authentication options apply to left path muétipbnnections mode only (corresponding to multiple UAs eating
to their first hop SIP proxy server).

Expanding the whole test space in Table | results in numeommiguration scenarios which are both intractable and
unnecessary. We make the following decisions to narrow dinvercases towards a workable test space. First, for TLS ciphe
suite, since the SIP standard [34] already specifies the atarnydTLS RSA WITH_AES 128 CBC_SHA cipher suite and a
recommended TLRSA WITH_3DES EDE_CBC_SHA cipher suite, we focus on these two cipher suites onlpdriicular,
since the impact differences of these two cipher suites amlynon the bulk data encryption phase, we test both cipher



suites only in the proxy chain mode which is specifically medanexamine the impact of TLS bulk data encryption. For all
other three proxy modes, we test the mandatory RSA WITH_AES 128 CBC_SHA only. Second, we enable SIP proxy
authentication only in the outbound proxy and local proxgreio, which is a common setting. Third, we test the TLSieass
reuse and TLS mutual authentication separately to undwrstach of their impacts. Fourth, when both the left path ded t
right path can apply TLS session reuse or TLS mutual auttetign, both paths have the same setting. These decisidusae
our test space td6 test configurations for TCP and TLS. Adding the two UDP configions, we have a total of8 test
configurations.

B. OpenSPS SP Server

The SIP server we evaluated is Open SIP Server (OpenSIPSiprer.4.2 [25], a freely-available, open source SIP proxy
server. OpenSIPS is a fork of OpenSER, which in turn was a &61BIP Express Router (SER)[14]. All these proxy servers
are written in the C language, use standard process-basedircency with shared memory segments for sharing state, an
are considered to be highly efficient. In configurations imw@ proxy authentication where a user database is reguize
use MySQL-5.0.67 [24], which we populated with, 000 unique user names and passwords.

We made several modifications to OpenSIPS in order to supfiat our identified test cases in Section IlI-A. In partiayl
we added a connection mode where OpenSIPS will establiskva@oenection to a UAS upon a new call, even if the UAS has
the same IP address. This is needed to test the multiple cbonenode between the proxy server and UAS using a limited
number of UAS machines. We also added options to OpenSIP8qieest TLS session reuse when acting as a TLS client,
and to request for TLS mutual authentication when it is @acts a TLS server.

The OpenSIPS “maximum number of TCP connections” paramignéis the number of TCP connections the server can
handle. This value must be large enough so that new incom@ig donnections will not be dropped due to TCP connection
number overflow. Although the server default value20648 is sufficient in most of our test cases, in high load test cases
involving multiple connections between the proxy servet ire UAS, we need to increase the valud tv92. We also increased
the sizes of the TCP connection hash tables in OpenSIPS_(DCHASH_SIZE and TCRPALIAS_HASH_SIZE) from1, 024
to 2,048. One unexpected parameter that initially prevented us fronming high load tests with SIP proxy authentication
is the “Nonce index” value in OpenSIPS. It turns out that teéadlt MAX_NONCE_INDEX value used to create nonce
for proxy authentication is too small and could exhaustlgasi high load. When the nonce could no longer be generated
authentication cannot proceed and the server will simpglctecalls. We increased the default MAKXONCE_INDEX value
from 100, 000 to 10, 000, 000. This change alone increased the throughput results dicaiigte.g., in the proxy chain scenario
the peak throughput with SIP proxy authentication incrddse close to an order of magnitude.

OpenSIPS has a children parameter that specifies the nurhlodild processes that should be forked to simultaneously
handle signaling messages. We started our evaluation étldéfault setting of children=4. When we compare the resuth
another setting children=1, we found that surprisinglyltiteer consistently performs equally well or better thaa thrmer. A
detailed profile and Cycles Per Instruction (CPI) analysiselected scenarios reveals that in the TCP case, althbegdRI
is indeed higher in the children=1 case, the number of iottms is significantly higher in the children=4 case, madtrly
in the kernel, so much so that it is more significant than thé CTRis suggests context-switching overhead in terms ofcod
paths is the dominant cause leading to the difference. Emalérstill hold in the TLS case, although less pronouncedthi®
reason, we set children=1 in our test evaluations below.

C. SPp Client Load Generator

We use another freely available open-source tool, SIPptfi8gnerate SIP traffic. SIPp allows a wide range of SIP st@nhar
to be tested, such as UAC, UAS and third-party call contréiGg). SIPp is also extensible by writing third-party XML
scripts that define new call flows; we wrote new flows that wareincluded with SIPp to handle authentication. SIPp has
many run-time options we took advantage of, such as multialesport (UDP/TCP/TLS) support; MD5-based hash digest
authentication, and scriptable support to allow calls t@beerated from a list of users. We use the SIPp release fragugiu
26th, 2008. We also added additional functionality to Si®@t¢commodate all our test cases. Specifically, we addedrspti
to SIPp to request TLS session reuse when acting as the Té& elnd to request TLS mutual authentication when acting as
the TLS server. SIPp has a maocket option which sets the maximum allowed number of gmmelously open sockets. In
test cases where each SIP call will create a new connectiersetvmaxsocket=65535. The TLS support library for SIPp is
a statically-compiled version based on OpenSSL [26] rel€a8.8i (which is the latest release at the time of the catipit).

D. Hardware and Connectivity

The server hardware we use hadntel Xeon 3.06 GHz processors witlt GB RAM and 34 GB disk drives. However,
for our experiments, we only use one processor. Wel@iselient machines, six of which have 2 Intel Pentiun8 40 GHz
processors witl GB RAM and 80 GB hard drives. The other four have 2 Intel Xe®196 GHz processors witdh GB RAM
and36 GB hard drives. The server and client machines communicateampper Gigabit or 100Mbit Ethernet. The round trip
time measured by thpi ng command from the client to the server is arounth ms.



E. Operating System Software

The server uses Ubuntu 8.04 with Linux kernel 2.6.24-19, 38t 0.9.8.g, and oprofile 0.9.3. The clients use Ubuntu
with either a 2.6.22 kernel or a 2.6.24 kernel. To suppogdarumbers of TCP connections, we modified the runtime Linux
kernel configurations via the sysctl command to increasentheber of available ephemeral portsi®, 000 and to increase
the maximum number of open file descriptorsit@00, 000. We encountered an SSL library failure at the SIPp load ggoer
side when generating high loads. After examining the Op&nS®r queue in more detail, the ER&ror_string is found to
be error:1409F07F:SSLroutines:SSVBRITE_PENDING:badwriteretry. A bug fix is found at [12]. This fix wasibmitted
in 2003 but had not yet been incorporated into the OpenS3asel We therefore recompile SIPp using OpenSSL version
0.9.8i source with this fix included. The OpenSIPS serverhimecuses the existing OpenSSL version 0.9.8g. The bug does
not manifest itself there and keeping the original OpenSBlthe server makes profiling more convenient.

F. Workload and Performance Metrics

The workload is a standard SIP call flow provided by SIPp ftkied in Figure 2. There is no call hold time. Our main
metrics are server throughput in calls per second as rapbsteSIPp and server profile CPU events as reported by oprofile.
We also measure server CPU utilization. All our test runs flais 120 seconds after a 30 second warm-up time. All metrics
are the average of three consecutive test runs.

IV. RESULTS ANDANALYSIS
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Fig. 5. Peak Throughput: Proxy Chain

Different proxy scenarios and configurations can incurificantly different overheads and result in very differeintits on
throughput. In order to understand and compare the compawosts in different scenarios, we start with the relativalyple
proxy chain scenario and then examine the more complex sosraf outbound proxy, inbound proxy, and local proxy. For
each scenario, we measure peak throughput and then use th@rGfles to understand and explain the performance costs.

A. Proxy Chain

Figure 5 shows the peak throughput in calls per second (opshé proxy chain scenario using several configurationshEa
bar shows the performance for a different configuration. flilse four bars have SIP proxy authentication disabled aedtxt
four have SIP proxy authentication enabled. The tests declUCP only, TLS with the TLSRSA WITH_AES 128 CBC_SHA
cipher suite (abbreviated as TLS-AES), and TLS with the TRSA WITH_3DES EDE_CBC_SHA cipher suite (abbreviated
as TLS-3DES). Recall that in this scenario, no connectidnpseverheads are incurred. The average CPU utilizatiogesn
from 95% to 100% in all the peak test cases except for the UDP and TCP withaiieatication cases, which is abdti%
and 85%, respectively. Note that not all the tests could reach fillUCutilization because there is not always quite enough
number of client machines to fully load the testbed. We télie factor into account in our cost model analysis in Section
by scaling by CPU utilization appropriately.

We see from Figure 5 that the peak throughput using TCP aehiglboutt7% of the throughput using UDP, when SIP proxy
authentication is not used. When authentication is enaBIle@ provides8% of the corresponding UDP performance. Adding
TLS to the scenario results in even more substantial pedoom reductions. When SIP proxy authentication is not eaabl
TLS-AES achieve$0% of the corresponding TCP throughput, and TLS-3DES achidvés of the TCP throughput. When
proxy authentication is enabled, TLS-AES achiev6% of the corresponding TCP throughput and TLS-3DES achié8&és
of the TCP throughput. While it would be convenient to simatjribute the extra overheads to the corresponding eriorypt
algorithms, it turns out the reality is more complex. To betinderstand the overheads, we turn to the CPU profiles ajexdler
by oprofile.
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Our approach is to obtain a CPU profile of each configurationatithe same load level of 50 calls per second so that results
across configurations can be compared meaningfully. As coemis are added (e.g., TLS vs. no TLS) or changed (AES vs.
3DES), the attendant CPU costs will manifest themselveberptofiles. This assumes costs scale relatively linearly iead
and exhibit the same proportions at the peak as they do at §0ndpch is not always the case. To test the accuracy of this
assumption, we compare the observed peak throughputs wih extrapolated based on the CPU cycle costs observed. On
average, the estimates match the observed peaks withinrtrppe . Those are presented in Section V-B.

Figure 6 shows the number of non-idle CPU cycles consumebdgdrver in the proxy chain scenario for each configuration
during the duration of the test. The mapping between thefi@mported functions and the categories shown in the figgire
listed in Appendix VII. We see that the total cost of the bamelJDP case without SIP authentication is about 144 thaisan
CPU cycles. The most significant cost components are ke6®&) (which accounts fot7%, and the sum of OpenSIPS-Core
and OpenSIPS-Model (54k), which contributes anotd&¥ of the total cost. When TCP is used instead of UDP, the total
costs increase 152k cycles or oug0%. Again most of the increase belongs to Kernel (60k) and time siOpenSIPS-Core
and OpenSIPS-Module (71k).

We see that adding TLS-AES introduces anoth@l; of additional overhead, roughly 450k cycles vs. 300k cyéteshe
TCP case. TLS-3DES is similar, with roughly 525K cycles, asdwould be expected, the differences in total cost between
TLS-AES and TLS-3DES are almost solely contributed by th&t difference in cryptographic operations.

Half of the 150K increase from TCP to TLS-AES is directly adlmited by TLS operations, and most of the remainder
is relatively evenly shared by increases in Kernel and Ofga&ore. Interestingly, AES itself only adds about 19Klegc
in cost; MAC overheads are higher at 25k cycles. MAC overbemd incurred by the bulk encryption algorithm, since each
message is verified for authenticity using the MAC algorishiAC overheads are roughly equivalent regardless of théeeh
of AES or 3DES. While 3DES is over 4X as expensive as AES (93KL9K cycles), the relative difference between the two
complete software stacks is only about 17% (525K vs. 450K9. ékpect AES to be faster since it is a more recent cipher
than 3DES and was designed for performance.
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Other TLS overheads come from other components in the Opellgary. For example, in the TLS-AES case, there are



other libcrypto functions (10K) and libssl (11K). Thus a rAiial component of SSL overheads is from the using the SSL
mechanisms, such as allocating, freeing, maintaining,laoking up SSL session state.

Comparing the TCP case and the two TLS cases, the CPU profilastdshow the increases in kernel and OpenSIPS-Core
centering on any specific functions. Between the two TLS sésemselves, the cost of Kernel and OpenSIPS-Core are quite
similar.

The major difference when SIP proxy authentication is ezdis the additional database cost, which ranges ft6m 29%
of the total cost in each case. When the database overhaadugéd, TCP will introduc&2% overhead over UDP. TLS-AES
and TLS-3DES will incur an addition&0% and44% over TCP, respectively. The rest of the cost contributioiessimilar to
when SIP authentication is not enabled, because the aighimt database functions are orthogonal to the TLS fonsti

B. Outbound Proxy

Figure 7 shows the peak throughputs of the outbound proxyasice for several configurations. Recall that in the TCP or
TLS cases of this scenario, each call results in a new colemdating established with the server, as opposed to theymtwain
scenario above. Each bar again indicates a different caatign, namely UDP, TCP (and no TLS); TLS; TLS with mutual
authentication, and TLS where session reuse occurs on @&lkdnnection. Each configuration has SIP authenticatiabled.
Since the choice of AES or 3DES only affects the bulk dataygtmn overheads, which we examined in Section IV-A, for
simplicity we restrict our experiments with TLS to use onli3 for the remainder of this paper. The average CPU utitinati
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Fig. 8. CPU Profile Cycle Costs: Outbound Proxy (50 cps)

in each case is arourti%. We see that the peak throughput in TCP case is ar68fidof the baseline UDP case. The TLS
case is approximatel§6% of the TCP case. Within the TLS cases, adding TLS mutual atiteion reduces throughput
about20%, while enabling session reuse increases throughput &gt To explain these differences we again turn to the
profiles.

Figure 8 shows the CPU profiles for the different outboundpmonfigurations, again at the 50 calls per second load.level
Using TCP introduces aboutr% more or 271K of overheads compared to using UDP. Within thisdase, Kernel costs
contribute 144K, while OpenSIPS-Core and OpenSIP-Modaigribute 102K. The remaining 25K is contributed by libc and
other functions.

The use of TLS introduce& % of additional overhead compared to the TCP case. TCP corssabueit 840K cycles whereas
TLS costs about 1,470K cycles. Much of this increase conmma RRSA (233K cycles) because in this configuration the proxy
needs to perform one of the most costly operations in the Taiglbhake: RSA decryption of th e_nmast er _secr et
using its private key. Another major component of the insees from MAC processing (65K cycles), which is not only used
to verify the encrypted messages but also to verify the sexsificate and construct theast er _secr et . Other OpenSSL
overheads such as libssl (34K) and other libcrypto funeti(@6K) also contribute.

Enabling TLS mutual authentication incurs about 1,790Kley®r an additional 330K over the baseline TLS, most of
which comes from increased RSA costs (160K). Recall in taseche server requests the client’s certificate which these
verifies using RSA public key decryption. In addition, thevee performs another RSA public key decryption for the ifie
certification verification message and also verifies thdfiate using the MAC algorithm. Indeed, we see MAC costséase
by 10K cycles when mutual authentication is used. Kernetscalso increase by 45K cycles, presumably due to additional
socket layer crossings and network packets transmitted.
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However, enabling TLS session reuse reduces the overhead%byxompared to the baseline TLS case, or by about 200K
cycles. Most of this overhead is explained by the reductioR$A costs, which shrink from 233K cycles to only 10K cycles.
This is because in the session reuse case, no key exchangertéifidate verification is required. MAC costs remain, hoere
since new cryptographic keys are still computed for dataygtion. Since SIP authentication is enabled, we see dstatast
of about29% in UDP and20% in TCP and10 — 15% in the TLS case.

It is worth noting that the TLS mutual authentication tesbwabincludes SIP proxy authentication at the same time. One
might argue that SIP proxy authentication may not be necgsgth TLS mutual authentication where the server autlozdis
the client anyway. The point here is that the outbound proxgencommonly requires not only user authentication, bud als
user authorization. The cost of SIP proxy authenticatioovabis mainly attributed to the database operation, whidghdsed
for user authorization that is necessary even when TLS rhatuthentication is used.

C. Inbound Proxy

Figure 9 shows the peak throughput of the inbound proxy s@enarhe configurations are the same as those in Figure 7 in
Section IV-B, except that SIP authentication is not enabléwe Figure shows two versions of OpenSIPS: the originaivar
and one with a modification we developed, denoted “with tioidix” in the graph. We start by explaining the performance
problem we discovered and how we solved it.

We examined the original OpenSIPS CPU profile under the peakighput for TCP and TLS. Surprisingly, we found that
50% of the CPU cycles in the TCP case a2@’% percent of the CPU cycles in the TLS case are spent in two ifumst
tcp_main_| oop andtcp_recei ve_| oop. More detailed profiling reveals that the overhead in the fuctions are
primarily the cost of two timeout mechanisms used to clogeT@P connections which are no longer in use. In the inbound
proxy case, the timeout mechanism becomes prominent beta@dJAS in our tests does not close the TCP/TLS connection
when the call is over. There can be thousands of simultan€@s connections existing in the TCP connection table. The
current server code callsta meout function every time theepol I mechanism returns when events are detected. During
each call to the i neout function, the entire TCP connection hash table is traverSkadrefore, at high loads when the hash
table has thousands of entries, the time spent in the timfeoation becomes much larger than is the case under lowdr loa

We applied a fix to the existing OpenSIPS TCP connection tihetechanism. Observing that the timeout is based on a
time tick with one second resolution, it makes no sense terehe timeout function more than once per second. We therefo
added a time tick check before calling the timeout functibthe program has called the timeout function during therentr
time tick value already, then it will not enter the timeounhétion until the time tick value is advanced. This simple fixned
out to have a drastic effect on performance involving TCP 8h8, as shown in Figure 9.

As can be seen, the TCP case and the TLS with session reusariscenjoy the most obvious boosts in throughput, by
about200% and 150% respectively. For example, in the TCP inbound proxy tesec#se contribution of the two timeout
functions to the total overhead reduces fr66% to a negligible0.6%, and the total cost drops bB§8%. In addition, kernel
costs shrink byt3%. CPU utilization at the200 calls per second load level reduces fr@f% to 20%. The CPU utilizations
at the peak throughput values with the timer fix are in the eaog80% to 90%.

The other two scenarios, TLS and TLS with mutual autheriboatalso see performance increases but the differences are
less dramatic. The reason is that in the latter two scenahiesproportion of cryptographic overheads take a greatdrgd the
total cost, so reducing the OpenSIPS and kernel overheada halatively smaller impact. For the remainder of this Bect
we focus exclusively on OpenSIPS results where the timerutes been applied.
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From figure 9, we see that the peak throughput with TCP is abtfidt of the UDP case. The peak throughput of TLS is
approximately28% of the TCP case. Within the TLS cases, adding TLS mutual atitegion reduces throughput 9%,
while enabling session reuse increases throughpuib$. We again turn to the profiles for explanation.

Figure 10 shows the CPU profiles for the several inbound pmmafigurations where the timeout fix has been applied. In
general, using TCP incurkr4% (250K) of additional overhead compared to using UDP, 118Kvbich comes from increase
in Kernel and 94K from increases in OpenSIPS-Model and OpE®&ore. The remainder comes from libc (8K) and other
functions (30K). The use of TLS introduces 0&%3% of additional overhead compared to the TCP case (1,315kesyd.
394K). 212K cycles are contributed by RSA, 173K by otheryipto processing, 93K by MAC processing, 44K by libssl,
and 23K by AES. Kernel overheads increase by 150K and Op&sShite by 110K.

Enabling mutual authentication incurs an additios2¥ overhead (550K cycles) over the baseline TLS. The majofiity o
that increase comes from RSA (260K). MAC processing is atsoeiased by 310K.

Enabling TLS session reuse reduces coststéffy compared to the base TLS case, with total costs falling fro13K
to 710K or about 600K cycles. Reduced RSA processing cari&#h200K of those reductions; other libcrypto costs drop by
135K; MAC overheads are reduced by 40K; libssl costs shrinR@®K.

In this configuration, the main RSA costs in the normal TLSecasme from the proxy verifying the UAS’ certificate and
the proxy encrypting the@r e_mast er _secr et to be sent to the UAS. The additional increase in RSA overhéadhe
mutual TLS configuration is mainly because the proxy needsgn the client authentication message using its privaye ke

An interesting observation from this figure is the cost of MA@ctions, which are substantially higher than in the prasi
proxy scenarios. This is because the proxy needs to vergycéhitificates presented by the UAS, which was not present in
earlier cases. In addition, in the mutual TLS case, the preegds to perform RSA encryption using its own private key and
to sign the certificates using the MAC algorithm. These ogads are exhibited in the profiles. Furthermore, in the TL® wi
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session reuse case, the MAC costs are significantly redira#idating that a large amount of the MAC cost is associated w
the RSA key exchange phase, rather than during the bulk datgmion.

D. Local Proxy

Figure 11 shows the peak throughputs of various configuratia the local proxy scenario, both with and without the
timeout fix described in Section IV-C. Configurations are $aee as in Figure 7; SIP authentication is enabled. We see the
timeout fix has a substantial impact on performance for duthbaseline TCP case and for TLS when session reuse is enabled
where TCP overheads are significant. The timeout fix makesdéan impact on the other TLS cases. For the remainder of
this Section, we focus our analysis on the configurationsrevtige timeout fix is applied.

The average CPU utilizations in the four configurations wtfite timeout fix are betwees0% to 90%. We see that the peak
throughput with TCP is aroun®3% of the UDP case, while the peak throughput with TLS is apprately37% of the TCP
case. Within the TLS cases, adding TLS mutual authenticagduces throughpds%, while enabling session reuse increases
throughput66%.

Figure 12 shows the CPU profile results for the local proxynace with the timeout fix. In general, the use of TCP incurs
58% of additional overhead compared to the baseline UDP ca®iX 8 this is contributed by Kernel, 108K by OpenSIPS-
Core and OpenSIPS-Module, 10K by libc and 30K by other fumsti Using TLS introduces ov&66% of additional overhead
compared to the TCP case. Total cycles increase by 1,500 &00K to 2,400K. RSA contributes 434K to that increase,
kernel overheads 240K, MAC processing 219K, other libavyfpinctions 174K, OpenSIPS-Core 140K, libssl 67K, and AES
36K.

Enabling TLS mutual authentication incurs an additios¥, overhead over the baseline TLS, increasing total coststabou
800K from 2,400K to 3,170K. Additional RSA overheads cdmite 375K of the increase, 125K from kernel, 100K from
MAC, 70K from libcrypto, 45K from OpenSIPS-Core, and 5K frdiissl.

Enabling TLS session reuse reduces the cost relative toabelibe TLS case b§8%. Cycles shrink by 900K from 2,400K
to 1,500K. RSA savings contribute 415K to the difference, IA30K, other libcrypto functions 110K, kernel 80K, OpenSIP
50k, libssl 25k.

The MAC cost is significantly reduced in the TLS with sessiense case, indicating that a large amount of the MAC cost
is associated with the RSA public key exchange phase, assdisd in the inbound proxy case in Section IV-C.

V. A COMPONENTCOSTMODEL

In this section we present a component cost model to helpratahel where the overheads in deploying SIP over TLS
are and to aid network administrators in provisioning ttsgistems. While clearly performance will vary across systeour
model helps provide guidance on relative performance aaagngle system. Thus, if an administrator understandsrhogh
server resources are required to support a SIP subscriserusang UDP, the cost model helps them estimate the capacity
relative to that required to support TLS.

A. Constructing the Component Cost Model

Our model is based on decomposing the costs from each ssdntibasic building blocks. Costs are derived from the
number of CPU events, as measured by oprofile, that a patipubxy scenario configuration incurs at a load of 50cps as



described in Section IV. We start from the most simple basatonfiguration, proxy chain with UDP, and build up from #her
normalizing that cost as one unit. For example, the baseliory chain mode with UDP does not include per-call conmecti
establishment; this is a cost that will be calculated latext, we calculate the incremental overhead of TCP datasfiean
by subtracting the CPU events cost for the UDP proxy chainerfooim the cost from the TCP proxy chain. Similarly, the
TLS case in the proxy chain mode adds TLS bulk data encrypti@rhead to the plain TCP case. By subtracting the cost
in the plain TCP case from the TLS case, we can obtain the ddstilk data encryption. As long as the same cipher suite
is used, this cost of bulk data encryption should be the sanal iother scenarios. Next, if we look at the inbound proxy
mode, the cost difference between the plain TCP inboundypmoade and the plain TCP proxy chain mode is caused by
the per-call TCP handshake overheads. Subtracting thesemsvcan calculate the normalized per-call handshake wiith
would be applicable also in the TLS inbound proxy mode. Ruilhg this approach, we can obtain the modular costs of all
other components for the proxy chain, inbound proxy and @urid proxy scenarios. These costs are plotted in Figure 13.
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Fig. 13. Functional Components Cost Model

Figure 13 gives a simple model to compute the SIP proxy cosiemvarying settings. Now we explain in more detail each
of these functional components and compare them in difterescenarios.

The UDP Data Transfer cost represents the base processhgwer UDP transport. Its main components are OpenSIPS-
Core, OpenSIPS-Module, related kernel and libc costs.&bests are the minimum costs that will incur in any other ades.
Therefore, it is used as the base for our cost normalization.

The TCP Data Transfer cost stands for the additional provge®st incurred when TCP is used instead of UDP. This cost
is 1.1, a little larger than the base UDP cost. Using TCP thus maae ttoubles the cost of SIP processing with UDP.

TLS Encryption cost is the cost for bulk data encryption aaedrgption in any scenario involving TLS. This cost is detreal
by the encryption/decryption algorithm in the TLS cipheitesuln the majority of our tests, we used the AES cipher sthigg
the SIP RFC mandates with a 128-bit key size. The normalipstl af bulk data encryption using AES 1sl1, representing
a similar amount of cost increase as the additional TCP datesfier cost. Adding bulk data encryption and TCP thusdsipl
the cost of UDP with non-encrypted data. In section IV-A, vawdnr seen that using the 3DES cipher instead of AES)7%
more costly, resulting in @50% cost increase over the baseline UDP case.

The Authentication cost represents the cost of the SIP phRp-based digest authentication mechanism. The values are
3 for UDP, 3.2 for TCP and3.6 for TLS, respectively, which are over three times the basdPUlata transfer cost. The
authentication cost over TLS is more expensive than the @b3iCP due to additional TLS overheads. The sheer majority
of the authentication cost is contributed by database Ipdku credential verification. It should be possible to sfgaintly
reduce the database cost by replacing it with an in memoigbdse.



The TCP Client Handshake cost represents the overhead \Wwhepraxy needs to open a TCP connection to the next hop
on a per-call basis, as is the case in the inbound and locay pn@des. Similarly, the TCP Server Handshake cost reptesen
the cost when the proxy must accept and establish a new TQORection from the previous hop. Our experiments show that
the costs at the TCP client and server side are similar, atdaet0.6 and 0.7 of the base UDP transfer cost.

The TLS Client Handshake cost represents the overhead walkeeproxy needs to open a TLS session for a call, such as in
the inbound and local proxy modes. The TLS Server Handshadterepresents the overhead when the proxy needs to accept a
TLS session, as in the outbound and local proxy modes. Thelagterheads depend on how TLS operates. With the normal
TLS handshake, the cost at the client side and server sidé.&arnd 2.8 respectively. When TLS mutual authentication is
enabled, the cost at the client and server side nearly dealb¥e2 and5.1 respectively. With TLS session reuse, the TLS client
side cost reduces B80% to 1.1 and the TLS server side cost shrinks 5)/% to 1.4. A surprising observation is that the TLS
client side cost is actually much higher than the TLS serige sost in both the normal TLS and TLS mutual authentication
scenarios, which is contrary to the common wisdom [30]. Westigated this problem and identified a performance fix thic
significantly cuts the client side cost in the TLS, TLS mutaathentication and TLS session reuse casesS(9y, 55% and
73%, respectively. The fix is described in more detail in Apparidi

B. Validating the Component Cost Model

Our component cost model is derived at a particular load tpafirb0 cps. Its applicability on higher load values requires
the assumption that the CPU costs scale linearly as loadases. To test this assumption and verify the model, we twok t
steps.

CPU Scaling Error (%)

Fig. 14. CPU Scaling Error within Each Proxy Configuration

The first step is to verify that, within a particular proxy saeio configuration (e.g., proxy chain with TLS and session
reuse), the peak throughputs are close to what we would t&kgem to be. In other words, given a throughput of 50 cps for
some configuration, we estimate the peak throughput to beeardiextrapolation based on the CPU utilization at the 50 cps
load level. For example, if for a particular configuratiore see 10% CPU at 50 cps, we expect the peak throughput to ke clos
to 500 cps. Since different peak throughputs exhibit déferCPU utilizations, we scale the estimates based on thzatitn
seen at the peak. We calculate the percentage error bethe@xtrapolated estimate and the actual observed pealgtiwat
in Figure 14. Although there are a few cases where the diffarés up t035% to 45% percent, the majority of the scenarios
have much smaller errors. The overall average error is lems1t5% percent. This indicates the CPU scaling assumption is
reasonably effective.



The second step to verify the model is to check that the oglakiip between CPU events and CPU utilization is also
linear. The reason is that we wish to use the cost model toigirpdak throughput relationships across different sdesar
Our experience is that the number of CPU events is more statimate than CPU utilization, which has higher variapilit
particularly at low loads. If the event cost and CPU utiliaatacross different scenarios exhibits a linear relatignsand
since we saw above that throughput scales linearly with CRlization, we can similarly scale the event cost within feac
scenario. This lets us obtain a predicated peak througlghatianship across different scenarios by taking the sweaf the
cost for each scenario at the 50 cps load level. Figure 15 stiosvnumber of CPU events measured vs. CPU utilization acros
all 18 of our peak throughput measurements. The Y-axis pteshe CPU event cost as measured by oprofile. The X-axis is
the corresponding CPU utilization for that experiment. W plot a fitted trend line, which shows a clear linear relaship.
There are a few outlier points which are relatively fartheag from the trend line, and as was expected, these are gxhetl
points which have the largest CPU utilization scaling efmoFigure 14.
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C. Using the Component Cost Model

The component cost model can be used in at least two wayg, §iven the component costs of a baseline scenario on
a target system, the model offers a simple approach to ajpppate the relative cost of the SIP server operating at differ
modes. For example, the local proxy mode can be consideredcasnbination of the inbound proxy and outbound proxy
mode. Given the costs of the inbound and outbound proxies;amethen derive the projected cost of the local proxy mode
from this model. Figure 16 compares the model derived castkthe actual measured costs in the local proxy mode. We
found the difference was betwe8fl to 13%, indicating a close match. Similarly, if we choose to use feedint bulk data
encryption algorithm in any of the scenario, we can subistithe cost of the encryption component with that of the new
algorithm and keep the remainder the same.
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Fig. 16. Predicted vs. Actual Measured Cost in Local Proxyd#o

The second and more common use of the functional cost mottekigproximate the peak throughput of different scenarios.
Assuming that the cost (and CPU utilization) scales redéitilinearly according to the load, as shown in Figure 14 inti®e



V-B, the peak throughput should be inversely proportiomatite cost. Therefore, if we know the peak throughput of the
baseline UDP proxy chain scenario, we are able to projecpéad throughput of other scenarios with different confiara
combinations.

From Figure 13, we see that depending on whether authdnticiast enabled, the use of TCP reduces throughpui by
or 81% over UDP in the proxy chain scenario. When the TCP connettaridshake and maintenance costs are incurred as in
other scenarios, the throughputs dropdays in the inbound mode an&3% in the outbound and local proxy mode compared
to UDP.

When using TLS, if only bulk data encryption is used as in thexp chain mode, the model suggests that TLS (with
AES) reduces throughput B36% to 25% depending on whether SIP proxy authentication is enableagen\both bulk data
encryption and TLS handshake costs are incurred in the qifttety modes, the use of TLS reduces throughputb¥ to
70% in the inbound proxy and local proxy modes atitf% in the outbound proxy mode. Within the TLS cases, TLS mutual
authentication may reduce the throughput fro$fi; to 25% depending on the proxy mode. When TLS session reuse is ehable
the throughput is increased Ly% in the outbound proxy mode and B9 — 70% in the inbound proxy and local proxy
modes. The reason the improvement is much more dramatieitatter scenarios is that the baseline TLS throughput isethe
modes is much smaller than the baseline throughput in theooad proxy mode. This is due to the higher cost when the SIP
server is acting as a TLS client.

V1. RELATED WORK

The performance cost of SSL/TLS has been studied by a nunilses@archers, however, almost all these studies are based
on SSL/TLS Web servers. Apostolopoulos et al. [3] found tiat overhead due to TLS can reduce the number of HTTP
transactions handled by up to two orders of magnitude. Karatl.e[15] investigated the architectural impact of SSL, and
concluded that the use of SSL increases the compositiostlofdransactions by a factor 6f— 7. Zhao et al. [42] provided
an oprofile-based anatomy of SSL processing for an SSL Welerséthey found that about0% of the total processing time
of an HTTP over SSL transaction is spent in SSL processing.ekecution breakdown of the individual component costg var
along the request file size. The RSA public key operationddctake up t090% of the total SSL processing cost when the
file size is small. Symmetric (private) key encryption is lngigle for small file sizes, but can increase significantbythe file
size become larger. Coarfa et al. [5] measured the differefserver throughput by selectively replacing TLS operatiwith
no-ops, instead of using a CPU profiler. Their results shat RSA computations are the single most expensive operation
TLS, which accounts fot3 — 58% of the total time spent under different available server Gfytles and workload conditions.
Other TLS costs are balanced across the various cryptoigraptl protocol processing steps. They also determinedetreat
if the RSA operation costs can be reduced to zero, therellisdtig performance difference between a TLS Web server and
a traditional non-secured Web server.

Zeng and Cherkaoui [41] studied the performance of TLS onmr@on Open Policy Service (COPS) over TLS environment.
The results of their study showed that establishing a CORS BkS session took abouf01 times as much as needed for a
pure COPS connection without TLS.

Many researchers have studied SIP server performancat afiteout TLS. Schulzrinne et al. presented SIPstone [39],
suite of SIP benchmarks for measuring SIP server performmanccommon tasks. Cortes [6] measured the performance of
four different stateful SIP proxy server implementationseroUDP and reported throughput results fréth— 700 cps. Nahum
et al. [18] showed experimental performance results of then3ER SIP server under different scenarios includingfstat
and stateless proxying, TCP and UDP transport, with andowitSIP proxy authentication. Their results indicated #rat of
these configurations can affect performance by a fact@r-efl. The SIP over TCP transport scenario in [11] is limited to the
TCP single connection mode which corresponds to the promyncbcenario in this paper. Oho and Schulzrinne [23] studied
the performance of the SIPd [37] SIP server over UDP and T@/sport. Their TCP tests include the multiple connection
mode between the SIP proxy and the UA similar to the local precenario of this paper. The difference is that in [23]
the UAS closes a TCP connection after each transaction whitair tests the proxy server is responsible for tearing down
the connection after the SIP session is over. The reportedighput is around00 cps for UDP andr00 cps for TCP. Ram
et al. [27] provide more understanding of the impact of TCPS0R server performance using OpenSER. They show that a
substantial component of the performance loss from using ®Cdue to the process architecture in OpenSER and provide
improvements.

Salsano et al. [35] measured the performance of a Java-I&iBedroxy server over UDP, TCP and TLS. This is the only
work we are aware of that explicitly reports SIP over TLS parfance. However, their SIP over TLS test is fairly simptifie
they only tested the single connection mode, and the peaughput of the server is at the order td cps, which may
undermine the representativeness of the results.

VII. CONCLUSIONS

We have evaluated and analyzed the impact of using TLS asnapiwa on SIP server performance versus the standard
approach of using SIP over UDP. Using an experimental tdstlith the OpenSIPS server, OpenSSL, Linux, and an Intetdas



server, we show that performance can be reduced signifjcafid use application, library, and kernel profiling to ilikate
where different costs are incurred (e.g., extra RSA ovaeth@den mutual authentication is used) and how they can idexvo
(i.e., RSA costs are nearly eliminated when session reus#estive).

In the best case, the baseline UDP performance is about td/balhtimes that with TLS (the outbound proxy scenario with
TLS session reuse); in the worst case, UDP is nearly 20 timepérformance than with TLS (the local proxy with TLS and
mutual authentication). The performance results depeimagpity on whether and how frequent TLS connection estahtisnt
is performed, since TLS session negotiation incurs expgerREA public key operations. In turn, session negotiatiepethds
on how the SIP proxy is deployed (as an inbound, outboundpcallproxy) and how TLS is configured (with mutual
authentication or session reuse). Bulk encryption costh a8 3DES or AES, in contrast, are minimal, typically no nibisn
7 percent.

Implementation plays a role as well. We found several paréorce bugs in OpenSIPS and OpenSSL, despite the fact that
they have mature code bases and large numbers of users. WWadngderformance improved in some cases by up to a factor
of 3.

Network operators considering deploying SIP over TLS wéled to consider the extra resources required to provideathe s
service quality as would be the case with UDP. Costs can hecestlby maximizing the potential for persistent TLS session
which avoid heavy connection setup costs. These lessonsbhmappropriate for other protocols that use TLS, especihlly
they tend to have short messages. We provide a measureniai-dost model for operators to use in provisioning SIP
servers with TLS. Our cost model predicts performance wifth percent on average.
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APPENDIXA: SECURITY AND CRYPTOGRAPHY INTLS

Many Internet applications have a pressing need for secdritS [9] is one of the two major existing Internet security
standards. The other one is Security Architecture for therhet Protocol (IPSec) [16]. Both TLS and IPSec standards a
transparent to applications. IPSec runs at the networkr lapé is most commonly used in architectures where a set of
administrative domains or hosts share an existing trusttiogiship with one another, e.g., in virtual private netwsrTLS
occupies a protocol layer between the application and resport (usually reliable transport such as TCP), and itidkehy
used among domains and hosts with no pre-existing trustism, for example, in secure web servers (HTTPS).

The most important security properties of Internet comroatidns can be characterized by confidentiality, integaityl
endpoint authentication. Data confidentiality protectsdlata from being viewed by unintended listeners; integmitgures that
the data received are exactly the same as the data sent;iehdpthentication guarantees that the communicatiorygart
indeed the one that it claims to be.

TLS uses three categories of cryptographic operations hieeae these desired security properties: symmetric keptogy
raphy, asymmetric key cryptography and hashing.

Symmetric Key Cryptography: TLS ensures data transfer confidentiality by using symméty encryption techniques such
as RC4 [36], DES and 3DES [19], and AES [22].

RC4 is the best known stream cipher encryption algorithnthig algorithm, a function generates a cryptographicatyuse
pseudorandom key stream one byte at a time. Each byte of thetieam is then combined (e.g. XOR) with a byte of plain
text to get a byte of cipher text. The key length of RC4 can Ja&fween 8 and 2048 bits. TLS always uses RC4 with a
128-bit key length. RC4 is very fast compared to other cipdigorithms.

DES, 3DES and AES are block cipher encryption algorithmghése algorithms, data are encrypted in larger blocks using
methods such as diffusion, substitution and transposi#opopular operation mode for block cipher algorithms islezl
Cipher Block Chaining (CBC). This mode creates a dependbatween the encryption of each plain text block and the ciphe
text for the previous block of cipher text, therefore fixingpeblem caused by parallelism across individual blocks aihd
DES is by far the most widely used symmetric cipher and it wséd-bit block size with a relatively short 54-bit key space.
3DES is effectively running DES three times to make it moreuse, but also about three times slower. AES has a minimum
block size of 128 bits and three key length of 128, 192, and#i6 AES is newer and faster than DES.

Asymmetric Key Cryptography: The use of symmetric key encryption requires the commuiiegiparties to first acquire the
symmetric (shared) key. TLS uses asymmetric key (publi¢ &yptography algorithms such as RSA [33] and DH[10]/DS%[2
to protect the exchange and agreement of the symmetric key.

RSA is the best known public key algorithm. In an RSA opergtigach party has a pair of keys, one public key and one
private key. The public key is made public and the private ikekept secret. When the public key is used to encrypt a messag
only the party with the corresponding private key can dectfip encrypted message and vice versa. In TLS, typically the
client generates a secret and encrypts it using the pubjiokénhe server. The server can decrypt the secret becausehié i
only one that has the corresponding private key.

TLS also uses the reverse of the above operation to achigvergication. For example, if the server wants to be autbatetd
by the client, the server encrypts a message with its owrafarikey, which produces a digital signature. The client ¢eem t
verify the signature by decrypting the message with thees&rpublic key. The clients know the server is authenticabse
only the server has the corresponding private key that cbalet produced the encrypted message.

A remaining issue regarding RSA operation is how one party the other party’s real public key. TLS uses X.509 certifisa
to associate a public key with an identity. The certificatsigmed by a trusted Certificate Authority (CA). It is assuntieal
the party to authenticate the other party at least poss#ssgsiblic key of the trusted CA. The CA signs the certificamg
its private key. Therefore, the CA-signed certificate carvéfied using the CA's public key. In the common web scergrio
the CA certificates are frequently bundled in the browsers thsers typically don’t need to know or configure them.

DH (Dffie-Hellman) is a key agreement algorithm, which isfeliént from a key exchange algorithm like RSA. With DH,
each party combines its own private key with the other panpyiblic key to collectively generate an agreed key that e
to both parties. DSS (Digital Signature Standard) is a digignature only algorithm commonly used together with DH.

Message Digest: TLS provides message integrity through hash functions, led®wn as digest algorithms, such as MD5 [32]
and SHA [21]. These algorithms take an arbitrary length mg@ssand output a fixed length digest string of the message. A
good digest algorithm ensures that two different messagesaradikely to produce the same digest and it is extremelfjcdit
to reversely compute a message given its digest. In TLS, thesage digest algorithm is used to compute a keyed Message
Authentication Code (MAC). The sending and receiving jgartboth compute the MAC and confirm message integrity by
making sure the MAC computed by one party matches that cordguy the other party.



APPENDIXB: SYSTEM CONFIGURATION FORSCALABILITY TEST

We put the following contents in thleet ¢/ sysct | . conf file to increase the system maximum number of file descriptors
to 1,048,576, and the available port range from 10,000 t63%,

fs.file-max = 1048576
net.ipv4.ip_local _port_range = 10000 65535

We also edited théet ¢/ security/limts.conf file to increase the soft and hard limit of the number of opessfil
for the login “user” to 1,000,000.

user soft nofile 1000000
user hard nofile 1000000

To allow a remote shell to access a large number of file dascsiviassh, we use thail i ni t command. For example,
ulimt -n 1000000 increases the number of file descriptors available to thd #tel,000,000. On our Ubuntu 8.04
platform, we found thiaul i ni t command over ssh can only be successfully executed by th”“a@count. If a “sudo”
user is to perform a remotesh and try to get a shell with expanded number of file descriptars need to edit the
/etc/init.d/sshfiletoaddalineulinmt -n 1000000, and restarssh by /etc/init.d/ssh restart.



APPENDIXC: OPROFILEFUNCTION MAP DEFINITION

This section lists how we map function names obtained fromofilp results to the specific categories. The first level of
classification is based on the application name shown infig@s in Table II.

To study the libcrypto category in more detail, we furtheaisslify the functions within the libcrypto library into AES,
3DES, MAC and RSA as listed in Table 1l through Table V. Alhet functions in the libcrypto library are grouped into the
libcrypto-other category.

TABLE 1l
FUNCTION NAME AND APPLICATIONMAPPING
Category | Application
Libcrypto libcrypto.s0.0.9.8
Libssl libssl.s0.0.9.8
Libc libc-2.7.s0
Database mysqld, db mysql.so

OpenSIPS-Core opensips

OpenSIPS-Module| maxfwd.so, registrar.so, rr.so, sl.so, textops.so, trmuasso, usrloc.so, urdb.so
Kernel vmlinux-debug-2.6.24-19-server

Other all others

TABLE Il
FUNCTIONSCLASSIFIED ASAESAND 3DES

AES | 3DES

_X86_AES_encrypt DES set key_unchecked
AES cbc _encrypt DES encrypt2

AES set decryptkey | DES ede3cbc encrypt
AES set encryptkey | des ede cbc cipher
_x86_AES_decrypt DES encrypt3

aes init_key DES decrypt3

aes 128 chc cipher

TABLE IV
FUNCTIONSCLASSIFIED ASMAC

ENGINE_get digest engine | EVP_MD_CTX_cleanup
shalblock asm host order | EVP_MD_CTX_init
HMAC_Init_ex EVP_shal

MD5_Final sha256block
EVP_DigestUpdate SHA1_Final
EVP_DigestFinal ex EVP_MD_CTX_set flags
EVP_MD_CTX_copy_ex SHAZL Init

MD5_Update SHA1 Update
shalblock asm data order | HMAC_Update
EVP_MD_size EVP_MD_block_size
EVP_MD_CTX_test flags HMAC_CTX_cleanup
EVP_DigestInit ex md5_block_asm host order
HMAC_Final SHA256 Update
EVP_MD_CTX_clear flags | HMAC_CTX_init
MDA5_Init




TABLE V
FUNCTIONSCLASSIFIED ASRSA

RSA free

X509 object cmp

x509 nameex_i2d

RSA size

bn_mul_comba8

BN_num_bits word

d2i_PublicKey

RSA_eay public_encrypt

ASNL1 tag2bit

BN_hex2bn

BN_BLINDING _invert_ex

BN_mul

asnlenc save

X509_TRUST_getO

BN_BLINDING _get thread id

ASNI1_item_ex_i2d

asnlex_i2c

BN_from_montgomery

ASNL1 put object

X509_VERIFY_PARAM_free

BN_CTX_new

asnlitem_combine free

ASN1_item_ex d2i

bn_cmp_part words

RSA_eay private decrypt

BN_mod_ inverse

BN_rand

BN_CTX_free

BN_clear

bnrand

X509_STORE get by_subject

ASNL1 get object

ASNL1 template new

X509_STORE_CTX_init

BN_set word

bn_cmp words

X509 _get ext d2i BN_num_bits
X509 _OBJECT idx_by_subject BN_CTX_get
bn_mul_recursive BN_sub

RSA padding check PKCS1 type 2

bn_rand range

BN_sqr

RSA new_method

ASN1 OBJECT free

BN_mod _mul

X509 _VERIFY_PARAM_inherit

EVP_PKEY_size

OPENSSLcleanse

X509_NAME_oneline

BN_rand range

BN_bn2bin

rsa get blinding

BN_mod_exp

bn_expandinternal

bn_mul_words

ASN1_primitive_new

bn_sgr_comba8

BN_sub word BN_MONT_CTX_init
BN_nnmod ASN1 primitive_free
BN_bin2bn X509_VERIFY_PARAM_lookup
BN_CTX_end BN_div

BN_CTX_start

ASNL1 item free

BN_clear free

i2c_ASN1 INTEGER

X509 _OBJECT retrieve by_subject

ASNL1 item_i2d

X509 verify_cert

RSA private decrypt

asnltemplate ex _d2i

BN_mod_exp_mont

asnltemplate ex i2d asnldo_adb
BN_mod_exp_mont _consttime BN_is_bit_set
BN_rshift ASN1 object size
BN_copy BN_rshiftl

X509 _get subject name bn_sqr_recursive
X509 free EVP_PKEY_free

asnlenc restore

bn_mul_add words

X509 _STORE CTX_cleanup

asnli2d_ex primitive

X509_VERIFY_PARAM_new

BN_BLINDING_create param

i2d_X509

i2c_ASN1_BIT_STRING

BN_usub

bn_add words

RSA_eay mod_exp

ASNL1 item verify

bn_sub part words

d2i_PrivateKey

BN_mod_mul_montgomery

BN_MONT_CTX_new

BN_uadd

bn_mul_normal

asnldo lock BN_free
BN_BLINDING_convert ex BN_free

X509 _get issuer name asnlget field_ptr
ASN1_STRING free BN_init

X509 _NAME_cmp asnlex c2i

ASN1_STRING set

asnltemplate noexp d2i

X509 _get pubkey parameters

asnl primitive_clear

BN_ucmp

BN_MONT_CTX_set

asnlitem_ex_combine new

ASNL1 template free

x509 cb

X509_OBJECT up_ref_count

ASN1_STRING type_new

bn_sub words

BN_add X509 _subject name cmp
HMAC _Final BN_Ishift

BN_value one asnld2i_ex primitive
BN_set bit pubkey cb

bn_expand2




APPENDIXD: TLS CLIENT SIDE CONNECTION IMPROVEMENT

By enabling the debugging log and examining the code, weddhat when OpenSIPS tries to establish an outgoing TLS
connection as the client side, it calls the S8annect function, which returns SSERROR WANT_READ, indicating the
function should be called when data can be read. However ereplioll based waiting loop, both POLLIN and POLLOUT
events are being monitored. When either event is repotedSEL connect function is called again. During each connection
establishment, there are a large number of times where tiElepp returns POLLOUT which indicates data can be writbem
not read. All these returns incur additional calling of tHeL.Sconnect function, which simply returns SSERROR WANT _
READ again. These additional unnecessary calls to_ ERROR WANT_READ (e.g., it could be 44 times for one connection
setup) turn out to have a big cost impact. We modified the dpojl so that during the connection setup, the loop only rtspor
the needed events. Figure 17 shows the cost comparison mdthvthout the fix in the inbound proxy TLS mode. The costs
shrink in virtually all categories except AES encryptiorstavhich should not be affected. The total libcrypto costeiduced
by 38% from 500K down to 310K. The most significant cost reductiomes from libcrypto-other functions (128k, including
27k ssleayrand add, 11k intthread get, 10k intthread get item, 6k int threadrelease, 7k lhretrieve, 19k errclear error,
7k err_get state, 7k cryptoadd lock, 4k crypto free). MAC and RSA costs are also reduced by 34k and 28k, cégply. In
addition, the overall cost is seen to be reduce@®¥, from 1,316K down to 936K. Cost savings from outside therlipo
library include libssl (22k), libc (37k), Other (29k), Op8iPS-Core (39k), OpenSIPS-Module (4k) and Kernel (58k).

To further verify the TLS libcrypto cost associated withadgishing TLS connections (as TLS client) and accepting TLS
connections (as TLS server), we compare the correspondisgiccurred in our SIP proxy with that incurred in a simple
HTTPS client server application [29], assuming a similamber of connections are being set up. Results show that tige TL
client side cost in the two cases are around 310k and 270Bectgely, with an RSA cost of around 150k in both cases.
The TLS server side cost in the two cases are 340K and 400K, R&A cost of 240k and 300K, respectively. These results
indicate a reasonably close crypto costs match betweeretatvely complex SIP proxy server and the simple HTTPS eserv
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Fig. 17. Impact of TLS Client Side Fix on CPU Events in InbouPidxy TLS Mode

We update the component cost model with the TLS client fix iadpin Figure 18. As we can see, the client side cost
in the TLS, TLS mutual authentication and TLS session re@s®< is reduced by0%, 55% and 73%, respectively. The
corresponding total cost savings &%, 38%, and17%, which represent a potential peak throughput increast @f, 62%,
and21%.
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