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Abstract
The lack of fair bandwidth allocation in Peer-to-Peer
systems causes many performance problems, includ-
ing users being disincentivized from contributing upload
bandwidth, free riders taking as much from the system
as possible while contributing as little as possible, and a
lack of quality-of-service guarantees to support stream-
ing applications. We present FairTorrent, a simple dis-
tributed scheduling algorithm for Peer-to-Peer systems
that fosters fair bandwidth allocation among peers. For
each peer, FairTorrent maintains a deficit counter which
represents the number of bytes uploaded to a peer mi-
nus the number of bytes downloaded from it. It then
uploads to the peer with the lowest deficit counter. Fair-
Torrent automatically adjusts to variations in bandwidth
among peers and is resilient to exploitation by free-riding
peers. We have implemented FairTorrent inside a BitTor-
rent client without modifications to the BitTorrent proto-
col, and compared its performance on PlanetLab against
other widely-used BitTorrent clients. Our results show
that FairTorrent can provide up to two orders of magni-
tude better fairness and up to five times better download
performance for high contributing peers. It thereby gives
users an incentive to contribute more bandwidth, and im-
prove overall system performance.

1 Introduction
In the past decade, the usage of Peer-to-Peer (P2P) file-
sharing applications on the Internet has experienced ex-
plosive growth. Many users and businesses now rely on
P2P file-sharing for distributing videos, software, and
documents. Although P2P file-sharing is now an inte-
gral part of our overall computing experience, these ap-
plications are plagued by a fundamental problem of un-
fairness in how bandwidth among peers is used and al-
located. Unfairness causes many performance problems,
including users being disincentivized from contributing
upload bandwidth, a growing number of free riders, users
who cap their upload bandwidth to zero or a small value

to take as much as possible from the system while con-
tributing little resources, and a lack of quality-of-service
guarantees to support streaming applications.

Fair bandwidth allocation in P2P systems can be diffi-
cult to achieve for several reasons. First, bandwidth re-
sources belong to and are controlled by individual peers,
not by a single party. Unlike a router or a server, there
is no central entity that controls and arbitrates access
to all resources. Second, bandwidth resources are dis-
tributed all over the Internet, and therefore vary geo-
graphically and also are limited by the various Internet
Service Providers. Third, the amount of bandwidth re-
sources available is not known in advance and peers can-
not be relied upon to specify their own resources hon-
estly. Fourth, bandwidth resources may vary over time
for several reasons, including network conditions, mo-
bile peers connecting at different access points, and a
user using the available bandwidth for other activities.
Finally, any fair allocation mechanism must be strong
enough to withstand attempts by free riders to manipu-
late the system.

Of course, fairness is not the only desirable property
in a peer-to-peer system, users also desire good perfor-
mance, measured by download time. We show that im-
proving fairness leads to improved performance, some-
times, with substantial gains.

Many approaches have attempted to address the prob-
lem of fair bandwidth exchange. One approach, which is
employed by the popular file-sharing system BitTorrent,
is to use a tit-for-tat (TFT) heuristic. However, recent
studies [27, 21, 15] have demonstrated weaknesses in the
BitTorrent TFT mechanism that can be exploited by free-
riding clients to take advantage of high-bandwidth con-
tributors. For example, the LargeView exploit client [27]
takes advantage of the fact that BitTorrent uses a fraction
of its bandwidth to upload optimistically to randomly
chosen peers. By opening connections to many peers, the
LargeView client allows a large number of its neighbors
to pick it as the target for their optimistically-spent band-
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width. As another example, the BitTyrant client [21] is
based on the observation that even though BitTorrent at-
tempts to find reciprocating neighbors, it is often willing
to upload to peers who reciprocate at a much lower rate.
BitTyrant attempts to find peers where it can maximize
the difference between what it receives from them versus
what it uploads to them.

To address these problems, we present FairTorrent,
a new P2P scheduling algorithm that fosters fair band-
width allocation among peers. In its simplest form, at
each peer, FairTorrent maintains a deficit counter for each
neighboring peer which represents the number of bytes it
uploaded to this neighbor minus the number of bytes it
downloaded from it. When it is ready to send a packet
of data, FairTorrent identifies the peer with the lowest
deficit counter and sends data to that peer.

Our main result is that this surprisingly simple ap-
proach provides much better fairness while simultane-
ously decreasing most download times, often by a sig-
nificant amount. Download times are also more corre-
lated with the peers’ upload rates, thereby incentivizing
peers to upload more. FairTorrent has a number of ad-
ditional useful properties: (1) FairTorrent provides fair
bandwidth allocation, operating only at individual peers,
in a distributed manner that does not require any central-
ized control of peers or other P2P resources. (2) Fair-
Torrent does not need to measure available download
bandwidth, allocate precise upload or download rates for
any peers, or rely on estimates or advanced knowledge
of available bandwidth from users or other peers. (3)
FairTorrent allows a peer to automatically adjust to dy-
namic network conditions and any changes in the rate at
which peers contribute bandwidth, avoiding long discov-
ery times of like-uploading peers as evidenced in BitTor-
rent [21]. (4) FairTorrent provides low variance in band-
width allocation, enabling it to be useful for streaming
applications. (5) FairTorrent has no magic parameters
and requires no tuning, is simple to implement, and re-
quires no changes to the BitTorrent protocol, making it
easy to deploy with existing P2P systems.

We have analyzed, implemented, and measured Fair-
Torrent to evaluate its effectiveness. Our analysis results
show that FairTorrent runs efficiently, using O(log k)
time per transmission in a network with k peers. We
have proved for a small network that the algorithm has
fairness bounds independent of the amount of data sent,
and conjecture that a similar result holds for any network.
We have implemented FairTorrent inside a BitTorrent
client without changing the BitTorrent protocol, making
it compatible with existing BitTorrent implementations.
We evaluated its performance on PlanetLab against three
other BitTorrent implementations, the original BitTorrent
Python client by Bram Cohen [7], the latest version of
the popular Azureus Java BitTorrent client [3], and Bit-

Tyrant [21], a modified Azureus 2.5 client that was opti-
mized for improved download performance.

For peers with widely different bandwidths across
a uniform distribution, our measurements demonstrate
that FairTorrent provides more than an order of mag-
nitude better fairness and up to 50% faster download
performance compared to other BitTorrent implementa-
tions. Furthermore, FairTorrent makes more efficient use
of available upload bandwidth and provides download
times that are strongly correlated with the peers’ upload
capacities, incentivizing peers to upload more. For a high
bandwidth uploader in the presence of many low con-
tributors, our measurements demonstrate that FairTorrent
can provide two orders of magnitude better fairness and
up to five times faster download performance compared
to other BitTorrent implementations. We also show that
FairTorrent provides improved fairness and performance
even if low contributors run other BitTorrent clients, in-
cluding clients designed to exploit unmodified BitTorrent
for better performance.

This paper describes the design, implementation, and
evaluation of FairTorrent. Section 2 discusses related
work. Section 3 presents FairTorrent, which is analyzed
in Section 4. Section 5 presents experimental results on
PlanetLab comparing FairTorrent performance to other
BitTorrent implementations. Finally, we present some
concluding remarks.

2 Background and Related Work
BitTorrent [7] employs a rate-based tit-for-tat (TFT)
heuristic to incentivize peers to upload and attempts to
provide fair exchange of bandwidth between peers. Peers
participating in the download of the same target file form
a swarm. The target file is conceptually broken up into
pieces, typically 256 KB in size. Peers tell one another
which pieces of the target file they already have and re-
quest missing pieces from one another. Requests are typ-
ically made for 16 KB sub-pieces. Peers that already
have the entire file are seeds. Peers that are still down-
loading pieces of the file are leechers. TFT is used in
a swarm to enable fair bandwidth exchange during the
current download of a file. It operates by having each
BitTorrent client upload to N other peers in round-robin
fashion, where N −k of the peers have provided the best
download rate during the most recent time period, and k
peers are randomly selected to help discover other peers
with similar upload rates. (N is typically between 5 and
10). The set of peers to which a client uploads is periodi-
cally changed based on measurements of their download
rates. BitTorrent refers to the selection and deselection of
a peer for uploading as unchoking and choking, respec-
tively.

Much work has been done in studying the behavior of
BitTorrent. Qiu and Srikant [23] show that under some
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bandwidth distributions, the system eventually converges
to a Nash equilibrium. Legout et al. show that BitTorrent
peers tend to exchange data primarily with other peers
with similar upload rates over a large file download [13].
However, there is no evidence that this behavior ex-
tends to shorter file downloads, dynamic environments,
skewed distributions of users, or modified but compati-
ble BitTorrent clients. In fact, several modified BitTor-
rent clients [15, 27, 21] have been developed which ex-
ploit different strategies to achieve better performance at
the expense of users running unmodified BitTorrent. For
example, BitTyrant [21] claims a median 70% perfor-
mance improvement by sending at a minimum possible
rate to its neighbors and observing that BitTorrent peers
are willing to altruistically upload at rates higher than
what they receive.

These previous studies demonstrate that BitTorrent’s
TFT heuristic does not result in fair bandwidth exchange.
Because TFT only identifies and exchanges data with
a small number of peers at a time, a BitTorrent client
may waste much time and bandwidth while discovering
peers with similar upload rates in a large network. Fur-
ther waste occurs because connections with discovered
peers may be unstable, as the other peers are also always
searching for better connections. Even after discover-
ing peers with good upload rates, BitTorrent continues to
blindly donate a portion of bandwidth by randomly up-
loading to other peers in hopes of reciprocation.

Block-based TFT [1] has been proposed for improving
fairness in BitTorrent. Instead of uploading to a small
number of peers, block-based TFT enables a client to
upload to all the peers in a swarm that are interested
in its data, but limits the difference between what it up-
loads to a peer and what it downloads from that peer to
a constant number of blocks. Peers are still selected in
round-robin fashion. The hard limit of a constant num-
ber of blocks results in under-utilization of the peers’
upload capacities. To compensate, they propose using
a bandwidth-matching tracker which would match peers
with similar bandwidth. However, this solution assumes
that peers would not game the system by lying about
their upload bandwidth. While the evaluation of block-
based TFT was limited to simulation studies [1], another
study of a block-based TFT policy showed poor perfor-
mance and bandwidth under-utilization compared to Bit-
Torrent [28]. SWIFT [2] proposes a model where peers
use a block-based reciprocation together with a willing-
ness to donate a small fraction of their bandwidth. It
is not clear how to tune their highly-parametrized algo-
rithm [2] beyond the simulation results presented for a
realistic deployment scenario.

Some work has explored tradeoffs between perfor-
mance and fairness in BitTorrent. Based on the assump-
tion that leechers leave the system upon completion of

download, one model proposes to optimize average per-
formance by lowering the download rate for high upload-
ers to keep them in the system longer [10]. However, this
assumption is not realistic as many leechers remain in the
system as seeds in many BitTorrent systems [6]. Further-
more, other work suggests that fairness does not need to
come at the expense of performance [29].

Various approaches have explored the use of Bit-
Torrent for streaming applications [31, 22] These ap-
proaches focus on identifying peers with which to ex-
change data that are close to one another in time in pro-
cessing a stream. This work is complementary to our
focus on providing fine-grain fair bandwidth exchange.

Many other approaches outside of the context of Bit-
Torrent have explored different aspects of improving fair-
ness in P2P systems, although mostly focused on dealing
with free riders. Reputation-based systems [25, 14, 5, 8]
attempt to separate good contributors and free riders by
associating reputations with peers. These systems pro-
vide a mechanism for selecting peers with good reputa-
tions to make it less likely that good peers will exchange
data with bad free riders. Such systems suffer from prob-
lems with bootstrapping, and collusion [24], where ma-
licious peers can hype one another’s reputation. Even if
a perfect reputation metric can be established, such sys-
tems do not provide a mechanism for translating reputa-
tion into a highly-fair bandwidth-sharing service.

Credit-based systems [30, 19, 18, 16, 17] use virtual
credit or micropayments to incentivize fair exchange of
services among peers in P2P systems. Virtual credit
is typically maintained over many file downloads over
many days. When a peer requests a new file, its perfor-
mance will likely depend on the overall distribution of
credits that have been accumulated by all the participants
up to that point. These systems are not compatible with
commodity P2P systems. They typically require signif-
icant overhead as well as trusted third party agents to
maintain credit values and verify the services provided.
In contrast to BitTorrent, credit-based systems do not op-
timize finer granularity fairness during the current down-
load of a file. They also cannot support quality-of-service
requirements for streaming applications.

The problem of fair bandwidth allocation has perhaps
been most studied in the context of scheduling packets
through a router. Given a set of flows with associated
service weights, the problem is how to schedule pack-
ets to allocate bandwidth in proportion to the respective
weights. Many scheduling algorithms have been devel-
oped to address this problem [9, 20, 12, 4, 26]. While
there are some similarities between the packet schedul-
ing problem and the problem that FairTorrent addresses,
the key difference is that in the latter case, peers have
no explicit or assigned weights. The notion of weights
in packet scheduling corresponds roughly to download
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rates in P2P systems, but these rates are not assigned or
known in advance. The resulting challenge in P2P sys-
tems is how to provide fair bandwidth exchange given
that the download rates are not known, can change dy-
namically, and can be difficult to estimate.

3 FairTorrent Algorithm
FairTorrent implements a distributed algorithm that pro-
vides fair bandwidth exchange even in the presence of
diverse individual peer bandwidth capacities while pre-
serving good download performance. For compatibil-
ity with BitTorrent, FairTorrent uses the same BitTor-
rent protocol,torrent files, and tracker service. FairTor-
rent is executed individually by each peer and does not
rely on any global allocation or management service be-
yond what is already provided by BitTorrent. To de-
scribe the FairTorrent algorithm, we use the definitions
of seeds and leechers from BitTorrent and the terminol-
ogy in Table 1. Section 3.1 describes the deficit-counter-
based main routines of FairTorrent which exchange data
between leechers. Sections 3.2–3.4 describe other impor-
tant considerations including an even-split seed behavior,
a new method for dealing with unchoking, and dynamic
considerations.

Li Leecher i
µi Upload rate of Li

Sentij Total bytes sent by Li to Lj

Recvij Total bytes received by Li from Lj

DFij Deficit of Li with respect to Lj :
DFij = Sentij −Recvij

Senti Total bytes sent by Li to leechers
RecvL

i Total bytes received by Li from leechers
RecvS

i Total bytes received by Li from seeds
E(i) Instantaneous service error of Li:

E(i) = Senti −RecvL
i

E(i, t) E(i) at time t
E+

max or E+
max(i) maxt E(i, t). Max positive

service error of Li

E−
max or E−

max(i) maxt(−E(i, t)). Max negative
service error of Li

Emax or Emax(i) max(E+
max(i), E

−
max(i))

Max service error of Li

EM maxi(Emax(i)) Maximum service error.
packet size Maximum message size

Table 1: FairTorrent terminology.

3.1 Leecher Behavior
We first describe the basic algorithm run by the leechers.
Each leecher, Li, maintains several variables associated
with each other leecher Lj . At any time, let Sentij be
the total number of bytes that a peer i has sent to peer j,
and Recvij be the total number of bytes that a peer i has

received from peer j. Each peer i that implements Fair-
Torrent maintains a deficit variable DFij for each peer j,
where DFij = Sentij − Recvij . Thus, a positive (neg-
ative) deficit implies that peer i uploaded more (fewer)
bytes to peer j than it downloaded from j. The values
DFij are maintained in sorted order by peer i in a list
called SortedPeerList. Each time the peer i is ready
to send the next packet FairTorrent chooses to send that
packet to the peer with the smallest DFij .

Procedures 1 and 2 show the FairTorrent operations
performed by Li when it receives or sends a packet to
another peer. Procedure 1 (RECVPACKET) is executed
by Li whenever a packet from some peer j is received by
Li. RECVPACKET checks that peer j is a leecher. If peer
j is a leecher, FairTorrent increments Recvij and decre-
ments DFij by the number of bytes received from Lj ,
and re-inserts Lj into the SortedPeerList sorted from
lowest to highest deficit values DFij . For simplicity, ties
between deficit values are broken using unique peer IDs.

Procedure 1 RECVPACKET(peer j, data packet p)
if IsLeecher(j) then

Recvij ← Recvij + size(p)
DFij ← DFij − size(p)
SortedPeerList.ReInsert(j)

end if

Procedure 2 (SENDPACKET) is executed by Li when
it is ready to send a packet. Each peer has an up-
load rate µi, which is expressed in KB per second.
Thus, every 1/(µi/packet size) seconds, Li calls pro-
cedure SENDPACKET, which tries to pick a leecher with
the lowest possible value of DFij . It examines the
SortedPeerList starting at the lowest index (which
contains the peer with the lowest DFij) and picks the
first peer j′ from whom there is a pending request and
the connection is writable (i.e. there is room in the TCP
socket buffer). FairTorrent tries to send a packet of up
to packet size bytes, but then increments Sentij′ and
DFij′ with the bytes that were actually sent to j′ and re-
inserts j′ into the SortedPeerList. FairTorrent uses a
packet size of 16 KB for compatibility with older Bit-
Torrent implementations, and for simplicity given the de-
fault 16 KB sub-piece request size in BitTorrent. Other
BitTorrent clients typically also use a 16 KB packet size.

It is possible that SENDPACKET may not have any data
of interest to send to the peer with the lowest deficit. In
this case, FairTorrent just sends data to the next best peer,
allowing for maximum utilization of the leecher’s upload
capacity. Since the deficit DFij with the lowest-deficit
peer is always maintained, data will be sent to this peer
when it becomes available, and the fairness is preserved.

Procedure SENDPACKET assumes the existence of
several other procedures. HPRF(j), or HAVEPENDIN-
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Procedure 2 SENDPACKET
n← 0; sz ← Size(SortedPeerList)
j ← SortedPeerList[n]
while (n < sz) and !(HPRF(j) and CWT(j)) do

n← n + 1; j ← SortedPeerList[n]
end while
if (n < sz) then

bytes←SEND(j, packet size)
Sentij ← Sentij + bytes; DFij ← DFij + bytes
SortedPeerList.ReInsert(j)

end if

GREQUESTFROM(j), returns true if there is a pending
request from peer j. CWT(j), or CANWRITETO(j), re-
turns true if there is room in j’s buffer to send a packet.
SEND is the procedure that actually sends the packet
from i to j.

As SENDPACKET is the most important procedure in
FairTorrent, we illustrate its behavior with an example
of 3 leechers in Figure 3.1. For simplicity, the example
assumes leechers always have data to send to one an-
other, expresses values in packets rather than bytes, and
uses equal-size packets. Leechers L1, L2 and L3 have
upload capacities of µ1 = 3, µ2 = 2 and µ3 = 2 pack-
ets/s, respectively. Thus, L1 sends a packet every 1/3 of
a second. L2 and L3 send packets every 1/2 of a sec-
ond. All peers send their first packet at time 0.000. The
left column of Figure 3.1 shows all the clock times at
which at least one of the peers sends a packet. Each peer
keeps track of its deficit variables DFij shown under-
neath each peer at each clock time. Arrows are used to
show the source and the destination of each packet. At
time 0.000, all the deficit variables are 0, and each peer
sends its first packet to a peer with the lowest peer ID.
Thus, L1 sends to L2. L2 and L3 each send a packet to
L1. When L1 sends a packet to L2, it sets DF12 = 1.
Before time 0.333, it will have received a packet from
L2 and will have decremented DF12 back to 0. Thus at
time 0.333, DF12 = 0. Also, since it receives a packet
from L3, before time 0.333 it will set DF13 = −1. At
time 0.333, L1 will send its next packet. Using proce-
dure SENDPACKET, it will pick L3 as the peer to send
the packet to because it has lower deficit: DF13 < DF12.
Thus L1 sends a packet to L3 and increments DF13 to 0.
Figure 3.1 shows the process until the time 2.000.

At time 2.000, the system reverts to the same state as
at time 0.000 as all the deficits variables are 0, and all
the peers will once again send a packet. In these two
seconds, each peer sent the maximum number of pack-
ets limited by its capacity and received the same number
of packets from its neighbors. Thus, without knowing
upload capacities of its peers, the nodes discovered very
quickly the appropriate rates using FairTorrent. If we

Time: L1 (u1=3)

DF12= 0  DF13= 0 DF21= 0  DF23= 0 DF31= 0  DF32= 00.000

DF12= 0  DF13= -1 DF21= 0  DF23= 0 DF31= 1  DF32= 00.333

DF12= 0  DF13= 0 DF21= 0  DF23= 0 DF31= 0  DF32= 00.500

DF12= -1  DF13= -1 DF21= 1  DF23= 0 DF31= 1  DF32= 00.667

DF12= 0  DF13= -1 DF21= 0  DF23= 0 DF31= 1  DF32= 01.000

DF12= -1  DF13= 0 DF21= 1  DF23= -1 DF31= 0  DF32= 11.333

DF12= 0  DF13= 0 DF21= 0  DF23= -1 DF31= 0  DF32= 11.500

DF12= 0  DF13= -1 DF21= 0  DF23= 0 DF31= 1  DF32= 0
1.667

2.000
DF12= 0  DF13= 0 DF21= 0  DF23= 0 DF31= 0  DF32= 0

L2 (u2=2) L3 (u3=2)

Figure 1: FairTorrent algorithm for leechers L1, L2 and
L3 with upload capacities of 3, 2 and 2.

L1

L3L2

1.5
1.5 1.5

1.5

0.5
0.5

L1

L2

1.5
1 1

1.5

1
1

L3

Figure 2: Peers L1, L2 and L3 with upload capacities 3,
2, and 2. Bandwidth allocated under FairTorrent (left) vs
Equal-Split (right).

count the arrows between each pair of peers that indicate
the number of packets sent, we will see that in the 2 sec-
ond cycle L3 and L2 exchanged 3 packets each with L1

(or 1.5 packets/s) and they exchanged 1 packet with each
other (or 0.5 packets/s). These rates are shown in Fig-
ure 2 (Left). In a distributed fashion without knowing
the neighbors’ capacities, FairTorrent achieved a con-
vergence between each pair of nodes, and convergence
between the total upload versus download rate for each
peer. As we run for a long time period, the same behav-
ior will repeat every 2 seconds and all deficit values will
remain between −1 and 1.

To see the advantages of FairTorrent, we consider the
same example, but using the equal-split rate of the orig-
inal BitTorrent. The equal-split heuristic results in each
peer splitting its capacity evenly among its neighbors, as
in Figure 2 (Right). Here the rates diverge. L1 pushes 1.5
packets/s to each neighbor, but receives only 1 packet/s in
return from each, resulting in unfair service as the deficits
with each peer will grow by 1 every 2 seconds.
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3.2 Seed Behavior
Since seeds in a swarm do not upload from peers in that
swarm, using deficits to allocate bandwidth from a seed
among leechers is of limited utility. Instead, for simplic-
ity and fairness, FairTorrent allocates seed bandwidth to
be split evenly among leechers by simply sending pack-
ets in a round-robin fashion.

We currently focus on ensuring fair exchange of
leecher bandwidth in a single swarm. In the case of mul-
tiple swarms, a peer may act as a seed in one swarm
and a leecher in another. In this case, we may want to
extend the deficit values to track deficits over multiple
swarms. However, a detailed discussion of fair band-
width exchange in multi-swarm scenarios is beyond the
scope of this paper.

3.3 Unchoking Behavior
FairTorrent also needs to identify the peers who have rel-
evant data. In BitTorrent, a peer begins by contacting
the tracker to obtain IP addresses and ports of up to 50
other peers in the swarm, and then establishes TCP con-
nections to these peers. By default, BitTorrent allows a
peer to initiate up to 40 connections, and to accept up
to 40 more for a total of 80 simultaneous connections
with other peers who many be seeds or leechers. FairTor-
rent does not change this default behavior for two reason.
First, in typical scenarios FairTorrent is able to provide
its fairness and performance with much fewer than 80
connections. Second, we wanted to ensure a fair com-
parison with BitTorrent in Section 5 and thus exclude
performance differences simply due to the number of si-
multaneous connections.

FairTorrent differs from BitTorrent because leechers
are able to exchange data with many neighbors, where
neighbors of a peer are those with which a TCP connec-
tion has already been established. Using the BitTorrent
protocol, a leecher Li will only receive requests from a
leecher Lj if Lj is interested in some data that Li has and
Li has unchoked Lj . But BitTorrent only unchokes a few
peers at a time to measure their upload rates and identify
high uploading peers. In contrast, in FairTorrent, leecher
Li simply unchokes any neighbor Lj that is interested in
Li’s data.

FairTorrent unchokes all of its interested neighbors for
two reasons. First, a high-capaciy FairTorrent leecher
surrounded by low-capacity leechers may need to ex-
change data with many of them in order to reach cover-
gence between its upload and the download rates. Since
BitTorrent unchokes only a few peers at a time for a dura-
tion of 20 seconds by default a high-capacity leecher may
take a long time to reach convergence [21]. Second, un-
choking more neighbors reduces the likelihood of a data
availability problem where a leecher has no data of inter-
est to send to its peers. By talking with many peers, it

is more likely that some peers will be interested in some
of its data and FairTorrent can thus increase its upload
capacity utilization as we show in Section 5.

FairTorrent is able to unchoke all of its interested
neighbors and still provide fair bandwidth exchange be-
cause it uses the deficit counters to dynamically adapt to
its neighbors’ upload rates. If BitTorrent neighbors were
all to unchoke one another then low uploaders would re-
ceive more bandwidth than they deserve, and high up-
loaders would receive less bandwidth than they deserve
under the equal-split policy. Furthermore, FairTorrent
can unchoke all its interested neighbors because it does
not need to use the unchoking mechanism for discover-
ing only the high uploading neighbors, as it can adapt
to the upload rates of its neighbors in a more granular
manner.

3.4 Dynamic Considerations
In P2P systems, peers may join and leave the system
over time. A possible concern with FairTorrent is that
when a leecher Li accepts a connection from leecher Lj

it sets DFij = 0. This setting could cause problems if,
at that time, Li has deficit variables far above 0. Then Lj

will receive preferential service from Li as DFij will be
smaller compared to other deficits of Li.

However, our analysis and experiments show that un-
der FairTorrent service error tends to be quite small, and
the average deficit DFij tends very close to 0. We expect
that in a dynamic environment if a node joins an Fair-
Torrent system it will discover a state where most DFij

values in the system will be close to 0, and will not get
any significant preferential treatment.

In future work, we plan to investigate the scenario of
whitewashing [11] where a node free-rides, then re-joins
the system with a new id to obtain some more free ser-
vice. In such a system it is likely that the average DFij

value will grow, and we may need to initialize DFij to
a non-zero value, such as avgk(DFik) value. Thus we
believe, that while in a regular dynamic scenario setting
DFij to a non-zero value is unnecessary it may be help-
ful in a scenario where whitewashing is prevalent, and
with a smart use of deficits FairTorrent can actually adopt
well to curb whitewashing.

4 Analysis
We will analyze FairTorrent with 3 goals – low overhead,
fairness, and performance. In this section, we will give
theoretical analysis of the first two objectives. Section 5
will deal with all three objectives experimentally.

4.1 Running Time
The running time of FairTorrent is quite small. Proce-
dure RECVPACKET is dominated by the time to rein-
sert a peer back into the SortedPeerList which takes
O(log k) time for a system with k leechers. The time
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for SENDPACKET consists of the while loop, plus the
last few steps which are also dominated by the O(log k)
time to reinsert into SortedPeerList. As written, the
while loop may have to iterate over all peers which would
incur linear overhead. As discussed in Section 3.3, in
practice we do not need to check many peers to find
one which has requested data. However, we can actu-
ally show that even in the worst case, the overhead is
only O(log k). To implement the HAVEPENDINGRE-
QUESTTO procedure, we maintain an array which indi-
cates which peers have pending requests. As soon as the
last request to a peer is satisfied, we remove that peer
from the SortedPeerList. When a peer makes a new re-
quest, we insert it into SortedPeerList. Each insertion
and deletion can be charged against data actually being
sent and thus the additional overhead is only a small con-
stant factor. CANWRITETO is implemented similarly.
The first time Li discovers that it can’t write to Lj , it re-
moves it from the SortedPeerList. An asynchronous
call is received from the OS when the network socket for
peer Lj again becomes writable. The insertion of Lj into
SortedPeerList upon such a call can also be charged to
a previous send to Lj .

We now give a numerical estimate of the total over-
head. If the packet size used by all peers is P KB, and
the total upload and download bandwidth is B KB/s, then
the re-insertion step on receiving or sending a packet is
performed at most B/P times per second. Thus, the run-
ning time of FairTorrent per second is O((log k)∗B/P ).
Assuming P = 16, and a high-bandwidth peer with say
1MB/s and 3MB/s of upload and download respectively,
and k = 300 peers, then the total running time per sec-
ond is roughly 256 ∗ log(300) < 2500 operations. This
overhead is quite small for a modern processor.

4.2 Fairness
Informally, our notion of fairness is that each peer is able
to download from other leechers at the same rate that
it uploads. More formally, at any time t, each peer Li

has uploaded an amount Senti =
∑

j Sentij and down-
loaded RecvL

i =
∑

j Recvij , where sums are taken over
all other leechers. The instantaneous service error for Li

is E(i) = Senti − RecvL
i =

∑
j DFij . We then com-

pute E+
max(i) and E−

max(i) as the maximum positive and
negative error for Li, where the maximum is taken over
time. Emax(i) = max{E+

max(i), E
−
max(i)} and finally

EM = maxi{Emax(i)}. EM is our final measure of
error. If EM is small, then we can conclude that at all
times, on all peers, the difference between upload and
download rate is small. We use EM and Emax as a mea-
sure of fairness in an analogous way to how they are used
in the Fair Queuing literature [4, 26, 9].

In Section 5, we will see that EM is small for many
different networks and loads. In this section, we will

show rigorously that for any 3 node network, EM is
small. We conjecture that in any network where all peers
implement FairTorrent under a wide variety of upload ca-
pacity distributions, the upload rate of each peer closely
approximates its download rate, but do not pursue that
proof in this paper.

4.3 Three-Node Case
We now prove strong fairness bounds for the special case
of a 3-node network. We are given three peers L1, L2

and L3, with upload rates µ1, µ2 and µ3. For ease of
exposition, we assume that µ1 ≥ µ2 ≥ µ3 and that
packet size = 1. These assumptions imply that Li up-
loads exactly once every 1/µi time units. We further
make the following two gentle assumptions:

•[A1)] The upload capacity (µi) of any leecher i is
smaller than the upload capacities of the remaining
nodes. (i.e. µi ≤

∑
j 6=i µj for any leecher i). If this

assumption does not hold, then there is no possibility of
the peer getting a download rate from the other leechers
equal to its upload rate.

•[A2)] A leecher always has useful data to share with its
neighbors. As discussed in Section 3, this assumption
generally holds.

Theorem 1 Assume we have a 3-leecher network that
satisfies assumptions A1 and A2. If each leecher im-
plements FairTorrent, then the maximum service error
EM ≤ 4.

Due to the lack of space we present the lemmas that make
up the proof, but either omit or only sketch their proofs.
We observe that the bound of 4 in the theorem is inde-
pendent of the number of packets broadcast. The proof
essentially shows that the 4 arises because in the 3-node
case, there can be a burst of 2 packets. In general in the
k-node case, there can be bursts of k packets (e.g. all
peers immediately send to peer 1), but we believe that
the imbalance cannot get much worse than k.

In order to prove the theorem, we need the follow-
ing lemma that describes these bursts. We can list
the sequence of nodes that broadcast in time order,
with ties broken in favor of the higher rate peer. For
the example in Figure 3.1, that sequence would be
L1, L2, L3, L1, L2, L3, L1, L1, L2, L3, . . .. We call this
sequence the broadcast list, and we call a sequence of m
consecutive appearances of the same leecher a m-burst.

Lemma 2 Assume we have a 3-leecher network that sat-
isfies assumptions A1 and A2. Then (1) Neither L2 nor
L3 ever appear in a 2-burst on the broadcast list. (2) L1

can never appear in a 3-burst on the broadcast list. (3)
Between the start of two consecutive 2-bursts of L1, the
total number of broadcasts of L2 and L3 combined is at
least as large as that of L1.
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Lemma 3 No peer ever accumulates a deficit DFij > 2.

Proof: Due to lack of space we only provide a sketch
of this lemma’s proof. Let us consider the proof for L1,
the other nodes follow by similar reasoning. We abbrevi-
ate the state of the node L1 as Scd where c = DF12 and
d = DF13. Furthermore, let’s collectively call Sstart the
state where L1 is in S01 or S10. The proof proceeds by
a careful case analysis on a very limited state diagram.
We show based on Lemma 2 that L1 can only get as far
as state S22 before both L2 and L3 send packets exclu-
sively to L1. Since µ1 ≤ µ2 + µ3 it will force L1 back
to Sstart, thus never reaching DFij > 2.

Theorem 1 now follows. Since DFij ≤ 2 at all times,
then E+

max(i) ≤
∑

j 6=i DFij ≤ 4. We conclude this
section by conjecturing that a similar proof holds for the
general k-node case. The deficits can grow as large as k,
but we believe that they do not grow much larger and are
independent of the amount of data transmitted.

5 Experimental Results
We implemented FairTorrent on top of the original Bit-
Torrent Python client in only 150 lines of Python code,
thereby demonstrating that FairTorrent is simple to im-
plement. To measure the effectiveness of FairTorrent
in a realistic wide-area network environment, we ran an
extensive set of experiments on PlanetLab to compare
the fairness and performance of FairTorrent against three
other BitTorrent implementations: (1) original BitTor-
rent 3.9.1, a Python client which implements the docu-
mented version of the BitTorrent protocol and was the
code base used for our FairTorrent modifications, (2)
Azureus 3.0.4.2, one of the most popular BitTorrent
clients and the latest version of that Java implementa-
tion available at the start of our experimentation, and (3)
BitTyrant 1.1.1, the latest version of a strategic client
that attempts to garner the highest download rate from
other leechers. We instrumented each of the clients to
measure fairness by logging the bytes uploaded to and
downloaded from other peers every 15 seconds, and to
measure performance by logging the completion times
at the end of each file download. We also instrumented
the clients to be consistently configured with an upload
bandwidth limit to allow us to experiment with different
distributions of upload bandwidth capacity.

To quantify fairness, we measure the maximum ser-
vice error Emax(i) for each leecher i, the metric shown
in Table 1 and discussed in our analysis in Section 4.
Maximum service error is the largest difference between
bytes uploaded and downloaded during a file download.
For example, a leecher will have a maximum positive
service error E+

max of 10 MB if, at some point during the
download, it uploaded 10 MB more data than it down-
loaded from other leechers. For a 32 MB file download,
E+

max of 10 MB implies that a system allows a leecher to

contribute roughly 30% of the entire file more than the
service that it receives. Similarly, a leecher will have a
maximum negative service error E−

max of 10 MB if, at
some point during the download, it downloaded 10 MB
more data than it uploaded to other leechers. Note that
received seed bandwidth is not counted toward service
error. Emax is the maximum of the E+

max and E−
max for

a given leecher. Both high E+
max and E−

max represent
unfairness in the system, although users may be more
concerned with a high E+

max as that implies they are con-
tributing more than what they are receiving.

To quantify performance, we use a variety of statistics
about the download times of the individual leechers in-
cluding the average, maximum and various percentiles.
We also look at the standard deviation, and, when appro-
priate separate the leechers into categories.

We present results for a set of experiments with a net-
work of 50 leechers and 10 seeds file-sharing a 32 MB
target file. All nodes were configured with download
bandwidth capacities of 100 KB/s and upload bandwidth
capacities of no more than 50 KB/s, reflecting typical
scenario where most ISPs allow users a download rate
at least twice their allowed upload rate. The leechers
were configured in three different distributions of up-
load bandwidth capacities between 0 to 50 KB/s: uni-
form, skewed, and bimodal. The uniform distribution
represents a wide range of peers with diverse upload ca-
pacities participating in a swarm. Each leecher received
an upload capacity randomly selected between 1 and 50
KB/s. The skewed distribution represents a high con-
tributing uploader participating in a swarm with low con-
tributors. The high uploader received an upload capacity
of 50 KB/s, and the 49 low contributors received ran-
domly selected upload capacities between 1 and 5 KB/s,
with a total upload bandwidth across all low contribu-
tors of 150 KB/s. The bimodal distribution represents
a population of high contributing uploaders who do not
cap their bandwidth and a population of free riders par-
ticipating in a swarm. The 25 high uploaders received
upload capacities randomly selected between 40 and 50
KB/s, and the free riders received upload capacities ran-
domly selected between 0 and 3 KB/s. The seeds were
configured with upload bandwidth capacities of 25 KB/s
each, chosen to match the average upload bandwidth ca-
pacity of the leechers in the uniform distribution, for a
total of 250 KB/s of seed bandwidth.

We ran the same set of experiments for a FairTorrent
network (FT), a BitTorrent network (BT), an Azureus
network (AZ), and a BitTyrant network (TY). For each
BitTorrent network and each distribution, we ran five
experiments with five different sets of upload capaci-
ties generated randomly from the respective distribution.
Thus, we collected 250 leecher measurements for each
combination of network and distribution. In each exper-
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iment, the leechers begin the download simultaneously
and remain in the system as seeds when they complete
their download. Note that once leechers complete their
download, their upload bandwidth counts as seed band-
width and does not affect the fairness measurements of
data exchange among leechers. We also ran experiments
with different file sizes, different numbers of seeds and
total seed bandwidth, and leechers configured to leave
the system when they complete their download. Since
the results of these experiments were similar to the ones
we present, they are omitted due to space constraints.

The captions in the figures begin with a prefix “U:”,
“S:”, or “B:” to signify the uniform, the skewed or the
bimodal distributions respectively.

5.1 Uniform Distribution
Figures 3 to 17 show the measurements for leechers with
upload capacities randomly selected from a uniform dis-
tribution. Figure 3 shows a cumulative distribution func-
tion (CDF) of the maximum service error Emax across all
five experiments. It shows the fraction of leechers whose
maximum service error was always less than the given
value. FairTorrent provides an order of magnitude better
fairness than Azureus, the next closest network. Azureus
and BitTorrent had similar fairness performance. Bit-
Tyrant had by far the worst fairness performance.

Figure 4 separates the maximum positive service er-
ror E+

max and maximum negative service error E−
max for

each of the four networks. For example, FT+ and FT−
denote E+

max and E−
max of FairTorrent. The figure shows

a range of percentiles for each network, starting with
the 50th percentile, the median maximum service error
across all leechers for a network, and up to the 100th
percentile, the worst maximum service error The median
FairTorrent leecher’s E+

max was just 79 KB, meaning that
a median leecher at no time gives more than five 16 KB
packets of service more than it receives. The maximum
value of E+

max for FairTorrent was only 436 KB, mean-
ing that during the entire download of the file, no Fair-
Torrent leecher gives more than 436 KB of service than
what it receives from other leechers. This value is 18
to 73 times smaller than the maximum E+

max of other
networks. The maximum E+

max for an Azureus or Bit-
Torrent leecher was over 8 MB, more than 25% of the
entire 32 MB file. E+

max for BitTyrant reached 31 MB,
or almost 100% of the file. These results show that Fair-
Torrent provides much better fairness than all three other
networks, and that BitTorrent, Azureus, and BitTyrant all
exhibit poor fairness performance.

Figures 5 to 8 show the average upload rate versus
the average leecher download rate experienced by each
leecher during its download of the 32 MB file. In the
ideal case, the download rate should equal the upload
rate, which is represented by a reference line in each fig-

ure drawn in the background. Figure 5 shows that Fair-
Torrent provides fairness that closely matches the ideal
reference line and visually demonstrates that it attains
rate convergence, where the download rate that a leecher
obtains from other leechers converges to its upload rate.
In contrast, Figures 6 to 8 show that BitTorrent, Azureus,
and BitTyrant all have poor rate convergence. Figures 6
and 8 shows that higher contributing peers in BitTorrent
and even more so in BitTyrant are likely to receive a
download rate far below their contribution, while lower
contributing peers will receive a higher level of service
than their contribution.

Figure 9 shows the average and maximum time for
leechers to completely download the target file for
each network. The average download times were 939,
945, 979, and 1127 seconds for FairTorrent, BitTorrent,
Azureus, and BitTyrant, respectively. While some P2P
file-sharing models [10] posit a tradeoff between fairness
and download performance, these results show that Fair-
Torrent is able to achieve both the best fairness and av-
erage download performance. Furthermore, the perfor-
mance of peers under FairTorrent is more directly corre-
lated with their contribution rates. For example, the av-
erage download times for peers with higher upload rates
of 40 to 50 KB/s were 690, 728, 737 and 952 seconds
for FairTorrent, BitTorrent, Azureus, and BitTyrant, re-
spectively, representing a bigger relative difference be-
tween FairTorrent and other systems than for the aver-
age times. This behavior occurs because FairTorrent re-
wards peers more fairly based on their contribution and
naturally causes high uploaders to download faster. Fig-
ure 9 shows that FairTorrent provides an even larger im-
provement when measuring the maximum time across all
leechers to completely download the file. The maximum
download times are 1347, 1892, 1849 and 2266 seconds
for FairTorrent, BitTorrent, Azureus and BitTyrant re-
spectively. Thus, in FairTorrent all of the peers complete
their download 37 to 68% faster than in other systems.

One interesting statistic here is how close can a system
come to the optimal bound of the last leecher’s download
time. Assuming the bandwidth can be used optimally,
in a system with n leechers, B total upload capacity
and FS file size, the last uploader will not finish before
OPT = n ∗ FS/B as each leecher needs to download
FS bytes. In our experiments, FS = 32 MB, n = 50
and B = 1500 KB/s assuming average leecher band-
width of 25 KB/s and 250 KB/s total bandwidth from the
seeds. Thus, OPT = 1092 seconds. FairTorrent comes
within 255 seconds of this bound while the next clos-
est system, Azureus, is three times worse at 757 seconds
more than the bound.

Figures 10 to 13 show the completion time of the
leechers in each system based on their upload capac-
ity. Figure 10 shows that FairTorrent provides a very
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Figure 5: U: FairTorrent fairness
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Figure 6: U: BitTorrent fairness
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Figure 7: U: Azureus fairness
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Figure 8: U: BitTyrant fairness
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Figure 10: U: FairTorrent download time
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Figure 11: U: BitTorrent download time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  10  20  30  40  50

D
ow

nl
oa

d 
Ti

m
e 

(s
)

Upload Bandwidth (KB/s)

Figure 12: U: Azureus download time
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Figure 13: U: BitTyrant download time
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Figure 14: U: FairTorrent utilization
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Figure 15: U: BitTorrent utilization
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Figure 16: U: Azureus utilization
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strong correlation between upload capacity and down-
load times. There is very little variance in download
times among leechers of the same capacity especially for
the upload bandwidth above 25 KB/s. There is a slight
variability for lower uploaders, because as high upload-
ers finish at different times for different tests there is a
different amount of seed data available for the remaining
leechers. Figures 11 to 13 show that the other systems
have a much higher variability in download times for a
given upload bandwidth. Figure 13 shows many lower
contributing peers obtaining faster download times than
higher contributing peers when using BitTyrant.

Figures 5 to 13 tell an interesting story of why Fair-
Torrent provides faster maximum download times. One
would expect that the maximum download time is due
to a low contributing peer, which generally uploads less
and therefore downloads less for most systems. How-
ever, Figures 5 to 8 show that FairTorrent peers with low
upload rates have the lowest leecher download rates of
all the systems since it more accurately matches down-
load and upload rates. Based on this, one would expect
that FairTorrent low contributors should take the longest
to download, thus increasing the maximum download
time. However, Figures 10 to 13 show that FairTorrent
low contributors do not have the slowest download times.
One reason for this is that FairTorrent’s better fairness
enables high uploading leechers to finish sooner and be-
come seeds. This results in more available seed band-
width earlier in the download which can be used by low
contributors to increase their aggregate download rates
across leechers and seeds. By enabling high contributors
to finish downloading sooner and become seeds, FairTor-
rent can improve download performance across all peers
even though it may reduce leecher download bandwidth
for low contributors.

The second reason for FairTorrent’s better download
times can be seen in Figures 14 to 17, which show the
achieved upload data rate versus the configured upload
bandwidth capacity for each leecher. In the ideal case,
leechers should maximize utilization of available upload
bandwidth so that the upload rate should equal the upload
bandwidth, as is represented by a reference line in each
figure. For good performance, it is critical that a system
not compromise bandwidth utilization for reducing ser-
vice error or improving rate convergence. For example, a
peer with 50 KB/s of available capacity that uploads and
downloads at 5 KB/s will exhibit no service error and
perfect rate convergence, but will have poor bandwidth
utilization and performance.

Figure 14 shows that FairTorrent achieves close to
100% bandwidth utilization. The difference from ideal
performance is due to BitTorrent protocol overhead,
which is correctly not counted as part of the achieved
upload rate, but consumes part of the available band-

width. In contrast, Figures 15 to 17 show that all the
other networks have a greater number of leechers that lie
far below the ideal reference line and have poor utiliza-
tion. Those leechers could not achieve the desired upload
rates. This difference in utilization is part of the reason
that FairTorrent achieves better download performance
than the other systems. Overall, the aggregate band-
width utilization across all leechers for each network was
95.3%, 93.7%, 89.8% and 82.8% for FairTorrent, BitTor-
rent, Azureus, and BitTyrant, respectively. These num-
bers include only the data upload rate, not the protocol
overhead which was roughly 3% for each system.

There are at least two reasons that FairTorrent achieves
better utilization than the other systems. First, FairTor-
rent is not limited by the unchoking behavior of Bit-
Torrent and Azureus. It will send a packet to any peer
with the lowest deficit from whom a request is pending.
Thus, as long as there is bandwidth available and a re-
quest from any peer in the network, FairTorrent will send
a packet. FairTorrent’s utilization stands in sharp con-
trast to block-based TFT, which ends up under-utilizing
bandwidth compared to BitTorrent [1]. Since FairTorrent
does not set any arbitrary threshold on the deficit with
its neighbors, it is able to achieve both better utilization
and at the same time get high reciprocation due to small
Emax. Second, FairTorrent unlike BitTyrant, FairTor-
rent does not try to minimize the amount of bandwidth it
sends on each connection, as this behavior leads to very
low bandwidth utilization in an all-BitTyrant network.

For all networks, it is interesting to note that the gap
between ideal and achieved utilization is slightly larger
for leechers with higher upload bandwidth. This gap oc-
curs because the BitTorrent protocol overhead consists
primarily of HAVE messages that a leecher sends to its
neighbors indicating it has a piece of the file. Higher up-
loaders will download pieces faster and thus send HAVE
messages more frequently.

To illustrate the variability in download rate of dif-
ferent systems, Figure 18 shows the standard deviation
in download rate observed by the leechers, as measured
over consecutive 15 second intervals. FairTorrent had the
lowest average standard deviation in leecher download
rate at just 1.8 KB/s on average, more than three times
better than the next closest system. BitTorrent, Azureus,
and BitTyrant had average standard deviations of 6.0
KB/s, 8.0 KB/s and 12.3 KB/s respectively. The low
standard deviation makes FairTorrent more amenable for
use in BitTorrent live streaming applications such as
CoolStreaming [31]. FairTorrent is beneficial in two
ways. First, because of the constant and fair download
rate, a peer with a higher upload capacity can receive a
higher quality stream with a bit-rate closer to its upload
capacity. Second, a content provider can provision less
server (or seed) bandwidth because it will be less likely
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for a peer’s download rate to drop due to high variance.

5.2 Skewed Distribution
Figures 19 to 22 show the measurements for leechers
with upload capacities randomly selected from a skewed
distribution. In addition to running experiments for Fair-
Torrent, BitTorrent, Azureus, and BitTyrant networks,
we also ran the same experiments for the non-FairTorrent
networks in which the high uploader was replaced by a
FairTorrent client to show how FairTorrent performs in
the presence of low contributors that are not FairTorrent
clients. The results of using a FairTorrent high uploader
in a network of BitTorrent, Azureus, and BitTyrant peers
were denoted FT/BT, FT/AZ and FT/TY, respectively.

Figure 19 shows the CDF of Emax across all five ex-
periments for the respective networks. The CDF for Fair-
Torrent stands out far to the left from all the other net-
works, representing between one to two orders of magni-
tude difference for all the cumulative fractions. It shows
that FairTorrent provides fair service to both the high up-
loader and the 49 low contributors. FairTorrent prevents
the high uploader from accumulating a large E+

max and
low uploaders from accumulate large E−

max .
Figure 20 shows the E+

max and E−
max of the high up-

loader in each system. Clearly E+
max always dominates

E−
max as the high uploader typically serves more data

than it receives in the skewed case. However, E+
max for

the FairTorrent case is 60 to 200 times smaller than the
E+

max of BitTorrent, Azureus, and BitTyrant. E+
max of

the high uploader was measured to be 555 KB for Fair-
Torrent, as compared to 51 MB, 31 MB, and 113 MB for
BitTorrent, Azureus and BitTyrant, respectively. When
FairTorrent replaced the high uploader in other systems,
it is still able to reduce E+

max. FairTorrent reduces E+
max

by a factor of 15 in comparing FT/BT to BitTorrent, by
10% in comparing FT/AZ to Azureus, and by a factor of
50 in comparing FT/TY to BitTyrant.

The smaller improvement in fairness for the high up-
loader in comparing FT/AZ to Azureus is due to a sub-
tle difference in the unchoking behavior of Azureus.
Azureus biases its optimistic unchoking behavior to-
wards peers from whom it saw better data-exchange ra-
tios in the past. This results in the highest of the low up-
loaders, those uploading 4 and 5 KB/s, exchanging data
more consistently with one another. Unfortunately, this
policy disadvantages the one high uploader as the 4 and 5
KB/s leechers only send a fraction of their bandwidth to
that peer. As a result, the high uploader does not receive
enough bandwidth from the other lower uploaders, re-
sulting in a smaller fairness improvement. This unusual
behavior is very unlikely in practice and only applies to
this highly exaggerated skewed distribution in which the
single high uploader holds 25% of the total leecher band-
width.

Figure 21 shows the maximum and the average down-
load rate of the single high uploader for each of the sys-
tems. FairTorrent high uploader achieved an averaged
download rate of 47.9 KB/s that closely matched its aver-
age upload rate of 48.3 KB/s. When FairTorrent replaced
the high uploader in other systems it significantly im-
proved its average download rate. FairTorrent improved
the download rate from 13.8 to 44.0 KB/s when compar-
ing FT/BT to BitTorrent, from 7.2 to 45.6 KB/s when
comparing FT/TY to BitTyrant, and despite only a mod-
est improvement in fairness of FT/AZ it improved the
download rate from 9.8 to 23.0 KB/s. In this very skewed
case FairTorrent is able to achieve a substantial improve-
ment in the download rate bringing it significantly closer
to its upload capacity.

Figure 22 shows the maximum and the average down-
load times for the entire set of peers and just the high up-
loader (labeled with letter “H”) for each of the systems.
The high uploader in FairTorrent completed its average
download in 644 seconds, 3-5 times faster than the high
uploader in BitTorrent, Azureus, or BitTyrant. When
FairTorrent replaced the high uploader in other systems,
it still improves download times. FairTorrent reduces
download times from 1,804 to 703 seconds in compar-
ing FT/BT to BitTorrent, from 1,859 to 1,138 in compar-
ing FT/AZ to Azureus, and from 3,305 to 615 seconds in
comparing FT/TY to BitTyrant. FairTorrent substantially
reduces the download time for Azureus even though its
improvement in fairness is more modest. As with other
distributions, replacing the high uploader in each sys-
tem with FairTorrent improved the maximum download
time of the low uploaders as well. FairTorrent adopts to
the upload rates of the surrounding low uploaders and is
therefore able to get a high download rate, even though
the low uploaders do not run FairTorrent.

5.3 Bimodal Distribution
Figures 23 to 26 show the measurements for leechers
with upload capacities randomly selected from a bimodal
distribution. In addition to running experiments for Fair-
Torrent, BitTorrent, Azureus, and BitTyrant networks,
we also ran the same experiments for the non-FairTorrent
networks in which the high uploaders were replaced by
FairTorrent to show how FairTorrent performs in the
presence of free-riders running non-FairTorrent clients.
The results of using FairTorrent high uploaders in a net-
work of BitTorrent, Azureus, and BitTyrant peers were
denoted FT/BT, FT/AZ and FT/TY, respectively.

Figure 23 plots the CDF of the maximum service er-
ror of the high uploaders for each set of experiments. The
four curves on the left where FairTorrent runs on the high
uploaders are separated from the rest of the setups by
an order of magnitude. Recall that in the skewed case,
a single high uploader was only able to get limited im-
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Figure 18: U: Standard deviation of the
download rate
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Figure 19: S: Max Service Error
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Figure 20: S: high uploader E+
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Figure 21: S: high uploader download rate
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Figure 22: S: Download time
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Figure 23: B: Max service error Emax

provement in the case of FT/AZ (as compared to AZ). In
contrast, here, all four tests where FairTorrent replaces
high uploaders, including FT/AZ, show more than an or-
der of magnitude of improvement in Emax . The reason
for this difference is that where more than one high up-
loader is present the high uploaders can exchange data
with one another at a high rate. This behavior should be
a very strong motivation for users who do not cap their
bandwidth to run FairTorrent and be immune from the
effects of a large population of free-riders.

Figure 24 shows separately the maximum E+
max and

E−
max of the high uploaders for each system. The maxi-

mum Emax was 384 KB in FT. In BT, AZ, and TY, where
high uploaders were replaced by FairTorrent, the Emax

for the high uploaders was reduced by 1 to 2 orders of
magnitude to be under 700 KB.

Figure 25 shows the E+
max and E−

max of the free-riders.
The free-riders obtain the least amount of instantaneous
free service (E−

max ) under FairTorrent, as the maximum
E−

max is 304 KB, and the median E−
max is 0. (meaning

that a median free-rider gets no free service!) When Fair-
Torrent replaces the high uploaders in other systems it is
able to reduce the maximum E−

max of a free-rider by a
factor of 5 for FT/BT as compared to BitTorrent, a factor
of 10 for FT/AZ as compared to Azureus, and a factor of
4 for FT/TY as compared to BitTyrant. Most notably, in
FT/AZ, a median free-riders receives only 68 KB of free
service (also a factor of 10 reduction). Thus, if the Fair-
Torrent policy is adopted by users who do not cap their

bandwidth, free-riders who run the most popular client,
Azureus, will have little incentive to free-ride.

Figure 26 shows the average and maximum perfor-
mance of the high uploaders in each system over a set
of five tests. In each network that runs FairTorrent for
high uploaders, the heavy-tail of these high uploading
performers is eliminated. FairTorrent reduced the worst-
case download time for a high uploader from 913 to 739
seconds for BitTorrent, from 1164 to 708 seconds for
Azureus and from 1771 to 707 seconds for BitTyrant.
Thus, even in the presence of 50% of free-riders (of any
type client) the high uploading users who do not cap their
bandwidth are immune from unlucky neighbor assign-
ments if they run FairTorrent.

6 Conclusions
Users participate in a peer-to-peer system to be able to
download files quickly. The system must distribute the
limited bandwidth among the different users. Any ses-
sion may contain a diverse collection of users with dif-
ferent bandwidth capacities, and also users who are ma-
licious and are willing to try to subvert any protocol in
order to obtain more bandwidth for their own downloads.

Fundamental to all peer-to-peer systems is some no-
tion of fairness. Each of the common peer-to-peer sys-
tems enforce some notion of fairness, and achieve differ-
ent behaviors in terms of speed of download and exactly
which peers benefit more from the particular system.

In this paper, we introduced a new protocol, called
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Figure 25: B: free-riders E+
max , E−max
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Figure 26: B: high uploaders download
time

FairTorrent, which is simple to implement and has many
desirable properties. We then showed that this simple
protocol not only maintains fairness, but has surprising
good download performance in a variety of settings. By
essentially matching download rates with upload rates,
under various upload capacities’ distributions we achieve
faster overall download times. There are several high-
level explanations for the success. First, while other sys-
tems typically give free-riders more than their share of
service we only give them their small share. Further-
more, when the high-uploaders adopt FairTorrent free-
riders receive little free service. Second, by having these
high-uploading clients complete their downloads earlier,
they are able to serve as seeds and then help the le-
gitimate lower bandwidth clients, without any adverse
effects on their own performance. Finally, FairTorrent
peers achieve a better utilization rate, thereby also im-
proving the system by increasing the upload capacity.
We demonstrated these results in a variety of settings and
derived bounds on the worst case performance.
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