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ABSTRACT

Partial Evaluation for Code Generation from
Domain-Specific Languages

Jia Zeng

Partial evaluation has been applied to compiler optimization and generation for decades.

Most of the successful partial evaluators have been designed for general-purpose languages.

Our observation is that domain-specific languages are also suitable targets for partial eval-

uation. The unusual computational models in many DSLs bringchallenges as well as

optimization opportunities to the compiler.

To enable aggressive optimization, partial evaluation hasto be specialized to fit the

specific paradigm of a DSL. In this dissertation, we present three such specialized partial

evaluation techniques designed for specific languages thataddress a variety of compila-

tion concerns. The first algorithm provides a low-cost solution for simulating concurrency

on a single-threaded processor. The second enables a compiler to compile modest-sized

synchronous programs in pieces that involve communicationcycles. The third statically

elaborates recursive function calls that enable programmers to dynamically create a sys-

tem’s concurrent components in a convenient and algorithmic way. Our goal is to demon-

strate the potential of partial evaluation to solve challenging issues in code generation for

domain-specific languages.

Naturally, we do not cover all DSL compilation issues. We hope our work will enlighten

and encourage future research on the application of partialevaluation to this area.



Contents

1 Introduction 1

1.1 Motivation and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 A Brief History of Partial Evaluation . . . . . . . . . . . . . . . . .. . . . 3

1.3 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . .. . 5

2 Domain Specific Languages 8

2.1 Deterministic Concurrent Languages . . . . . . . . . . . . . . . . .. . . . 11

2.1.1 Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 SHIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Bluespec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 A Little Language for Generating Dataflow Analyzers . . . .. . . . . . . . 18

2.2.1 Coding Dataflow Analysis Algorithms . . . . . . . . . . . . . . . .19

2.2.2 The Design of AG . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Program Structure and Syntax . . . . . . . . . . . . . . . . . . . . 22

2.2.4 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Partial Evaluation for Removing Concurrency 36

i



3.1 Scheduling a Concurrent Program . . . . . . . . . . . . . . . . . . . . .. 37

3.1.1 The Program Dependence Graph . . . . . . . . . . . . . . . . . . . 39

3.2 Restructuring and Generating Code . . . . . . . . . . . . . . . . . . . .. . 41

3.2.1 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Restructuring the PDG . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Generating Sequential Code . . . . . . . . . . . . . . . . . . . . . 55

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Partial Evaluation for Separate Compilation 62

4.1 Compilation and Assembly of Concurrent Systems . . . . . . . . .. . . . 63

4.2 The Graph Code Representation . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Generating Monotonic Three-Valued Programs . . . . . . . . .. . . . . . 67

4.3.1 Adding Data Dependencies . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Summarizing Dependency Information . . . . . . . . . . . . . .. 67

4.3.3 Construct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.4 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.5 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.6 The Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Partial Evaluation for Unrolling Recursion 84

5.1 Compilation of Recursive Programs . . . . . . . . . . . . . . . . . . . .. 85

5.2 Static Elaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

ii



5.3 Unrolling a Pipelined FIFO in SHIM . . . . . . . . . . . . . . . . . . .. . 88

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 Conclusions 99

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Separate Compilation of Large Synchronous Programs . .. . . . . 101

Bibliography 103

A AG Syntax 115

B Recursive FFT Example in SHIM 120

iii



List of Figures

1.1 An example in Java. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 An example in Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 A simple example in SHIM . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 An example in Bluespec . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 The operation of the AG framework . . . . . . . . . . . . . . . . . . . .. 22

2.5 The structure of an AG program . . . . . . . . . . . . . . . . . . . . . . .23

2.6 A Complete AG analysis: Reaching Definitions . . . . . . . . . . . .. . . 27

2.7 Part of the Phoenix (C++) code generated by the AG compiler for the

reaching definitions example . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The Main procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 A program dependence graph requiring interleaving. . . .. . . . . . . . . 41

3.3 Successor Priority Assignment. . . . . . . . . . . . . . . . . . . . .. . . . 42

3.4 Priority Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 The Scheduling Procedure . . . . . . . . . . . . . . . . . . . . . . . . . .45

3.6 The Restructure procedure. . . . . . . . . . . . . . . . . . . . . . . . . .. 46

3.7 The DuplicationSet function. . . . . . . . . . . . . . . . . . . . . . .. . . 48

3.8 The DuplicateNode procedure. . . . . . . . . . . . . . . . . . . . . . .. . 50

3.9 The ConnectPredecessors procedure. . . . . . . . . . . . . . . . . .. . . . 51

iv



3.10 The restructured PDG from Figure 3.2. . . . . . . . . . . . . . . .. . . . . 52

3.11 A complex example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.12 The reconstructed PDG from Figure 3.2 induced by a different schedule. . . 55

3.13 The PDG of Figure 3.12 after guard variable fusion. . . . .. . . . . . . . . 56

3.14 The successor ordering procedure . . . . . . . . . . . . . . . . . .. . . . 57

4.1 A two-valued GRC before and after adding data dependence nodes and arcs. 76

4.2 Three-valued projection of the GRC in Figure 4.1(a). . . . .. . . . . . . . 77

4.3 The Main procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 ComputeRelevantVars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 The Construct Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 The MakeNode Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7 The BuildCondition Function. . . . . . . . . . . . . . . . . . . . . . . . .81

4.8 (a) The BuildSync Function and (b) the PropagateZeros function . . . . . . 82

4.9 Possible simulation states upon reaching node 14. . . . . .. . . . . . . . . 83

5.1 The Main procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 The Unroll procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

5.3 A FIFO program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 The FIFO after unrolling . . . . . . . . . . . . . . . . . . . . . . . . . . .92

5.5 The FIFO after inlining . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

5.6 Unrolling the fifo(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

6.1 Graph examples that may generate exponential code. . . . .. . . . . . . . 102

6.2 The PDG transformed from Figure 6.1(a) . . . . . . . . . . . . . . .. . . 103

v



List of Tables

2.1 Comparing DSLs and GPLs . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 AG Syntax Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



To my parents and my husband

vii



Chapter 1 1

Chapter 1

Introduction

1.1 Motivation and Purpose

Partial evaluation (PE) optimizes programs by specialization. The idea is simple: consider

the logic function (x⊕y)∨z. If y is always 1, we can simplify the function tox∨z. In other

words, we customized a “y = 1” version of this function. To a partial evaluator residentin

a compiler, the inputs used for specialization must be static. They can be some variables

whose values are known, or even the structure of the program being compiled.

The main purpose of this dissertation is to demonstrate the potential of partial evalua-

tion to solve challenging issues in compiling domain-specific languages (DSLs), which are

designed to be used in specific fields of programming, such as Yacc for creating parsers and

Verilog for designing hardware. To illustrate how to designan effective partial evaluation

technique for a specific DSL, and we demonstrate three PE techniques that address various

problems during code generation from DSLs.

By comparing DSLs to general-purpose languages (GPLs), we demonstrate some char-

acteristics of DSLs that enable PE to work aggressively on DSLs. We compare different

DSLs in the same domain, and we illustrate their special computational models and com-
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int i = 1;

if (i > 0) {

System.out.println("i = " + i);

} else {

System.err.println("Negative number!");

}

int i = 1;

System.out.println("i = 1");

Figure 1.1: An example in Java. (a) Original code. (b) After partial evaluation.

pilation challenges, which explain why it is necessary to design specific PE techniques for

a DSL instead of using existing general partial evaluators.

Partial evaluation is well known for its application to compiler optimization and com-

piler generation. It is also referred to asprogram specialization. A specialized program

usually runs faster than the original version since the partial evaluator may restructure the

program’s logic and carry out part of the computation at compile time. Figure 1.1 shows

a print program in Java that can be simplified by partial evaluation. Nevertheless, the spe-

cialization process is nontrivial; it may change the semantics, cause an explosion in code

size, or even may not terminate. For example, if in the Java example the variablei’s value

relies on the input, the partial evaluator may explore all possible values ofi and hence never

terminate. Therefore, most PE techniques are conservative.

General PE techniques usually involve constant propagation, loop unrolling and inlin-

ing. Yet, PE is not just a collection of these techniques; it is combination of compilation

techniques, language and semantics. Compared to constant propagation, which only deals

with static values of variables, PE focuses on static “properties” of a program [26]. There-

fore a PE system commonly performs in-depth flow analysis andrequires comprehensive

knowledge of semantics. For example, knowledge of data types and bounds on variable val-

ues, which are not helpful to constant propagation, may be used for program specialization,

as Consel and Khoo show [26].

Our observation is that a domain-specific language, which has a simple but concise

syntax, is a suitable target for applying partial evaluation. The simplified syntax eases the

analysis workload of PE and enables PE to deeply understand the computational model
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underlying the program. Unfortunately, our survey of PE found no successful partial eval-

uator for DSLs, in part because most earlier work has focusedon GPLs. Although some

early work did apply PE to optimization or automatic compiler generation for DSLs, such

techniques were too general to achieve any significant improvement. In contrast, PE in

a restricted setting works more effectively for a specific paradigm. Each PE technique we

demonstrate in this dissertation, for example, is carefully designed for the specific model of

computation in the corresponding DSL. Each language’s special features bring challenges

as well as optimization opportunities to the compiler. Our experimental results show that

PE is effective at addressing these challenges.

1.2 A Brief History of Partial Evaluation

In 1952, Kleene [54] was the first to formulate partial evaluation (PE). Hiss−m−n theorem

claims that, for an arbitrary functionf with m+n arguments, when the values of the firstm

arguments are given, there always exists a specialized function g that takes then arguments

and behaves the same. More important, he proved there is a program to construct the

specialized function. His theorem was later extended to improve a program’s efficiency by

specialization. Lombardi and Raphael, according to Jones [47], were the first to use the

term “partial evaluation” in 1964 [45].

Most of the early work applied PE to compiling and compiler generation [43, 23, 6]. At

that time, the most significant benefit that compilers gainedfrom PE was not efficiency but

automation. Based on the fact that a partial evaluator is a program by itself, Futamura [39]

foresaw the self-application of PE, i.e., compiler generation. He did some experiments but

never proved this idea. Proof would have to wait until 1985, when Jones et al. [46] created

MIX, the first practical self-applicable partial evaluatorfor a language of first-order recur-

sive equations. Later, more research was conducted on improving efficiency of compiled

code generated by a partial evaluator, mainly by reducing the interpretive overhead added

by the evaluator. Jørgensen [48], for example, managed to compile a lazy functional lan-
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guage to generate code that runs faster than the commercial tool generated code does. The

boom in research on PE in 1990’s prompted the first PE conference in the US: the ACM

SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation

(PEPM).

Because of its conceptual simplicity and great automation, partial evaluation has been

applied to many areas other than compilation, such as pattern matching, circuit simulation,

numerical computations and computer graphics.

Traditional partial evaluators can be divided into two classes: online and offline. An

online partial evaluator, which typically resides in the interpreter, relies on the concrete

values computed at run time and makes decisions on the fly. Most of the early partial eval-

uators were online, which made them accurate but often very slow. To make specialization

decisions at run time, an online partial evaluator usually embeds an interpreter in the gen-

erated program. Not being carefully optimized, this interpreter can cause an intolerable

speed penalty.

An offline evaluator, in contrast, generates more general code since the program spe-

cialization relies on preprocessing results, not input values. It is usually separated into at

least two stages. One is preprocessing, or binding-time analysis; the other is the special-

ization phase. The binding-time analyzer is responsible for collecting information, then

determining whether the evaluation of an expression can be done at compile time or has to

be deferred to run time. Later this information will be used to guide the specialization of the

program [24]. All the PE techniques we introduce in later chapters are offline. Some partial

evaluators aggressively combine these two methods to achieve best result [15], i.e., if an

expression can be determined to be static at binding time, offline PE is applied, otherwise

it is deferred to be treated by online PE at run time.

There are now many partial evaluators for general-purpose languages, such as C-Mix

for C [40], JSpec for Java [65] and SML-mix for ML [13]. One of the most successful is

Tempo, an offline C specializer developed in the Compose project at INRIA [25]. From

a C program and an annotation of static inputs during specialization, Tempo performs a
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sequence of analyses (alias analysis, side-effect analysis, binding time analysis, etc.) and

preprocessing steps (goto elimination, function pointer elimination, etc.), then passes ab-

stract code to specialization phases, which generate efficient code. Tempo has been applied

to various domains, including operating systems, networking, graphics, etc., and proved ef-

fective. Also, some compilers for other languages [57], such as Java and C++, use Tempo

as an optimizing back-end.

Although Tempo accepts most of ANSI C, there are still some complex features it

cannot deal with, such as bit fields and mutually recursive structures. The alias analysis

has some constraints also. These complex features of C limitthe specializer’s precision to

some degree.

The interest in applying partial evaluation to domain-specific languages has grown in

recent years. Burchett et al. [18] developed a partial evaluator that reduces the size of

the dynamically changed graph size when programming in an interactive dataflow lan-

guage. Edwards [33] demonstrated a program specializationthat dramatically speeds up

fixed-point simulation of signal processing kernels written in SystemC – another high-level

hardware design language like those we compare in Chapter 2. These works reinforce our

observation that partial evaluation can be very effective in optimizing DSLs.

1.3 Outline of the Dissertation

This dissertation is organized as follows:

Part I (Chapter 1) provided an overview of the dissertation aswell as an introduction

to partial evaluation. We first reviewed the basic concept ofpartial evaluation, its advan-

tages and disadvantages for compilation application. To distinguish PE from traditional

optimization techniques, we compared it to constant propagation as an example. The brief

survey of partial evaluation in Section 1.2 introduced the origin of PE, its early applica-

tions, classification and the state of the art. We briefly explained our thesis statement that

specialized PE is ideal for DSL compilation but left the details to following chapters.
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Part II (Chapter 2) introduces the other important concept inthis dissertation: domain-

specific languages. The purpose of this part is to provide readers with some background

knowledge of domain-specific languages and the compilationchallenges they pose. We

answer three questions here: why DSLs are useful in their domains, why partial evaluation

can be effective for DSLs and why we must use specialized PE techniquesinstead of general

ones to solve the problems of DSL compilation.

The answer to these questions motivates our consideration of DSLs in our research:

a DSL, whose syntax is usually simpler than a GPL, relieves the compiler from complex

semantic analyses but requires the partial evaluator resident in the compiler to understand

its specific model deeply to achieve effective optimization results.

Part III (Chapter 3–Chapter 5) is our main technical contributions. We present three

PE techniques for code generation that are applied to two concurrent, deterministic DSLs.

These techniques remove concurrency (Chapter 3), enable separate compilation (Chapter 4)

and unroll recursion (Chapter 5). Although the first two are for Esterel, a concurrent syn-

chronous language, they approach the language differently. The specialization processes,

therefore, are also different.

The algorithm described in Chapter 3 enables the efficient simulation of synchronous

concurrent programs on a single-threaded processor. Synchronous languages, such as Es-

terel, provide embedded system designers a convenient toolthat guarantees deterministic

concurrency. However, it is nontrivial to statically schedule such a concurrent program

running on a single-threaded processor. The data dependence among threads may cause

frequent switches that bring considerable overhead. The solution we propose is to first

eliminate as many control dependences in the program as possible, i.e., to break the source

code into many small and concurrent pieces. The newly exposed concurrency, instead of

introducing higher scheduling overhead as one would imagine, in fact provides the sched-

uler more choices and enables it to form larger and hence fewer atomic blocks. In this way,

it minimizes switching overhead and generates much more efficient code.

The second algorithm we implemented for Esterel enables separately compiling code
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segments of a synchronous design (Chapter 4). For a large design, it is normal to first code

and test every module individually, then assemble them. However, if some modules form a

communication cycle, the inputs that rely on other modules’outputs may not be available

at run time to begin with. It would be very complex to write a program that handles all

these cases explicitly. In this case, partial evaluation provides us an automatic way to infer

the extra behavior. Performing an abstract three-valued simulation, the compiler generates

descriptions that respond to unknown inputs. To keep the size of the generated code under

control, we try to identify equivalent states during the simulation. The generated code,

therefore, can tolerate unknown inputs and be compiled separately.

In Chapter 5, we present a PE technique that statically elaborates recursive function

calls in SHIM programs. For a valid hardware design, it produces non-recursive code that

is guaranteed to use bounded resources. Like Esterel, SHIM provides deterministic concur-

rency but presents it in an asynchronous model that uses rendezvous-style communication.

Its recursive function calls enable users to construct concurrent structures dynamically. To

make such programs predictable yet flexible, we use partial evaluation to eliminate recur-

sion and replace it with static concurrent structures when possible. The algorithm applies

customized constant propagation and function inlining to unroll cycles in the function call

graph (recursive calls) as well as those in the control-flow graph (loops).

These various customized PE techniques illustrate the potential of partial evaluation to

effectively solve compilation challenges of DSLs. They also show that aggressive opti-

mization of a DSL requires a PE technique to be designed carefully to fit the specific model

defined by the language’s semantics.
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Chapter 2

Domain Specific Languages

In this chapter, we introduce some domain-specific languages to illustrate the importance

of DSLs and the challenges they present for compiler construction. Understanding these

issues will help the reader to better appreciate the major technical contributions in the

later chapters. We start with a special category, deterministic concurrent languages (Sec-

tion 2.1), whose model has been used in hardware design for decades and which has also

been gradually adapted to software design. Most of our research is based on these kinds of

DSLs, especially on Esterel and SHIM, whose interesting models and challenging features

inspired our work. We compare these two DSLs to Bluespec, another concurrent language

for hardware design, to illustrate the different compilation challenges even for languages in

the same application domain.

In Section 2.2, we present AG, a DSL of our own design. We include it to emphasize

the importance and unique aspects (challenges) of DSLs, andto demonstrate how a DSL

can facilitate the design of special-purpose systems (e.g., hardware circuit design, dataflow

analysis, etc.). AG is designed to generate dataflow analyzers. We focused on making

its syntax concise with an affordable performance penalty. At the end of Section 2.2, we

introduce some related work and conclude.

Besides the languages’ diversity, the comparison among the hardware design languages

illustrates one of our hypotheses: specialized partial evaluation techniques rather than gen-
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eral ones are needed to achieve aggressive optimization forDSLs. Therefore, a deep un-

derstanding of a DSL’s semantics is essential for developing effective PE techniques for

it.

A domain-specific language is designed to serve a specific field of programming, such

as Verilog for RTL (Register-Transfer Level) design, Matlabfor math computation, HTML

for web page description, etc. They are usually designed with some specific syntax con-

structs and combined with some built-in facilities that make the design work more conve-

nient and efficient.

The diversity and sophistication of the engineering industry inspired the birth of DSLs.

In addition, a well-developed DSL may even boost the prosperity of the related domain.

Verilog [71], for example, enabled the automation of circuit design, which heavily de-

pended on manual design before 1980s. Manual design was extremely time-consuming

and tedious; every chip at that time could only contain hundreds of transistors. During

1980s, things changed with the automation of circuit design, which enabled the faster de-

sign of larger systems. Many languages and tools were developed specifically in this area

at the same time. Verilog, which started as a simulation language to describe the algebra of

digital logic computation [38], soon became popular both because of its flexible syntax for

describing test benches and because of its integrated high-performance simulator. Later,

Synopsys adopted Verilog for RTL logic synthesis. It has been very successful since then.

Verilog helped users to better understand the behavior-level modeling of the circuit, which

in fact sped up the automation process of hardware design. Now we are able to put millions

of transistors on a chip, which would not have happened without the invention of Verilog.

Verilog shows how a well-designed DSL can have a major beneficial impact on a discipline

— in this case, hardware engineering.

Compared to a general-purpose language (GPL), a DSL usually has a simpler syntax

designed to concisely fit the logic and behavioral model in its applied field. Table 2.1

summarizes the differences between DSLs and GPLs. For example, when modeling a

control-dominated embedded system, which has to meet both hard time control and ef-



CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 10

DSLs GPLs

concise syntax very yes

general application no yes

specific model yes no

difficulty of semantic analysis low high

effective PE technique specialized general

Table 2.1: Comparing DSLs and GPLs

ficiency requirements, Esterel can provide a deterministicand concurrent solution that is

more elegant and efficient than a C solution. GPLs are not an ideal solution in thisspecific

domain because the designers’ concerns are not well addressed by any GPL. Consider Java.

Garbage collection, which has been welcomed by general users, turns out to be the reason

that embedded system designers reject the language; losingcontrol of memory makes them

worry about unpredictable behavior occurring in a system.

The characteristics of DSLs listed in Table 2.1 relieve compilers from complex se-

mantic analysis but place higher optimization requirements on these compilers. As we

demonstrate in the next few chapters, partial evaluation does a good job of optimization.

It can effectively improve the performance of the generated code. However, the various

models of DSLs demand that specific partial evaluation techniques have to be designed for

different models to achieve the best optimization result. The partial evaluation technique

we introduce in Chapter 3, for example, works well on Esterel,but would not be helpful

for VHDL. By analyzing the data and the control dependencies in Esterel programs, the

compiler increases the degree of concurrency in the code andthus provides more flexibility

to the optimization step that manages to generate efficient code. General PE techniques

would not work well in this case since Esterel is a concurrentlanguage and the primary

performance penalty comes from context switching between threads. So we customized a

graph transformation that was originally used for sequential program optimization rather

than using general PE techniques. Moreover, we specializedthe data dependency analysis
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for the synchronous communication model in Esterel. Our experimental results show a

more than four-fold speedup over existing tools, much better than what general PE could

achieve.

By comparing and analyzing different models, this chapter explains why the partial

evaluation techniques described in following chapters need to be radically different.

2.1 Deterministic Concurrent Languages

From multithreaded programming to multi-core system design, concurrency has many ap-

plications. But many concurrent models do not guarantee determinism, i.e., a program

may behave differently at different times, even for the same input. To address this concern,

certain DSLs for hardware design define strict semantics to ensure both concurrency and

determinism. Esterel, for example, allows concurrent threads to communicate through sig-

nals in a single clock cycle but in a strict manner, i.e., all readers must wait for other writers

that set the signal’s value. On the other hand, SHIM, which does not provide global vari-

ables, instead uses single-input channels for interprocess communication. Through these

strict semantics, these DSLs provide ideal solutions for designs that demand determinism

and high efficiency. Embedded system design, which is naturally described as a combi-

nation of concurrent processes and does not expect any indeterminate behavior, is a good

example of where we need these deterministic concurrent DSLs.

2.1.1 Esterel

Designed by Berry in 1982, Esterel [11] is a synchronous, cycle-accurate parallel lan-

guage that uses a strict communication pattern. Dedicated to reactive systems, it empha-

sizes that users can describe control concisely. An Esterelprogram consists of several

modules, each of which has inputs and outputs. A module, as shown in Figure 2.1, may

contain multiple threads, separated by double bars. They march in step to a global clock

and communicate with each other using a disciplined mechanism. In each clock cycle, the
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module example:

input A;

output B, C, D;

loop % Thread I

present B then

emit C

end present;

pause

end

||

loop % Thread II

present T else

present A then

emit B

else

present C else

emit D

end present;

end present;

end present;

pause

end

end module

Figure 2.1: An example in Esterel

program computes its outputs and progresses to the next state based on its inputs and the

previous state.

Signals carry and deliver the major information throughoutthe program by broadcast-

ing. These signals can be classified into input, output and local signals. A module’s inter-

face, for example, is composed of input/output signals. Normally, a pure signal in Esterel

carries either a present or an absent Boolean value; such a value for an input signal is de-

termined by the environment. An output or local signal’s value, by contrast, can be set by a

statement. This value does not persist between cycles. Besides the values of present and ab-

sent, we will introduce the third possible value of a signal -unknown - in Chapter 4, which
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may occur when some input signals are intermediate outputs of other running modules.

The syntax of Esterel is not complicated. We show a small partof it in the example in

Figure 2.1, which implements two synchronized threads. Every thread in the example is

enclosed in an iterativeloop statement that takes more than one cycle to complete because

of the pausestatement, which idles for a cycle. Esterel does not allow intra-cycle loops.

The other statements,presentandemit, execute within a cycle. Thepresentkeyword tests

a given signal’s value andemitsets a signal to present, respectively. Comments are denoted

by %.

Despite its concise semantics, Esterel can be used to define quite complicated interac-

tions between threads, which can make it hard to generate efficient code. To simulate con-

current threads on a single-threaded processor, threads may have to interleave during exe-

cution. Instead of shared memory or semaphores, threads in Esterel communicate through

signals and follow the rule of reader-after-writer to ensure determinism. In Figure 2.1, for

example, Thread I has to start running only after Thread II since Thread II may set sig-

nal B’s value, which Thread I requests. However, the else branch of Thread II contains

a present test on signalC. To acquireC’s value, the program is forced to switch from

Thread II to I. Such sequential ordering is not always so straightforward and may involve

many possible choices during compilation. Therefore, minimizing the number of context

switches becomes the key to boosting the performance of generated code.

The synchronous and imperative semantics of Esterel simplify programming but com-

plicate code generation. Esterel requires any implementation to deal with three issues:

the concurrent execution of sequential threads of control within a cycle, scheduling con-

straints among these threads due to communication dependencies, and how (control) state

is updated between cycles. To solve these issues, many different techniques have been

proposed. The Esterel V3 compiler translated programs to automata. This produces quite

efficient code but the size of the generated code may be exponential. V5 avoided the scale

problem by generating circuit-like code, but this turned out to be slow at run time. Later,

Potop-Butucaru [63] created a new intermediate representation (IR) and optimizations that
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greatly improved the generated code. Based on this new IR and the work by Edwards [29],

we developed a compiler that, by analyzing data and control dependencies in a program,

makes aggressive optimizations and generates efficient and compact code.

2.1.2 SHIM

SHIM [32], invented by Edwards & Tardieu recently, providesa solution for designing

heterogeneous embedded systems: systems combined of software and hardware. Software

modules are commonly event-driven, flexible and fit well withthe asynchronous model.

SHIM takes the asynchronous approach where threads only synchronize with others when

they must communicate.

In heterogeneous systems, especially when hardware and software have to commu-

nicate frequently, the SHIM model shows advantages over synchronous languages. The

Robby Roto game, a traditional video game system, is a good example. The software typi-

cally runs at a frequency as low as 180 Hz, while the the hardware’s frequency is 14 MHz

- about 80,000 times faster. Obviously it would be more efficient to simulate these two at

different clock frequencies and design an asynchronous interface for them. Flexibility is

beneficial in these kinds of circumstances.

The syntax of SHIM is similar to C, but its use of concurrency and its rendezvous com-

munication facility make it different. Figure 2.2 shows a sample program that deals with a

sequence of integers. In this program, there’s only one function main() that contains three

threads where Thread II and III respectively receive even and odd numbers from Thread

I. These threads are running concurrently, as the keywordpar defines, and synchronize on

channelsodd andn. Thesendandrecvstatements indicate where a thread rendezvous on

a channel. Unlike when a thread communicates through variables, a thread will block on

a channel if its peer — another thread that communicates on the channel — is not ready.

The next keyword representsrecv when appears on the right side of an assignment and

sendwhen it appears on the left. In this program,next oddin Thread I meanssendsince

it setsodd’s value in the statement. The other two threads receiveodd’s value. A channel
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void main() {

int n = 0;

bool odd = 1;

try {

{ //Thread I

for (;;){

if (n < 10){

next odd = 1 - odd;

send n;

n = n + 1;

}

else

throw T;

}

}

par

{ //Thread II

for (;;)

if (!(next odd))

recv n;

}

par

{ //Thread III

for (;;)

if (next odd)

recv n;

}

} catch(T) {}

}

Figure 2.2: A simple example in SHIM
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must have exactly one sender but may have multiple receivers. This scheme makes the

communication among concurrently running processes an arbitrary graph, which may be

cyclic.

SHIM defines a complicated exception handling system that cooperates with concur-

rency. Generally speaking, a thread that communicates withany other thread will “die” if

its peers are aborted. For example, Thread II (Figure 2.2), which contains an infinitefor

loop, seems to run forever. Nevertheless, when its peer Thread I throws an exceptionT

and terminates, Thread II will terminate as well, as will Thread III. This process is also

called “poisoning” because it appears that the terminationdue to the exception is being

propagated among threads through channels.

The computational model of SHIM is based on Kahn networks [49]. Although the

scheduling-independent character of the model allows the compiler to make many schedul-

ing choices, it is still hard to generate fast code from a SHIMprogram. One way to make

the code run fast is to know at compile time when threads will rendezvous. In the exam-

ple in Figure 2.2, Thread II will only retrieve the value fromThread I through channel

n when the next integer is even. The process of actually determining when the threads

will rendezvous, however, can become fairly involved. In addition, fanout and cyclic com-

munication may further complicate the situation; because of these challenges, a compiler

may have a difficult time statically scheduling the code. Furthermore, exception handling

presents another challenge. Consider three threads A, B, and C(C contains both A and B:

in other words, both A and B are child threads of C). Even if thread A raises an exception,

thread C can potentially keep running because B may be unaffected by the exception from

A. Tardieu and Edwards provided some rules to handle exceptions in their work [70].

Recursion in SHIM presents another challenge. SHIM providesrecursive function calls

to enable succinct designs. However, a design with recursive calls may need unbounded

resources. This is unacceptable for hardware implementations, so it is sometimes necessary

during the compilation process to eliminate recursion. We propose an algorithm to trans-

form a program with recursion to one only requiring bounded resources when possible.
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(* descending_urgency = ‘‘proc2, proc1, proc0’’ *)

rule proc0 (cond0);

x <= x + 1;

endrule

rule proc1 (cond1);

y <= x;

endrule

rule proc2 (cond2);

x <= x -1;

endrule

Figure 2.3: An example in Bluespec

More details are included in Chapter 5.

Although both SHIM and Esterel are concurrent, deterministic and modular, they ad-

dress different concerns in embedded system designs. Esterel uses thesynchronous model

to provide precise control over system timing while SHIM uses the asynchronous model

for flexibility.

2.1.3 Bluespec

Bluespec is another concurrent and deterministic tool for hardware design. It is based

on Hoe and Arvind’s 1999 proposal [44] of a synthesizable Term Rewriting Systems (TRS)

model for microprocessor designs. The tool provides a lot offacilities, including optimiza-

tions, long-bit-vector support and verification. These facilities are attractive for high-level

designs.

The language is called Bluespec Verilog (BSV) since its syntaxis similar to Verilog but

without thealwayskeyword. Like other hardware design languages, it is strongly-typed

and side-effect free. A BSV design is composed of modules. Each module includes a de-

scription of the system state elements, such as registers and atomic behavioral components

(rules). The segment of BSV code in Figure 2.3 contains three rules and registersx andy.
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Each rule’s body describes the allowable sequence of state transitions and its head speci-

fies the condition under which the rule is enabled. The ruleproc0, for example, increases

x’s value when the Boolean conditioncond0is satisfied. Although rules can involve com-

plicated transitions, such as ones containing method calls, every rule is atomic, i.e., the

specified state transition cannot be interrupted.

The main challenge for the BSV compiler is to build a run-time schedule that assures the

atomicity constraints of the rules. Unlike Esterel and SHIMwhere a designer defines the

control logic of the system, Bluespec has the compiler infer the optimal control structure

from the rules. In other words, the TRS model implies what sequences of state transition

are possible. Rules that do not modify the same state element may be scheduled to run

concurrently. For example, the rulesproc0 andproc1 have no conflict, so they can run

in parallel if their conditions are true simultaneously. The rulesproc0 andproc2, on the

other hand, both write to registerx. When they are both enabled, the compiler has to check

the priority specification, such as the first line in the example (Figure 2.3), or raise an

error. Since a rule can invoke method calls, the state it reads or writes may be distributed

across several modules. This makes the automatic generation of control logic even harder.

Furthermore, any change in a module or its related modules must be verified to guarantee

atomicity.

A smart schedule may lead the compiler to generate code as efficient as hand-coded

Verilog [4], but heavy reliance on the compiler may raise concerns of losing control over

the behavior of the system, especially for large designs.

2.2 A Little Language for Generating Dataflow Analyzers

To illustrate in detail how a domain-specific language can help to simplify the development

process, we present a little language called Analyzer Generator in this section. The concise

syntax of the language can greatly reduce code size. We also introduce some potential PE

optimization opportunities provided by the language at theend of this section.
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Dataflow analysis is a well-understood and very powerful technique for analyzing pro-

grams as part of the compilation process. Virtually all compilers use some sort of dataflow

analysis as part of their optimization phase. However, despite being well-understood theo-

retically, such analyses are often difficult to code, making it difficult to quickly experiment

with variants.

Our domain-specific language, Analyzer Generator (AG), synthesizes dataflow analy-

sis phases for Microsoft’s Phoenix compiler framework. AG hides the fussy details needed

to make analyses modular, yet generates code that is as efficient as the hand-coded equiv-

alent. One key construct we introduce allows IR object classes to be extended without

recompiling.

Through AG, we demonstrate how necessary and helpful a DSL iswhen we design

programs applied to a specific domain. Experimental resultson three analyses show that

AG code can be one-tenth the size of the equivalent handwritten C++ code with no loss of

performance. It shows that AG can make developing new dataflow analyses much easier.

2.2.1 Coding Dataflow Analysis Algorithms

Modern optimizing compilers are sprawling beasts. GCC 4.0.2, for example, tips the scales

at over a million lines of code. Much of its heft is due simply to its many features: com-

plete support for a real-world language, a hundred or more optimization algorithms, and

countless back-ends. But the intrinsic complexity of its internal structures’ APIs and the

verbosity of its implementation language are also significant contributors.

We address the latter problem by providing a domain-specificlanguage, AG for “An-

alyzer Generator,” for writing dataflow analysis phases in Microsoft’s Phoenix compiler

framework. Experimentally, we show functionally equivalent analyses coded in AG can

be less than one-tenth the number of lines of their hand-coded C++ counterparts and have

comparable performance.

Reducing the number of lines of code needed to describe a particular analysis can re-

duce both coding and debugging time. We expect our language will make it possible to
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quickly conduct experiments that compare the effectiveness of various analyses. Finally,

by providing a concise language that allows analyses to be coded in a pseudo-code-like

notation mimicking standard texts [1], compiler students will be able to more quickly code

and experiment with such algorithms.

One contribution of our work is a mechanism for dynamically extending existing classes.

In writing a dataflow analysis, it is typical to want to add newfields and methods to existing

classes in the intermediate representation () in the analysis. Such fields, however, are un-

needed after the analysis is completed, so we would like to discard them. While inheritance

makes it easy to create new classes, most object-oriented languages do not allow existing

classes to be changed. The main difference is that we want existing code to generate objects

from the new class, which it would not otherwise do.

The challenge of extending classes is an active area of research in the aspect-oriented

programming community [52], but their solutions differ from ours. For example, the very

successful AspectJ [51] language provides the intertype declarations that can add fields

and methods to existing classes. Like ours, this technique allows new class fields and

methods to be defined outside the main file for the class, it is acompile-time mechanism

that actually changes the underlying class representation, requiring the original class and

everything that depends on it to be recompiled. In AG, only the code that extends the class

must be recompiled when new fields are added.

MultiJava [22] provides a mechanism that is able to extend existing classes without

recompiling them, much like our own, but their mechanism only allows adding methods,

not fields, to existing classes.

In AG, we provide a seamless mechanism for adding annotations to existing classes.

In AG code, the user may access such added fields with the same simple syntax as for fields

in the original class. Adding such fields does not require recompiling any code that uses

the original classes.

We implemented our AG compiler on top of Microsoft’s Phoenix, a framework for

building compilers and tools for program analysis, optimization, and testing. Like the SUIF
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system [76], Phoenix was specifically designed to be extensible and provides the ability,

for example, to attach new fields to core data types without having to recompile the core.

Unfortunately, implementing such a facility in C++ (in which Phoenix is coded) has a cost

both in the complexity of code that makes use of such a facility and in its execution speed.

Experimentally, we find the execution speed penalty is less than factor of four and could be

improved; unfortunately, the verbosity penalty of using such a facility in C++ appears to

be about a factor of six. Reducing this is one of the main advantages of AG.

2.2.2 The Design of AG

AG is a high-level language that provides abstractions to describe iterative dataflow analy-

ses. The AG compiler translates an AG program into C++ source and header files, which

are then compiled to produce a Dynamically Linked Library () file. (Figure 2.4) This

 can then be plugged in to the Phoenix compiler and invoked just after a program is

translated into Phoenix’s Middle Intermediate Representation ().

Our generated plug-in extends objects to collect information and invokes a traversal

that is part of the Phoenix framework to perform iterative analysis. This traversal function

invokes computations defined in the AG program.

We follow the classical dataflow analysis approach. An AG program implicitly tra-

verses the control-flow graph of the program and considers a basic block at a time. Inside

each block, the analysis manipulates its constituent instructions and operands. We thus

chose to make blocks, instructions, and operands basic objects in AG. Phoenix, naturally,

already has such data types, but AG makes them easier to uses since our language has a

deeper understanding of them.

One of the main contributions of AG is the ability to add attributes and computations to

these fundamental data types. This facility relies on mechanisms already built into Phoenix,

but because of the limitations of C++, making use of such mechanisms is awkward and

tedious to code. AG makes it much easier.

To simplify the description of computation functions, we included new statements in
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AG Library Files Phx C++ Compiler Phx Library Files

DataflowAlgorithm.dll

DataflowAlgorithm.ag

AG Translator

DataflowAlgorithm.Phx.cpp/.h

Figure 2.4: The operation of the AG framework

AG such asforeachand data-flow equations like those found in any compiler text. We also

introduced asetdata type since data collected during dataflow analysis usually takes the

form of sets.

AG relies on the Phoenix Traverser class. This is an iterative traverser that does not

guarantee boundedness. See Nielson and Nielson [60] for a discussion of the issues in

guaranteeing boundedness.

2.2.3 Program Structure and Syntax

The AG language is designed for dataflow analysis. It provides abstractions for the common

features of iterative intraprocedural analysis. For user convenience and adaptability, we

chose a syntax similar to that of C++ and added a variety of new statements and constructs.

Figure 2.5 shows the structure of a typical AG program to describe an analyzer. It

defines a new, named phase, extends a number of built-in Phoenix classes with new fields

and methods to define what information to collect, and finallydefines a transfer function

for the dataflow analysis.
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Phasename{

extend classname{

field declarations...

method declarations...

void Init() { . . . }

}

.

.

.

typeTransFunc(direction) {

Compose(N){ . . . }

Meet(P){ . . . }

Result(N){ . . . }

}

}

Figure 2.5: The structure of an AG program

An extend classdefines a new class that uses the Phoenix dynamically extensible

class system. New fields and methods declared in an extend class are added as new class

members. The user may directly refer to them as if they were members of the original class

(our compiler identifies such fields and generates the appropriate Phoenix code to access

and call members of such extended classes). Notice the methods declared in an extend

class are “private,” i.e., they can only be applied to the corresponding extend object, or in

other methods declared under the same extend class. Currently, we only support extending

Block, Instr, and Opnd classes.

In each extend class, the Init method behaves (and is executed as) an initializer just after

the constructor for the extended class.

Each phase has a single TransFunc that defines the return typeand iteration direction
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(backward or forward) of the analyzer and, more importantly, the equations applied during

the analysis. The body of a TransFunc may define functions, especially three reserved

functions: Compose, Meet, and Result. Compose and Meet functions are applied when the

traverser visits every blocks. The Compose function defines the computation inside a block

using global data. The Meet function defines the computationperformed between blocks,

i.e., to merge data from the exit of the predecessor to the entry of the successor. The Result

function defines operations to be performed just after the iteration. It usually propagates

information to the objects that make up the blocks, such as instructions. Other functions

may be declared in the TransFunc; they can be called by the three reserved functions or

each other.

The user may embed arbitrary C++ code in the body of these methods. Such code

segments are transparent to AG compiler, which simply includes them verbatim in the

generated code.

We derived the syntax of AG from C++. We present its complete syntax in the ap-

pendix; Table 2.2 provides a summary. Below, we provide some details about its design.

Setis a data type similar toset in the C++ standard library. It can only apply to the

reserved classes and actually refers to a set of IDs. For example, “Set<Instr>” will be

translated into a bit-vector mapped on IDs of instructions in implementation. TheMap

type is similar.

During the analysis, the most relevant data are those with information for the entry and

exit points of each block, so we introduced theIn andOut data set as built-in variables.

Except for the two logical operators, the operators in Table2.2 can be applied both

to integers andSet-valued variables. Using the+, −, and * operators generate code that

perform Or, Minus, and And operations on bit vectors.

In dataflow analysis, one often needs to iterate over a subsetof objects, so we added a

foreachstatement to do this.Foreachis a predicated iterator, meaning that it steps through

the members of a set and performs actions on only selected members of the set. The user

does not have to declare an iterator specifically, just a variable of the type over which the
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data types Set Map int bool void

special variables In Out

operators + − ∗ = += −= ∗= && ‖

built-in classes Opnd Instr Block Alias Expr Func Region

special methods Init Compose Meet Result

built-in functions DstAliasTable SrcAliasTable Print

built-in constants Forward Backward

declarations Phaseidentifier ( parameter list) { ... }

extend classtype{ ... }

typeTransFunc (direction) { ... }

statements lvalue= expression;

if ( expression) { ... } else{ ... }

/% arbitrary C++ code%/

foreach (type varin rangewherecond. direction) { ... }

phoenix-iterator( ... ) { ... }

Table 2.2: AG Syntax Summary

iteration is occurring and the set on which to iterate. The user may also specify a condition

that acts as a filter and a direction (Forward/increase or Backward/decrease). The condition

is described with thewherekeyword. The syntax is shown in Table 2.2.

The type, range and condition allowed are listed in the attached syntax table. The

“wherecondition” and “direction” parameters are optional.

Suchforeachstatements are translated to conditional for loops in the C++ and use the

iterator macros in the Phoenix framework. Note that theforeachstatement, especially the

predication, is not strictly necessary (an additionalif is sufficient), but the same can be said

of C’s for statement.

If the rangeis a Set, thetypemust match its content. Otherwise, if therangeis a class,

the typemust match one of its members. For example, each instructioncontains a list of
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operands, so we can specify atypeof Opnd and arangeof an instruction. Also, the user

may specify aconditionof “dataflow && dst” to iterate over dataflow-related destination

operands in the list.

Phoenix provides a number of iterator macros, which can be used in AG almost verba-

tim (see Figure 2.6 Line 9). The only difference is that in C++, a matching “next” macro

must follow the use of each iterator macro (see Figure 2.7 Line 14); this is not necessary in

AG.

DstAliasTableis a reserved function that takes an alias tagx as parameter and returns a

set of destination operands whose alias-tag isx. Similarly,SrcAliasTablereturns all source

operands with the same alias-tag.

2.2.4 An Example

To illustrate AG, we present a complete example: the classical “reaching definitions” anal-

ysis. The complete AG source is in Figure 2.6.

This algorithm computes the sets of definitions that reach the entry and exit points of

each basic block in a program. Following the Dragon book [1],a definition of a variable

is the operand in an instruction that may assign to the variable. In the Phoenix, each

instruction has source operands and destination operands.For reaching definitions, we are

concerned mostly with the destinations.

The whole analysis is defined as a phase calledReachingDefs(line 1 of Figure 2.6).

The rest of the analysis consists of extend classes that add fields and computations to the

built-in data types for operands, instructions, and basic blocks, and description of transfer

functions.

Extend classesaugment existing data types with additional fields in which to collect

information and procedures for collecting it. This is similar to extending a base class in

an object-oriented language, but differs because the new attributes are actually attached to

objects of the “base class” itself at the language level, notjust in objects of derived classes

(the C++ code we generate from AG actually uses class inheritance). But a user can refer
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1 Phase ReachingDefs {

2 extend class Opnd {

3 Set<Opnd> Gen;

4 Set<Opnd> Kill;

5 void Init() {

6 Opnd opnd = this;

7 if (opnd->IsDef) {

8 opnd->Gen += opnd;

9 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, AliasInfo)

10 opnd->Kill += DstAliasTable(alias_tag);

11 opnd->Kill -= opnd; }

12 }

13 }

14

15 extend class Instr {

16 Set<Opnd> Gen;

17 Set<Opnd> Kill;

18 void Init() {

19 Instr instr = this;

20 foreach (Opnd dstOpnd in instr where (dataflow && dst)) {

21 instr->Gen += dstOpnd->Gen;

22 instr->Kill += dstOpnd->Kill; }

23 }

24 }

25

26 extend class Block {

27 Set<Opnd> Gen;

28 Set<Opnd> Kill;

29 void Init() {

30 Block block = this;

31 foreach (Instr instr in block) {

32 block->Gen = instr->Gen + (block->Gen - instr->Kill);

33 block->Kill = block->Kill + instr->Kill - instr->Gen; }

34 }

35 }

36

37 Set<Opnd> TransFunc(Forward) {

38 Compose(N) { Out = In - N->Kill + N->Gen; }

39 Meet(P) { In += P->Out; }

40 }

41 }

Figure 2.6: A Complete AG analysis: Reaching Definitions
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1 class OpndExtensionObject : public Phx::RbagGenTest::AG::OpndExtensionObject {

2 PHX_DECLARE_PROPERTY(Phx::BitVector::Sparse *, Gen);

3 __PHX_DEFINED_VIRTUAL_GET_PROPERTY(Phx::BitVector::Sparse *, Gen) __const;

4 __PHX_DEFINED_VIRTUAL_SET_PROPERTY(Phx::BitVector::Sparse *, Gen);

5 Phx::BitVector::Sparse * _local_Gen;

6 }

7 void OpndExtensionObject::Init( Phx::FuncUnit *func_unit,

8 Phx::BitVector::Sparse *PHX_ARRAY(dst_alias_table)) {

9 Phx::IR::Opnd *opnd = _this;

10 if(opnd->IsDef) {

11 this->Gen->SetBit(this->uid);

12 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, func_unit->AliasInfo)

13 this->Kill->Or(dst_alias_table(alias_tag));

14 next_must_total_alias_of_tag;

15 this->Kill->ClearBit(this->uid);

16 }

17 }

18 void IterateData::Merge(Phx::DataFlow::Data *dependent_block_data,

19 Phx::DataFlow::Data *effected_block_data, Phx::DataFlow::MergeFlags flags) {

20 IterateData * dep_block_data = PTR_CAST(IterateData *, dependent_block_data);

21 Phx::BitVector::Sparse * Out = dep_block_data->Out;

22 if(flags & Phx::DataFlow::MergeFlags::First) In = Out->Copy(); else In->Or(Out);

23 dep_block_data->Out = Out;

24 }

25 void Traverser::InitData(Phx::BitVector::Sparse *PHX_ARRAY(dst_alias_table)) {

26 foreach_block_in_func(block, funcUnit) {

27 foreach_instr_in_block(instr, block) {

28 foreach_dataflow_dst_opnd(dstopnd, instr) {

29 OpndExtensionObject *ext_dstopnd = OpndExtensionObject::GetExtensionObject(dstopnd);

30 ext_dstopnd->Init(funcUnit, dst_alias_table);

31 } next_dataflow_dst_opnd;

32 InstrExtensionObject *ext_instr = InstrExtensionObject::GetExtensionObject(instr);

33 ext_instr->Init(funcUnit->Lifetime);

34 } next_instr_in_block;

35 BlockExtensionObject *ext_block = BlockExtensionObject::GetExtensionObject(block);

36 ext_block->Init(funcUnit->Lifetime);

37 } next_block_in_func;

38 }

Figure 2.7: Part of the Phoenix (C++) code generated by the AG compiler for the reaching

definitions example
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to new attributes as if they were already in the original class. Consider the Opnd extend

class (lines 2–13). This adds two attributes to each operand, operand sets namedGenand

Kill . As usual, theGenset contains operands that are defined within the block and available

immediately after it in the source code.

TheInit function initializes the values of theGenandKill fields. The two sets are imple-

mented as bit vectors—see Lines 2–5 in Figure 2.7 for the declaration ofGen; Lines 7–17

show the translation of theInit function. The body ofInit adds destination operands to the

Genset. Similarly, all other destination operands in the built-in destination-opnd-map-to-

alias-tag table (DstAliasTable) that have the same alias tag as the operand (i.e., when both

modify the same memory location) are added to theKill set (Lines 7–11).

The Instr andBlock extend classes addGenandKill sets to each of their classes and

populate these sets with data fromOpnd and Instr objects respectively. Lines 26–37 in

Figure 2.7 call the threeInit functions (the translation of the other two are not shown). Note

that this function is synthesized completely from how this data is used in the analyzer, not

from explicit code in the AG source.

After collectingGenandKill sets for blocks, the algorithm specifies some details of the

main analysis iteration. At the beginning of the transfer functionTransFunc, the iteration

is declared to proceed in the forward direction and return a set ofOpndobjects.

The extend classes are based on original classes. The example in Figure 2.6 shows

that, to refer to fields from the extend class (e.g., Figure 2.6, Line 8, “opnd->Gen”), the

user may use the same notation as for those in the base class (e.g., Figure 2.6, Line 9:

“opnd->AliasTag”). These two references generate very different C++ code (c.f. Fig-

ure 2.7, Lines 11 and 12).

As usual, we assume there are unique entry and exit points in the control flow graph for

each block. “In” and “Out” are two built-in data sets relatedto the entry and the exit points

respectively. The definition for TransFunc head declares the type of “In” and “Out” sets as

holding operands. These two sets are usually used in the transfer function to pass data.

Compose and Meet are the two main functions for defining the transfer function. In
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this program, they specify the two groups of dataflow equations in the standard way [1, Eq.

10.9]:

in[Bi] =
⋃

Bj a predecessor ofBi

out[Bj]

out[Bi] = gen[Bi] ∪ (in[Bi] − kill [Bi]).

The first equation is exactly and simply included in the Meet function (Line 39), which

computes the effect of the exit-point data from predecessors to the entry-point data of the

current block in the iteration.In is related to the current block being visited, whileOut

is related to the blockP that is passed to theMeet function. By default, the argument for

the Meet function is a basic block that represents an arbitrary predecessor of the current

block. As shown in Figure 2.7 lines 18–24, the data equation is translated into bit-vector

manipulations.

The second dataflow equation is included in theComposefunction (Line 38), which

computes the data transformation globally from the entry point to the exit point for a single

block. Declared as an argument to theComposefunction, variableN is an extended object

of the block by default. SinceGenandKill are fields that have been added to the Block

class (lines 27 and 28), they can be referred to as members ofN.

A complete AG program is translated into a C++ program that is compiled as a plug-

in phase that can be invoked as part of the Phoenix compilation processes. It initializes

all extended objects first, then executes the forward traverser, which applies the dataflow

equations to iteratively compute on the blocks following the structure of the control-flow

graph until theIn sets converge for every block. The generated code uses the machinery

built into the Phoenix framework to do this; an AG user does not write code for this.

2.2.5 Experimental Results

We tested AG on three analyses: reaching definitions, live variables, and uninitialized vari-

ables. We chose these three examples because a hand-writtenversion of each, done by

experienced programmers, already existed in Phoenix. We compared the size and speed of
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Reaching Live Uninitialized

Definitions Variables Variables

C++ LOC (manual) 791 303∗ 108†

AG LOC (manual) 41 55 94

C++ LOC (generated) 626 519 682

C++ runtime 7.3s 0.8s †

AG runtime 7.4s 3.1s 13.6s

Table 2.3: Experimental results: size and speed of AG-generated code vs. handwritten.

∗The manually coded live variable analysis uses hard-coded fields, which makes it simpler

at the expense of being far less modular.

†The manually coded uninitialized variables analysis relies on the Phoenix SSA library not

included in this count. This is a very different architecture than the code generated by AG.

the generated code with the manually written version for thefirst two examples because,

like our generated code, they use the Traverser class in Phoenix. The manually written

version of uninitialized variables used Phoenix’s static single-assignment code, which AG

does not take advantage of, so we did not experiment with it.

Table 2.3 shows our results. “LOC” indicates the number of lines of code excluding

comments; times are in seconds. We computed the average run times of these plug-ins by

running compiler with the plug-in, running the compiler without the plug-in, and subtract-

ing these two running times. The times are thus a little suspect because they also include

the time to load and initialize the plug-in itself.

In each test case, the C++ code generated by the AG compiler is more than six times

the size of the AG source. Even better for AG, the manually written code for reaching

definitions is even larger than the generated code. That is because the AG library files

include commonly used code and default methods, for example, the constructor of the

phase.

The manually written live-variables code is smaller than the generated C++ code for
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that analysis, but this is because the manually written codedoes not use the (verbose)

Phoenix extend objects.

We ran the generated Phoenix C++ code on a laptop with a 2.0 GHz Pentium-M proces-

sor running Windows XP. The benchmark is the Phoenix Microsoft Intermediate Language

reader, which can generate high-level intermediate representations for a variety of targets.

It is about five hundred thousand lines of code.

The AG-generated code for the reaching definitions analysisruns just as fast as the

manually written code on the reader. Unfortunately, the live variable analysis code runs

about one-fourth as quickly, but there is a good reason for this: the manually written C++

version does not use the Phoenix object-extension facility. Instead, it simply recomputes the

desired data every time it traverses a block. Thus, the speeddifference here more illustrates

the cost of using extension objects instead a more brute-force approach. Evidently in this

example, the computation is cheap enough so that repeating it is less costly than saving

and recovering it later. We include the runtime for the AG code for uninitialized variables,

but do not give a time for the manually written code because ituses a completely different

algorithm.

2.2.6 Related Work

The theory of dataflow analysis is well-studied. Kildall [53] was one of the first to propose

a unified lattice-based framework for global program analysis. Later, Kam and Ullman [50]

addressed the iterative approach and made the theory more concrete.

Wilhelm [75] notes that there are many generic theories for dataflow analysis, but few

tools are built on these theories and even fewer are widely accepted. One big reason is

the lack of a standard mid-level program representation. Weexpect the Phoenix compiler

framework to address this problem, at least for object-oriented imperative languages. An-

other reason for the lack of tools is their complexity. Thus the focus of our work is to

provide a simple language and tool for writing dataflow analyses.

Tjiang’s Sharlit [72] is a tool for building iterative dataflow analyzers and optimizers.
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It is built on the [76] generic compiler construction framework. However, Sharlit did

not introduce a new language. It uses C++ and provides some APIs, much like the Phoenix

environment, and its focus was mostly on its efficiency, not its simplicity. While it makes

an implementation of an analysis much more modular, it remains difficult to use.

A few tools require an explicit definition of the lattice usedin dataflow analysis. Exam-

ples include Alt and Martin’s [2], Venkatesh and Fischer’s [74], and the flexible

architecture presented by Dwyer and Clarke [28]. P is well-known and has been used

in industry. There are many similarities between AG and: both use basic blocks and

unchanged-pre-condition checking to improve the speed of the generated analyzer. Both

provide a “set” data type. Unlike AG, requires the user to specify the lattice used dur-

ing analysis, which provides more optimization choices, like widening and narrowing, and

makes it easier to verify the algorithm’s correctness, but this makes descriptions larger

and more complex.

Some tools specifically address interprocedural analysis,such as Yi and Harrison’s

auto-generation work [77]. We focus only on intraprocedural analysis, although many of

our ideas should carry over to inter-procedural problems.

2.2.7 Conclusions

To illustrate the advantage of DSLs for programming in specific domains, we presented a

DSL, AG, for writing dataflow analysis phases in Microsoft’sPhoenix framework, whose

succinct syntax greatly decreases the implementation’s code size as well as the workload

of dataflow algorithm designers. Experimental results showthat manually written AG code

can be less than one-tenth the size of the equivalent manually written C++ with similar

performance. A key enabler for the simplicity of AG code is its mechanism for extending

existing IR classes, which makes it possible to extend existing classes without recompiling

them and allows user-level code to access these fields as easily as typical ones.

As a small, domain-specific language, AG has some weaknesses. Minimizing verbosity

was our focus, and we did so at the loss of some flexibility. Themost obvious is that the user
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is forced to use the iterative analysis framework, even though Phoenix has other options,

such as lattice and static single-assignment frameworks. Although AG has some high-level

types such as sets and maps, its type system is limited and does not support strings, arrays,

arbitrary iterators, and so forth.

AG is also currently limited to analyses running on the medium-level intermediate rep-

resentation (MIR), although it could be extended to handle others. Furthermore, AG pro-

grams currently only handle user-defined variables; the many implicit temporary variables

in the MIR are currently ignored. For example, the C statement on the left is dismantled as

shown on the right. AG code currently ignores the temporaryt1.

x = y + 3; −→
t1 = y + 3;

x = t1;

As with many domain-specific languages, debugging AG is somewhat problematic.

While we provide a print statement, AG does not have a dedicated debugger, IDE, or any

of the other now-standard features in a development environment. All these could be added,

but not without a fair amount of work.

Partial evaluation may be added to improve the efficiency of the generated AG program.

Since AG takes an iterative framework, the dataflow analysiswill terminate sooner if the

relaxation process is quick. An online partial evaluation that analyzes the relaxation condi-

tion in the AG program may help. Instead of iterating on everyblock in an arbitrary order,

the evaluator can arrange the blocks in a descending order ofhow fast the output converges.

This should speedup the iterative analysis.

AG is constructed as a translator, so in theory most weaknesses could be fixed by ex-

tending AG, provided the new features were supported by Phoenix. It could be extended,

say, to describe region-based dataflow analyses, or to describe optimizations. But it is dif-

ficult to say at what point AG would cease to be a domain-specific language and balloon

into C++. This is also a general issue for DSLs.

Nevertheless, we believe that a factor of six in code-size reduction justifies the extra

challenges in using a small language.
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2.3 Summary

We reviewed some domain specific languages in this chapter, especially deterministic, con-

current and modular languages. In order to address a varietyof concerns, DSLs, even if

designed for the same problem domain, may be built on fundamentally different models.

Their radically different features present particular challenges to their compilers. The com-

parison of Esterel, SHIM and Bluespec illustrates the differences.

Compared to a general-purpose language, a DSL usually has simpler syntax that is less

flexible but more succinct and reliable for coding. Optimized for its specific model, a DSL

compiler may generate very efficient code.

This chapter prepares readers with background knowledge ofDSLs. The comparison

between DSLs and GPLs explains that, because of the simpler syntax but special computa-

tional models of DSLs, partial evaluation may work effectively on DSLs as well. In addi-

tion, the comparison of different concurrent, deterministic DSLs illustrates that specialized

PE techniques are required to solve various challenges brought by specific models.
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Chapter 3

Partial Evaluation for Removing

Concurrency

Generally, concurrency in embedded systems is facilitatedby real-time operating systems.

Such concurrency can be unpredictable and difficult to debug since the operating system

does the scheduling. Synchronous concurrency on the other hand, in which a system

marches in lockstep to a global clock, is conceptually easier and potentially more efficient

because it can be statically scheduled. The synchronous language Esterel provides paral-

lel constructs to define such systems. However, simulating synchronous concurrency on a

single-threaded processor can be very expensive because ofswitching overhead between

threads.

In this chapter, we introduce a partial evaluation algorithm to minimize switching over-

head in Esterel. Our algorithm removes most of this overheadand generates efficient se-

quential code from synchronous concurrent specifications.Given a concurrent program de-

pendence graph generated from an Esterel program, we sequentialize the concurrent code

by adding a minimal amount of run-time scheduling code. Withthe right language and a

specialized PE technique, it becomes possible to simulate concurrent programs efficiently.

This work originally appeared in the proceedings of LCTES in 2004 [79].

This algorithm demonstrates that a specialized PE technique enables aggressive opti-
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mization, especially for a synchronous model.

The chapter is organized as follows. We first introduce the challenge of scheduling

concurrent programs, then provide a modified definition and several important properties

of the program dependence graph, which is the representation used to specify computa-

tion. We then present the algorithm in detail, including theprocess of restructuring and

code generation. Finally, we compare our results with existing techniques. We find partial

evaluation can generate code that runs as much as six times faster.

3.1 Scheduling a Concurrent Program

Embedded software is often conveniently described as collections of concurrently running

processes and implemented using a real-time operating system (RTOS). While the function-

ality provided by an RTOS is very flexible, the overhead incurred by such a general-purpose

mechanism can be substantial. Furthermore, the interprocess communication mechanisms

provided by most RTOSes can easily become unwieldy and easily lead to unpredictable

behavior that is difficult to reproduce and hence debug. The behavior and performance of

concurrent software implemented this way is difficult to guarantee.

The synchronous languages [7] provide an alternative by providing deterministic, timing-

predictable concurrency through the notion of a global clock. Concurrently running threads

within a synchronous program execute in lockstep, synchronized to a global, often periodic,

clock.

The model of time used within the synchronous languages happens to be identical to

that used in synchronous digital logic, making the synchronous languages perfect for mod-

eling digital hardware. Hence, executing synchronous languages efficiently also improves

the simulation of hardware systems.

Unfortunately, implementing such languages efficiently is not straightforward since

the detailed, instruction-level synchronization is difficult to implement efficiently with an

RTOS. Instead, successful techniques “compile away” the concurrency through a variety
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of mechanisms ranging from building automata to staticallyinterleaving code [31].

In this chapter, we present a technique for compiling such finely synchronized con-

current specifications that produces very efficient code. While we implemented this tech-

nique in the Columbia Esterel Compiler (CEC), our proposed algorithm starts from the

well-known program dependence graph (PDG) representation[37]. In principle, then, this

technique is applicable to a variety of imperative, sequential languages with concurrency.

We chose the synchronous Esterel [11] for a number of reasons. Its communication

can be analyzed statically—the absence of aliasing makes itpossible to statically identify

all possible inter-thread communication pathways. Its control flow is acyclic and therefore

easy to analyze. Also, it is a challenging language to compile because of its mix of concur-

rency and control flow. Existing techniques for compiling Esterel grapple with scheduling

overhead, but our use of the PDG representation allows detailed instruction scheduling that

effectively reduces overhead.

CEC first performs a syntax-directed translation of an Esterel program into an acyclic

control-flow graph with data dependence information. It then converts this into a PDG

using a slight modification of the algorithm due to Cytron et al. [27] to handle Esterel’s

concurrent constructs.

We present a novel algorithm that restructures a program dependence graph with arbi-

trary acyclic data dependencies into one that has a direct translation into sequential code.

Unlike a PDG generated from purely sequential code, it it notusually possible to trans-

late the PDG produced from Esterel directly into sequentialcode because communication

patterns in the Esterel program may force concurrently running threads to be interleaved.

This can be solved by either duplicating code, a potentiallycostly operation that may pro-

duce an exponential increase in code size, or by inserting additional guard variables and

predicates. We take the second approach, using heuristics to choose where to cut the PDG

and introduce predicates, and produce a semantically equivalent PDG that does have a

simple sequential representation. We use a modified versionof Simons and Ferrante’s al-

gorithm [67] to produce a sequential control-flow graph fromthis restructured PDG and
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procedureMain

Clear the visited set

PriorityDFS(root node ofG)

Clear the schedule and visited set

ScheduleDFS(root node ofG)

Restructure()

Fuse guard variables

Generate sequential code fromG′

Figure 3.1: The Main procedure. The input of this procedure is a program dependence

graphG. And the output is a segment of sequential code.G′ represents the graph after

restructuring.

finally generate sequential C code from it.

Our algorithm works in three phases (see Figure 3.1). First,we compute a schedule—a

total order of all the nodes in the PDG (Section 3.2.1). This procedure is exact in the sense

that it always produces a correct result, but heuristic in the sense that it may not produce an

optimal result. Second, we use this schedule to guide a procedure for restructuring the PDG

that slices away parts of the PDG, moves them elsewhere, and inserts assignments and tests

of guard variables to preserve the semantics of the PDG (Section 3.2.2). Finally, we use

a slightly enhanced version of the sequentializing algorithm due to Simons and Ferrante

to produce a control-flow graph (Section 3.2.3). Unlike Simons and Ferrante’s algorithm,

our sequentializing algorithm always completes because ofthe restructuring phase. In

Section 3.3, we present experimental results showing this technique can produce code that

runs as much as thirty times faster than others.

3.1.1 The Program Dependence Graph

We specify computation using a variant of Ferrante, Ottenstein and Warren’s [37] program

dependence graph. The PDG for a program is a directed graph whose nodes represent
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statements and whose arcs represent the partial ordering among statements that must be

followed to preserve the program’s semantics. In some sense, the PDG removes the maxi-

mum number of dependencies among statements without changing the program’s meaning.

A PDG is a rooted, directed acyclic graphG = (S,P, F, r, c,D), whereS, P, andF are

disjoint sets of statement, predicate, and fork nodes. Together, these form the set of all

nodes in the graph,V = S ∪ P∪ F. r ∈ V is the distinguished root node.c : V → V∗ is a

function that returns the vector of control successors for each node (i.e., they are ordered).

Each node may have a different number of successors. Without special clarification,the

term successor is referred to control successor in this section. D ⊂ V × V is a set of data

arcs. Ifc(v1) = (v2, v3, v4), then nodev1 can pass control tov2, v3, andv4. The set of control

arcs can be defined asC = {(m,n) : c(m) = (. . . ,n, . . . )}; i.e., (m,n) is a control arc ifn is

some element of the vectorc(m). If a data arc (m,n) ∈ D, thenmcan pass data to noden.

The semantics of the graph relies mostly on the node types. A statement nodes ∈ S

is the simplest: it represents a computation with a side effect (e.g., assigning a value to

a variable) and has no outgoing control arcs. A predicate node p ∈ P also represents a

computation but has outgoing control arcs. When executed, a predicate arc passes control

to exactly one of its control successors depending on the outcome of the computation it

represents. A fork nodef ∈ F does not represent computation; instead it merely passes

control to all of its control successors. We call them fork nodes to emphasize that they

represent concurrency; other authors call them “region nodes,” although they mean the

same thing.

In addition to being rooted and acyclic, the structure of thedirected graph (V,C) satisfies

two important constraints.

The predicate least common ancestor rule (PLCA) requires that for any noden ∈ V

with two different control paths to it from the root, the least common ancestor (LCA) of

any pair of distinct predecessors ofn is a predicate node. P ensures that there is at most

one active path to any node. If the LCA node was a fork, control could conceivably follow

two paths ton, implying multiple executions of the same node, something we explicitly
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Figure 3.2: A program dependence graph requiring interleaving. Diamonds are predicate

nodes, triangles are forks, and rectangles are statements.Solid lines are control arcs; dashed

lines are data.

wish to prohibit.

The no-post-dominance rule: ifn is a descendant of a nodem, then there is some path

from m to some statement node that does not includen. The rule holds because we insist

that the PDG has eliminated unnecessary control dependencies among nodes. Otherwise,

mandn would have been placed under a common fork.

3.2 Restructuring and Generating Code

3.2.1 Scheduling

Building a sequential control-flow graph from a program dependence graph requires or-

dering the concurrently running nodes in the PDG. In particular, the children of each fork

node are semantically concurrent but must be executed in some sequential order. The main

challenge is dealing with cases where data dependencies among children of a fork force
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procedurePriorityDFS(n)

if n has not been visitedthen

addn to the visited set

for eachcontrol successors of n do

PriorityDFS(s)

A[n] = A[n] ∪ A[s]

for eachcontrol successors of n do

ComputeSuccPriority(n, s)

if n has any incoming or outgoing data arcsthen

addn to A[n]

Figure 3.3: Successor Priority Assignment. For each noden, the arrayA holds the set of

control descendants ofn (includingn itself) that have any incoming or outgoing data arcs.

their execution to be interleaved.

Figure 3.2 shows a PDG that illustrates the challenge. In this graph, data dependencies

require n3 to be executed after n2 and n7 to be executed after n4. Thus, the two subgraphs

under node n0 cannot be executed one after the other; they must be interleaved. The gen-

erated code must ensure nodes n2, n3, n4, and n7 execute in that order. This example is

fairly straightforward, but such interleaving can become very complicated in large graphs

with lots of data dependencies and reconverging control flowsuch as that at node n10.

Duplicating certain nodes in the PDG of Figure 3.2 could produce a semantically equiv-

alent graph with no interleaving but it also could cause an exponential increase in graph

size. Instead, we restructure the graph and add predicates that test guard variables. Un-

like node duplication, this introduces extra runtime overhead, but it produces much more

compact code.

Our approach inserts guard-variable assignments and testsbased on cuts implied by a

topological ordering of the nodes in a PDG. A cut represents aswitch from an incompletely

scheduled child of a fork to another child of the same fork. Itdivides the nodes under a
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branch of a fork into two or more subgraphs.

To minimize the runtime overhead introduced by this technique, we try to add few guard

variables by making as few cuts as possible. Ferrante, Mace,and Simons [36] showed that

to find the minimum number of cuts is an NP-complete problem, so we attempt to solve it

cheaply with heuristics.

We first compute a schedule for the PDG and then follow this schedule to find cuts

where interleavings occur. We use a heuristic to choose a good schedule, i.e., one implying

few cuts, that tries to choose a good order in which to visit each node’s control successors.

We identify the cuts while restructuring the graph.

To improve the quality of the generated cuts, we use the heuristic algorithm in Fig-

ure 3.3 to influence the scheduling algorithm. It computes anorder for control successors

of each node that the-based scheduling procedure in Figure 3.5 uses to visit these suc-

cessors.

We assign each control successor a priority vector of three integers (p1, p2, p3) com-

puted using the procedure described below, and later visit the successors in descending pri-

ority order while constructing the schedule. We totally order priority vectors: (p1, p2, p3) >

(q1,q2,q3) if p1 > q1, or p1 = q1 andp2 > q2, or if p1 = q1, p2 = q2, andp3 > q3. For each

noden, theA array holds the set of control descendants ofn (includingn itself) that have

any incoming or outgoing data arcs.

The first priority number ofsi, the ith subgraph under a noden, counts the number of

incoming data dependencies (Figure 3.4). Specifically, it is the number of incoming data

arcs from any other subgraphs also under noden to si minus the number of outgoing data

arcs to other subgraphs undern.

The second priority number counts the number of elements that “pass through” the

subgraphsi. Specifically, it decreases by one for each incoming data arcs from a subgraph

sj to a node insi with a nodem that is a descendant ofsi that has an outgoing data arc to

another subgraphsk ( j , i andk , i, butk may equalj).

The third priority counts incoming and outgoing data arcs connected to any nodes in
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procedureComputeSuccPriority(n, s)

(a,b, c) = (0,0,0) {initialize priorities}

if s has neither incoming nor outgoing data arcsthen

a = minimum priority number

return

for each j ∈ A[s] do

x = 0, y = 0

for eachdata predecessorp of j do

if there is a path fromn{ p then

increasea by 1

if there is not a paths{ p then

increaseb by 1

increasec by 1

for eachdata successori of j do

if there is a pathn{ i then

decreasea by 1

decreasec by 1

if x , 0 then

for eachk ∈ A[ j] do

for eachdata successormof k do

if n{ mbut nots{ m then

increasey by 1

decreaseb by x · y

set the priority vector ofs to (a,b, c)

Figure 3.4: Priority Computation
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procedureScheduleDFS(n)

if n has not been visitedthen

addn to the visited set

for eachctrl. succ.i of n in descending prioritydo

ScheduleDFS(i)

for eachdata successori of n do

ScheduleDFS(i)

insertn at the beginning of the schedule

Figure 3.5: The Scheduling Procedure

sibling subgraphs. It is the total number of incoming data arcs minus the number of outgo-

ing data arcs.

Finally, a node without any data arc entering or leaving its descendants is assigned a

minimum first priority number. Very likely, this kind of nodedoes not need be involved in

any interleaving. By assigning a minimum priority to it, we try to schedule the node to run

as early as possible and therefore to minimize the cost of anypossible interleaving.

The priority vector is meaningful only between a node and itscontrol successors. For

a nodes that has multi-predecessors, its priority vector can be different considering each

predecessor.

Under these definitions, the priority of the left successor under n0 in Figure 3.2 is

(0,−1,0), and that the right successor is (0,0,0). Arcs from n2 to n3 and from n4 to n7 both

affect the first priority number, but their effects cancel out. The path n2→ n3→ n4→ n7

affects the second priority number of the left branch. Under ourdefinitions, the right branch

has highest priority and will be visited first during the depth-first search used for scheduling.

Similarly, node n9 will be visited before n7 because the firstpriority number of n7 is

smaller due to the data arc n10→ n11. Finally, n5 will be visited after n4 because n5 has

minimum priority.

The scheduling algorithm (Figure 3.5) uses a depth first search to topologically sort the
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1: procedureRestructure

2: Clear the currently active branch of each fork

3: Clear master-copy(n) and latest-copy(n) for each noden

4: for eachn in scheduled order starting at the rootdo

5: D = DuplicationSet(n)

6: for eachnoded in D do

7: DuplicateNode(d)

8: for eachnoded in D do

9: ConnectPredecessors(d)

Figure 3.6: The Restructure procedure.

nodes in the PDG. The control successors of each node are visited in order from highest

to lowest priority (assigned by Figure 3.3). Ties are brokenarbitrarily, and data successors

are visited in an arbitrary order. The label on each node in Figure 3.2 indicates its position

in the schedule: n1 is first, followed by n2, n3.

3.2.2 Restructuring the PDG

The scheduling algorithm presented in the previous sectiontotally orders all the nodes in

the PDG. Data dependencies often force the execution of subgraphs under fork nodes to

be interleaved (control dependencies cannot directly induce interleaving because of the

PLCA rule). The algorithm described in this section restructures the PDG by inserting

guard variables (specifically, assignments to and tests of guard variables) according to the

schedule to produce a PDG where the subgraphs under fork nodes are never interleaved.

The restructuring algorithm does two things: it identifies when a subgraph must be cut

away from an existing subgraph according to the schedule andreattaches the cut subgraphs

to nodes that test guard variables to ensure the behavior of the PDG is preserved.

The Restructure procedure (Figure 3.6) steps through the nodes in scheduled order,

adding a minimal number of nodes to the graph under construction that ensures each node
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in the schedule can be executed without interleaving the execution of subgraphs under any

fork. It does this in three phases for each node. First, it calls DuplicationSet (Figure 3.7,

called from line 5 in Figure 3.6) to establish which nodes must be duplicated in order

to reconstruct the control flow to the noden. The boundary between the setD and the

existing graph can be thought of as a cut. Second, it calls DuplicateNode (Figure 3.8,

called from line 7 of Figure 3.6) on each of these nodes to create new predicate nodes

that reconstruct control using a previously cached result of the predicate test. Finally, it

calls ConnectPredecessors (Figure 3.9, called from line 9 ofFigure 3.6) to connect the

predecessors of each of the nodes in the duplication set, which incidentally includesn, the

node being synthesized.

The main loop in Restructure (lines 4–9) maintains two invariants. First, each fork

maintains its currently active branch, i.e., the successorin whose subgraph a node was

most recently added. This information, tested in line 10 of Figure 3.7 and modified in

line 7 of Figure 3.9, is used to determine whether a node can beadded to an existing part

of the new graph or whether the paths leading to it must be partially reconstructed to avoid

introducing interleaving.

The second invariant is that the latest-copy array holds, for each node that appears

earlier in the schedule, the most recent copy of each node. A noden can use these latest-

copy nodes if they do not come from forks whose active branch does not lead ton.

The DuplicationSet function (Figure 3.7) determines the subgraph of nodes whose con-

trol flow must be reconstructed to execute the noden. It is a depth-first search that starts

at the noden and works backward to the root. Since the PDG is rooted, all nodes in the

PDG have a path to the root node and therefore DuplicationVisit traverses all nodes that are

along any path from the root ton.

A noden becomes part of the duplication setD under three circumstances. The first

case, tested in line 10, occurs when the immediate predecessor p of n is a fork butn is

not the currently active branch of the fork. This indicates that to executen would require

interleaving because the PLCA rule tells us that there cannotbe a path ton from p through
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1: function DuplicationSet(n)

2: D = {n}

3: Clear the visited set

4: DuplicationVisit(n)

5: return D

6: function DuplicationVisit(n)

7: if n has not been visitedthen

8: Mark n as visited

9: for eachpredecessorp of n do

10: if p is a fork andp→ n is not currently activethen

11: Includen in D

12: if latest-copy(p) is undefinedthen

13: Includen in D

14: if DuplicationVisit(p) then

15: Includen in D

16: return true if n ∈ D

Figure 3.7: The DuplicationSet function. A node is in the duplication set if it is along a

path from a fork node that leads ton but whose active branch does not.

the currently active branch underp.

The second case, tested in line 12, occurs when the latest copy of a node is undefined.

This occurs when a node is duplicated but its successor is not. The latest-copy array is

cleared in lines 18–20 of Figure 3.8 when a node is copied but its successors are not.

The final case, line 14, occurs when any ofn’s predecessors are also in the duplication

set.

As a result, every node in the duplication setD is along some path that leads from a fork

node f to n that goes through a non-active branch off , or leads from a node that has not

been copied “recently.” These are exactly the nodes that must be duplicated to reconstruct
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all paths ton.

Once the DuplicationSet function has determined which nodes must be duplicated to

reconstruct the control paths to noden, the DuplicateNode procedure (Figure 3.8) actually

makes the copies. Duplicating statement or fork nodes is trivial (line 3): the node is copied

directly and the latest-copy array is updated (line 21) to reflect the fact that this new copy

is the most recent version ofn, something that is later used in ConnectPredecessors. Note

that statement nodes are only ever duplicated once, when they appear in the schedule. Fork

nodes may be duplicated multiple times.

The main complexity in DuplicateNode comes whenn is a predicate (lines 5–17). The

first time a predicate is duplicated (i.e., the first time it appears in the schedule), the master-

copy array entry for it is undefined (it was cleared at the beginning of Restructure—line 3

of Figure 3.6), the node is copied directly, and this copy is recorded in the master-copy

array (lines 6–7).

After the first time a predicate is duplicated, its duplicateis actually a predicate node

that testsvn, a variable that stores the decision made at the predicaten (line 9). There is just

one special case: the second time a predicate is copied (and only the second time—we do

not want to add these assignments more than once), assignment nodes are added under the

first copy (i.e., the master-copy ofn in the new graph) that save the result of the predicate

in thevn variable. This is done in lines 11–13.

An invariant of the DuplicateNode procedure is that every time a predicate node is du-

plicated, the duplicate version of it has a new fork node placed under each of its successors

(line 17). While these are often redundant and can be removed,they are useful as an an-

chor point for the nodes that cache the results of the predicate and in the uncommon (but

not impossible) case that the successor of a predicate is part of the duplicate set but that the

predicate is not.

Once DuplicateNode runs, all nodes needed to runn are in place but unconnected.

The ConnectPredecessors procedure (Figure 3.9) connects these duplicated nodes to the

appropriate nodes.
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1: procedureDuplicateNode(n)

2: if n is a fork or a statementthen

3: Create a new copyn′ of n

4: else{n is a predicate}

5: if master-copy(n) is undefinedthen {making first copy}

6: Create a new copyn′ of n

7: master-copy(n) = n′

8: else{making second or later copy}

9: Create a new noden′ that testsvn

10: if master-copy(n) = latest-copy(n) then {second copy}

11: for i = 0 to (the number of successors ofn) − 1 do

12: Create a new statement nodea′ assigningvn = i

13: Attacha′ to theith successor of master-copy(n)

14: for eachsuccessorf ′ of master-copy(n) do

15: Finda′, the assignment tovn under f ′

16: Add a data-dependence arc froma′ to n′

17: Attach a new fork node under each successor ofn′

18: for eachsuccessors of n do

19: if s is not inD then

20: Set latest-copy(s) to undefined

21: latest-copy(n) = n′

Figure 3.8: The DuplicateNode procedure. This makes eitheran exact copy of a node or

tests cached control-flow information to create a node matching n.
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1: procedureConnectPredecessors(n)

2: Let n′ = latest-copy(n)

3: for eachpredecessorp of n do

4: Let p′ = latest-copy(p)

5: if p is a fork then

6: Add a new successorp′ → n′

7: Mark p→ n as the active branch ofp o

8: else{p is a predicate}

9: for eacharc of the formp→ n do

10: Let f ′ be the corresponding fork underp′

11: Add a successorf ′ → n′

Figure 3.9: The ConnectPredecessors procedure. This connects every predecessor ofn

appropriately, possibly using nodes that were just duplicated. As a side effect, it remembers

the active branch of each fork.

For each noden, ConnectPredecessors adds arcs from its predecessors, i.e., the most

recent copies of each. The only minor trick occurs when the predecessor is a predicate

(lines 9–11). First, DuplicateNode guarantees (line 17 of Figure 3.8) that every successor

of a predicate is a fork node, so ConnectPredecessors actually connects the node to this

fork, not the predicate itself. Second, it can occur that a single node can have a particular

predicate node appear two or more times among its predecessors. Theforeach loop in

lines 9–11 connects all of these explicitly.

Running this procedure on Figure 3.2 produces the graph in Figure 3.10. The procedure

copies nodes n1–n5. At this point, n0→ n3 is the active branch under n0, which is not

on the path to n6, so a cut is necessary. DuplicationSet returns {n1, n6}, so n1 will be

duplicated. This causes DuplicateNode to create the two assignments to v1 under n1 and

the test of v1. ConnectPredecessors then connects the new test of v1 to n0 and n6 to the

test of v1. Finally, the algorithm just copies nodes n7–n13 into the new graph.

Figure 3.11 illustrates the operation of the procedure on a more complicated example.
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Figure 3.10: The restructured PDG from Figure 3.2. This example only adds the single

guard variable v1. Some unary fork nodes generated by Restructure have been omitted for

clarity.



CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 53

n7

n8

n9

n10

n11

n0

n1

0 n2

1

n3

0 n4

1

n6

10

n5

1 0

n7

n8

n0

n1

0

n2

1

n3

0

n4

1

1 0

n5

10

n6

n7

n8

n9

n0

n1

0

n2

1

n3

0

n4

1

1

0

n5 v5

1

v5=0

0

n6v5=1 n6’

10

(a) (b) (c)

n7

n8

n9

n10

n0

n1

0

n2

1

n3

0

n4

1

1

0

n5 v5

1

v5=0

0

n6v5=1 n6’

1 0

n7

n8

n9

n10

n11

n0

n1

0n2

1

n3 v3

0n4

1

1 0

n5 v5

1

v5=0

0

n6v5=1 v3=0 n6’ n6’’v3=1

10 0

1

(d) (e)

Figure 3.11: (a) A complex example. (b) After adding nodes n0–n8. (c) After adding n9,

(d) n10, and (e) n11.
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The PDG in (a) has some bizarre control dependencies that force the nodes to be executed

in the order shown. The dizzying number of forced interleavings generates a fairly complex

final result, shown in Figure 3.11e.

The algorithm behaves simply for nodes n0–n8. The state after n8 has been added is

shown in (b).

Adding n9, however, is challenging. DuplicationSet returns {n9, n6, n5} because n8 is

the active node under n4, so DuplicateNode copies n9, makes asecond copy of n6 (labeled

n6′), creates a new test of v5, and adds the assignments to v5 under n5 (the fork under the

“0” branch from n5 has been omitted for clarity). Adding n9’spredecessors is easy: it is

just the new copy of n6, but adding n6’s predecessors is more complicated. In the original

graph, n6 is connected to n3 and n5, but only n5 was duplicated, so n6′ is connected to v5

and to a fork off the copy of n3.

Figure 3.11d adds n10, which is simple because although n3 was the active branch

under n1, n10 only has it as a predecessor.

Finally, (e) shows the addition of n11, completing the graph. DuplicationSet returns

{n11, n6, n3}, so n3 is duplicated and assignment nodes to v3 are added. Again, n6 is

duplicated to become n6′′, but this time n3 was duplicated.

An unfortunate choice of schedule clearly illustrates the need for guard variable fusion.

Consider the correct but non-optimal schedule n0, n1, n2, n6,n9, n3, n4, n5, n7, n8, n10,

n11, n12, n13 for the PDG in Figure 3.2. Figure 3.12 depicts the effect of so many cuts. The

main waste is the cascade of conditionals along the right side of the graph (predicates on

v1, v6, and v9). For efficiency, we replace such predicate cascades with single multi-way

conditionals.

Figure 3.13 illustrates the effect of fusing guard variables. The predicate cascade has

been replaced by a single multi-way branch that tests the fused guard variable v169 (formed

by fusing predicates v1, v6, and v9). Similarly, group assignments to these variables are

fused, resulting in three single assignments to v169 instead of three group concurrent as-

signments to v1, v6, and v9.
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Figure 3.12: The reconstructed PDG from Figure 3.2 induced by a different schedule.

3.2.3 Generating Sequential Code

After the restructuring procedure described above, the PDGis in a state where the sub-

graphs under each fork node can be executed in a particular order. This order is non-obvious

when there is reconvergence in the graph, and appears to be costly to compute. Fortunately,

Simons and Ferrante [67] developed the external edge condition (EEC) as an efficient way

to compute this ordering. Basically, the nodes in eec(n) are executed whenever any node in

the subgraph undern is executed.

In what follows,X < Y denotesG(X) must be scheduled beforeG(Y); X > Y denotes

G(X) must be scheduled afterG(Y); Y ∼ X denotes any order is acceptable;Y , X denotes

no order is acceptable. Here,G(n) representsn and all its control descendants, i.e., all

nodes inn’s subgraph.
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Figure 3.13: The PDG of Figure 3.12 after guard variable fusion.

We reconstruct the graph by ordering fork successors. Giventhe EEC information, we

use the rules in Steensgaard’s decision table [68] to order pairs of fork successors. When

the table says any order is acceptable, we order the successors based on data dependencies.

However, if, say, the EEC table saysG(X) must be scheduled beforeG(Y), yet the data

dependencies indicates the opposite order, the data dependencies win and two additional

nodes are inserted, one that sets a guard variable and the other that tests it. Figure 3.14

illustrates the procedure.

In Figure 3.10, data dependency forces n11> n10, but the external edge condition could

require n10> n11 if there were a control arc from a descendant of n11 to a descendant of

n10 (i.e., if there were more nodes under n10). In this case, n10, n11, so our algorithm

will cut the graph at n11 and add a guard there.

This produces a sequential control-flow graph for the concurrent program. We generate

structured C code from it using the algorithm described in Edwards [30].
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procedureOrderSuccessors(G)

for eachnoden do

if n is a fork nodethen

original-successors= control successors ofn

clear the control successors ofn

for each X in original-successorsdo

for eachcontrol successorY of n do

if X ∼ Y then

if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y) then

insertX beforeY in n’s successors

else ifY < X then

if ∃(m,n) ∈ D, m ∈ G(Y),n ∈ G(X) then

CutY

insertX beforeY in n’s successors

else ifY > X then

if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y) then

Cut X

else

insertX beforeY in n’s successors

else ifY , X then

if ∃(m,n) ∈ D, m ∈ G(X),n ∈ G(Y) then

CutY and insertX beforeY in n’s successors

else

Cut X

if X was not insertedthen

appendX to the end ofn’s successors

Figure 3.14: The successor ordering procedure
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Example Lines Average cycle times

Esterel V5 Lists PDG

atds-100 948 45s 7.7s 1.3s

tcint 687 11s 2.8s 2.4s

multi6 113 10s 2.3s 1.4s

multi8 62 1.1s 1.7s 0.63s

greycounter 82 6.0s 3.9s 0.94s

abcd 111 5.2s 1.5s 1.7s

Table 3.1: Experimental Results

3.3 Experimental Results

We compared the speed of the code generated by our technique to that from the stock Es-

terel V5 compiler, which translates the Esterel program into a logic circuit and generates

a program that simulates it; and the other C code generator inthe Columbia Esterel Com-

piler (CEC), which produces statically scheduled discrete-event-like code dispatched by

multiple linked lists [34].

To obtain the average cycle times shown in Table 3.1, we ran the generated C code

from all three compilers (compiled with gcc-O3) for 10 million cycles on a 2.5 GHz Intel

Pentium 4 running Linux. Most examples are fairly small, buttcint and atds-100 (both bus

controllers) are reasonably large and, we believe, illustrative of our technique.

3.4 Related Work

Many techniques to compile Esterel have been proposed during the language’s twenty-

year history. Berry and Cosserat [10] were the first. They translated each program into

a flat automaton by directly interpreting the operational semantics of the language. This

technique was fairly time-consuming, but produced efficient code at the expense of size:

the generated code may be exponentially larger than the source, making it impractical for
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all but the smallest programs.

Next, Gonthier, as part of his thesis [41], devised a more efficient way to generate the

automaton by simulating a control-flow-graph-like representation known as. This formed

the basis for the successful V3 compiler [11], but did not mitigate the exponential code size

problem.

The V5 generation of Esterel compilers [8] translated Esterel programs into circuits,

topologically sorted the gates, then generated simple codefor each gate. While this tech-

nique scales much better than the automaton compilers, it does so at a great cost in speed.

The fundamental problem is that the program must execute code for every statement in

every cycle, even for statements that are not currently active.

Further progress in code generation came in 1999, when Edwards [29] and a group at

France Telecom [12] independently developed two techniques that produced much faster

code that was roughly the same size as that from the circuit-based compilers. The tech-

niques we describe here are direct descendants of these two approaches.

Potop-Butucaru [63], as part of his 2002 PhD thesis [62], developed a much-improved

version of the circuit-based code generation technique, incorporating a number of very

clever optimizations to improve the quality of the generated code.

Ferrante and Mace [36] were the first to propose an algorithm for generating sequential

code from an acyclic PDG, but their technique only works whenno node duplication (or

equivalently, the addition of predicates) is necessary.

Later, Simons and Ferrante [67] presented an efficient algorithm for generating sequen-

tial code from an acyclic PDG. Their major contribution is a technique for computing “ex-

ternal edge” information for each node and using this duringthe synthesis procedure. The

input to their algorithm is limited to a graph with only control dependencies; they assume

data dependencies have somehow been incorporated into the control dependencies.

Building on Simons and Ferrante’s work, Steensgaard [68] removed the requirement

that the control dependencies in the PDG be acyclic, therebyallowing loops in the gener-

ated code (earlier work assumed that loops had somehow been removed), but still assumed
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that the generated code did not require either node duplication or the insertion of additional

predicates. We have not integrated Steensgaard’s cyclic extensions because they were un-

necessary in our application.

Our technique extends Simons and Ferrante’s in two ways. First, we propose a cut-

ting algorithm that restructures the PDG and inserts additional predicate nodes before it

is passed to Simons and Ferrante’s basic algorithm, making it work for all valid acyclic

PDGs. Second, we consider data dependencies to generate correct code for all valid PDGs.

Nacul and Givargis recently presented a code partitioning technique [59] for sequential-

izing multitasking C programs. The compiler first groups thebasic blocks of task functions

into disjoint clusters, then adds preempting and resuming scheme code for switching among

these clusters. Although their general approach is similarto ours, the specific synchronous

model our technique applies to provides us opportunities toaggressively reorder the code,

which could not have happened on general C programs.

Our procedure resembles Edwards’ technique for Esterel [30]. However, our use of a

PDG representation instead of Edwards’ concurrent control-flow graph makes it possible to

rearrange independent statements among concurrent processes and further reduce context-

switching overhead.

3.5 Summary

To demonstrate the potential of partial evaluation to optimize DSL programs, we have

presented a PE algorithm that produces efficient sequential code from acyclic program

dependence graphs generated from synchronous programs. Our technique, which consists

of a heuristic scheduler followed by an exact restructuringprocedure, produces sequential

code while inserting a minimal number of guard assignments and tests, leading to faster

execution with fairly low overhead when compared to existing mechanisms.

Experimentally, we have shown that this algorithm producesefficient code when ap-

plied to the synchronous, concurrent language Esterel.
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Although this partial evaluation technique was applied specifically to Esterel, it should

be applicable to other synchronous, concurrent languages.
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Chapter 4

Partial Evaluation for Separate

Compilation

Synchronous models are useful for designing real-time embedded systems because they

provide timing control and deterministic concurrency. A synchronous system is composed

of modules that communicate with each other and march in stepto a global clock. How-

ever, problems arise when there are communication dependency cycles among modules. It

is difficult to compile and simulate in isolation a module involved in cycles, since only par-

tial input information is available for it. Therefore, the semantics of synchronous paradigm

require an entire system to be compiled at once to make it possible to analyze the dependen-

cies among modules. The alternative is to write modules thatcan respond when the values

of some of their inputs are unknown, a tedious and error-prone process to do manually.

This chapter provides a concrete example of applying a specialized PE technique to

solve a complex issue in DSL compilation. We present a partial evaluation technique that

enables modules in a synchronous system to be compiled separately, even when the system

has communication cycles. This automatic process allows a programmer to describe syn-

chronous modules without having to consider undefined inputs. Our algorithm transforms

such a description into code that does as much as it can with undefined inputs, allowing

modules to be compiled separately and assembled later. Thiswork originally appeared in
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the proceedings of ICESS’2005 [78].

The chapter is organized as follows. We start by introducingthe problem and the chal-

lenges. Then, we define the Graph Representation Code (GRC), an IRgenerated from the

synchronous program to be analyzed. All examples in this chapter are represented in GRC.

After that, we demonstrate the algorithm with the help of an example. The experimental

results are analyzed at the end and we propose some future work. Also, we compare our

solution with other related work.

4.1 Compilation and Assembly of Concurrent Systems

The synchronous model of computation [7] has emerged as a successful, practical way to

assemble models of concurrent embedded systems because of its deterministic concurrency

and its precise control over time. Each process in a synchronous model operates in lock-

step with a global clock, and communication between modulesis implicitly synchronized

to this clock. Provided the processes execute fast enough, processes can precisely control

the time (i.e., the clock cycle) when something happens.

In addition to domains including avionics [9] and hardware design [3], the synchronous

model has been used for constructing processor simulations[73, 61]. Especially in this

latter setting, heterogeneous synchronous models [35], which can assemble and run syn-

chronous components with no knowledge about their contents, is preferable because it

allows separate compilation of components (e.g., cache models, branch prediction units)

and even allows them to be written in different programming languages.

In the heterogeneous synchronous model [35], a system is assembled from a collection

of concurrently running blocks that communicate through instantaneous “wires” each con-

nected from a single block’s output port to one or more input ports on other blocks. That

the blocks be able to respond when not all their input wires are defined is the main require-

ment for being able to run such blocks without knowledge of their contents. Furthermore, a

block must be well-behaved when presented with unknown inputs, e.g., if a block decides
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outputo has valuev even though inputi is undefined, it may not change its mind, e.g.,

change the output tow oncei becomes defined. But if blocks do obey these rules, such a

system can adopt a Ptolemy-like philosophy [17] in which systems can be assembled from

black-box components and executed efficiency with precise, deterministic semantics.

Although it is possible to write such well-behaved synchronous blocks in a general-

purpose language such as C, it is a tedious and error-prone process. The alternative, which

we propose here, is for the programmer to write blocks only taking into account their

behavior when all their inputs are applied and have the compiler interpolate the correct

behavior of the block when only some of the inputs are applied. While it would be correct

to make the blocks strict, i.e., to respond with no information about any output unless all

the inputs are defined, this is not very helpful.

In this chapter, we propose an algorithm that does this interpolation on programs written

in the synchronous concurrent, imperative language Esterel [11]. Constructs in Esterel only

explicitly address the behavior when all inputs are known (i.e., the user cannot control them

to respond in a certain way to unknown values), but their semantics are clear when not all

inputs are known.

Our work generates code from Esterel that responds to unknown inputs. The enables

separate compilation and the assembly of modules written inother languages.

4.2 The Graph Code Representation

We represent the programs we are compiling using a variant ofthe Graph Code (GRC)

format due to Potop-Butucaru [63]. GRC is like a traditional control-flow graph augmented

with concurrency and nodes for controlling it. However, loops are prohibited (cross-cycle

loops are allowed). The result is a compact, precise way to represent Esterel programs [11],

which we compile with our technique, although the same representation could be used for

other synchronous, imperative languages.

A GRC programG = (N, r, c,V,O,S, t) is similar to the program dependence graph
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(PDG) defined in Chapter 3 but with more details. It includes a set of nodesN and a

distinguished rootr (r ∈ N). Control successors functionc is the same to that in PDG.

The finite setV denotes variables.O ⊂ V are the output variables.V \ O are the input

variables.S denotes the set of possible states of the program.

Each node has a type given by the functiont : N → {assign-v-to-one, assign-v-to-zero,

predicate-on-v, fork, switch, enter, terminate-at-l, sync}. When executed, an assign-v-to-

one node sets the variablev to 1 (v is a variable inV). Predicate-on-v tests variablev and

sends control to one of its successors; switch is similar buttests program state instead of

a variable; enter changes the program state. A fork node sends control to all its succes-

sors, which must eventually re-converge at a sync node. All predecessors of a sync must

be terminate-at-l nodes, which indicate the exit level of their respective threads. A sync

node passes control to the successor whose number corresponds to the highest-numbered

terminate node that passed control to it.

The assign-v-to-zero nodes are only added to the graph during our construction. As its

name suggests, an assign-v-to-zero node sets the variablev to 0. In two-valued execution,

a variable’s default value is 0, making such nodes unnecessary. But in the three-valued

execution that is the result of our procedure, variables default to the undefined value and

therefore require assign-v-to-zero nodes.

Figure 4.1 depicts such a program graphically. All arcs point downward. The type of

each node is indicated by its shape. Assignments are boxes, predicates are diamonds, forks

are triangles, terminates are octagons, and syncs are upside-down triangles. The label on a

predicate or assignment node indicates the variable testedor set. For predicate nodes, the

first (false-valued) arc is indicated with a bubble at its source. The label on a terminate

indicates the exit level of the corresponding thread. For sync node, each arc is labeled with

a number that matches the exit level. A dashed line denotes a data dependency (as shown

in Figure 4.1b: 6→ 10, 9→ 10, 10→ 14, 15→ 16).

A two-valued execution of a GRC program (which contains no assign-to-zero nodes by

definition) starts with an initial program state and an assignment of values to input variables
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(i.e., eitherv = 0 or v = 1 for all v ∈ V \ O). Then it derives a subsetS of the nodes as

follows. S includes the root node; every successor node of each fork, assignment, enter,

or terminate node inS; and for every predicate noden in S that refers to variablev, the

first (true) successor is inS if v is an input variable with value 1 or the graph includes an

assignment-to-one node forv, and the second (false) successor ofn otherwise. For a sync

node, all of its predecessors’ (terminate nodes) exit levels are checked, andS includes the

sync’s successor under the branch whose label is the same as the highest exit number. The

value of each output variable is 1 if the set includes an assignment-v-to-one node to variable

v and 0 otherwise.

Consider executing the graph in Figure 4.1a using the node numbers from Figure 4.1b

and with the assignments A=1, B=1, C=0, and D=1. Node 1 is inS since it is the root,

and since A=1, node 2 is also. This adds nodes 3 and 8. Since B=1, node 12 is inS but

node 9 and node 11 are not, and since C=0, node 4 is in S, and since D=1, node 6 and 7

are inS but node 5 is not. Since node 7 and node 12 are included, and node 7’s exit level

(1) is higher than node 12 (0), sync node 13’s branch 1 is executed. That excludes node 14

and 15 fromS. In the end,S = {1,2,3,4,6,7,8,12,13} so E=1 and F=0.

The above procedure requires the value of every input variable to be known when the

program starts; we want to relax this. In particular, if we know the values of only certain

inputs, we would like to conclude whatever we can about as many outputs as possible

provided they are consistent with any future values for the unassigned inputs.

One way to answer this question is to execute the GRC program using three-valued

logic, i.e., adding a third value that represents unknown orundefined (we write it⊥) to the

usual 0s and 1s. This introduces another set of nodes to the simulation procedure: those

that might run if additional input is provided later. The three-valued simulation is a more

complicated procedure that does not reduce to the usual sequential execution behavior of

imperative programs, unlike the two-valued simulation of GRC defined above, which can

be transformed into sequential code using a fairly inexpensive procedure as described in

Chapter 3.
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4.3 Generating Monotonic Three-Valued Programs

Our main contribution is the algorithm described here that takes a GRC program and con-

structs a fast sequential program that evaluates the graph in the three-valued domain, i.e.,

it allows some of the input variables to be undefined. Our algorithm works in four phases

(see Figure 4.3). Given a GRC program, we add nodes and arcs to represent data depen-

dencies, compute a topological order of this annotated graph, compute information about

the subgraph under each node that will tell us what information we can forget during a

simulation of the program, and finally construct a sequential program by performing this

simulation. We try to keep the size of the generated program under control; we do this by

allowing as much reconvergence as possible in the generatedcode, i.e., by identifying (and

reusing) equivalent states during the simulation.

4.3.1 Adding Data Dependencies

The algorithm starts by adding data dependencies. For each output variablev, this process

adds an assign-v-to-zero node and then adds arcs from each assign-v-to-one node to this

new node, and arcs from this new node to each predicate-on-v node that testsv. The result is

that there is now a path from each assign-v-to-one node for a variable to each node that tests

that variable, hence ensuring the topological sort respects data dependencies. Furthermore,

it introduces an assign-v-to-zero node that will appear in the schedule when it is possible to

determine that a particular variable may be zero. Figure 4.1b shows the effect of applying

this procedure on Figure 4.1a.

4.3.2 Summarizing Dependency Information

Keeping the size of the generated graph under control is the main trick in our algorithm.

Although it would be correct to consider the value of each variable and control arc when

considering which subgraphs can be shared during code generation, this would be very

inefficient and always produce an exponentially large tree as a result. Instead, we attempt
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to model the state of a simulation using as little information as possible because we want

to consider a maximum number of states to be identical so codefor them can be shared.

Our insight is this: at a particular point in the schedule, weonly care about nodes that

appear later in the schedule since by definition we must have already executed anything

earlier, and only two things matter about these nodes: the variables they test and the state

of control arcs that lead from nodes earlier in the schedule to later nodes.

Consider building a subgraph for the nodes starting at 8 in Figure 4.1b, and assume the

node numbers correspond to their position in the schedule. At this point, the simulation

will have established values for variables A, C, and D, but we do not directly care about

any of them since code for them has already been generated andwe will not test any of

them later. However, we do care about whether node 10 will be executed, which can be

affected by node 6, and whether node 13 was triggered by its predecessors, since we will

be generating code for nodes 10 and 13 (they appear after 8 in the schedule).

As a result, we consider identical any simulation states that differ only on variables A, C,

or D. We also consider the control flowing in to nodes 8, 10, and13.

The ComputeRelavantVars procedure (Figure 4.4) builds two sets that exactly capture

this notion of which variables and control states we care about during the construction. By

stepping through the nodes of the graph in scheduled order, ComputeRelavantVars com-

putes relevantarcs[si], the set of all arcs that go from nodes beforesi in the schedules to

nodes aftersi, and relevantvars[si], the set of all variables that are either tested or set in

the nodes aftersi. Note that becauses is a topological order, nodes aftersi in the schedule

necessarily include the subgraph undersi.

In Figure 4.1b, ifs = (1,2,3,4,5,6,7,8,9,10,11), ComputeRelavantVars finds rel-

evantarcs[8] = {2→8, 6→10, 5→13, 7→13}, relevantvars[6] = {B,E, F}. Both rele-

vant vars and relevantarcs are global and are not modified after ComputeRelavantVars.
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4.3.3 Construct

The Construct procedure (Figure 4.5) simulates the three-valued behavior of the GRC pro-

gram and, as a side-effect, constructs our objective: a graph that reproduces its behavior.

In addition to the noden that is being synthesized, it takes three arrays: val[v] is the value

(0, 1, or⊥) of each variable; ctrl[n, i], i = 0,1, . . . is the state (again, 0, 1, or⊥) of each

control arc leaving each node; and term[n, i] is the state of each termination leveli = 0...M

reaching each sync noden (M is the maximum possible exit level reachingn).

Construct begins by checking for an end condition: for the last node in the schedules,

the “node following it” is simply null. It then computes two partial functions (associative

arrays): varstate, which contains the value of each relevant variable, i.e., those set or tested

by any node that comes aftern in the schedule (computed earlier by ComputeRelavant-

Vars); and nodestate, which computes the execution state (1=will run, 0=will not run, or

⊥=might run) of all the relevant nodes, i.e., predecessors ofn plus all those with incoming

arcs that come beforen in the schedule (again, computed earlier by ComputeRelavantVars).

Together, the node itself and the two partial state functions constitute the total state on

which the subgraph to be built forn. The procedure then looks to see whether a subgraph

with identical state has already been built and returns it ifit exists.

Otherwise, the real work starts. First, the node followingn in the schedule is identified

asm, since it will be recursed on later. The procedure assumes the noden is a flow-through

type (e.g., assign-v-to-one or a fork) and sets all its control successors to havethe same

activation condition as the node itself. These assignmentswill be modified below when

necessary, especially for predicate and switch nodes.

There are two main cases: once the node is known not to run, this information is propa-

gates as far as possible by the PropagateZeros procedure. Nodes that set each such variable

to zero are created, assembled into a chain. Finally the subgraph that executes the nodes

aftern is connected to the end of this chain after a recursive call toConstruct.

The other case, when the node might or is known to run (nodestate=⊥ or 1), is handled

quite differently (Figure 4.6). Dealing with assign-v-to-one and enter nodes is simple: if it
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is known to run, it is simply copied to the new graph. Furthermore, for an assign-v-to-one

node, the value ofv is set to 1 so that it will be propagated to later constructions.

Conditional nodes (predicate-on-v and switch) are more complicated. To deal with

them, the BuildCondition function is called (Figure 4.7). If the processed noden is a

predicate-on-v andv’s value is known, the branches undern are set to active and inactive

depending on the value.

Otherwise, if the node is a switch or a predicate-on-v whose variablev is unknown, the

algorithm constructs an identical conditional node in the generated program and considers

all possibilities: one of the branches—corresponding to a possible condition—is set active,

and the others are made inactive (their control state is set to zero). For switch, the pos-

sible conditions correspond to each of its successors. For apredicate node, the possible

conditions are related to the variable’s value, which can betrue, false, or unknown when

the generated program runs. In the last condition, all branches are set active. For each

condition, the variable value is saved appropriately in valarray and then Construct is called

on the next node in sequence with the new state.

Terminate and sync nodes deal with exit levels and are handled separately. For every

sync node, its related threads’ exit levels are preserved bythe term array. When a terminate-

at-l node is met at the end of a thread, if it is known to be executed,it sets the term array

element of the exit levell to be 1 for the corresponding sync; if its control value is⊥ and

no other thread exited at the same level, the element in the term array is set to⊥. The sync

node computes the highest possible exit level(s) by lookingat the term array, then passes

its control value to the corresponding branch. This algorithm simulates the two-valued

behavior. BuildSync in Figure 4.8a simulates sync’s behavior.

For all these types, Construct is called on the next nodemand saves the root of returned

subgraph ton′′. Switches and predicates are exceptional: they have different new states

built to meet all possible conditions, so Construct is calledfor every condition.

Finally, n′ is the new node as the root of the subgraph constructed onn. To make it

possible to later identify its state, this fact is recorded in BuildNode.n′ is returned to the
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caller, which probably adds an arc leading to it.

We use a few simple helper functions (not shown). Link(n,m) connects arcs: ifn is null,

it returnsm; otherwise, a control arcn→ m is added andn is returned. Copy(n) creates a

new node in the generated program with the same type and variable as noden.

4.3.4 State

The Construct procedure maintains a collection of subgraphsin the generated program,

each corresponding to a particular node in the original program and the state that it implic-

itly assumes the original program was in before reaching thesubgraph. Such a state is a

triple: 〈n, var state,nodestate〉. n is the node leading the subgraph constructed, varstate

is a partial assignment of values to variables the subgraph cares about, and nodestate is an

analogous assignment of values to control arcs relevant to the subgraph. Specifically, those

that pass into the subgraph from outside: arcs within the subgraph, by definition, will be

evaluated as part of the subgraph.

4.3.5 Monotonicity

The code generated by our algorithm is monotonic. When addingdata dependencies

(Section 4.3.1), an assign-v-to-zero node is linked after all assign-v-to-one and before all

predicate-on-v nodes. This ensures assign-to-one nodes appear first in the topological or-

der, followed by the assign-to-zero node, and finally all predicates that testv.

A v = 0 assignment is made only when none of the assign-v-to-one nodes could or

did execute (see Figure 4.5 line 17-18 and Figure 4.8b), so the code will never change a

variable’s value from 1 to 0. It is also impossible for the generated code to changev’s

value from 0 to 1 because the topological ordering of nodes places assign-to-ones before

assign-to-zeros. Theval array records variables’ values throughout the Construct function.

So when a predicate-on-v node is met (see Figure 4.6 line 16-17 and Figure 4.7), val[v] is

checked first. Ifv’s value is known, the only active branch will be set, and the val[v] will
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not be touched but just passed to later construction (see Figure 4.7 line 2-5).

4.3.6 The Example

Figure 4.9 illustrates some of the algorithm’s behavior on Figure 4.1b. A, B, C, and D

are input variables; E and F are outputs. Figure 4.1b was derived from Figure 4.1a by

adding data dependencies. Figure 4.9a shows the graph afterassuming A=⊥, C=0, D=0,

and B=0 and arriving at node 14. The label on each arc indicates its value in the ctrl array.

Figure 4.9b is similar, but it assumes A=⊥, C=1 and B=⊥ (predicate-on-D is known not

to run in this configuration, so D’s value is irrelevant). Ouralgorithm determines that the

code generated for these two states is the same and can be shared.

Specifically, at node 14, variables E and F are relevant (and unknown in both Fig-

ures 4.9a and 4.9b) and the state of node 14 is relevant. In both cases, the state of 14 is⊥,

which is equal to the ctrl value of incoming arc 13→14.

In these two states, node 10 may still run in the future, so no code is generated to set E

to 0, E is therefore also unknown, so it is tested, and F=0 may later be able to run. The code

generated for these states is the test of E followed by the assignment of F to 0 in the dashed

region of Figure 4.2. Paths from the test of C (i.e., when C is 0—Figure 4.9a) and the test

of B (i.e., when B is⊥—Figure 4.9b) converge on this subgraph because the algorithm has

identified these states as equivalent.

By contrast, assuming A=⊥, C=0, D=0 and B=1 gives the state in Figure 4.9c. Here it

is known that node 10 (assign 0 to E) will run because none of its predecessors will (this

is reversed from the usual rule because such nodes are specially designed to detect when a

variable is set to 0). This leads to different code of the other two cases, i.e., the assignment

of 0 to E attached to the true branch under the test of B in Figure 4.2.
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Example Lines Average cycle times

Esterel V5 SCFG 3-Valued

comexp 88 1.67s 0.61s 0.80s

iwls3 70 1.04s 0.35s 0.26s

3vsim2 48 0.68s 0.32s 0.46s

multi3 120 1.39s 0.45s 0.47s

Table 4.1: Experimental Results

4.4 Experimental Results

We compared the speed of the code generated by our algorithm to that from the Esterel V5

compiler, which translates the Esterel program into a logiccircuit and generates code to

simulate it, and to the code generated by the algorithm described in Chapter 3, which

generates sequential code by adding guard variables. To obtain the average cycle times in

Table 4.1, we ran the generated C code from all three compilers (compiled with gcc-O3)

for 10 million cycles on a 2.5 GHz Pentium 4 running Linux.

Table 4.1 shows our results. While the theoretical complexity of our algorithm is expo-

nential, the experiments we ran show it appears to not be an issue in practice for modest-

sized program.

The code generated by the other two compilers (V5 and SCFG) only perform two-

valued computation. Because our compiler adds code for three-valued computation, it

generates slower code. However, the experimental results suggest that the slow-down is

fairly mild and in some cases, our compiler actually generates faster code. We suspect it is

because our compiler uses a different technique to sequentialize the concurrent code.

Together, these experiments suggest that our algorithm is practical for modest-sized

programs. There are certainly additional opportunities for optimization. In particular, we

intend to integrate this technique with our earlier technique for producing efficient sequen-

tial code from (concurrent) program dependence graphs (Chapter 3).
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4.5 Related Work

Digital logic simulators often perform a similar two- to three-valued interpolation. In hard-

ware description languages such as Verilog or VHDL, users often compose systems out of

apparently two-valued logic functions such as AND or OR. The simulator, however, inter-

prets them as three-valued functions and performs the simulation in the extended domain.

It has long been known, however, that this tends to greatly slow the simulation and attempts

have been made to circumvent it where possible (e.g., by detecting when two-valued-only

simulation is possible and doing it when possible). Overcoming this speed penalty is a

primary goal of our work.

Our intermediate representation bears some resemblance tobinary decision diagrams

(BDDs—see, e.g., Bryant’s survey [16]), but differ enough to make their manipulation very

different. Compared to the most common type of BDD, the ROBDD (reduced, ordered

BDD), our programs may test variables in different orders and multiple times along a path.

Although certain styles of BDDs (e.g., free BDDs) relax this restriction, our formalism is

even less like most BDDs because it can communicate within itself, i.e., assign and later test

the value of the variable assigned, whereas BDDs typically only make assignment at their

leaves. As a result, most BDD algorithms, which are able to assume disciplined variable

orderings and a single type of node, are inapplicable for ourapplication. Others, however,

have used BDDs to synthesize software [19].

Our algorithm is like a partial evaluation of a three-valuedsimulator on programs rep-

resented as graphs, which resembles many other techniques for generating sequential code

from concurrent models [31]. Our algorithm, as a side-effect, orders the nodes under forks

and generates a purely sequential program. While this is probably undesirable for certain

systems, more clever techniques, such as the one described in Chapter 3 could probably be

woven into this three-valued simulator to more efficiently generate sequential code.
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4.6 Summary

To illustrate applying partial evaluation to solve complexissues in compiling DSLs, we

presented a PE technique for compiling synchronous modulesseparately. Although our

algorithm was originally designed to generate monotonic three-valued programs from two-

valued ones to work with the heterogeneous synchronous model of computation, it can have

other applications. The general idea of partially simulating networks and recording the re-

sults as a branching program resembles some approaches for generating efficient simulators

for gate-level circuit descriptions [58, 5]. While these approaches use a BDD-like repre-

sentation, our technique suggests the possibility of selectively “forgetting” inputs, which

gives an interesting trade-off between efficiency and code size.

The experimental results show our algorithm is practical for modest-sized programs.

However, it does not work well for large programs and may generate exponential code. We

expect to solve this problem by further research.
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Figure 4.1: (a) A two-valued GRC. Arcs with bubbles are taken when a variable is 0. (b)

After adding data dependence nodes and arcs to it.
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Figure 4.2: Three-valued projection of the GRC in Figure 4.1(a), produced by our algo-

rithm. Arcs with solid bubbles are taken when a variable’s value is unknown. Figure 4.9

shows the construction of the nodes in the dotted region.

procedureMain(G)

Add data dependencies

s= topological sort of the augmented graph

ComputeRelavantVars()

Set val[v] = ⊥ for all variables

Set ctrl[n, i] = ⊥ for all nodes & successors

Set term[n, i] = ⊥ for all sync & exit lvls

Construct(root ofG, val, ctrl, term)

Figure 4.3: The Main procedure
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procedureComputeRelavantVars()

for i = 1, . . . ,N do {schedule iss1, . . . , sN}

Set relevantarcs[si] = ∅

Set relevantvars[si] = ∅

for each j = i, . . . ,N do

for eacharcsk → sj with k < i do

addsk → sj to relevantarcs[si]

if sj tests or set any variablev then

addv to relevantvars[si]

Figure 4.4: ComputeRelevantVars
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1: function Construct(n, val, ctrl, term)

2: if n is null then

3: return null {bottom of the program}

4: Clear nodestate{partial function on nodes}

5: nodestate[n] = 1 if n is the root node,⊥ otherwise

6: for eacharc p
i
→ q in relevantarcs[n] do

7: nodestate[q] = nodestate[q] OR ctrl[p, i]

8: var state= val {partial function on variables}

9: for eachv not in relevantvars[n] do

10: var state[v] = DONTCARE

11: if BuiltNode[〈n, var state, nodestate〉] existsthen

12: return BuiltNode[〈n, var state, nodestate〉]

13: m= node followingn in s {on which to recurse}

14: for eachsuccessorni of n do {assume flow-through}

15: ctrl[n,ni] = nodestate[n]

16: if nodestate[n] = 0 then {node known not to run}

17: PropagateZeros(n, nodestate, ctrl, val)

18: Create chain (v1 = 0)→ (v2 = 0)→ · · · → (vk = 0) for eachvi where val[vi] = 0

19: Add an arc from (vk = 0)→ Construct(m, val, ctrl,term)

20: n′ = the first node in the chain: “(v1 = 0)”

21: else{nodestate[n] is, 0}

22: n′ = MakeNode(n, val, ctrl, term nodestate)

23: if n.typeis not switch or predicate-on-v then

24: n′′ = Construct(m, val, ctrl,term)

25: Link(n′, n′′)

26: BuiltNode[〈n,var state,nodestate〉] = n′

27: return n′

Figure 4.5: The Construct Function
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1: function MakeNode(n, val, ctrl, term, nodestate)

2: n′ = NULL

3: casen.typeof

4: Assign-v-to-one:

5: if nodestate[n] = 1 and val[v] = ⊥ then

6: n′ = Copy(n) {assign-v-to-one that executes}

7: val[v] = 1

8: Enter:

9: if nodestate[n] = 1 then

10: n′ = Copy(n) {Enter that executes}

11: Terminate-at-l :

12: c = SyncMap[n] {the sync node related withn}

13: term[c][ l] = term[c][ l] OR nodestate[n]

14: Sync:

15: BuildSync(n,ctrl,term)

16: Switch or predicate-on-v :

17: n′ = BuildCondition(n,m,val,ctrl,term)

18: return n′

Figure 4.6: The MakeNode Function
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1: function BuildCondition(n,m,val,ctrl,term)

2: if n is predicate-on-v and val[v] is knownthen

3: ctrl[n,val[v]] = nodestate[n] {active branch}

4: ctrl[n,1−val[v]] = 0 {inactive branch}

5: n′ = Construct(m, val, ctrl,term)

6: else{switch or predicate with unknown variable}

7: n′ = Copy(n)

8: for eachsuccessorni of n do

9: ctrl[n, i] = nodestate[n] {active branch}

10: for eachsuccessornj of n other thanni do

11: ctrl[n, j] = 0 {inactive branch}

12: if v is not NULL then {predicate value is⊥}

13: val[v] = i

14: Add an arcn′ → Construct(m, val, ctrl,term)

15: if n is a predicatethen

16: for eachsuccessorni of n do

17: val[v] = ⊥

18: ctrl[n, i] = nodestate[n] {active branches}

19: Add an arcn′ → Construct(m, val, ctrl,term)

20: return n′

Figure 4.7: The BuildCondition Function.
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function BuildSync(n,ctrl,term)

unknownctrl = false

findmax= false

for each i in term[n], max to

min do

if term[n][ i] is 0 then

ctrl[n][ i] = 0;

else

if findmax is falsethen

findmax= true

if term[n][ i] is ⊥ then

unknownctrl = true

if unknownctrl is true

then

ctrl[n][ i] = ⊥

else

ctrl[n][ i] =

nodestate[n]

if term[n][ i] is 1 then

break

return ctrl

function PropagateZeros(n,

nodestate, ctrl, val)

if n is null then

return

nodestate′ = nodestate

for eacharct
i
→ n do

nodestate′[n] =

nodestate′[n] OR ctrl[t, i]

if nodestate′[n] is 0 then

for eachsuccessorni of n do

ctrl[n, i] = 0

if n.typeis Assign-v-to-zerothen

val[v] = 0

m= node followingn in s

PropagateZeros(m, nodestate′, ctrl, val)

(a) (b)

Figure 4.8: (a) The BuildSync Function and (b) the PropagateZeros function
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Figure 4.9: (a), (b), (c) Possible simulation states upon reaching node 14. Cases (a) and

(b) are equivalent since the relevant variables (E and F) andstate of node 14 (the one with

incoming arc(s) from outside of the subgraph) are the same. Case (c) is different. Cases

(a) and (b) share the node that tests E, whereas case (c) creates the E=0 node in the dashed

box in Figure 4.2.



Chapter 5 84

Chapter 5

Partial Evaluation for Unrolling

Recursion

Hardware design requires static specifications, yet dynamic software facilities like recur-

sion provide flexibility and may be useful in hardware design. So there is a need to for

removing recursion from specifications. Static elaboration enables a compiler to transform

the dynamic description of a system to a static implementation. A concurrent language for

system design might use recursion as a convenient way to create concurrent structures or

processes. Static elaboration tries to statically evaluate such dynamic structures and thus

allows users to algorithmically build up a concurrent system. The compiler then trans-

forms the resulting static description of the system by instantiating necessary components.

However, not all dynamic structures can be evaluated statically. Therefore we use partial

evaluation to elaborate. It enables the same language to define both static and dynamic

operations and have the recursive structures compiled away.

In this chapter, we introduce a partial evaluation technique that is able to unroll a recur-

sive program, allowing it to be implemented in hardware. We begin with our motivation.

Then we present a static elaboration technique that analyzes at compile time the call graph

of a program with mutually recursive functions to produce a “flattened” result that uses only

bounded resources, often inlining functions for efficiency. To illustrate the algorithm, we



CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 85

demonstrate an elegant implementation of a pipelined FIFO in SHIM with recursive func-

tion calls. Also, we include an implementation of FFT using recursive calls in Appendix B,

which is succinct yet predictable in terms of resources. Finally, we show the experimental

results that compare the numbers of functions/threads before and after unrolling.

5.1 Compilation of Recursive Programs

Widely adopted in software languages, recursion provides an elegant solution to complex

and even infinite computations and data structures. It is good for divide-and-conquer al-

gorithms, which can also be solved using traditional iterative structures. The advantage of

the recursive approach is the succinct way it defines the problem and it is usually easier to

verify. One disadvantage, however, is the run-time space complexity. The Towers of Hanoi

problem, for example, can be solved in three lines with recursion (two recursive function

calls and one move), but requires a call stack of 3n, wheren is the number of disks to move.

Because of its potential infinite behavior, recursion is rarely used in embedded soft-

ware, which usually has much stronger predictability requirements. Often, the number of

function calls in a design must be static, which is not obvious or guaranteed in a design

with recursion.

SHIM [69], a concurrent language targeted at embedded software and hardware, pro-

vides recursive function calls. This interesting languageaspect enables SHIM users to

create parallel structures through recursion. Comparing tothe stiff way of listing these

structures in a parallel statement, parametrized recursive call is a more succinct and flexi-

ble solution.

To enable the language to define both static and dynamic operations, the SHIM compiler

statically elaborates recursive calls and thus bounds the space complexity and maximum

number of function calls in a design.

We present the static elaboration algorithm that we use in the SHIM compiler. The

algorithm works in two steps. First, it decomposes the control-flow of the program into a



CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 86

collection of (mostly) tail-recursive functions, which are the extended basic blocks in the

program. Then, following the call graph of these functions,it performs constant propaga-

tion and unrolls loops of mutually recursive functions by making variant copies of them.

Using this technique, the elaborator effectively estimates the space complexity of the pro-

gram and unfolds it.

5.2 Static Elaboration

The static elaboration algorithm removes recursion from a program when the recursion

depth can be bounded. Ideally, the elaborator will generatea new program whose function

call graph (CG) is acyclic. This procedure is nontrivial since recursion implies cycles in the

call graph. If the elaborator fails, i.e., the CG remains cyclic after the transformation, we

fall back on the original recursive program and explain thatwe were not able to statically

analyze the recursion. This may be a problem for bounding resources, but it means that we

are still able to run the program even if the elaborator fails.

Figure 5.1 shows the main algorithm. Starting from the IR, thealgorithm decomposes

each function into extended basic blocks and then treats each such block as a (usually tail-

recursive) function. Thus, the control flow graph is transformed into a function call graph

whose root is the entry block of the main function. This step may greatly increase the

recursion in the program since iteration is treated in the same way as recursion. Convert-

ing iterations into loops is for simplifying the algorithm presentation. Operating on the

decomposed program, the algorithm propagates constants, values that can be statically de-

termined, while unrolling the call graph. After unrolling,the algorithm cleans up the code

by eliminating dead variables and removing unused functionarguments. Also, functions

with a single entry are inlined to minimize the final number offunctions. This process trans-

forms the IR in Figure 5.3(b) to Figure 5.5, which is exactly afive-stage parallel pipeline.

The unroll procedure, shown in Figure 5.2, is the key procedure in the algorithm. Start-

ing with the root function, this procedure performs both inter-process and intra-process
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constant propagation to generate a new set of functions without recursion. By intra-process

propagation we mean to pass value between functions and blocks, which are treated as

functions during analysis, through function calls and control flow between blocks respec-

tively.

Each process, therefore, is decomposed into single-entry blocks with tree-structured

control flow and similarly the program is decomposed into processes. The intra-process

analysis becomes straightforward since no loops need to be considered. The inter-process

analysis, on the other hand, iterates on a list of functions combined with actual parameters,

calledunrolling. A recursive process may be unrolled several times. The algorithm gener-

alizes the parameters to either a constant value or not a constant (NAC). For each pair of

a function and an assignment of actual parameters to it, a unique version of the function is

made by propagating the actual values throughout the function. The new function is added

to theunrolled set, mapping from the pair of original function and actual parameters. All

these new functions compose the reconstructed program.

The unroll iteration continues until no new actual parameter assignment is found for

any function, or when the number of actual parameter sets found for a function exceeds a

user defined limit. To avoid generating exponentially largecode, the algorithm creates a

new function only when the original function is called with anew set of actual parameter

values. A function called at different places in the original program with the same set

of values is not duplicated. After unrolling, a design whosecall graph contains mutually

recursive functions is either completely expanded to a directed acyclic graph or is left cyclic

because the recursion is truly unbounded (e.g., the depth isdependent on run-time data) or

because it requires more function duplication than we are willing to allow.

Constant propagation in the unrolling procedure is specialized for SHIM. Since a inter-

face variable represents a channel, even when it is known to be constant during the analysis,

it cannot be simply replaced with the constant number in a function call statement. Other-

wise the called function will lose track of the channel it communicates through. However,

the channel may become redundant if all values it passes in are constants and it is not con-
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nected to any subchannels. In this case, it can be eliminatedfrom the interface and replaced

with concrete numbers in related expression. The channeln in Figure 5.3(a), for example,

can be removed. Like a loop index, it is served for control flow, i.e., being used to deter-

mine when the recursive construction terminates. When the recursive structure is statically

elaborated, this channel is useless and will be eliminated.

The procedure for eliminating unused channels aims at thosevariables, which in SHIM

are channels. The rule is simple. A channelc of a function f will be removed fromf ’s

formals if a constant is passed in throughc andc is not passed as parameter to any function

called in f , and also no run time communication (e.g. recvc) is found onf . Such ac will

be transformed into a local variable and assigned a constantvalue passed in. The parameter

n in fifo 0() in Figure 5.4, for example, will be become a local variable with a constant

value of 3. Thus, redundant channels are removed from the function declarations after this

step.

5.3 Unrolling a Pipelined FIFO in SHIM

SHIM provides a cohesive model for both hardware and software designs, with determin-

istic concurrency. It follows a C-like syntax where a programis composed of functions.

Neither global variables nor pointers are allowed. Instead, SHIM includes a mechanism

for concurrent function calls through thepar construct and rendezvous-style inter-process

communications through thenextoperator. Figure 5.3(a) shows a SHIM program that de-

fines a five-stage FIFO. Recursive function calls, such as fifo() in the example, are allowed

and can be combined with thepar statement. These features enable SHIM’s model to be

expressive while being strict.

In the SHIM compiler, we use an intermediate representation(IR) based on three ad-

dress code, inheriting the function-statement-expression hierarchy. Figure 5.3(b) shows

the IR for the program in Figure 5.3(a). The formal parameters of a function declaration

are identified as either inputs (plain) or outputs (labeled with &). Loops and predicate
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procedureMain(program, limit)

Decompose every function in program to extended basic blocks

Make every block a function

root= main entry function

n = number of root’s formal parameters

vs= a set of length n whose elements are NACs

unrolled= []

unrolling= [ (root, vs) ]

for each function f do

unrolledtimes[f]= 0

Unroll(limit, unrolled, unrolling, unrolledtimes)

functions= functions defined in unrolled set

Eliminate unused channels for all functions

Eliminate dead code for each function

Inline functions

Figure 5.1: The Main procedure.
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procedureUnroll(limit, unrolled, unrolling, unrolledtimes)

while unrolling set is not emptydo

(f, vs)= first pair in unrolling

if (f, vs) is not found in unrolledthen

n = unrolledtimes[f]

if (n + 1) > limit then

f’ = f

goto END

else

n = n + 1

vmap= empty

ps= formal parameters of f

for eachp in psdo

v = value corresponding to p in vs

add p→v to vmap{v can be a const or NAC}

f’ = a renaming of f corresponding to (f, vs){const propagation on f body}

set f’ body to empty

for eachstatement s in f’s body in orderdo

(s’, vmap’)= ConstPropagation(s, vmap)

add s’ to f’ body

if s involves one or parallel function callsthen

for eachg called in sdo

gvs= actual parameters g is called with

add (g, gvs) to unrolling set if none exists

g’ = a renaming of g corresponding to (g, gvs)

replace g with g’ in s statement

END: remove (f, vs) from unrolling

add (f, vs)→f’ to unrolled

Figure 5.2: The Unroll procedure.
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void main() {

int a;

int b;

int n = 3;

source(a); par fifo(a, b, n); par sink(b);

}

void fifo(int i, int &o, int n) {

int c;

int m = n - 1;

if (m)

g(i, c); par fifo(c, o, m);

else g(i, o);

}

void g(int b, int &c) {...}

void source(int &a) {...}

void sink(int b) {...}

main()

local int32 a

local int32 b

local int32 n

n = 3

source(a) : fifo(a, b, n) : sink(b);

fifo(int32 i, int32 &o, int32 n)

local int32 c

local int32 m

m = n - 1

ifnot m goto _else3

g(i, c) : fifo(c, o, m);

goto _endif4

_else3:

g(i, o);

_endif4:

g(int32 b, int32 &c)

source(int32 &a)

sink(int32 b)

(a) SHIM Code (b) IR Code

Figure 5.3: A FIFO program.

expressions are dismantled into statements, labels, and gotos.

The program in Figure 5.3 is constructing a pipelined FIFO where source() reads every

input, sends it to fifo() through channela; fifo() processes the data and put the result on

channelb; sink(), which is waiting on channelb, finally collects the result and returns. In

fact, fifo() is composed by some small concurrent processorsg() that are pipelined. fifo()

recursively constructs these instances of g() while constraining the pipeline size byn, which

is a compile time constant in the example. For simplicity, weonly show the details of the

main and fifo functions in Figure 5.3, which we will use to illustrate our algorithm. We

assume the others (g(), source(), and sink()) are simple functions without recursion.

In this section, we demonstrate our algorithm’s operation on the recursive fifo() function
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main()

local int32 a

local int32 b

local int32 n

n = 3

source__0(a) : fifo__0(a, b, n) : sink__0(b);

fifo__0(int32 i, int32 &o, int32 n)

local int32 c

local int32 m

m = 2

g(i, c) : fifo__1(c, o, m);

fifo__1(int32 i, int32 &o, int32 n)

local int32 c

local int32 m

m = 1

g(i, c) : fifo__2(c, o, m);

fifo__2(int32 i, int32 &o, int32 n)

local int32 c

local int32 m

m = 0

g(i, o)

source__0(int32 &a)

g(int32 b, int32 &c)

sink__0(int32 b)

Figure 5.4: The FIFO after unrolling
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main()

local int32 a

local int32 b

local int32 c__fifo__0

local int32 c__fifo__1

source__0(a) : g(a, c__fifo__0)

: g(c__fifo__0, c__fifo__1)

: g(c__fifo__1, b) : sink__0(b);

source__0(int32 &a)

g(int32 b, int32 &c)

sink__0(int32 b)

Figure 5.5: The FIFO after inlining

in the FIFO example (Figure 5.3).

Figure 5.6 shows the step by step procedure of decomposing and unrolling the program.

Comparison of the two call graphs in Figure 5.6(b) and (f), before and after the static

elaboration respectively, illustrates the effect of the unroll procedure which eliminates the

original cycle of fifo:: L0→ fifo:: L1→ fifo:: L0.

Each extended basic block (EBB) (Figure 5.6(a)) is treated like a function, whose pa-

rameters are variables alive at the entry of the block. fifo::L0, for example, has four

formal parameters (Figure 5.6(b)). At the beginning, the main() function calls fifo() with

n = 3, which is passed to fifo::L0 while all its other formal parameters are set to NAC

(Figure 5.6(c)). We use (*) to represent NAC in Figure 5.6, which refers to either unknown

or not-a-constant value in our algorithm.

The unroll procedure maintains two sets during the iteration. The unrolling set keeps

all pairs of function and parameters to be processed, whereas the unrolled set records all

pairs which have been processed and the process result, i.e., the corresponding functions

newly constructed after unrolling. By this, the elaborator can avoid duplicate work. It does

not have to unroll a function/parameter pair that have been unrolled before. The functions
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in the unrolled set and in unrolling are illustrated as solidand dashed nodes respectively

in (Figure 5.6(c) - (e)). For fifo() example, the unrolling set starts with [ (fifo:: L1, (*,

*, *, 3)) ]. This only pair, being unrolled, generates a new function fifo 0:: L1(), which

is added tounrolled as a mapping of (fifo::L1, [*, *, 3])→fifo 0:: L1() (Figure 5.6(c)).

This constant is propagated to the following functions fifo:: L1() and fifo:: L2(), which

are added to the unrolling set. After evaluation with this set of value, a specified copy of

fifo:: L1 is connected to fifo0:: L0 (Figure 5.6(d)). Thei f not prediction is removed in

fifo 0:: L1 since the elaborator knows that the par call branch will betaken in this case.

Therefore, two other new pairs are added to the unrolling setconsidering that the pairs

are not present in unrolled. The functions, i.e., EEBs, in fifo() iteratively add themselves

to the unrolling set untiln = 1 when in fifo:: L1 the else branch is taken. The resulting

functions are shown in Figure 5.6(e) while Figure 5.6(f) illustrates the corresponding call

graph, which obviously has no cycles.

All the unrolled functions are combined together and inlined as shown in Figure 5.5,

compose into a program without recursive calls.

The unrolling process can also be used for hardware synthesizing with some extra work,

such as to make all parallel function calls unique. A parallel call “g() : g()” is not a problem

in software, but in hardware it is because every function will be synthesized to a processor

which cannot run in parallel with itself. Therefore, the three parallel called instances of

g() in main() in Figure 5.5 will be modified to be g1():g 2():g 3() where these renamed

functions are simply duplications of g().

5.4 Experimental Results

To experiment with our static elaborator, we implemented three algorithms in SHIM using

recursion: the Fast Fourier Transform (FFT), square-root using Newton’s Method, and the

pipelined FIFO example from Section 5.3; the complete implementation of FFT in SHIM

is presented in the appendix. We compared the number of functions in the original pro-
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{fifo::__L0}

 m = n - 1

 ifnot m goto _else3

 goto __L1

 _else3:

 g(i, o);

 goto __L2

{fifo::__L1}

 __L1:

 g(i, c) : fifo(c, o, m);

 goto __L2

{fifo::__L2}

 __L2:

{fifo::__L0(i, c, o, n)}

{fifo::__L1(i, c, o, m)}

{fifo::__L2()} {g(b, c)}

{fifo_0::__L0(*, *, *, 3)}

 m = 2

 goto __L1

{fifo_0::__L1(*, *, *, 2)}

{fifo_0::__L2()}

(a) (b) (c)

{fifo_0::__L0(*, *, *, 3)}

 m = 2

 goto __L1

{fifo_0::__L1(*, *, *, 2)}

 __L1:

 g(i, c) : fifo_1(c, o, m);

 goto __L2

{fifo_0::__L2()}

{fifo_1(*, *, 2)} {g(*, *)}

{fifo_0::__L0(*, *, *, 3)}

 m = 2

 goto __L1

{fifo_0::__L1(*, *, *, 2)}

 __L1:

 g(i, c) : fifo_1(c, o, m);

 goto __L2

{fifo_0::__L2()}

 __L2:

{fifo_1::__L0(*, *, *, 2)}

 m = 1

 goto __L1

{g(*, *)}:

 ...

{fifo_1::__L1(*, *, *, 1)}

 __L1:

 g(i, c) : fifo_2(c, o, m);

 goto __L2

{fifo_1::__L2()}

 __L2:

{fifo_2::__L0(*, *, *, 1)}

 m = 0

 g(i, o);

 goto __L2

{fifo_2::__L2()}

 __L2:

{fifo_0::__L0(*, *, *, 3)}

{fifo_0::__L1(*, *, *, 2)}

{fifo_0::__L2()} {fifo_1::__L0(*, *, *, 2)}

{g(*, *)}:

 ...

{fifo_1::__L1(*, *, *, 1)}

{fifo_1::__L2()} {fifo_2::__L0(*, *, *, 1)}

{fifo_2::__L2()}

(d) (e) (f)

Figure 5.6: Unrolling the fifo(). (a) CFG of EBB after decomposition. (b) CG of de-

composed functions. (c) After static elaboration on entry function fifo:: L0 with n = 3.

Dashed nodes are functions in unrolling set whereas the solid ones are in unrolled set.(d)

After elaboration on fifo:: L1 with m = 2. (e) CFG completely unrolled. (f) CG after

unrolling.
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gram, the unrolled program, and finally the inlined program,combined with the factor—a

compile-time constant that defines the recursion depth. Thefactor for FFT, for an instance,

is the input size. The results are shown in Table 5.1.

Depending on the factor, a program may grow fairly large after unrolling, as the “Un-

rolled” column shows. The reason is obvious: it exhaustively lists all functions customized

with possible parameter sets. Most of the customized functions, however, simply pass con-

trol to their successor functions and thus are eliminated after inlining. Extreme cases, such

as Sqrt and FIFO, can be simplified to a constant number of functions. On the other hand,

the FFT only shrinks by half. Although most of the control functions remaining are very

small in code size, they are necessary for the synchronization of parallel function calls and

therefore cannot be eliminated.

Besides the factor, a user may set a limit that bounds the maximum number of times

a function will be unrolled (Figure 5.2). To test its effect, we set the limit to 100 when

unrolling FFT-128 and FFT-256. The result shows the numbersof functions generated

become very close. For the rest of the experiment where the limit is not specified, we

assume the number is big enough for the algorithm to fully unroll all functions. This limit

setting helps user to effectively bound the maximum number of function calls in a design.

5.5 Related Work

Recursion is not a common feature of hardware languages, especially for synthesis. Sys-

temC, a C++ like language for modeling hardware designs, allows recursion. Many syn-

thesis tools for SystemC [66][42] provide static elaboration phases that cope with finite

loops, but not with recursion, which is much harder to bound,especially when it involves

mutually recursive calls. Another tool created by Moy etc. [56] uses static elaboration to

extract high-level architecture information from SystemCprograms. It establishes static

structures in the program and creates their instances. However, it does not deal with dy-

namic structures such as pointers. Our approach is more general and takes care of both
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Example Number of Functions Factor Limit

Org Unrolled Inlined

FFT 9 37 20 8

919 455 128

2073 1032 256

132 61 128 100

135 63 256 100

Sqrt 3 12 2 10

102 2 100

1002 2 1000

FIFO 5 14 4 10

104 4 100

2004 4 2000

Table 5.1: Experimental Results

static and dynamic operations.

Other few hardware languages that allow recursion include Hoe and Arvind’s Blue-

spec [44], Li and Leeser’s HML [55], and Bjesse et al.’s Lava [14]. All of these are based

on functional languages. Bluespec provides very powerful static elaboration that deals with

recursion. However, the language is quite different from SHIM. Its syntax decides that re-

cursion is only used to describe sequential operations, while in SHIM it can be applied to

concurrent structures.

Lava provides a framework based on Haskell for user to designand analyze their imple-

mentations on FPGAs. The sorting network designs shown in their work [21, 20] demon-

strate how to describe recursive circuit in Lava. Because thelanguage targets at FPGAs, it

strictly requires that recursion be bounded at compile time. Our approach, by contrast, tar-

gets hardware and software designs. Therefore we deal with both bounded and unbounded

recursive calls.
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Rugina and Rinard [64] describe a recursion unrolling algorithm tailored to divide and

conquer programs. Given a recursive function, the main ideais to recursively unroll this

function to a certain depth by inlining previous unrolled version of the same function but

with less depth. They use condition fusion to optimize the generated code. Our approach is

more general because it handles mutually recursive function calls whose recursion depths

are not given to the compiler. Also, because function calls may be parallel in SHIM, not

every recursive function call can be inlined. The inlining process has to be done carefully.

5.6 Summary

To illustrate the method of customizing partial evaluationfor a specific DSL, we presented

a static elaborate algorithm for SHIM, a concurrent language providing recursive function

calls that can be used to construct concurrent structures elegantly. For a SHIM program

with recursion, the algorithm analyzes the program’s call graph and unrolls the recursive

calls to produce flattened code that uses bounded resources.This partial evaluation tech-

nique enables SHIM users to make their designs both succinctand resource-bounded.
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Chapter 6

Conclusions

In this final chapter, we summarize our major contributions and outline some possible

future work.

6.1 Contributions

Specialized partial evaluation can be effectively applied to solve compilation issues aris-

ing in domain-specific languages. The concise syntax of DSLssimplifies the development

process and enables the compiler to have a more comprehensive understanding of the pro-

gram’s behavior. To take advantage of this and design a promising PE technique for a DSL,

it is necessary to deeply understand the computational paradigm of the language. The chal-

lenge, therefore, is to create a customized PE technique that makes in-depth analysis of the

language’s semantics and fits well the specific paradigm. Theresults we achieved taking

this approach are impressive.

We demonstrated three concrete examples of designing PE techniques to generate code

from DSLs. We did not provide a general partial evaluator forall these languages because

we observe that their radically different models require that each PE technique be specifi-

cally designed for that model to achieve interesting levelsof optimization.

These three PE techniques addressed different essential issues in generating code from
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concurrent, deterministic languages. We expect that theirdiversity will illustrate the poten-

tial of PE to solve different compilation issues for DSLs.

For simulating concurrency on a single-threaded processor, speed is one of the key

factors. The algorithm for slicing concurrent programs presented in Chapter 3 provides a

low-cost solution for it. By transforming a concurrent flow graph to a program dependence

graph, the compiler exposes more concurrency in the program, which gives the scheduler

more flexibility. It aggressively forms as many large atomicblocks as it can to minimize the

time spent switching among them. Guard variables are added to store and recover states

in the statically scheduled code. This technique has been successfully implemented in

the Columbia Esterel Compiler. The experimental results showgreat speedup over existing

techniques. However, how to apply the same methodology to other synchronous concurrent

languages is not clear. Finding a way to dismantle a synchronous concurrent program to an

acyclic flow graph with data dependence may be the first step.

We also considered the problem of separate compilation. Software engineering, which

defines a systematic and disciplined approach to development, requires most designs to be

split into modules. However, this can be difficult for synchronous programs since normally

they can only respond to complete inputs. For a module that isinvolved in a communica-

tion cycle, some of its inputs may be unknown at run time. To make a synchronous module

respond correctly to partially known inputs, we invented analgorithm to provide a prelim-

inary solution to this issue, which we presented in Chapter 4.Through partial evaluation,

the compiler explores all possible execution paths, allowing it to interpolate the correct

behavior with unknown inputs and add this to the generated code. It works like a partial

evaluation of a three-valued simulator. Again, we applied this algorithm to Esterel. The re-

sults show it is practical for modest-sized programs, but itdoes not work for large programs

because the branching-like simulation may lead to an explosion in the number of reachable

state when the decisions of early segment of code strongly affects later execution paths. We

explain the situation more and propose a possible research direction in Section 6.2.

The third algorithm we presented (Chapter 5) statically elaborates recursive function
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calls in a concurrent program. By compiling their programs using this static elaboration

technique, programmers can use recursion to create concurrent components and have them

instantiated at compile time. This enables the user to buildup a concurrent system conve-

niently and algorithmically. The partial evaluation process involves constant propagation

and procedure inlining, fairly typical compiler techniques. However, they are customized to

fit SHIM: the asynchronous and concurrent DSL on which we experimented. The recursive

FFT example we implemented in SHIM demonstrated that this PEtechnique is practical.

6.2 Future Work

Most of our algorithms could be improved further to make themmore general and effective.

As an example, we suggest how we might apply Program Dependence Graphs to separate

compilation to better handle large programs.

The techniques we presented in this dissertation perform offline partial evaluation.

However it may also make sense for DSLs to consider online partial evaluation, which

benefits from knowing input information.

6.2.1 Separate Compilation of Large Synchronous Programs

The algorithm we proposed in Chapter 4 cannot deal with large synchronous programs

because in it may generate exponentially large code that contains all possible sequential

execution paths of the original concurrent program. The PDGtechnique we presented in

Chapter 3 may help to avoid code explosion. We show two cases where using a PDG would

generate smaller code than our current approach.

Figure 6.1 shows two cases that may cause an explosion in the size of the generated

code. They are represented in graph code, which we defined in Chapter 4. The graph in

Figure 6.1(a) is composed of a chain of predicates. Assume the decision of predicateA

does matter in generating code that runs after predicateB. Following the rule described

in Chapter 4, the compiler should not “forget”A’s decision before runningB. Therefore,
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A

... ...

B

... ...

C

... ...

B

C=1

B=1

C

D=1

T

A

(a) (b)

Figure 6.1: Graph examples that may generate exponential code using the algorithm in

Chapter 4 (a) A chain of predicates. (b) Interleaving threads.

when constructing the new graph that explicitly defines actions for unknown inputs, our

algorithm will make three copies ofB under each control successor ofA (will run, will

not run, might run). Every copy of subgraphB will contain a subgraph forC if the same

assumption applies to it. In such a sequence, a chain like Figure 6.1(a) will be expanded

into a tree with exponentially many more nodes than the chain.

Figure 6.1(b), a fragment of graph code from the example program in Figure 2.1, is

actually a variant of (a). Data dependence forces the two concurrent threads in the program

to be interleaved. Therefore they actually run sequentially, much like the predicate chain

in Figure 6.1(a) would. It follows that the graph constructed by the algorithm of Chapter 4

for this fragment may also grow exponentially large.

However, such an exponential increase in code can be avoidedif the construction al-

gorithm is applied after the program is translated into a PDGand context-switching code

is added. Consider Figure 6.2, which shows the predicate chain in Figure 6.1(a) disman-
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A B C

... ... ... ... ... ...

Figure 6.2: The PDG transformed from Figure 6.1(a)

tled into parallel predicate trees, each of which will expand to a small subgraph with three

branches after applying the tri-branch construction algorithm. Once this is done, we can

use the algorithm in Chapter 3 to sequentialize the constructed PDG. The size of the graph

generated with this approach would be linear of the originalgraph size.
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Appendix A

AG Syntax

ag-phase:

Phase identifier( parameter-listopt ) compound-statement

parameter-list:

parameter

parameter-list, parameter

parameter:

type identifier

type:

basic-type

extensible-class-type

Set < type>

Map < type, type>

basic-type:one of

int bool void

extensible-class-type:one of

Alias Opnd Instr Block Region Func



APPENDIX A. AG SYNTAX 116

compound-statement:

{ statements}

statements:

statement

statements statement

statement:

variable-declaration

function-definition

extend-class-definition

assignment-expressionopt ;

if-else-statement

foreach-statement

phoenix-foreach

continue ;

break ;

return expressionopt ;

cpp-code-segment

compound-statement

variable-declaration:

type variable-declaration-list;

variable-declaration-list:

variable

variable-declaration-list, variable

variable:

identifier

identifier= expression
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function-definition:

basic-function-definition

transfer-function-definition

compute-function-definition

basic-function-definition:

type identifier( parameter-listopt ) compound-statement

transfer-function-definition:

typeTransFunc ( direction) compound-statement

compute-function-definition:

compute-function-name( identifieropt ) compound-statement

compute-function-name:one of

compose meet result

extend-class-definition:

extend class extensible-class-type compound-statement

assignment-expression:

variable-or-field assignment-operator expression

expression

variable-or-field:

variable-or-field-> identifier

identifier
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expression:

numeric-literal

variable-or-field

expression binary-operator expression

! expression

- expression

variable-or-field( variable-listopt )

( expression)

variable-list:

variable-or-field

variable-list, variable-or-field

binary-operator:one of

+ - * < > && || <= >= != ==

assignment-operator:one of

= += -= *=

if-else-statement:

if ( expression) statement

if ( expression) statementelse statement

foreach-statement:

foreach (type identifierin expressionwhereopt directionopt) compound-statement

where:

where expression

direction: one of

forward backward
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phoenix-foreach:

phoenix-foreach-keyword( parameter-listopt ) compound-statement

cpp-code-segment:

/% C++-program-text%/
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Appendix B

Recursive FFT Example in SHIM

/************************************

An in-place complex-to-complex FFT

*************************************/

struct complex{ //structure of complex number

float real;

float imag;

};

// main function

// which reads a series of input sample p

// and outputs a series of q after transform.

void main(complex p, complex &q){

int n = 8; //sample rate

stage(p, q, n, 1);

}

// for n input samples,

// log(n) stages will be built recursively,

// each of which is characterized with a different "step" size.

void stage(complex a, complex &b, int n, int step){

int f;

int i;

complex tmp;

if (step == n){
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for(i = 0; i < n; i++)

next b = next a;

return;

}

butterflies(a,tmp,0,0,n,step);

par

stage(tmp, b, n, (step*2));

}

void butterfly(complex x, complex y, complex w,

complex &xx, complex &yy){

complex t;

recv x; par recv y;

t = multiply(w, y);

yy = minus(x, t);

xx = plus(x, t);

}

// iteratively constructs butterfly() for each stage

void butterflies(complex a, complex &b,

int f, int i, int n, int step){

complex bb;

complex b1, b2;

complex a1, a2;

complex w;

if (f >= step)

return;

if (i >= n) {

f += 1;

i = f;

butterflies(a,b,f,i,n,step);

return;

}

w.real = cos(f*PI/(2*step));

w.imag = -sin(f*PI/(2*step));

{

for(int j = 0; j < n; j++){
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recv a;

if(j == i)

next a1 = a;

par

if(j == (i+step))

next a2 = a;

}

}

par

butterfly(a1, a2, w, b1, b2);

par

butterflies(a,bb,f,(i+2*step),n,step);

par

{

for(int j = 0; j < n; j++){ //synchronize output

recv bb;

if(j == i)

next b = next b1;

else if(j == (i+step))

next b = next b2;

else

next b = bb;

}

}

}

//facility functions

float sin(float x){

float x3,x5,x7;

if(x > PI/2) x = PI - x; //PI = 3.14

x3 = xˆ3/(2 * 3);

x5 = (x3 * xˆ2)/(4 * 5);

x7 = (x5 * xˆ2)/(6 * 7);

return (x - x3 + x5 - x7);

}

float cos(float x){

return sin(PI/2 - x);

}
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complex plus(complex x, complex y){

complex z;

z.real = x.real + y.real;

z.imag = x.imag + y.imag;

return z;

}

complex minus(complex x, complex y){

complex z;

z.real = x.real - y.real;

z.imag = x.imag - y.imag;

return z;

}

complex multiply(complex x, complex y){

complex z;

z.real = x.real * y.real - x.imag * y.imag;

z.imag = x.real * y.imag + x.imag * y.real;

return z;

}


