Partial Evaluation for Code Generation from
Domain-Specific Languages

Jia Zeng

Submitted in partial fulfilment of the
requirements for the degree
of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2007

©2007
Jia Zeng
All Rights Reserved

ABSTRACT

Partial Evaluation for Code Generation from
Domain-Specific Languages

Jia Zeng

Partial evaluation has been applied to compiler optimireéind generation for decades.
Most of the successful partial evaluators have been degigngeneral-purpose languages.
Our observation is that domain-specific languages are altabe targets for partial eval-
uation. The unusual computational models in many DSLs becimgllenges as well as
optimization opportunities to the compiler.

To enable aggressive optimization, partial evaluation tbalse specialized to fit the
specific paradigm of a DSL. In this dissertation, we presergd such specialized patrtial
evaluation techniques designed for specific languagesatidress a variety of compila-
tion concerns. The first algorithm provides a low-cost sotufor simulating concurrency
on a single-threaded processor. The second enables a eongpdompile modest-sized
synchronous programs in pieces that involve communicatyates. The third statically
elaborates recursive function calls that enable programeedynamically create a sys-
tem’s concurrent components in a convenient and algorghvay. Our goal is to demon-
strate the potential of partial evaluation to solve chajleg issues in code generation for
domain-specific languages.

Naturally, we do not cover all DSL compilation issues. Wedopr work will enlighten

and encourage future research on the application of paxt&liation to this area.

Contents

1 Introduction
1.1 Motivationand Purpose
1.2 A Brief History of Partial Evaluation
1.3 Outline ofthe Dissertation
2 Domain Specific Languages
2.1 Deterministic ConcurrentLanguages e
211 Esterel
2.1.2 SHIM . . . e
2.1.3 Bluespec e
2.2 A Little Language for Generating Dataflow Analyzers
2.2.1 Coding Dataflow Analysis Algorithms
222 TheDesignofAG
2.2.3 Program Structureand Syntax
224 AnExample
2.25 ExperimentalResults
226 RelatedWork
227 Conclusions
2.3 Summary ... e e e e

3 Partial Evaluation for Removing Concurrency

3.1 Schedulinga ConcurrentProgram 37

3.1.1 The Program Dependence Graph 39
3.2 Restructuring and GeneratingCode 41
3.21 Scheduling 41
3.2.2 Restructuringthe PDG o 46
3.2.3 Generating SequentialCode, 55
3.3 ExperimentalResults Lo 8 5
3.4 RelatedWork 58
3.5 Summary ... e e e 60
Partial Evaluation for Separate Compilation 62

4.1 Compilation and Assembly of Concurrent Systems 63

4.2 The Graph Code Representation: 4. 6
4.3 Generating Monotonic Three-Valued Programs 67
4.3.1 Adding DataDependencies. 67
4.3.2 Summarizing Dependency Information 67
4.3.3 Construct 69
434 State e 71
4.3.5 Monotonicity e 71
43.6 TheExample 72
4.4 ExperimentalResults 3 7
45 RelatedWork 74
4.6 SUMMAIY oot e e e e e 75
Partial Evaluation for Unrolling Recursion 84
5.1 Compilation of Recursive Programs 85
5.2 Static Elaboration L 86

5.3 Unrolling aPipelined FIFOINSHIM 88
5.4 ExperimentalResults 4 9
55 RelatedWork 96
5.6 Summary e e 98

6 Conclusions 99
6.1 Contributions 99
6.2 FutureWork 101

6.2.1 Separate Compilation of Large Synchronous Programs 101

Bibliography 103

A AG Syntax 115

B Recursive FFT Example in SHIM 120

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

AnexampleinJdava. e 2
AnexampleinEsterel L 21
AsimpleexampleinSHIM L. 15
AnexampleinBluespec o 17
The operation of the AG framework 22
The structure ofan AG program 23

A Complete AG analysis: Reaching Definitions 27
Part of the Phoenix (+) code generated by the AG compiler for the
reaching definitionsexample 8 2
The Main procedure. e 39
A program dependence graph requiring interleaving. 41
Successor Priority Assignment. L oL 42
Priority Computation 44
The Scheduling Procedure 45
The Restructure procedure. 46
The DuplicationSet function. 48
The DuplicateNode procedure. 50
The ConnectPredecessors procedure. bl

3.10
3.11
3.12
3.13
3.14

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

The restructured PDG from Figure3.2. 52
Acomplexexample. 53
The reconstructed PDG from Figure 3.2 induced byfar@int schedule. . . 55
The PDG of Figure 3.12 after guard variable fusion. 56
The successor ordering procedure 57

A two-valued GRC before and after adding data dependestesrand arcs. 76

Three-valued projection of the GRC in Figure 4.1(@). 77
The Mainprocedure e 77
ComputeRelevantVars. 78
The Construct Function 9 7
The MakeNode Function 80
The BuildCondition Function. 81

(a) The BuildSync Function and (b) the PropagateZerodifum 82
Possible simulation states upon reachingnode 14. 83
The Main procedure. 89
The Unroll procedure. i 90
AFIFO program. e e 91
The FIFO afterunrolling 92
The FIFO afterinlining 93
Unrolling thefifo(). L 95
Graph examples that may generate exponential code. 102
The PDG transformed from Figure6.1(a)103

List of Tables

2.1 ComparingDSLsand GPLs 10
2.2 AGSyntaxSummary 25
2.3 Experimentalresults, 31

3.1 ExperimentalResults 8 5
4.1 ExperimentalResults oo 37
5.1 ExperimentalResults 7 9

Vi

To my parents and my husband

Vii

Chapter 1 1

Chapter 1

Introduction

1.1 Motivation and Purpose

Partial evaluation (PE) optimizes programs by speciabpatThe idea is simple: consider
the logic function k@y) v z If yis always 1, we can simplify the functioniov z. In other
words, we customized ay“= 1” version of this function. To a partial evaluator residant
a compiler, the inputs used for specialization must becstathey can be some variables
whose values are known, or even the structure of the progeang ltompiled.

The main purpose of this dissertation is to demonstrate otengial of partial evalua-
tion to solve challenging issues in compiling domain-spetanguages (DSLs), which are
designed to be used in specific fields of programming, suclaes f6r creating parsers and
Verilog for designing hardware. To illustrate how to desayndfective partial evaluation
technique for a specific DSL, and we demonstrate three Phitpods that address various
problems during code generation from DSLs.

By comparing DSLs to general-purpose languages (GPLs), mexstrate some char-
acteristics of DSLs that enable PE to work aggressively ohdD3Ve compare dierent

DSLs in the same domain, and we illustrate their special egatpnal models and com-

CHAPTER 1. INTRODUCTION 2

int i = 1; int i = 1;

if (A >0) { System.out.println("i = 1");
System.out.println("i = " + i);

} else {

System.err.println("Negative number!");

}
Figure 1.1: An example in Java. (a) Original code. (b) Aftertial evaluation.

pilation challenges, which explain why it is necessary teigie specific PE techniques for
a DSL instead of using existing general partial evaluators.

Partial evaluation is well known for its application to cailep optimization and com-
piler generation. It is also referred to peogram specialization A specialized program
usually runs faster than the original version since theigdavaluator may restructure the
program’s logic and carry out part of the computation at citerjgme. Figure 1.1 shows
a print program in Java that can be simplified by partial estadum. Nevertheless, the spe-
cialization process is nontrivial; it may change the semgantause an explosion in code
size, or even may not terminate. For example, if in the Jasangke the variablés value
relies on the input, the partial evaluator may explore adigilnle values ofand hence never
terminate. Therefore, most PE techniques are conservative

General PE techniques usually involve constant propagdtbop unrolling and inlin-
ing. Yet, PE is not just a collection of these techniquess itombination of compilation
techniques, language and semantics. Compared to constgaigation, which only deals
with static values of variables, PE focuses on static “prigp&’ of a program [26]. There-
fore a PE system commonly performs in-depth flow analysisragdires comprehensive
knowledge of semantics. For example, knowledge of datastgpd bounds on variable val-
ues, which are not helpful to constant propagation, may bd fag program specialization,
as Consel and Khoo show [26].

Our observation is that a domain-specific language, whichahaimple but concise
syntax, is a suitable target for applying partial evaluatidhe simplified syntax eases the

analysis workload of PE and enables PE to deeply understendamputational model

CHAPTER 1. INTRODUCTION 3

underlying the program. Unfortunately, our survey of PEnidmo successful partial eval-
uator for DSLs, in part because most earlier work has focese@PLs. Although some
early work did apply PE to optimization or automatic compdeneration for DSLs, such
techniques were too general to achieve any significant ingonent. In contrast, PE in
a restricted setting works mor@ectively for a specific paradigm. Each PE technique we
demonstrate in this dissertation, for example, is cangfiglsigned for the specific model of
computation in the corresponding DSL. Each language’siapfeatures bring challenges
as well as optimization opportunities to the compiler. Oxpeximental results show that

PE is dfective at addressing these challenges.

1.2 A Brief History of Partial Evaluation

In 1952, Kleene [54] was the first to formulate partial evéilva(PE). Hiss—m—ntheorem
claims that, for an arbitrary functiohwith m+ n arguments, when the values of the first
arguments are given, there always exists a specializedidmgthat takes th@ arguments
and behaves the same. More important, he proved there isgaapnato construct the
specialized function. His theorem was later extended taovga program’sféciency by
specialization. Lombardi and Raphael, according to Jonék Were the first to use the
term “partial evaluation” in 1964 [45].

Most of the early work applied PE to compiling and compilengeation [43, 23, 6]. At
that time, the most significant benefit that compilers gainech PE was not giciency but
automation. Based on the fact that a partial evaluator is grano by itself, Futamura [39]
foresaw the self-application of PE, i.e., compiler generatHe did some experiments but
never proved this idea. Proof would have to wait until 198bewJones et al. [46] created
MIX, the first practical self-applicable partial evaluator a language of first-order recur-
sive equations. Later, more research was conducted on vingrefficiency of compiled
code generated by a partial evaluator, mainly by reduciagrterpretive overhead added

by the evaluator. Jagrgensen [48], for example, managednpit® a lazy functional lan-

CHAPTER 1. INTRODUCTION 4

guage to generate code that runs faster than the commeraigenerated code does. The
boom in research on PE in 1990’s prompted the first PE condergnthe US: the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-8&segram Manipulation
(PEPM).

Because of its conceptual simplicity and great automatiartjgd evaluation has been
applied to many areas other than compilation, such as pattatching, circuit simulation,
numerical computations and computer graphics.

Traditional partial evaluators can be divided into two sk&s online andffiine. An
online partial evaluator, which typically resides in théempreter, relies on the concrete
values computed at run time and makes decisions on the flyt diitise early partial eval-
uators were online, which made them accurate but often Vewy o make specialization
decisions at run time, an online partial evaluator usuathpeds an interpreter in the gen-
erated program. Not being carefully optimized, this intetpr can cause an intolerable
speed penalty.

An offline evaluator, in contrast, generates more general code e program spe-
cialization relies on preprocessing results, not inputieal It is usually separated into at
least two stages. One is preprocessing, or binding-timgysisathe other is the special-
ization phase. The binding-time analyzer is responsiblecétiecting information, then
determining whether the evaluation of an expression carohe dt compile time or has to
be deferred to run time. Later this information will be usedtiide the specialization of the
program [24]. All the PE techniques we introduce in laterpthes are filine. Some patrtial
evaluators aggressively combine these two methods toachiest result [15], i.e., if an
expression can be determined to be static at binding tifficme PE is applied, otherwise
it is deferred to be treated by online PE at run time.

There are now many partial evaluators for general-purpasguages, such as C-Mix
for C [40], JSpec for Java [65] and SML-mix for ML [13]. One dfet most successful is
Tempo, an €line C specializer developed in the Compose project at INRIA. [Esom

a C program and an annotation of static inputs during speatan, Tempo performs a

CHAPTER 1. INTRODUCTION 5

sequence of analyses (alias analysis, sitieceanalysis, binding time analysis, etc.) and
preprocessing steps (goto elimination, function pointieniaation, etc.), then passes ab-
stract code to specialization phases, which geneflteéemt code. Tempo has been applied
to various domains, including operating systems, netwagrkyraphics, etc., and proved ef-
fective. Also, some compilers for other languages [57]hsae Java and -6+, use Tempo
as an optimizing back-end.

Although Tempo accepts most of ANSI C, there are still some ptexnfeatures it
cannot deal with, such as bit fields and mutually recursiuectires. The alias analysis
has some constraints also. These complex features of Cthimgpecializer’s precision to
some degree.

The interest in applying partial evaluation to domain-sfietanguages has grown in
recent years. Burchett et al. [18] developed a partial etatuhat reduces the size of
the dynamically changed graph size when programming in tardative dataflow lan-
guage. Edwards [33] demonstrated a program specializtitetrdramatically speeds up
fixed-point simulation of signal processing kernels writte SystemC — another high-level
hardware design language like those we compare in ChaptdreaeTworks reinforce our

observation that partial evaluation can be vefg@&ive in optimizing DSLSs.

1.3 Outline of the Dissertation

This dissertation is organized as follows:

Part | (Chapter 1) provided an overview of the dissertatiowel as an introduction
to partial evaluation. We first reviewed the basic concegiantial evaluation, its advan-
tages and disadvantages for compilation application. $ongdjuish PE from traditional
optimization techniques, we compared it to constant prapagy as an example. The brief
survey of partial evaluation in Section 1.2 introduced thigio of PE, its early applica-
tions, classification and the state of the art. We briefly &ixggld our thesis statement that

specialized PE is ideal for DSL compilation but left the dstep following chapters.

CHAPTER 1. INTRODUCTION 6

Part Il (Chapter 2) introduces the other important concefitisxdissertation: domain-
specific languages. The purpose of this part is to providdemsawith some background
knowledge of domain-specific languages and the compilati@ilenges they pose. We
answer three questions here: why DSLs are useful in theiagsnwhy partial evaluation
can be fective for DSLs and why we must use specialized PE technigat=ad of general
ones to solve the problems of DSL compilation.

The answer to these questions motivates our considerati@sbs in our research:
a DSL, whose syntax is usually simpler than a GPL, relievesctimpiler from complex
semantic analyses but requires the partial evaluatoreesid the compiler to understand
its specific model deeply to achieviective optimization results.

Part Il (Chapter 3—Chapter 5) is our main technical contrdng. We present three
PE techniques for code generation that are applied to twouwoent, deterministic DSLs.
These techniques remove concurrency (Chapter 3), enaldessepompilation (Chapter 4)
and unroll recursion (Chapter 5). Although the first two aneHsterel, a concurrent syn-
chronous language, they approach the languafjjerently. The specialization processes,
therefore, are also fierent.

The algorithm described in Chapter 3 enables tifieient simulation of synchronous
concurrent programs on a single-threaded processor. 8ymmins languages, such as Es-
terel, provide embedded system designers a convenienth@ioyjuarantees deterministic
concurrency. However, it is nontrivial to statically schédsuch a concurrent program
running on a single-threaded processor. The data depem@®nang threads may cause
frequent switches that bring considerable overhead. Théico we propose is to first
eliminate as many control dependences in the program a#fms<., to break the source
code into many small and concurrent pieces. The newly expposecurrency, instead of
introducing higher scheduling overhead as one would imegginfact provides the sched-
uler more choices and enables it to form larger and hence f@omic blocks. In this way,
it minimizes switching overhead and generates much mi@i@ent code.

The second algorithm we implemented for Esterel enablesratgly compiling code

CHAPTER 1. INTRODUCTION 7

segments of a synchronous design (Chapter 4). For a larggndé@ss normal to first code
and test every module individually, then assemble them. é¥ew if some modules form a
communication cycle, the inputs that rely on other modutegputs may not be available
at run time to begin with. It would be very complex to write agram that handles all
these cases explicitly. In this case, partial evaluati@avipes us an automatic way to infer
the extra behavior. Performing an abstract three-valuadlation, the compiler generates
descriptions that respond to unknown inputs. To keep treedfithe generated code under
control, we try to identify equivalent states during the giation. The generated code,
therefore, can tolerate unknown inputs and be compiledratgiqa

In Chapter 5, we present a PE technique that statically edd®irecursive function
calls in SHIM programs. For a valid hardware design, it petunon-recursive code that
is guaranteed to use bounded resources. Like Esterel, SHiWHes deterministic concur-
rency but presents it in an asynchronous model that useszeods-style communication.
Its recursive function calls enable users to construct gopat structures dynamically. To
make such programs predictable yet flexible, we use pax#lation to eliminate recur-
sion and replace it with static concurrent structures whessibple. The algorithm applies
customized constant propagation and function inliningrtmll cycles in the function call
graph (recursive calls) as well as those in the control-floaph (loops).

These various customized PE techniques illustrate thenpatef partial evaluation to
effectively solve compilation challenges of DSLs. They alsovsithat aggressive opti-
mization of a DSL requires a PE technique to be designedubréd fit the specific model

defined by the language’s semantics.

Chapter 2 8

Chapter 2

Domain Specific Languages

In this chapter, we introduce some domain-specific langa&gdlustrate the importance
of DSLs and the challenges they present for compiler cocistmu Understanding these
issues will help the reader to better appreciate the maghmieal contributions in the
later chapters. We start with a special category, detestiinconcurrent languages (Sec-
tion 2.1), whose model has been used in hardware design ¢éadds and which has also
been gradually adapted to software design. Most of our resésbased on these kinds of
DSLs, especially on Esterel and SHIM, whose interestingetsand challenging features
inspired our work. We compare these two DSLs to Bluespechanabncurrent language
for hardware design, to illustrate theffédrent compilation challenges even for languages in
the same application domain.

In Section 2.2, we present AG, a DSL of our own design. We bhelii to emphasize
the importance and unique aspects (challenges) of DSLstoatkemonstrate how a DSL
can facilitate the design of special-purpose systems (eagdware circuit design, dataflow
analysis, etc.). AG is designed to generate dataflow analy2d/e focused on making
its syntax concise with anftardable performance penalty. At the end of Section 2.2, we
introduce some related work and conclude.

Besides the languages’ diversity, the comparison amongattevare design languages

illustrates one of our hypotheses: specialized partiduesi@n techniques rather than gen-

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 9

eral ones are needed to achieve aggressive optimizatiddSbs. Therefore, a deep un-
derstanding of a DSL's semantics is essential for devetppifective PE techniques for
it.

A domain-specific language is designed to serve a specifttdighrogramming, such
as Verilog for RTL (Register-Transfer Level) design, Matfabmath computation, HTML
for web page description, etc. They are usually designeld satme specific syntax con-
structs and combined with some built-in facilities that mdéke design work more conve-
nient and icient.

The diversity and sophistication of the engineering induistspired the birth of DSLs.
In addition, a well-developed DSL may even boost the pragpef the related domain.
Verilog [71], for example, enabled the automation of citalesign, which heavily de-
pended on manual design before 1980s. Manual design wasresdir time-consuming
and tedious; every chip at that time could only contain haddrof transistors. During
1980s, things changed with the automation of circuit designch enabled the faster de-
sign of larger systems. Many languages and tools were daselspecifically in this area
at the same time. Verilog, which started as a simulationdagg to describe the algebra of
digital logic computation [38], soon became popular bottdwse of its flexible syntax for
describing test benches and because of its integratedpeidormance simulator. Later,
Synopsys adopted Verilog for RTL logic synthesis. It hasibesry successful since then.
Verilog helped users to better understand the behaviel-teedeling of the circuit, which
in fact sped up the automation process of hardware design.vidoare able to put millions
of transistors on a chip, which would not have happened witktte invention of Verilog.
Verilog shows how a well-designed DSL can have a major beakiicpact on a discipline
— in this case, hardware engineering.

Compared to a general-purpose language (GPL), a DSL uswha lsimpler syntax
designed to concisely fit the logic and behavioral model snapplied field. Table 2.1
summarizes the fferences between DSLs and GPLs. For example, when modeling a

control-dominated embedded system, which has to meet kath thme control and ef-

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 10

DSLs GPLs

concise syntax very yes
general application no yes
specific model yes no
difficulty of semantic analysis low high
effective PE technique specialized general

Table 2.1: Comparing DSLs and GPLs

ficiency requirements, Esterel can provide a determingtid concurrent solution that is
more elegant andf&cient than a C solution. GPLs are not an ideal solution ingpecific
domain because the designers’ concerns are not well agdrbgsny GPL. Consider Java.
Garbage collection, which has been welcomed by generas usens out to be the reason
that embedded system designers reject the language; lommtigpl of memory makes them
worry about unpredictable behavior occurring in a system.

The characteristics of DSLs listed in Table 2.1 relieve cibanp from complex se-
mantic analysis but place higher optimization requirermaent these compilers. As we
demonstrate in the next few chapters, partial evaluatieas @ogood job of optimization.
It can dfectively improve the performance of the generated code. edew the various
models of DSLs demand that specific partial evaluation tiegtas have to be designed for
different models to achieve the best optimization result. Theapavaluation technique
we introduce in Chapter 3, for example, works well on Estdret,would not be helpful
for VHDL. By analyzing the data and the control dependenaieBsterel programs, the
compiler increases the degree of concurrency in the codéhasgrovides more flexibility
to the optimization step that manages to generfiteient code. General PE techniques
would not work well in this case since Esterel is a concurtenguage and the primary
performance penalty comes from context switching betwherats. So we customized a
graph transformation that was originally used for seqa¢miogram optimization rather

than using general PE techniques. Moreover, we specidiwedata dependency analysis

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 11

for the synchronous communication model in Esterel. Oureergental results show a
more than four-fold speedup over existing tools, much béhien what general PE could
achieve.

By comparing and analyzing filerent models, this chapter explains why the partial

evaluation techniques described in following chaptersinede radically dierent.

2.1 Deterministic Concurrent Languages

From multithreaded programming to multi-core system dgstgncurrency has many ap-
plications. But many concurrent models do not guaranteerrdetesm, i.e., a program
may behave dierently at diferent times, even for the same input. To address this concern
certain DSLs for hardware design define strict semanticesoire both concurrency and
determinism. Esterel, for example, allows concurrentatissso communicate through sig-
nals in a single clock cycle but in a strict manner, i.e.,edlders must wait for other writers
that set the signal’s value. On the other hand, SHIM, whiabsdwot provide global vari-
ables, instead uses single-input channels for interpsocesymunication. Through these
strict semantics, these DSLs provide ideal solutions fergies that demand determinism
and high d#iciency. Embedded system design, which is naturally desdrds a combi-
nation of concurrent processes and does not expect anyemaaate behavior, is a good

example of where we need these deterministic concurrensDSL

2.1.1 Esterel

Designed by Berry in 1982, Esterel [11] is a synchronous,ezgcicurate parallel lan-
guage that uses a strict communication pattern. Dedicateebictive systems, it empha-
sizes that users can describe control concisely. An Espeoglram consists of several
modules, each of which has inputs and outputs. A module, @srsin Figure 2.1, may
contain multiple threads, separated by double bars. Theghma step to a global clock

and communicate with each other using a disciplined meshanin each clock cycle, the

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 12

module example:

input A;
output B, C, D;

loop % Thread I
present B then
emit C
end present;
pause
end
I
loop % Thread II
present T else
present A then
emit B
else
present C else
emit D
end present;
end present;
end present;
pause
end

end module

Figure 2.1: An example in Esterel

program computes its outputs and progresses to the neatlstaed on its inputs and the
previous state.

Signals carry and deliver the major information throughtet program by broadcast-
ing. These signals can be classified into input, output acal kignals. A module’s inter-
face, for example, is composed of infuuttput signals. Normally, a pure signal in Esterel
carries either a present or an absent Boolean value; suclia faalan input signal is de-
termined by the environment. An output or local signal’aseglby contrast, can be set by a
statement. This value does not persist between cycles. &ettid values of present and ab-

sent, we will introduce the third possible value of a signahknown - in Chapter 4, which

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 13

may occur when some input signals are intermediate outpuaiher running modules.

The syntax of Esterel is not complicated. We show a smallgfattin the example in
Figure 2.1, which implements two synchronized threads.rftleead in the example is
enclosed in an iterativieop statement that takes more than one cycle to complete because
of the pausestatement, which idles for a cycle. Esterel does not alldvainycle loops.
The other statementpresentandemit, execute within a cycle. Theresentkeyword tests
a given signal’s value angimitsets a signal to present, respectively. Comments are denoted
by %.

Despite its concise semantics, Esterel can be used to defitreecpmplicated interac-
tions between threads, which can make it hard to genefiiteeat code. To simulate con-
current threads on a single-threaded processor, threaglbana to interleave during exe-
cution. Instead of shared memory or semaphores, threadséndt communicate through
signals and follow the rule of reader-after-writer to emsdeterminism. In Figure 2.1, for
example, Thread | has to start running only after ThreadntesiThread Il may set sig-
nal B's value, which Thread | requests. However, the else brafdrhcead Il contains
a present test on signél. To acquireC’s value, the program is forced to switch from
Thread Il to I. Such sequential ordering is not always sdgttéorward and may involve
many possible choices during compilation. Therefore, mining the number of context
switches becomes the key to boosting the performance ofgieuecode.

The synchronous and imperative semantics of Esterel dymogramming but com-
plicate code generation. Esterel requires any implementab deal with three issues:
the concurrent execution of sequential threads of contitblinva cycle, scheduling con-
straints among these threads due to communication depeisdeand how (control) state
is updated between cycles. To solve these issues, mdleyaiit techniques have been
proposed. The Esterel V3 compiler translated programstn@ata. This produces quite
efficient code but the size of the generated code may be expaheri avoided the scale
problem by generating circuit-like code, but this turned toube slow at run time. Later,

Potop-Butucaru [63] created a new intermediate representdR) and optimizations that

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 14

greatly improved the generated code. Based on this new IRhenddrk by Edwards [29],
we developed a compiler that, by analyzing data and conapéddencies in a program,

makes aggressive optimizations and generdtasent and compact code.

2.1.2 SHIM

SHIM [32], invented by Edwards & Tardieu recently, providesolution for designing
heterogeneous embedded systems: systems combined cdisoétad hardware. Software
modules are commonly event-driven, flexible and fit well wiite asynchronous model.
SHIM takes the asynchronous approach where threads onthsymze with others when
they must communicate.

In heterogeneous systems, especially when hardware atwiasefhave to commu-
nicate frequently, the SHIM model shows advantages ovethspmous languages. The
Robby Roto game, a traditional video game system, is a goodm@gaithe software typi-
cally runs at a frequency as low as 180 Hz, while the the hameles&requency is 14 MHz
- about 80,000 times faster. Obviously it would be maitecent to simulate these two at
different clock frequencies and design an asynchronous iogefte them. Flexibility is
beneficial in these kinds of circumstances.

The syntax of SHIM is similar to C, but its use of concurrencyg @s rendezvous com-
munication facility make it dferent. Figure 2.2 shows a sample program that deals with a
sequence of integers. In this program, there’s only onetimmenain() that contains three
threads where Thread Il and Il respectively receive evehaid numbers from Thread
|. These threads are running concurrently, as the keywardiefines, and synchronize on
channeloodd andn. Thesendandrecv statements indicate where a thread rendezvous on
a channel. Unlike when a thread communicates through \asah thread will block on
a channel if its peer — another thread that communicates @chtnnel — is not ready.
The nextkeyword representsecv when appears on the right side of an assignment and
sendwhen it appears on the left. In this progranext oddin Thread | meansendsince

it setsodds value in the statement. The other two threads recedds value. A channel

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES

void main() {
int n = 0;
bool odd = 1;

try {
{ //Thread I
for (5;){

if (n < 10){
next odd = 1 - odd;
send n;
n=n+1;

3

else
throw T;

}
par
{ //Thread II
for ;)
if (!(next odd))
recv n;
}
par
{ //Thread III
for (53)
if (next odd)
recv n;
}
} catch(T) {}

Figure 2.2: A simple example in SHIM

15

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 16

must have exactly one sender but may have multiple receivengs scheme makes the
communication among concurrently running processes atraspbgraph, which may be
cyclic.

SHIM defines a complicated exception handling system thapexates with concur-
rency. Generally speaking, a thread that communicatesamgtother thread will “die” if
its peers are aborted. For example, Thread Il (Figure 2.Bjclwcontains an infinitéor
loop, seems to run forever. Nevertheless, when its peera@hréhrows an exceptioi
and terminates, Thread Il will terminate as well, as will &&ad I1l. This process is also
called “poisoning” because it appears that the terminatioa to the exception is being
propagated among threads through channels.

The computational model of SHIM is based on Kahn networkg. [48lthough the
scheduling-independent character of the model allowsdhgpder to make many schedul-
ing choices, it is still hard to generate fast code from a Sighgigram. One way to make
the code run fast is to know at compile time when threads wilkdezvous. In the exam-
ple in Figure 2.2, Thread Il will only retrieve the value frofinread | through channel
n when the next integer is even. The process of actually datergrwhen the threads
will rendezvous, however, can become fairly involved. Iditidn, fanout and cyclic com-
munication may further complicate the situation; becaddbese challenges, a compiler
may have a diicult time statically scheduling the code. Furthermore gption handling
presents another challenge. Consider three threads A, B, &dtc@ntains both A and B:
in other words, both A and B are child threads of C). Even ifdldré raises an exception,
thread C can potentially keep running because B may bffegtad by the exception from
A. Tardieu and Edwards provided some rules to handle exarepin their work [70].

Recursion in SHIM presents another challenge. SHIM providesrsive function calls
to enable succinct designs. However, a design with recialils may need unbounded
resources. This is unacceptable for hardware implementtso it is sometimes necessary
during the compilation process to eliminate recursion. \Wigppse an algorithm to trans-

form a program with recursion to one only requiring boundesburces when possible.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 17

(* descending_urgency = ‘‘proc2, procl, proc@®’’ *)

rule proc® (cond®);
X <= X + 1;

endrule

rule procl (condl);
y <= X;
endrule

rule proc2 (cond2);
X <= x -1;

endrule

Figure 2.3: An example in Bluespec

More details are included in Chapter 5.

Although both SHIM and Esterel are concurrent, determmistd modular, they ad-
dress diferent concerns in embedded system designs. Esterel usgsittieonous model
to provide precise control over system timing while SHIM sisiee asynchronous model

for flexibility.

2.1.3 Bluespec

Bluespec is another concurrent and deterministic tool fodware design. It is based
on Hoe and Arvind’s 1999 proposal [44] of a synthesizablenTRewriting Systems (TRS)
model for microprocessor designs. The tool provides a Ifdfities, including optimiza-
tions, long-bit-vector support and verification. Theselitaes are attractive for high-level
designs.

The language is called Bluespec Verilog (BSV) since its syrstakmnilar to Verilog but
without thealwayskeyword. Like other hardware design languages, it is styetyped
and side-#ect free. A BSV design is composed of modules. Each modulades| a de-
scription of the system state elements, such as registdratamic behavioral components

(rules). The segment of BSV code in Figure 2.3 contains thulss iand registers andy.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 18

Each rule’s body describes the allowable sequence of statsitions and its head speci-
fies the condition under which the rule is enabled. The pube0, for example, increases
X’s value when the Boolean conditi@ondOQis satisfied. Although rules can involve com-
plicated transitions, such as ones containing method, @lksry rule is atomic, i.e., the
specified state transition cannot be interrupted.

The main challenge for the BSV compiler is to build a run-tirdeexlule that assures the
atomicity constraints of the rules. Unlike Esterel and SHilllere a designer defines the
control logic of the system, Bluespec has the compiler irfierdptimal control structure
from the rules. In other words, the TRS model implies what saeqas of state transition
are possible. Rules that do not modify the same state elemayntom scheduled to run
concurrently. For example, the rulpsocO and procl have no conflict, so they can run
in parallel if their conditions are true simultaneously. eTitulesprocO and proc2, on the
other hand, both write to registgr When they are both enabled, the compiler has to check
the priority specification, such as the first line in the exbar(Figure 2.3), or raise an
error. Since a rule can invoke method calls, the state itseadvrites may be distributed
across several modules. This makes the automatic genmeddtamntrol logic even harder.
Furthermore, any change in a module or its related modulest beuverified to guarantee
atomicity.

A smart schedule may lead the compiler to generate codéiaget as hand-coded
Verilog [4], but heavy reliance on the compiler may raisea@ns of losing control over

the behavior of the system, especially for large designs.

2.2 A Little Language for Generating Dataflow Analyzers

To illustrate in detail how a domain-specific language cdp teesimplify the development
process, we present a little language called Analyzer G¢orein this section. The concise
syntax of the language can greatly reduce code size. Werdleauce some potential PE

optimization opportunities provided by the language atethe of this section.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 19

Dataflow analysis is a well-understood and very powerfuhtégue for analyzing pro-
grams as part of the compilation process. Virtually all cderp use some sort of dataflow
analysis as part of their optimization phase. However, itegeing well-understood theo-
retically, such analyses are ofterftiult to code, making it diicult to quickly experiment
with variants.

Our domain-specific language, Analyzer Generator (AG)ttmsizes dataflow analy-
sis phases for Microsoft’'s Phoenix compiler framework. A@els the fussy details needed
to make analyses modular, yet generates code that i§ieie®t as the hand-coded equiv-
alent. One key construct we introduce allows IR object éags be extended without
recompiling.

Through AG, we demonstrate how necessary and helpful a DSthen we design
programs applied to a specific domain. Experimental resultdree analyses show that
AG code can be one-tenth the size of the equivalent handwi@t+ code with no loss of

performance. It shows that AG can make developing new dataitalyses much easier.

2.2.1 Coding Dataflow Analysis Algorithms

Modern optimizing compilers are sprawling beasts. GCC 4féraxample, tips the scales
at over a million lines of code. Much of its heft is due simptyits many features: com-
plete support for a real-world language, a hundred or motenggation algorithms, and
countless back-ends. But the intrinsic complexity of iteinal structures’ APIs and the
verbosity of its implementation language are also signiticantributors.

We address the latter problem by providing a domain-spédeifiguage, AG for “An-
alyzer Generator,” for writing dataflow analysis phases icrbsoft's Phoenix compiler
framework. Experimentally, we show functionally equiv@l@nalyses coded in AG can
be less than one-tenth the number of lines of their handec@de- counterparts and have
comparable performance.

Reducing the number of lines of code needed to describe aplartianalysis can re-

duce both coding and debugging time. We expect our langudgenake it possible to

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 20

quickly conduct experiments that compare tlkeeiveness of various analyses. Finally,
by providing a concise language that allows analyses to decdtin a pseudo-code-like
notation mimicking standard texts [1], compiler studenii$lve able to more quickly code
and experiment with such algorithms.

One contribution of our work is a mechanism for dynamicakieading existing classes.
In writing a dataflow analysis, it is typical to want to add nigsids and methods to existing
classes in the intermediate representationif the analysis. Such fields, however, are un-
needed after the analysis is completed, so we would likesitadd them. While inheritance
makes it easy to create new classes, most object-oriergddges do not allow existing
classes to be changed. The maiffietience is that we want existing code to generate objects
from the new class, which it would not otherwise do.

The challenge of extending classes is an active area ofrodsgathe aspect-oriented
programming community [52], but their solutiongtér from ours. For example, the very
successful Aspectd [51] language provides the intertypdacions that can add fields
and methods to existing classes. Like ours, this technitjoergnew class fields and
methods to be defined outside the main file for the class, itisnapile-time mechanism
that actually changes the underlying class representagguiring the original class and
everything that depends on it to be recompiled. In AG, onéydbde that extends the class
must be recompiled when new fields are added.

MultiJava [22] provides a mechanism that is able to extendtieg classes without
recompiling them, much like our own, but their mechanisnmyailows adding methods,
not fields, to existing classes.

In AG, we provide a seamless mechanism for adding annotatmexistingr classes.
In AG code, the user may access such added fields with the sauple syntax as for fields
in the original class. Adding such fields does not requir@mgaling any code that uses
the original classes.

We implemented our AG compiler on top of Microsoft's Phograxframework for

building compilers and tools for program analysis, optiatiizn, and testing. Like the SUIF

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 21

system [76], Phoenix was specifically designed to be exténsind provides the ability,
for example, to attach new fields to core data types withouinigeto recompile the core.
Unfortunately, implementing such a facility i+G (in which Phoenix is coded) has a cost
both in the complexity of code that makes use of such a fgdliid in its execution speed.
Experimentally, we find the execution speed penalty is less factor of four and could be
improved; unfortunately, the verbosity penalty of usingtsa facility in G-+ appears to

be about a factor of six. Reducing this is one of the main adwpad of AG.

2.2.2 The Design of AG

AG is a high-level language that provides abstractions szidee iterative dataflow analy-
ses. The AG compiler translates an AG program inte+Gource and header files, which
are then compiled to produce a Dynamically Linked Librasm) file. (Figure 2.4) This
pLL can then be plugged in to the Phoenix compiler and invokedgfier a program is
translated into Phoenix’s Middle Intermediate Represantdinr).

Our generated plug-in extendsobjects to collect information and invokes a traversal
that is part of the Phoenix framework to perform iterativalgsis. This traversal function
invokes computations defined in the AG program.

We follow the classical dataflow analysis approach. An AGgpam implicitly tra-
verses the control-flow graph of the program and consideese Iblock at a time. Inside
each block, the analysis manipulates its constituentuostns and operands. We thus
chose to make blocks, instructions, and operands basictsbjeAG. Phoenix, naturally,
already has such data types, but AG makes them easier toinsessir language has a
deeper understanding of them.

One of the main contributions of AG is the ability to add &itites and computations to
these fundamental data types. This facility relies on meisinas already built into Phoenix,
but because of the limitations of+G, making use of such mechanisms is awkward and
tedious to code. AG makes it much easier.

To simplify the description of computation functions, weluded new statements in

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 22

DataflowAlgorithm.ag

l

AG Translator

l

DataflowAlgorithm.Phx.cpp/.h

l

AG Library Files —#{ Phx C++ Compilere= Phx Library Files

l

DataflowAlgorithm.dll

Figure 2.4: The operation of the AG framework

AG such adoreachand data-flow equations like those found in any compiler. t&Jd also
introduced asetdata type since data collected during dataflow analysisliysia&es the
form of sets.

AG relies on the Phoenix Traverser class. This is an itexdtiaverser that does not
guarantee boundedness. See Nielson and Nielson [60] fascassion of the issues in

guaranteeing boundedness.

2.2.3 Program Structure and Syntax

The AG language is designed for dataflow analysis. It pravatestractions for the common
features of iterative intraprocedural analysis. For usgwenience and adaptability, we
chose a syntax similar to that oG and added a variety of new statements and constructs.
Figure 2.5 shows the structure of a typical AG program to diescan analyzer. It
defines a new, named phase, extends a number of built-in Rhdasses with new fields
and methods to define what information to collect, and find#¥ines a transfer function

for the dataflow analysis.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 23

Phasenamef
extend classame|
field declarations...
method declarations...

void Init() { ...}

typeTransFunafirection) {
Compose(N] ...}
Meet(P){ ...}
Result(N){ ...}

Figure 2.5: The structure of an AG program

An extend classlefines a newr class that uses the Phoenix dynamically extensible
class system. New fields and methods declared in an extessl ala added as new class
members. The user may directly refer to them as if they weralmees of the original class
(our compiler identifies such fields and generates the apjtepPhoenix code to access
and call members of such extended classes). Notice the detterlared in an extend
class are “private,” i.e., they can only be applied to theesponding extend object, or in
other methods declared under the same extend class. Cyrreatbnly support extending
Block, Instr, and Opnd classes.

In each extend class, the Init method behaves (and is exkas}@n initializer just after
the constructor for the extended class.

Each phase has a single TransFunc that defines the returangpigeration direction

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 24

(backward or forward) of the analyzer and, more importanty equations applied during
the analysis. The body of a TransFunc may define functionseagaly three reserved

functions: Compose, Meet, and Result. Compose and Meet fuiscli@ applied when the

traverser visits every blocks. The Compose function defilesdmputation inside a block
using global data. The Meet function defines the computgieformed between blocks,

i.e., to merge data from the exit of the predecessor to thg efthe successor. The Result
function defines operations to be performed just after #@iion. It usually propagates
information to the objects that make up the blocks, such sisuations. Other functions

may be declared in the TransFunc; they can be called by tke tl@served functions or
each other.

The user may embed arbitrary+&€ code in the body of these methods. Such code
segments are transparent to AG compiler, which simply ohesuthem verbatim in the
generated code.

We derived the syntax of AG from-&-. We present its complete syntax in the ap-
pendix; Table 2.2 provides a summary. Below, we provide soetaild about its design.

Setis a data type similar tgetin the C++ standard library. It can only apply to the
reserved classes and actually refers to a set of IDs. Form@rartSeklinstr>" will be
translated into a bit-vector mapped on IDs of instructiamsmplementation. Thélap
type is similar.

During the analysis, the most relevant data are those widinnmation for the entry and
exit points of each block, so we introduced theandOut data set as built-in variables.

Except for the two logical operators, the operators in TébRcan be applied both
to integers andetvalued variables. Using the, —, and * operators generate code that
perform Or, Minus, and And operations on bit vectors.

In dataflow analysis, one often needs to iterate over a salbsdjects, so we added a
foreachstatement to do thigsoreachis a predicated iterator, meaning that it steps through
the members of a set and performs actions on only selectedarsrof the set. The user

does not have to declare an iterator specifically, just alséiof the type over which the

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 25

data types Set Map int bool void
special variables In Out
operators +—k=4=—=+=&& ||
built-in classes Opnd Instr Block Alias Expr Func Region
special methods Init Compose Meet Result
built-in functions DstAliasTable SrcAliasTable Print
built-in constants Forward Backward
declarations Phaseadentifier (parameter lisf) { ... }
extend classypef ... }
typeTransFunc @irection) { ... }
statements Ivalue = expression
if (expression { ... } elsef{ ... }
/% arbitrary C++ code%/
foreach (type varin rangewherecond. direction) { ... }

phoenix-iterator(...) { ... }

Table 2.2: AG Syntax Summary

iteration is occurring and the set on which to iterate. Ther usay also specify a condition
that acts as a filter and a direction (Forwardrease or Backwardecrease). The condition
is described with thevherekeyword. The syntax is shown in Table 2.2.

The type range and condition allowed are listed in the attached syntax table. The
“where conditiori and “direction’” parameters are optional.

Suchforeachstatements are translated to conditional for loops in the @nd use the
iterator macros in the Phoenix framework. Note thatfthreachstatement, especially the
predication, is not strictly necessary (an additiahas suficient), but the same can be said
of C’s for statement.

If the rangeis a Set, theypemust match its content. Otherwise, if trengeis a class,

thetypemust match one of its members. For example, each instructiatains a list of

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 26

operands, so we can specifitygpe of Opnd and aangeof an instruction. Also, the user
may specify aconditionof “dataflow && dst” to iterate over dataflow-related destioa
operands in the list.

Phoenix provides a number of iterator macros, which can bd iusAG almost verba-
tim (see Figure 2.6 Line 9). The onlyftkrence is that in €+, a matching “next” macro
must follow the use of each iterator macro (see Figure 2.@ IL#); this is not necessary in
AG.

DstAliasTablds a reserved function that takes an aliasxag parameter and returns a
set of destination operands whose alias-tag Similarly, SrcAliasTableeturns all source

operands with the same alias-tag.

2.2.4 An Example

To illustrate AG, we present a complete example: the clak%ieaching definitions” anal-
ysis. The complete AG source is in Figure 2.6.

This algorithm computes the sets of definitions that reaetetiitry and exit points of
each basic block in a program. Following the Dragon book dldefinition of a variable
is the operand in an instruction that may assign to the Viarialm the Phoenixr, each
instruction has source operands and destination oper&odseaching definitions, we are
concerned mostly with the destinations.

The whole analysis is defined as a phase caRedchingDefg¢line 1 of Figure 2.6).
The rest of the analysis consists of extend classes thatedd &nd computations to the
built-in data types for operands, instructions, and bakicks, and description of transfer
functions.

Extend classeaugment existing data types with additional fields in whiclcollect
information and procedures for collecting it. This is s@nito extending a base class in
an object-oriented language, buffdrs because the new attributes are actually attached to
objects of the “base class” itself at the language leveljusitin objects of derived classes

(the G++ code we generate from AG actually uses class inheritance)a Bser can refer

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 27

1 Phase ReachingDefs {
2 extend class Opnd {

3 Set<Opnd> Gen;

4 Set<Opnd> Kill;

5 void Init() {

6 Opnd opnd = this;

7 if (opnd->IsDef) {

8 opnd->Gen += opnd;

9 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, AliasInfo)
10 opnd->Kill += DstAliasTable(alias_tag);
11 opnd->Kill -= opnd; }

12 }

13}

14

15 extend class Instr {

16 Set<Opnd> Gen;

17 Set<Opnd> Kill;

18 void Init() {

19 Instr instr = this;

20 foreach (Opnd dstOpnd in instr where (dataflow && dst)) {
21 instr->Gen += dstOpnd->Gen;

22 instr->Kill += dstOpnd->Kill; }

23 }

24}

25

26 extend class Block {

27 Set<Opnd> Gen;

28 Set<Opnd> Kill;

29 void Init() {

30 Block block = this;

31 foreach (Instr instr in block) {

32 block->Gen = instr->Gen + (block->Gen - instr->Kill);
33 block->Kill = block->Kill + instr->Kill - instr->Gen; }
34 }

35}

36
37 Set<Opnd> TransFunc(Forward) {

38 Compose(N) { Out = In - N->Kill + N->Gen; }
39 Meet(P) { In += P->Out; }

40 }

41}

Figure 2.6: A Complete AG analysis: Reaching Definitions

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 28

1 class OpndExtensionObject : public Phx::RbagGenTest: :AG: :OpndExtensionObject {
2 PHX_DECLARE_PROPERTY (Phx::BitVector::Sparse *, Gen);

3 __PHX_DEFINED_VIRTUAL_GET_PROPERTY(Phx::BitVector::Sparse *, Gen) __const;

4 __PHX_DEFINED_VIRTUAL_SET_PROPERTY(Phx::BitVector::Sparse *, Gen);

5 Phx::BitVector::Sparse * _local_Gen;

6}
7 void OpndExtensionObject::Init(Phx::FuncUnit *func_unit,
8 Phx::BitVector: :Sparse *PHX_ARRAY(dst_alias_table)) {

9 Phx::IR::0pnd *opnd = _this;
10 if(opnd->IsDef) {

11 this->Gen->SetBit(this->uid);

12 foreach_must_total_alias_of_tag(alias_tag, opnd->AliasTag, func_unit->AliasInfo)
13 this->Kill->Or(dst_alias_table(alias_tag));

14 next_must_total_alias_of_tag;

15 this->Kill->ClearBit(this->uid);

16}

17 }

18 void IterateData::Merge(Phx::DataFlow::Data *dependent_block_data,

19 Phx::DataFlow::Data *effected_block_data, Phx::DataFlow::MergeFlags flags) {

20 IterateData * dep_block_data = PTR_CAST(IterateData *, dependent_block_data);

21 Phx::BitVector::Sparse * Out = dep_block_data->Out;

22 if(flags & Phx::DataFlow::MergeFlags::First) In = Out->Copy(); else In->Or(Out);
23 dep_block_data->0Out = Out;

24 }

25 void Traverser::InitData(Phx::BitVector::Sparse *PHX_ARRAY(dst_alias_table)) {

26 foreach_block_in_func(block, funcUnit) {

27 foreach_instr_in_block(instr, block) {

28 foreach_dataflow_dst_opnd(dstopnd, instr) {

29 OpndExtensionObject *ext_dstopnd = OpndExtensionObject::GetExtensionObject(dstopnd);
30 ext_dstopnd->Init(funcUnit, dst_alias_table);

31 } next_dataflow_dst_opnd;

32 InstrExtensionObject *ext_instr = InstrExtensionObject::GetExtensionObject(instr);

33 ext_instr->Init(funcUnit->Lifetime);

34 } next_instr_in_block;

35 BlockExtensionObject *ext_block = BlockExtensionObject::GetExtensionObject(block);

36 ext_block->Init(funcUnit->Lifetime);

37 } next_block_in_func;

38 }

Figure 2.7: Part of the Phoenix {G) code generated by the AG compiler for the reaching

definitions example

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 29

to new attributes as if they were already in the original £laSonsider the Opnd extend
class (lines 2-13). This adds two attributes to each opeapetand sets namégenand
Kill. As usual, th&senset contains operands that are defined within the block aaithale
immediately after it in the source code.

Thelnit function initializes the values of th@enandKill fields. The two sets are imple-
mented as bit vectors—see Lines 2-5 in Figure 2.7 for theadsiobn ofGen Lines 7-17
show the translation of thiait function. The body ofnit adds destination operands to the
Genset. Similarly, all other destination operands in the biniltestination-opnd-map-to-
alias-tag table (DstAliasTable) that have the same al@asahe operand (i.e., when both
modify the same memory location) are added toKiieset (Lines 7—11).

The Instr and Block extend classes addenandKill sets to each of their classes and
populate these sets with data frddpnd and Instr objects respectively. Lines 26-37 in
Figure 2.7 call the threlit functions (the translation of the other two are not showrgteN
that this function is synthesized completely from how thasads used in the analyzer, not
from explicit code in the AG source.

After collectingGenandKill sets for blocks, the algorithm specifies some details of the
main analysis iteration. At the beginning of the transferction TransFung the iteration
is declared to proceed in the forward direction and returet @8Opndobjects.

The extend classes are based on originalasses. The example in Figure 2.6 shows
that, to refer to fields from the extend class (e.g., Figuée Rine 8, “opnd>Gen”), the
user may use the same notation as for those in the base clgssHigure 2.6, Line 9:
“opnd->AliasTag”). These two references generate veffedent G-+ code (c.f. Fig-
ure 2.7, Lines 11 and 12).

As usual, we assume there are unique entry and exit poirftg ioantrol flow graph for
each block. “In” and “Out” are two built-in data sets relatedhe entry and the exit points
respectively. The definition for TransFunc head declaresytbe of “In” and “Out” sets as
holding operands. These two sets are usually used in theféranction to pass data.

Compose and Meet are the two main functions for defining thestea function. In

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 30

this program, they specify the two groups of dataflow equiatia the standard way [1, Eq.
10.9]:
nBl= [J ouB]

B; a predecessor &
oufB] = ger[B] U (in[Bi] — kill[Bi]).

The first equation is exactly and simply included in the Meeiction (Line 39), which
computes theféect of the exit-point data from predecessors to the entmtmata of the
current block in the iterationin is related to the current block being visited, whieit
is related to the blocl that is passed to theetfunction. By default, the argument for
the Meetfunction is a basic block that represents an arbitrary preskor of the current
block. As shown in Figure 2.7 lines 18-24, the data equasdranslated into bit-vector
manipulations.

The second dataflow equation is included in @@mposdunction (Line 38), which
computes the data transformation globally from the entigtdo the exit point for a single
block. Declared as an argument to themposdunction, variableN is an extended object
of the block by default. Sinc&enandKill are fields that have been added to the Block
class (lines 27 and 28), they can be referred to as memb@éts of

A complete AG program is translated into a€ program that is compiled as a plug-
in phase that can be invoked as part of the Phoenix compilgtiocesses. It initializes
all extended objects first, then executes the forward tsavewhich applies the dataflow
equations to iteratively compute on the blocks following #tructure of the control-flow
graph until theln sets converge for every block. The generated code uses tti@magy

built into the Phoenix framework to do this; an AG user doesarite code for this.

2.2.5 Experimental Results

We tested AG on three analyses: reaching definitions, liviabtes, and uninitialized vari-
ables. We chose these three examples because a hand-weitséon of each, done by

experienced programmers, already existed in Phoenix. \Wipared the size and speed of

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 31

Reaching Live Uninitialized
Definitions Variables Variables
C++ LOC (manual) 791 303 108f
AG LOC (manual) 41 55 94
C++ LOC (generated) 626 519 682
C++ runtime 7.3s 0.8s T
AG runtime 7.4s 3.1s 13.6s

Table 2.3: Experimental results: size and speed of AG-ge@eércode vs. handwritten.
*The manually coded live variable analysis uses hard-coeésfiwhich makes it simpler
at the expense of being far less modular.

TThe manually coded uninitialized variables analysis satie the Phoenix SSA library not

included in this count. This is a veryftirent architecture than the code generated by AG.

the generated code with the manually written version forfifse two examples because,
like our generated code, they use the Traverser class innBho&he manually written
version of uninitialized variables used Phoenix’s staitige-assignment code, which AG
does not take advantage of, so we did not experiment with it.

Table 2.3 shows our results. “LOC” indicates the number addinf code excluding
comments; times are in seconds. We computed the averagenes df these plug-ins by
running compiler with the plug-in, running the compiler mout the plug-in, and subtract-
ing these two running times. The times are thus a little sctdpecause they also include
the time to load and initialize the plug-in itself.

In each test case, thet@ code generated by the AG compiler is more than six times
the size of the AG source. Even better for AG, the manuallytemi code for reaching
definitions is even larger than the generated code. Thatdause the AG library files
include commonly used code and default methods, for exantipée constructor of the
phase.

The manually written live-variables code is smaller tham generated €+ code for

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 32

that analysis, but this is because the manually written cmis not use the (verbose)
Phoenix extend objects.

We ran the generated Phoenix€code on a laptop with a 2.0 GHz Pentium-M proces-
sor running Windows XP. The benchmark is the Phoenix Midtdatermediate Language
reader, which can generate high-level intermediate reptasons for a variety of targets.
It is about five hundred thousand lines of code.

The AG-generated code for the reaching definitions analysis just as fast as the
manually written code on thesi. reader. Unfortunately, the live variable analysis coderun
about one-fourth as quickly, but there is a good reason fer the manually written €+
version does not use the Phoenix object-extension faditistead, it simply recomputes the
desired data every time it traverses a block. Thus, the sgiedence here more illustrates
the cost of using extension objects instead a more brutefapproach. Evidently in this
example, the computation is cheap enough so that repeatindeiss costly than saving
and recovering it later. We include the runtime for the AGeat uninitialized variables,
but do not give a time for the manually written code becausses a completely flerent

algorithm.

2.2.6 Related Work

The theory of dataflow analysis is well-studied. Kildall [38as one of the first to propose
a unified lattice-based framework for global program analyisater, Kam and Ullman [50]
addressed the iterative approach and made the theory muoceste.

Wilhelm [75] notes that there are many generic theories &aftow analysis, but few
tools are built on these theories and even fewer are widalgmed. One big reason is
the lack of a standard mid-level program representationeXgect the Phoenix compiler
framework to address this problem, at least for objectrbei@ imperative languages. An-
other reason for the lack of tools is their complexity. Thiae focus of our work is to
provide a simple language and tool for writing dataflow asasy

Tjiang’s Sharlit [72] is a tool for building iterative datefll analyzers and optimizers.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 33

It is built on thesuir [76] generic compiler construction framework. Howevera@ih did

not introduce a new language. It uses+«and provides some APIs, much like the Phoenix
environment, and its focus was mostly on ifBa@ency, not its simplicity. While it makes
an implementation of an analysis much more modular, it ramdificult to use.

A few tools require an explicit definition of the lattice usadiataflow analysis. Exam-
ples include Alt and Martin'sac [2], Venkatesh and Fischerssare [74], and the flexible
architecture presented by Dwyer and Clarke [28]c B well-known and has been used
in industry. There are many similarities between AG akxd both use basic blocks and
unchanged-pre-condition checking to improve the speetefienerated analyzer. Both
provide a “set” data type. Unlike AGac requires the user to specify the lattice used dur-
ing analysis, which provides more optimization choicds Widening and narrowing, and
makes it easier to verify the algorithm’s correctness, histinakesac descriptions larger
and more complex.

Some tools specifically address interprocedural analgsish as Yi and Harrison’s
auto-generation work [77]. We focus only on intraprocetaralysis, although many of

our ideas should carry over to inter-procedural problems.

2.2.7 Conclusions

To illustrate the advantage of DSLs for programming in sfi@diomains, we presented a
DSL, AG, for writing dataflow analysis phases in Microsoffkoenix framework, whose
succinct syntax greatly decreases the implementationie se as well as the workload
of dataflow algorithm designers. Experimental results sti@vmanually written AG code
can be less than one-tenth the size of the equivalent mgnuatten C++ with similar
performance. A key enabler for the simplicity of AG code ssntechanism for extending
existing IR classes, which makes it possible to extendiegisiasses without recompiling
them and allows user-level code to access these fields &g @&asypical ones.

As a small, domain-specific language, AG has some weaknddgamizing verbosity

was our focus, and we did so at the loss of some flexibility. Mbet obvious is that the user

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 34

is forced to use the iterative analysis framework, evendghd@hoenix has other options,
such as lattice and static single-assignment frameworkBodgh AG has some high-level
types such as sets and maps, its type system is limited aschdbsupport strings, arrays,
arbitrary iterators, and so forth.

AG is also currently limited to analyses running on the mediavel intermediate rep-
resentation (MIR), although it could be extended to handierst Furthermore, AG pro-
grams currently only handle user-defined variables; theynmaplicit temporary variables
in the MIR are currently ignored. For example, the C statdroarihe left is dismantled as

shown on the right. AG code currently ignores the tempotary

tl =y + 3;
X=y + 3; —>
x = tl;

As with many domain-specific languages, debugging AG is sdmé problematic.
While we provide a print statement, AG does not have a dedlacd¢bugger, IDE, or any
of the other now-standard features in a development envieoih. All these could be added,
but not without a fair amount of work.

Partial evaluation may be added to improve the®ncy of the generated AG program.
Since AG takes an iterative framework, the dataflow analydigerminate sooner if the
relaxation process is quick. An online partial evaluatioattanalyzes the relaxation condi-
tion in the AG program may help. Instead of iterating on e\dock in an arbitrary order,
the evaluator can arrange the blocks in a descending ordemofast the output converges.
This should speedup the iterative analysis.

AG is constructed as a translator, so in theory most weaksessuld be fixed by ex-
tending AG, provided the new features were supported by fhoé could be extended,
say, to describe region-based dataflow analyses, or toidesptimizations. But it is dif-
ficult to say at what point AG would cease to be a domain-spelifiguage and balloon
into C++. This is also a general issue for DSLs.

Nevertheless, we believe that a factor of six in code-sigeigion justifies the extra

challenges in using a small language.

CHAPTER 2. DOMAIN SPECIFIC LANGUAGES 35
2.3 Summary

We reviewed some domain specific languages in this chagigecally deterministic, con-
current and modular languages. In order to address a varietgncerns, DSLs, even if
designed for the same problem domain, may be built on fund&aite different models.
Their radically diterent features present particular challenges to their gerapThe com-
parison of Esterel, SHIM and Bluespec illustrates thtedences.

Compared to a general-purpose language, a DSL usually hptesisyntax that is less
flexible but more succinct and reliable for coding. Optindifer its specific model, a DSL
compiler may generate veryieient code.

This chapter prepares readers with background knowled@sak. The comparison
between DSLs and GPLs explains that, because of the sinypitnsbut special computa-
tional models of DSLs, partial evaluation may wolikegtively on DSLs as well. In addi-
tion, the comparison of fierent concurrent, deterministic DSLs illustrates thatspzed

PE techniques are required to solve various challengegbtduy specific models.

Chapter 3 36

Chapter 3

Partial Evaluation for Removing

Concurrency

Generally, concurrency in embedded systems is facilitayegbal-time operating systems.
Such concurrency can be unpredictable arfiladilt to debug since the operating system
does the scheduling. Synchronous concurrency on the odrat, in which a system
marches in lockstep to a global clock, is conceptually easid potentially morefécient
because it can be statically scheduled. The synchronogsdge Esterel provides paral-
lel constructs to define such systems. However, simulaginglgonous concurrency on a
single-threaded processor can be very expensive becawssdtohing overhead between
threads.

In this chapter, we introduce a partial evaluation algonitb minimize switching over-
head in Esterel. Our algorithm removes most of this overlagmblgeneratesfiecient se-
guential code from synchronous concurrent specificatiGingen a concurrent program de-
pendence graph generated from an Esterel program, we sedjzerthe concurrent code
by adding a minimal amount of run-time scheduling code. hthright language and a
specialized PE technique, it becomes possible to simutateucrent programsficiently.
This work originally appeared in the proceedings of LCTESG042[79].

This algorithm demonstrates that a specialized PE teckremables aggressive opti-

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 37

mization, especially for a synchronous model.

The chapter is organized as follows. We first introduce thedlehge of scheduling
concurrent programs, then provide a modified definition @il important properties
of the program dependence graph, which is the represemtasied to specify computa-
tion. We then present the algorithm in detail, including phiecess of restructuring and
code generation. Finally, we compare our results with egdechniques. We find partial

evaluation can generate code that runs as much as six tisgtes fa

3.1 Scheduling a Concurrent Program

Embedded software is often conveniently described asatmlies of concurrently running
processes and implemented using a real-time operatingBY&RTOS). While the function-
ality provided by an RTOS is very flexible, the overhead inediby such a general-purpose
mechanism can be substantial. Furthermore, the intergsag@nmunication mechanisms
provided by most RTOSes can easily become unwieldy andydasitl to unpredictable
behavior that is dficult to reproduce and hence debug. The behavior and penfoenat
concurrent software implemented this way iffidult to guarantee.

The synchronous languages [7] provide an alternative byigiray deterministic, timing-
predictable concurrency through the notion of a globalkcl@oncurrently running threads
within a synchronous program execute in lockstep, syndhealto a global, often periodic,
clock.

The model of time used within the synchronous languagesédrepi be identical to
that used in synchronous digital logic, making the syncbuslanguages perfect for mod-
eling digital hardware. Hence, executing synchronousuaggs #iciently also improves
the simulation of hardware systems.

Unfortunately, implementing such languagdBogently is not straightforward since
the detailed, instruction-level synchronization iffidult to implement &iciently with an

RTOS. Instead, successful techniques “compile away” tmewwency through a variety

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 38

of mechanisms ranging from building automata to staticaligrleaving code [31].

In this chapter, we present a technique for compiling suclyfisynchronized con-
current specifications that produces vefiyagent code. While we implemented this tech-
nique in the Columbia Esterel Compiler (CEC), our proposed dlguarstarts from the
well-known program dependence graph (PDG) represent@@idnIn principle, then, this
technique is applicable to a variety of imperative, segaél@nguages with concurrency.

We chose the synchronous Esterel [11] for a number of rease:i€ommunication
can be analyzed statically—the absence of aliasing makessible to statically identify
all possible inter-thread communication pathways. Itgmfiow is acyclic and therefore
easy to analyze. Also, itis a challenging language to canf@cause of its mix of concur-
rency and control flow. Existing techniques for compilingéfel grapple with scheduling
overhead, but our use of the PDG representation allowsléeétasstruction scheduling that
effectively reduces overhead.

CEC first performs a syntax-directed translation of an Ekprmgram into an acyclic
control-flow graph with data dependence information. Intleenverts this into a PDG
using a slight modification of the algorithm due to Cytron et[aF] to handle Esterel’s
concurrent constructs.

We present a novel algorithm that restructures a prograrardgnce graph with arbi-
trary acyclic data dependencies into one that has a dirtslation into sequential code.
Unlike a PDG generated from purely sequential code, it itusatally possible to trans-
late the PDG produced from Esterel directly into sequecbale because communication
patterns in the Esterel program may force concurrently ingnthreads to be interleaved.
This can be solved by either duplicating code, a potent@iltly operation that may pro-
duce an exponential increase in code size, or by insertidgiadal guard variables and
predicates. We take the second approach, using heuristat®bse where to cut the PDG
and introduce predicates, and produce a semantically @guivPDG that does have a
simple sequential representation. We use a modified veddi®mons and Ferrante’s al-

gorithm [67] to produce a sequential control-flow graph frims restructured PDG and

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 39

procedure Main
Clear the visited set
PriorityDFS(root node o)
Clear the schedule and visited set
ScheduleDFS(root node &)
Restructure()
Fuse guard variables

Generate sequential code fram

Figure 3.1: The Main procedure. The input of this procedsra program dependence
graphG. And the output is a segment of sequential co@é.represents the graph after

restructuring.

finally generate sequential C code from it.

Our algorithm works in three phases (see Figure 3.1). Musicompute a schedule—a
total order of all the nodes in the PDG (Section 3.2.1). Thaxedure is exact in the sense
that it always produces a correct result, but heuristic éstnse that it may not produce an
optimal result. Second, we use this schedule to guide a guoedor restructuring the PDG
that slices away parts of the PDG, moves them elsewherenaads assignments and tests
of guard variables to preserve the semantics of the PDGi(fBe812.2). Finally, we use
a slightly enhanced version of the sequentializing alparidue to Simons and Ferrante
to produce a control-flow graph (Section 3.2.3). Unlike Saisiand Ferrante’s algorithm,
our sequentializing algorithm always completes becausthefrestructuring phase. In
Section 3.3, we present experimental results showingéblstique can produce code that

runs as much as thirty times faster than others.

3.1.1 The Program Dependence Graph

We specify computation using a variant of Ferrante, Otenstnd Warren’s [37] program

dependence graph. The PDG for a program is a directed grapeemodes represent

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 40

statements and whose arcs represent the partial orderinggastatements that must be
followed to preserve the program’s semantics. In some séms®DG removes the maxi-
mum number of dependencies among statements without clwatigi program’s meaning.

A PDG is a rooted, directed acyclic gragh= (S,P, F,r,c, D), whereS, P, andF are
disjoint sets of statement, predicate, and fork nodes. thegethese form the set of all
nodes in the grap/ = SU P U F. r € V is the distinguished root node.: V —» V*is a
function that returns the vector of control successors &henode (i.e., they are ordered).
Each node may have affrent number of successors. Without special clarificatios,
term successor is referred to control successor in thisosedd c V x V is a set of data
arcs. Ifc(vq) = (v, V3, V4), then nodey; can pass control t@,, vz, andv,s. The set of control
arcs can be defined &= {(mn) : ¢c(m) = (...,n,...)}; i.e., (mn) is a control arc in is
some element of the vectofm). If a data arcin, n) € D, thenmcan pass data to node

The semantics of the graph relies mostly on the node typedatdrsent nods € S
is the simplest: it represents a computation with a sidlece (e.g., assigning a value to
a variable) and has no outgoing control arcs. A predicateemqmd P also represents a
computation but has outgoing control arcs. When executetedigate arc passes control
to exactly one of its control successors depending on theoo of the computation it
represents. A fork nodé € F does not represent computation; instead it merely passes
control to all of its control successors. We call them forlde® to emphasize that they
represent concurrency; other authors call them “regioresgcalthough they mean the
same thing.

In addition to being rooted and acyclic, the structure ofdinected graph\{, C) satisfies
two important constraints.

The predicate least common ancestor rule (PLCA) requirdsfdihany noden € V
with two different control paths to it from the root, the least common siocgLCA) of
any pair of distinct predecessorsrois a predicate node.LBa ensures that there is at most
one active path to any node. If the LCA node was a fork, contvalat conceivably follow

two paths ton, implying multiple executions of the same node, somethimgexplicitly

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 41

Figure 3.2: A program dependence graph requiring intemgavDiamonds are predicate
nodes, triangles are forks, and rectangles are staten@aiid lines are control arcs; dashed

lines are data.

wish to prohibit.

The no-post-dominance rule: rifis a descendant of a nodg then there is some path
from mto some statement node that does not inclad&he rule holds because we insist
that the PDG has eliminated unnecessary control depereteasiong nodes. Otherwise,

m andn would have been placed under a common fork.

3.2 Restructuring and Generating Code

3.2.1 Scheduling

Building a sequential control-flow graph from a program dejgsite graph requires or-
dering the concurrently running nodes in the PDG. In paldicihe children of each fork
node are semantically concurrent but must be executed ie sequential order. The main

challenge is dealing with cases where data dependenciesgachddren of a fork force

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 42

procedure PriorityDFSf)
if nhas not been visitetthen

addn to the visited set

for each control successas of ndo
PriorityDFS(@S)
Aln] = Aln] U Al 9|

for each control successas of ndo
ComputeSuccPriority(s)

if n has any incoming or outgoing data athen
addnto An]

Figure 3.3: Successor Priority Assignment. For each mpdiee arrayA holds the set of

control descendants of(includingn itself) that have any incoming or outgoing data arcs.

their execution to be interleaved.

Figure 3.2 shows a PDG that illustrates the challenge. gtaph, data dependencies
require n3 to be executed after n2 and n7 to be executed 4ftdihus, the two subgraphs
under node n0 cannot be executed one after the other; theybmusterleaved. The gen-
erated code must ensure nodes n2, n3, n4, and n7 executd ordea This example is
fairly straightforward, but such interleaving can becoreeyxcomplicated in large graphs
with lots of data dependencies and reconverging control $legh as that at node n10.

Duplicating certain nodes in the PDG of Figure 3.2 could pieda semantically equiv-
alent graph with no interleaving but it also could cause gmoaential increase in graph
size. Instead, we restructure the graph and add predideéesest guard variables. Un-
like node duplication, this introduces extra runtime oeath, but it produces much more
compact code.

Our approach inserts guard-variable assignments anddasésl on cuts implied by a
topological ordering of the nodes in a PDG. A cut represestgitch from an incompletely

scheduled child of a fork to another child of the same forkdiVides the nodes under a

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 43

branch of a fork into two or more subgraphs.

To minimize the runtime overhead introduced by this techejgve try to add few guard
variables by making as few cuts as possible. Ferrante, MackeSimons [36] showed that
to find the minimum number of cuts is an NP-complete problenys attempt to solve it
cheaply with heuristics.

We first compute a schedule for the PDG and then follow thigdale to find cuts
where interleavings occur. We use a heuristic to choose d gctedule, i.e., one implying
few cuts, that tries to choose a good order in which to visthaaode’s control successors.
We identify the cuts while restructuring the graph.

To improve the quality of the generated cuts, we use the $tualgorithm in Fig-
ure 3.3 to influence the scheduling algorithm. It computesrder for control successors
of each node that thers-based scheduling procedure in Figure 3.5 uses to visiethes-
Cessors.

We assign each control successor a priority vector of thresgers p,, p», p3) com-
puted using the procedure described below, and later kissgticcessors in descending pri-
ority order while constructing the schedule. We totallyasrgriority vectors: p1, p2, p3) >
(Qu, O, O3) if p1 > g1, Or p1 = 0 andp, > Gy, OF if Pr = G, P2 = O, andps > 0. For each
noden, the A array holds the set of control descendants ¢hcludingn itself) that have
any incoming or outgoing data arcs.

The first priority number of;, theith subgraph under a node counts the number of
incoming data dependencies (Figure 3.4). Specifically ihe number of incoming data
arcs from any other subgraphs also under nottes minus the number of outgoing data
arcs to other subgraphs under

The second priority number counts the number of elements“fiass through” the
subgraphs. Specifically, it decreases by one for each incoming dasfaoen a subgraph
sj to a node ins with a nodem that is a descendant sf that has an outgoing data arc to
another subgrap§ (j # i andk # i, butk may equal)).

The third priority counts incoming and outgoing data arcsnaxted to any nodes in

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY

procedure ComputeSuccPriority(s)
(&, b,c) = (0,0,0) {initialize prioritieg
if shas neither incoming nor outgoing data atosn
a = minimum priority number
return
for each j € A[s] do
x=0,y=0
for each data predecess@rof j do
if there is a path from ~» p then
increasea by 1
if there is not a pats~» pthen
increaseéb by 1
increasec by 1
for each data successormof j do
if there is a patim ~ i then
decreasa by 1
decrease by 1
if x# Othen
for eachk € A[j] do
for each data successon of k do
if n~> mbut nots~> mthen
increasey by 1
decreasé by x -y
set the priority vector o§to (a, b,)

Figure 3.4: Priority Computation

44

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 45

procedure ScheduleDFSX)
if nhas not been visitetthen
addn to the visited set
for eachctrl. succ.i of nin descending prioritglo
ScheduleDFS)
for each data successorf n do
ScheduleDFS)

insertn at the beginning of the schedule
Figure 3.5: The Scheduling Procedure

sibling subgraphs. It is the total number of incoming data aninus the number of outgo-
ing data arcs.

Finally, a node without any data arc entering or leaving ésagndants is assigned a
minimum first priority number. Very likely, this kind of nod¥oes not need be involved in
any interleaving. By assigning a minimum priority to it, wg to schedule the node to run
as early as possible and therefore to minimize the cost opasgible interleaving.

The priority vector is meaningful only between a node ana@atstrol successors. For
a nodes that has multi-predecessors, its priority vector can Ifkeiint considering each
predecessor.

Under these definitions, the priority of the left successaodar nO in Figure 3.2 is
(0,-1,0), and that the right successor is@0). Arcs from n2 to n3 and from n4 to n7 both
affect the first priority number, but theiffects cancel out. The path ,R2 n3— n4 — n7
affects the second priority number of the left branch. Undedetinitions, the right branch
has highest priority and will be visited first during the defitst search used for scheduling.

Similarly, node n9 will be visited before n7 because the firgdrity number of n7 is
smaller due to the data arc n¥9 n11. Finally, n5 will be visited after n4 because n5 has
minimum priority.

The scheduling algorithm (Figure 3.5) uses a depth firstbaartopologically sort the

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 46

1: procedure Restructure
2. Clear the currently active branch of each fork
Clear master-copy and latest-copyl) for each node

3
4: for eachnin scheduled order starting at the rafut

5: D = DuplicationSet()

6: for eachnoded in D do

7 DuplicateNoded)

8: for eachnoded in D do

9: ConnectPredecessa}(

Figure 3.6: The Restructure procedure.

nodes in the PDG. The control successors of each node atedvisiorder from highest
to lowest priority (assigned by Figure 3.3). Ties are bro&sbitrarily, and data successors
are visited in an arbitrary order. The label on each nodeguré 3.2 indicates its position

in the schedule: nl is first, followed by n2, n3.

3.2.2 Restructuring the PDG

The scheduling algorithm presented in the previous settitadly orders all the nodes in
the PDG. Data dependencies often force the execution ofrapbg under fork nodes to
be interleaved (control dependencies cannot directlyaadaterleaving because of the
PLCA rule). The algorithm described in this section resuies the PDG by inserting
guard variables (specifically, assignments to and testsiafdgvariables) according to the
schedule to produce a PDG where the subgraphs under forls mpel@ever interleaved.

The restructuring algorithm does two things: it identifidsan a subgraph must be cut
away from an existing subgraph according to the scheduleeatthches the cut subgraphs
to nodes that test guard variables to ensure the behavibe®DG is preserved.

The Restructure procedure (Figure 3.6) steps through thesnimdscheduled order,

adding a minimal number of nodes to the graph under consgiruttiat ensures each node

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 47

in the schedule can be executed without interleaving theugian of subgraphs under any
fork. It does this in three phases for each node. First, IsdlplicationSet (Figure 3.7,
called from line 5 in Figure 3.6) to establish which nodes trhes duplicated in order
to reconstruct the control flow to the node The boundary between the detand the
existing graph can be thought of as a cut. Second, it calldi€aipNode (Figure 3.8,
called from line 7 of Figure 3.6) on each of these nodes totereaw predicate nodes
that reconstruct control using a previously cached redulh@ predicate test. Finally, it
calls ConnectPredecessors (Figure 3.9, called from line Bignire 3.6) to connect the
predecessors of each of the nodes in the duplication sethviléidentally includes, the
node being synthesized.

The main loop in Restructure (lines 4-9) maintains two iraas. First, each fork
maintains its currently active branch, i.e., the successavhose subgraph a node was
most recently added. This information, tested in line 10 igluFe 3.7 and modified in
line 7 of Figure 3.9, is used to determine whether a node cadbed to an existing part
of the new graph or whether the paths leading to it must bégtlgnteconstructed to avoid
introducing interleaving.

The second invariant is that the latest-copy array holdsgéxrh node that appears
earlier in the schedule, the most recent copy of each nodeod&mcan use these latest-
copy nodes if they do not come from forks whose active bramdschot lead to.

The DuplicationSet function (Figure 3.7) determines tHagsaph of nodes whose con-
trol flow must be reconstructed to execute the nodé is a depth-first search that starts
at the noden and works backward to the root. Since the PDG is rooted, alesaon the
PDG have a path to the root node and therefore Duplicatidgtvéserses all nodes that are
along any path from the root to

A noden becomes part of the duplication detunder three circumstances. The first
case, tested in line 10, occurs when the immediate predacpss n is a fork butn is
not the currently active branch of the fork. This indicatesttto execut& would require

interleaving because the PLCA rule tells us that there cadmmatpath ta from p through

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 48

1: function DuplicationSetf()
2. D={n}

3: Clear the visited set

4: DuplicationVisit(n)

5. return D

(o2}

. function DuplicationVisit(n)

7: if nhas not been visiteghen

8: Mark n as visited
9: for each predecessop of ndo
10: if pisafork andp — nis not currently activéhen
11: Includenin D
12: if latest-copyp) is undefinedhen
13: Includenin D
14: if DuplicationVisit(p) then
15: Includenin D

16: return trueifne D

Figure 3.7: The DuplicationSet function. A node is in the lthgiion set if it is along a

path from a fork node that leads mdout whose active branch does not.

the currently active branch undpr

The second case, tested in line 12, occurs when the lategioé@node is undefined.
This occurs when a node is duplicated but its successor is Tiw¢ latest-copy array is
cleared in lines 18—20 of Figure 3.8 when a node is copiedi®guiccessors are not.

The final case, line 14, occurs when anynisf predecessors are also in the duplication
set.

As aresult, every node in the duplication Beis along some path that leads from a fork
nodef to n that goes through a non-active branchfobr leads from a node that has not

been copied “recently.” These are exactly the nodes that beuduplicated to reconstruct

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 49

all paths ton.

Once the DuplicationSet function has determined which sadest be duplicated to
reconstruct the control paths to nadehe DuplicateNode procedure (Figure 3.8) actually
makes the copies. Duplicating statement or fork nodesvigkiiline 3): the node is copied
directly and the latest-copy array is updated (line 21) flecethe fact that this new copy
is the most recent version aof something that is later used in ConnectPredecessors. Note
that statement nodes are only ever duplicated once, whgm@ppear in the schedule. Fork
nodes may be duplicated multiple times.

The main complexity in DuplicateNode comes whreis a predicate (lines 5-17). The
first time a predicate is duplicated (i.e., the first time pears in the schedule), the master-
copy array entry for it is undefined (it was cleared at the he@gg of Restructure—line 3
of Figure 3.6), the node is copied directly, and this copyeisorded in the master-copy
array (lines 6-7).

After the first time a predicate is duplicated, its duplicstactually a predicate node
that testsy,, a variable that stores the decision made at the predigéitee 9). There is just
one special case: the second time a predicate is copied (enthe second time—we do
not want to add these assignments more than once), assignod®s are added under the
first copy (i.e., the master-copy aofin the new graph) that save the result of the predicate
in thev, variable. This is done in lines 11-13.

An invariant of the DuplicateNode procedure is that evametia predicate node is du-
plicated, the duplicate version of it has a new fork nodegdiaender each of its successors
(line 17). While these are often redundant and can be remdked,are useful as an an-
chor point for the nodes that cache the results of the prederad in the uncommon (but
not impossible) case that the successor of a predicatetisfgae duplicate set but that the
predicate is not.

Once DuplicateNode runs, all nodes needed tomare in place but unconnected.
The ConnectPredecessors procedure (Figure 3.9) connests duplicated nodes to the

appropriate nodes.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 50

1: procedure DuplicateNodef)
2: if nis afork or a statemenhen
3: Create a new copy of n

4: else{nis a predicatp

5: if master-copy) is undefinedhen {making first copy
6: Create a new copy of n
7 master-copyf) = n’
8: else{making second or later copy
o: Create a new node that testsy,
10: if master-copyf) = latest-copyf) then {second copy
11: for i = 0 to (the number of successorsm)f— 1 do
12: Create a new statement nagleassigningv, = i
13: Attacha’ to theith successor of master-copy(
14: for each successof’ of master-copyf) do
15: Finda, the assignment tg, underf’
16: Add a data-dependence arc framo n’
17: Attach a new fork node under each successar of

18: for eachsuccessos of n do
19: if sisnotinD then
20: Set latest-copyd) to undefined

21: latest-copy)) = n’

Figure 3.8: The DuplicateNode procedure. This makes edherxact copy of a node or

tests cached control-flow information to create a node niagain

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 51

1: procedure ConnectPredecessany(

2. Letn’ = latest-copyf)

3: for eachpredecessaop of ndo

4: Let p’ = latest-copyp)

5: if pis a forkthen

6: Add a new success@ — n’

7: Mark p — nas the active branch gfo

8: else{pis a predicatp

9: for eacharc of the formp — ndo
10: Let f’ be the corresponding fork undpt
11: Add a successof’ — n’

Figure 3.9: The ConnectPredecessors procedure. This dsnevary predecessor of
appropriately, possibly using nodes that were just dufditaAs a side fect, it remembers

the active branch of each fork.
For each nod@, ConnectPredecessors adds arcs from its predecessqr)a.enost

recent copies of each. The only minor trick occurs when tleglgeessor is a predicate
(lines 9-11). First, DuplicateNode guarantees (line 17igtife 3.8) that every successor
of a predicate is a fork node, so ConnectPredecessors gctaealhects the node to this
fork, not the predicate itself. Second, it can occur thanglsinode can have a particular
predicate node appear two or more times among its predeses$beforeachloop in
lines 9—11 connects all of these explicitly.

Running this procedure on Figure 3.2 produces the graph ur&810. The procedure
copies nodes n1-n5. At this point, rR® n3 is the active branch under n0, which is not
on the path to n6, so a cut is necessary. DuplicationSetn®tad, ng, so nl will be
duplicated. This causes DuplicateNode to create the twigrasents to v1 under nl1 and
the test of vl. ConnectPredecessors then connects the res¥ vdsto nO and n6 to the
test of v1. Finally, the algorithm just copies nodes n7—mit8 the new graph.

Figure 3.11 illustrates the operation of the procedure oroeernomplicated example.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 52

Figure 3.10: The restructured PDG from Figure 3.2. This gamnly adds the single
guard variable v1. Some unary fork nodes generated by Rasteutave been omitted for

clarity.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 53

(d) (e)
Figure 3.11: (a) A complex example. (b) After adding nodesn® (c) After adding n9,
(d) n10, and (e) n11.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 54

The PDG in (a) has some bizarre control dependencies tha the nodes to be executed
in the order shown. The dizzying number of forced interleggigenerates a fairly complex
final result, shown in Figure 3.11e.

The algorithm behaves simply for nodes n0—n8. The state a®tdas been added is
shown in (b).

Adding n9, however, is challenging. DuplicationSet resmd, n6, n3 because n8 is
the active node under n4, so DuplicateNode copies n9, masesoad copy of n6 (labeled
ng), creates a new test of v5, and adds the assignments to vb nbdie fork under the
“0” branch from n5 has been omitted for clarity). Adding nPiedecessors is easy: it is
just the new copy of n6, but adding n6’s predecessors is nmrglkcated. In the original
graph, n6 is connected to n3 and n5, but only n5 was duplicated6 is connected to v5
and to a fork & the copy of n3.

Figure 3.11d adds n10, which is simple because although m3theactive branch
under n1, n10 only has it as a predecessor.

Finally, (e) shows the addition of n11, completing the grapluplicationSet returns
{n11, n6, n3, so n3 is duplicated and assignment nodes to v3 are addedn,Adais
duplicated to become H6but this time n3 was duplicated.

An unfortunate choice of schedule clearly illustrates teedfor guard variable fusion.
Consider the correct but non-optimal schedule n0, n1, n2n®6n3, n4, n5, n7, n8, n10,
nll, n12, n13forthe PDG in Figure 3.2. Figure 3.12 depicHiect of so many cuts. The
main waste is the cascade of conditionals along the riglet sidhe graph (predicates on
vl, v6, and v9). For ficiency, we replace such predicate cascades with single-vajt
conditionals.

Figure 3.13 illustrates theffect of fusing guard variables. The predicate cascade has
been replaced by a single multi-way branch that tests trelfgaard variable v169 (formed
by fusing predicates v1, v6, and v9). Similarly, group assignts to these variables are
fused, resulting in three single assignments to v169 idstédhree group concurrent as-

signments to v1, v6, and v9.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 55

no

Figure 3.12: The reconstructed PDG from Figure 3.2 indugeal dhfferent schedule.

3.2.3 Generating Sequential Code

After the restructuring procedure described above, the D@ a state where the sub-
graphs under each fork node can be executed in a particdlar. drhis order is non-obvious
when there is reconvergence in the graph, and appears tathe tooccompute. Fortunately,
Simons and Ferrante [67] developed the external edge ecom@EEC) as anféicient way
to compute this ordering. Basically, the nodes in apafe executed whenever any node in
the subgraph underis executed.

In what follows, X < Y denotes5(X) must be scheduled befo&Y); X > Y denotes
G(X) must be scheduled aft&(Y); Y ~ X denotes any order is acceptablez X denotes
no order is acceptable. Her&(n) represents and all its control descendants, i.e., all

nodes im’s subgraph.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 56

Figure 3.13: The PDG of Figure 3.12 after guard variablediusi

We reconstruct the graph by ordering fork successors. GheiEC information, we
use the rules in Steensgaard’s decision table [68] to oralies pf fork successors. When
the table says any order is acceptable, we order the sucséssed on data dependencies.
However, if, say, the EEC table sa@X) must be scheduled befof&Y), yet the data
dependencies indicates the opposite order, the data depaed win and two additional
nodes are inserted, one that sets a guard variable and thetb#t tests it. Figure 3.14
illustrates the procedure.

In Figure 3.10, data dependency forces #1110, but the external edge condition could
require n10> n11 if there were a control arc from a descendant of n11 to eethesnt of
nl1o0 (i.e., if there were more nodes under n10). In this cab@;xn11, so our algorithm
will cut the graph at n11 and add a guard there.

This produces a sequential control-flow graph for the cameuiprogram. We generate

structured C code from it using the algorithm described iw&ds [30].

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY

procedure OrderSuccessorS)
for eachnoden do
if nis a fork nodethen
original-successors control successors of
clear the control successorsrof
for each X in original-successordo
for each control successor of ndo
if X~ Y then
if A(m,n) € D, me G(X),n € G(Y) then
insertX beforeY in n's successors
else ifY < X then
if A(m,n) € D, me G(Y), n € G(X) then
CutY
insertX beforeY in n's successors
else ifY > X then
if A(m,n) € D, me G(X),n € G(Y) then
CutX
else
insertX beforeY in n's successors
elseifY # Xthen
if A(m,n) € D, me G(X),n € G(Y) then
CutY and inseriX beforeY in n’s successors
else
CutX
if X was not insertethen

appendX to the end of's successors

Figure 3.14: The successor ordering procedure

57

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 58

Example Lines Average cycle times
Esterel V5 Lists PDG

atds-100 948 45s 7.7s 1.3s
tcint 687 11s 2.8s 2.4s
multi6 113 10s 2.3s 1.4s
multi8 62 1.1s 1.7s 0.63s
greycounter 82 6.0s 3.9s 0.94s
abcd 111 52s 15s 1.7s

Table 3.1: Experimental Results
3.3 Experimental Results

We compared the speed of the code generated by our techoidjugt from the stock Es-
terel V5 compiler, which translates the Esterel program atogic circuit and generates
a program that simulates it; and the other C code generatbei€olumbia Esterel Com-
piler (CEC), which produces statically scheduled discretmtlike code dispatched by
multiple linked lists [34].

To obtain the average cycle times shown in Table 3.1, we rargémerated C code
from all three compilers (compiled with ge©3) for 10 million cycles on a 2.5 GHz Intel
Pentium 4 running Linux. Most examples are fairly small, ot and atds-100 (both bus

controllers) are reasonably large and, we believe, ilis& of our technique.

3.4 Related Work

Many techniques to compile Esterel have been proposedgithim language’s twenty-
year history. Berry and Cosserat [10] were the first. They tad@d each program into
a flat automaton by directly interpreting the operationahaetics of the language. This
technique was fairly time-consuming, but producditceent code at the expense of size:

the generated code may be exponentially larger than theesouomaking it impractical for

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 59

all but the smallest programs.

Next, Gonthier, as part of his thesis [41], devised a mdiieient way to generate the
automaton by simulating a control-flow-graph-like repreagon known as:. This formed
the basis for the successful V3 compiler [11], but did notgnatie the exponential code size
problem.

The V5 generation of Esterel compilers [8] translated Esterograms into circuits,
topologically sorted the gates, then generated simple fardeach gate. While this tech-
nique scales much better than the automaton compilerse go at a great cost in speed.
The fundamental problem is that the program must execute tmdevery statement in
every cycle, even for statements that are not currentlyecti

Further progress in code generation came in 1999, when EdW}29] and a group at
France Telecom [12] independently developed two techsido@t produced much faster
code that was roughly the same size as that from the cirasid compilers. The tech-
niques we describe here are direct descendants of thes@prmezhes.

Potop-Butucaru [63], as part of his 2002 PhD thesis [62], lb@exl a much-improved
version of the circuit-based code generation techniqusgrporating a number of very
clever optimizations to improve the quality of the genedatede.

Ferrante and Mace [36] were the first to propose an algoritrrgénerating sequential
code from an acyclic PDG, but their technique only works whemode duplication (or
equivalently, the addition of predicates) is necessary.

Later, Simons and Ferrante [67] presentedféicient algorithm for generating sequen-
tial code from an acyclic PDG. Their major contribution isatinique for computing “ex-
ternal edge” information for each node and using this dutirgsynthesis procedure. The
input to their algorithm is limited to a graph with only cooltdependencies; they assume
data dependencies have somehow been incorporated intorttrelaependencies.

Building on Simons and Ferrante’s work, Steensgaard [68buexh the requirement
that the control dependencies in the PDG be acyclic, theabying loops in the gener-

ated code (earlier work assumed that loops had somehow ésmved), but still assumed

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 60

that the generated code did not require either node dujolicat the insertion of additional
predicates. We have not integrated Steensgaard’s cydckng®ns because they were un-
necessary in our application.

Our technigue extends Simons and Ferrante’s in two wayst, Rire propose a cut-
ting algorithm that restructures the PDG and inserts aatthli predicate nodes before it
is passed to Simons and Ferrante’s basic algorithm, makiwgrk for all valid acyclic
PDGs. Second, we consider data dependencies to genenaetoade for all valid PDGs.

Nacul and Givargis recently presented a code partitior@ngriique [59] for sequential-
izing multitasking C programs. The compiler first groupslilasic blocks of task functions
into disjoint clusters, then adds preempting and resunthgree code for switching among
these clusters. Although their general approach is sintolaurs, the specific synchronous
model our technique applies to provides us opportunitiegygressively reorder the code,
which could not have happened on general C programs.

Our procedure resembles Edwards’ technique for Esterél BOwever, our use of a
PDG representation instead of Edwards’ concurrent cofitel graph makes it possible to
rearrange independent statements among concurrent pescasd further reduce context-

switching overhead.

3.5 Summary

To demonstrate the potential of partial evaluation to o@&TDSL programs, we have
presented a PE algorithm that producé$cent sequential code from acyclic program
dependence graphs generated from synchronous programgddaique, which consists
of a heuristic scheduler followed by an exact restructugrgcedure, produces sequential
code while inserting a minimal number of guard assignmentstasts, leading to faster
execution with fairly low overhead when compared to exgtimechanisms.
Experimentally, we have shown that this algorithm produstisient code when ap-

plied to the synchronous, concurrent language Esterel.

CHAPTER 3. PARTIAL EVALUATION FOR REMOVING CONCURRENCY 61

Although this partial evaluation technique was applieccgpally to Esterel, it should

be applicable to other synchronous, concurrent languages.

Chapter 4 62

Chapter 4

Partial Evaluation for Separate

Compilation

Synchronous models are useful for designing real-time eiadx systems because they
provide timing control and deterministic concurrency. Aslgronous system is composed
of modules that communicate with each other and march intstepglobal clock. How-
ever, problems arise when there are communication dependgoles among modules. It
is difficult to compile and simulate in isolation a module involvedycles, since only par-
tial input information is available for it. Therefore, themsantics of synchronous paradigm
require an entire system to be compiled at once to make ittese analyze the dependen-
cies among modules. The alternative is to write modulesdfiatrespond when the values
of some of their inputs are unknown, a tedious and errorgmncess to do manually.
This chapter provides a concrete example of applying a ajieed PE technique to
solve a complex issue in DSL compilation. We present a gat@uation technique that
enables modules in a synchronous system to be compilededelyaeven when the system
has communication cycles. This automatic process allowsgrgmmer to describe syn-
chronous modules without having to consider undefined sipQur algorithm transforms
such a description into code that does as much as it can witbfumed inputs, allowing

modules to be compiled separately and assembled later.wbhisoriginally appeared in

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 63

the proceedings of ICESS’2005 [78].

The chapter is organized as follows. We start by introduttiregoroblem and the chal-
lenges. Then, we define the Graph Representation Code (GRC),gantRated from the
synchronous program to be analyzed. All examples in thiptelare represented in GRC.
After that, we demonstrate the algorithm with the help of saneple. The experimental
results are analyzed at the end and we propose some futuke A0, we compare our

solution with other related work.

4.1 Compilation and Assembly of Concurrent Systems

The synchronous model of computation [7] has emerged ascassitl, practical way to
assemble models of concurrent embedded systems becatsdeaierministic concurrency
and its precise control over time. Each process in a syncusomodel operates in lock-
step with a global clock, and communication between modslésplicitly synchronized
to this clock. Provided the processes execute fast enougbegses can precisely control
the time (i.e., the clock cycle) when something happens.

In addition to domains including avionics [9] and hardwaesidgn [3], the synchronous
model has been used for constructing processor simulafi@®61]. Especially in this
latter setting, heterogeneous synchronous models [35thwdan assemble and run syn-
chronous components with no knowledge about their contentgreferable because it
allows separate compilation of components (e.g., cachestepodranch prediction units)
and even allows them to be written infidirent programming languages.

In the heterogeneous synchronous model [35], a systemasnédsd from a collection
of concurrently running blocks that communicate througdtantaneous “wires” each con-
nected from a single block’s output port to one or more inpartgpon other blocks. That
the blocks be able to respond when not all their input wiresdafined is the main require-
ment for being able to run such blocks without knowledge efirtbontents. Furthermore, a

block must be well-behaved when presented with unknownt&gug., if a block decides

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 64

outputo has valuev even though input is undefined, it may not change its mind, e.g.,
change the output tow oncei becomes defined. But if blocks do obey these rules, such a
system can adopt a Ptolemy-like philosophy [17] in whichtelys can be assembled from
black-box components and executéfiotency with precise, deterministic semantics.

Although it is possible to write such well-behaved syncloas blocks in a general-
purpose language such as C, it is a tedious and error-proneg®.ol he alternative, which
we propose here, is for the programmer to write blocks onkntainto account their
behavior when all their inputs are applied and have the clempiterpolate the correct
behavior of the block when only some of the inputs are appk&Hile it would be correct
to make the blocks strict, i.e., to respond with no informatabout any output unless all
the inputs are defined, this is not very helpful.

In this chapter, we propose an algorithm that does thispotation on programs written
in the synchronous concurrent, imperative language H$idre Constructs in Esterel only
explicitly address the behavior when all inputs are knowa (the user cannot control them
to respond in a certain way to unknown values), but their sgicgare clear when not all
inputs are known.

Our work generates code from Esterel that responds to unkmmputs. The enables

separate compilation and the assembly of modules writtethier languages.

4.2 The Graph Code Representation

We represent the programs we are compiling using a variatiieofsraph Code (GRC)
format due to Potop-Butucaru [63]. GRC is like a traditionaitcol-flow graph augmented
with concurrency and nodes for controlling it. However,ge@re prohibited (cross-cycle
loops are allowed). The resultis a compact, precise waypiesent Esterel programs [11],
which we compile with our technique, although the same apr&tion could be used for
other synchronous, imperative languages.

A GRC programG = (N,r,c,V,0, S,t) is similar to the program dependence graph

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 65

(PDG) defined in Chapter 3 but with more details. It includesi&a$ nodesN and a
distinguished root (r € N). Control successors functiaris the same to that in PDG.

The finite setV denotes variableO c V are the output variabled/ \ O are the input
variables.S denotes the set of possible states of the program.

Each node has a type given by the functiorN — {assignv-to-one, assignw-to-zero,
predicate-ony, fork, switch, enter, terminate-atsync}. When executed, an assigrto-
one node sets the variabldo 1 (v is a variable inV). Predicate-on+tests variabler and
sends control to one of its successors; switch is similatdsis program state instead of
a variable; enter changes the program state. A fork nodesseomtrol to all its succes-
sors, which must eventually re-converge at a sync node. ratigcessors of a sync must
be terminate-at-nodes, which indicate the exit level of their respectiveedius. A sync
node passes control to the successor whose number cordssjoothe highest-numbered
terminate node that passed control to it.

The assign~to-zero nodes are only added to the graph during our cartgiru As its
name suggests, an assigie-zero node sets the varialMéo 0. In two-valued execution,
a variable’s default value is 0, making such nodes unnepes&ait in the three-valued
execution that is the result of our procedure, variableaweto the undefined value and
therefore require assignto-zero nodes.

Figure 4.1 depicts such a program graphically. All arcs pdownward. The type of
each node is indicated by its shape. Assignments are baxegBcates are diamonds, forks
are triangles, terminates are octagons, and syncs areeugpsidh triangles. The label on a
predicate or assignment node indicates the variable testeet. For predicate nodes, the
first (false-valued) arc is indicated with a bubble at itsrseu The label on a terminate
indicates the exit level of the corresponding thread. Facsyde, each arc is labeled with
a number that matches the exit level. A dashed line denotessadépendency (as shown
in Figure 4.1b: 6 10, 9— 10, 10— 14, 15— 16).

A two-valued execution of a GRC program (which contains nagast-zero nodes by

definition) starts with an initial program state and an assignt of values to input variables

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 66

(i.e., eitherv = 0 orv = 1 for allv € V \ O). Then it derives a subs& of the nodes as
follows. S includes the root node; every successor node of each foslgrament, enter,
or terminate node if5; and for every predicate nodein S that refers to variable, the
first (true) successor is i8 if vis an input variable with value 1 or the graph includes an
assignment-to-one node feyrand the second (false) successonatherwise. For a sync
node, all of its predecessors’ (terminate nodes) exit st checked, arfd includes the
sync’s successor under the branch whose label is the sarhe hghest exit number. The
value of each output variable is 1 if the set includes an agsémtv-to-one node to variable
v and 0 otherwise.

Consider executing the graph in Figure 4.1a using the nodéearsiirom Figure 4.1b
and with the assignments=A, B=1, C=0, and B=1. Node 1 is inS since it is the root,
and since A1, node 2 is also. This adds nodes 3 and 8. Sineg, Biode 12 is irS but
node 9 and node 11 are not, and sineceéOCnode 4 is in S, and since-D, node 6 and 7
are inS but node 5 is not. Since node 7 and node 12 are included, aredfoéxit level
(2) is higher than node 12 (0), sync node 13's branch 1 is eégdcThat excludes node 14
and 15 fromS. Inthe endS ={1,2,3,4,6,7,8,12 13} so E=1 and 0.

The above procedure requires the value of every input Vartatbe known when the
program starts; we want to relax this. In particular, if wewrthe values of only certain
inputs, we would like to conclude whatever we can about asynoamputs as possible
provided they are consistent with any future values for th@ssigned inputs.

One way to answer this question is to execute the GRC programy tisree-valued
logic, i.e., adding a third value that represents unknownnatefined (we write itL) to the
usual Os and 1s. This introduces another set of nodes torthdagion procedure: those
that might run if additional input is provided later. Thedbhrvalued simulation is a more
complicated procedure that does not reduce to the usuat¢stgluexecution behavior of
imperative programs, unlike the two-valued simulation &@Gdefined above, which can
be transformed into sequential code using a fairly inexpensrocedure as described in

Chapter 3.

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 67
4.3 Generating Monotonic Three-Valued Programs

Our main contribution is the algorithm described here také$ a GRC program and con-
structs a fast sequential program that evaluates the graibte ithree-valued domain, i.e.,
it allows some of the input variables to be undefined. Ourritlym works in four phases
(see Figure 4.3). Given a GRC program, we add nodes and arepresent data depen-
dencies, compute a topological order of this annotatedhgregmpute information about
the subgraph under each node that will tell us what inforomatve can forget during a
simulation of the program, and finally construct a sequéptiagram by performing this
simulation. We try to keep the size of the generated progradeucontrol; we do this by
allowing as much reconvergence as possible in the generati] i.e., by identifying (and

reusing) equivalent states during the simulation.

4.3.1 Adding Data Dependencies

The algorithm starts by adding data dependencies. For edphtovariablev, this process
adds an assigwto-zero node and then adds arcs from each assigrene node to this
new node, and arcs from this new node to each predicaterode that testg. The resultis
that there is now a path from each assigto-one node for a variable to each node that tests
that variable, hence ensuring the topological sort respata dependencies. Furthermore,
it introduces an assigwto-zero node that will appear in the schedule when it is ipés$o
determine that a particular variable may be zero. Figurb dtibws the fect of applying

this procedure on Figure 4.1a.

4.3.2 Summarizing Dependency Information

Keeping the size of the generated graph under control is #ia trick in our algorithm.
Although it would be correct to consider the value of eachalde and control arc when
considering which subgraphs can be shared during code ajererthis would be very

inefficient and always produce an exponentially large tree asudt.résstead, we attempt

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 68

to model the state of a simulation using as little informatés possible because we want
to consider a maximum number of states to be identical so fmydkem can be shared.

Our insight is this: at a particular point in the schedule,omé/ care about nodes that
appear later in the schedule since by definition we must hiwgady executed anything
earlier, and only two things matter about these nodes: thahlas they test and the state
of control arcs that lead from nodes earlier in the schedulater nodes.

Consider building a subgraph for the nodes starting at 8 inreig.1b, and assume the
node numbers correspond to their position in the schedutehi# point, the simulation
will have established values for variables A, C, and D, but wendt directly care about
any of them since code for them has already been generatedeamdll not test any of
them later. However, we do care about whether node 10 willXeewged, which can be
affected by node 6, and whether node 13 was triggered by its ggeslers, since we will
be generating code for nodes 10 and 13 (they appear afteh8 sthedule).

As aresult, we consider identical any simulation statesdifi@r only on variables A, C,
or D. We also consider the control flowing in to nodes 8, 10, B

The ComputeRelavantVars procedure (Figure 4.4) builds twsotkat exactly capture
this notion of which variables and control states we caraiatloring the construction. By
stepping through the nodes of the graph in scheduled ordenpG®RelavantVars com-
putes relevanarcsfs], the set of all arcs that go from nodes befgrén the schedules to
nodes afters, and relevanvarsfs], the set of all variables that are either tested or set in
the nodes aftes. Note that becausgis a topological order, nodes aftgrin the schedule
necessarily include the subgraph unger

In Figure 4.1b, ifs = (1,2,3,4,5,6,7,8,9,10,11), ComputeRelavantVars finds rel-
evantarcs[8] = {2—8, 610, 5513, 7—13}, relevantvars[6] = {B,E,F}. Both rele-

vantvars and relevanarcs are global and are not modified after ComputeRelavantVars

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 69

4.3.3 Construct

The Construct procedure (Figure 4.5) simulates the threesgidbehavior of the GRC pro-
gram and, as a sideffect, constructs our objective: a graph that reproducesehs\ior.
In addition to the noda that is being synthesized, it takes three arrays:vya[the value
(0, 1, or1) of each variable; ctrilj,i], i = 0,1,... is the state (again, 0, 1, ar) of each
control arc leaving each node; and tem] is the state of each termination levet 0...M
reaching each sync noagM is the maximum possible exit level reaching

Construct begins by checking for an end condition: for thenasle in the schedulg,
the “node following it” is simply null. It then computes twagial functions (associative
arrays): varstate, which contains the value of each relevant varialgle those set or tested
by any node that comes aftarin the schedule (computed earlier by ComputeRelavant-
Vars); and nodsstate, which computes the execution statewill run, O=will not run, or
1=might run) of all the relevant nodes, i.e., predecessorspidis all those with incoming
arcs that come beforein the schedule (again, computed earlier by ComputeRelagesitV

Together, the node itself and the two partial state funstimnstitute the total state on
which the subgraph to be built for The procedure then looks to see whether a subgraph
with identical state has already been built and returngtieikists.

Otherwise, the real work starts. First, the node followimg the schedule is identified
asm, since it will be recursed on later. The procedure assunesdten is a flow-through
type (e.g., assign-to-one or a fork) and sets all its control successors to tlawesame
activation condition as the node itself. These assignmeittde modified below when
necessary, especially for predicate and switch nodes.

There are two main cases: once the node is known not to r@ninformation is propa-
gates as far as possible by the PropagateZeros procedutes Nt set each such variable
to zero are created, assembled into a chain. Finally theraphghat executes the nodes
aftern is connected to the end of this chain after a recursive c&iastruct.

The other case, when the node might or is known to run (rstaie= L or 1), is handled

quite differently (Figure 4.6). Dealing with assigrto-one and enter nodes is simple: if it

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 70

is known to run, it is simply copied to the new graph. Furthere) for an assign-to-one
node, the value of is set to 1 so that it will be propagated to later construation

Conditional nodes (predicate-anand switch) are more complicated. To deal with
them, the BuildCondition function is called (Figure 4.7). Mhietprocessed nodeis a
predicate-on+ andv’s value is known, the branches undeare set to active and inactive
depending on the value.

Otherwise, if the node is a switch or a predicatevomhose variabler is unknown, the
algorithm constructs an identical conditional node in teagrated program and considers
all possibilities: one of the branches—corresponding tossible condition—is set active,
and the others are made inactive (their control state isose¢to). For switch, the pos-
sible conditions correspond to each of its successors. poedicate node, the possible
conditions are related to the variable’s value, which catrbe, false, or unknown when
the generated program runs. In the last condition, all bras@re set active. For each
condition, the variable value is saved appropriately inavedy and then Construct is called
on the next node in sequence with the new state.

Terminate and sync nodes deal with exit levels and are hdrs#iparately. For every
sync node, its related threads’ exit levels are preservelkddoterm array. When a terminate-
atd node is met at the end of a thread, if it is known to be executasefs the term array
element of the exit levdlto be 1 for the corresponding sync; if its control valueLisand
no other thread exited at the same level, the element in thredgay is set ta.. The sync
node computes the highest possible exit level(s) by lookirtpe term array, then passes
its control value to the corresponding branch. This alganitsimulates the two-valued
behavior. BuildSync in Figure 4.8a simulates sync’s behavio

For all these types, Construct is called on the next nmoded saves the root of returned
subgraph ta”. Switches and predicates are exceptional: they haVerdnt new states
built to meet all possible conditions, so Construct is caltgcevery condition.

Finally, n” is the new node as the root of the subgraph constructed oo make it

possible to later identify its state, this fact is recorded@uildNode. n’ is returned to the

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 71

caller, which probably adds an arc leading to it.
We use a few simple helper functions (not shown). Limiki{) connects arcs: ifiis null,
it returnsm; otherwise, a control anc — mis added anah is returned. Copy1) creates a

new node in the generated program with the same type andieaea noda.

4.3.4 State

The Construct procedure maintains a collection of subgraplise generated program,
each corresponding to a particular node in the original ignogand the state that it implic-
itly assumes the original program was in before reachingstimraph. Such a state is a
triple: (n,var_statenodestate. nis the node leading the subgraph constructed,state

is a partial assignment of values to variables the subgras@bout, and nodsate is an
analogous assignment of values to control arcs relevahetsubgraph. Specifically, those
that pass into the subgraph from outside: arcs within thgrsydh, by definition, will be

evaluated as part of the subgraph.

4.3.5 Monotonicity

The code generated by our algorithm is monotonic. When addatg dependencies
(Section 4.3.1), an assignto-zero node is linked after all assigrto-one and before all
predicate-on+ nodes. This ensures assign-to-one nodes appear first inghogical or-
der, followed by the assign-to-zero node, and finally albprates that test.

A v = 0 assignment is made only when none of the ass#prone nodes could or
did execute (see Figure 4.5 line 17-18 and Figure 4.8b), s@dde will never change a
variable’s value from 1 to 0. It is also impossible for the gexted code to changes
value from 0 to 1 because the topological ordering of nodasgd assign-to-ones before
assign-to-zeros. Theal array records variables’ values throughout the Construncttian.
So when a predicate-onnode is met (see Figure 4.6 line 16-17 and Figure 4.7)yjvasl[

checked first. Ifv's value is known, the only active branch will be set, and tAgw will

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 72

not be touched but just passed to later construction (seed-@7 line 2-5).

4.3.6 The Example

Figure 4.9 illustrates some of the algorithm’s behavior aguFe 4.1b. A, B, C, and D
are input variables; E and F are outputs. Figure 4.1b waseatefrom Figure 4.1a by
adding data dependencies. Figure 4.9a shows the grapraafieming A1, C=0, D=0,
and B=0 and arriving at node 14. The label on each arc indicatesltgun the ctrl array.
Figure 4.9b is similar, but it assumes=A, C=1 and B=_L (predicate-on-D is known not
to run in this configuration, so D’s value is irrelevant). Gigorithm determines that the
code generated for these two states is the same and can bd.shar

Specifically, at node 14, variables E and F are relevant (arkthawn in both Fig-
ures 4.9a and 4.9b) and the state of node 14 is relevant. Incases, the state of 14.is
which is equal to the ctrl value of incoming arc334.

In these two states, node 10 may still run in the future, soau® ¢s generated to set E
to 0, E is therefore also unknown, so it is tested, an@ may later be able to run. The code
generated for these states is the test of E followed by thgramsnt of F to 0 in the dashed
region of Figure 4.2. Paths from the test of C (i.e., when G4sHigure 4.9a) and the test
of B (i.e., when B isL—Figure 4.9b) converge on this subgraph because the dgohas
identified these states as equivalent.

By contrast, assuming-AL, C=0, D=0 and B=1 gives the state in Figure 4.9c. Here it
is known that node 10 (assign 0 to E) will run because nonesgirigdecessors will (this
is reversed from the usual rule because such nodes arelgpdeggned to detect when a
variable is set to 0). This leads tdfi@irent code of the other two cases, i.e., the assignment

of 0 to E attached to the true branch under the test of B in EigL2.

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 73

Example Lines Average cycle times
Esterel V5 SCFG 3-Valued
comexp 88 1.67s 0.61s 0.80s
iwls3 70 1.04s 0.35s 0.26s
3vsim2 48 0.68s 0.32s 0.46s
multi3 120 1.39s 0.45s 0.47s

Table 4.1: Experimental Results
4.4 Experimental Results

We compared the speed of the code generated by our algonttimattfrom the Esterel V5
compiler, which translates the Esterel program into a l@gicuit and generates code to
simulate it, and to the code generated by the algorithm destin Chapter 3, which
generates sequential code by adding guard variables. &mndbe average cycle times in
Table 4.1, we ran the generated C code from all three comspitempiled with gcc-03)
for 10 million cycles on a 2.5 GHz Pentium 4 running Linux.

Table 4.1 shows our results. While the theoretical comptedfibur algorithm is expo-
nential, the experiments we ran show it appears to not besae is practice for modest-
sized program.

The code generated by the other two compilers (V5 and SCFG) pmrform two-
valued computation. Because our compiler adds code for-taleed computation, it
generates slower code. However, the experimental resudigest that the slow-down is
fairly mild and in some cases, our compiler actually gereerédister code. We suspect it is
because our compiler uses #&dient technique to sequentialize the concurrent code.

Together, these experiments suggest that our algorithmaistipal for modest-sized
programs. There are certainly additional opportunitigsofgtimization. In particular, we
intend to integrate this technique with our earlier techeifpr producing iicient sequen-

tial code from (concurrent) program dependence graphs (Ehap

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 74

4.5 Related Work

Digital logic simulators often perform a similar two- to &&-valued interpolation. In hard-
ware description languages such as Verilog or VHDL, uséenafompose systems out of
apparently two-valued logic functions such as AND or OR. Tiheugator, however, inter-
prets them as three-valued functions and performs the atronlin the extended domain.
It has long been known, however, that this tends to greatly #ie simulation and attempts
have been made to circumvent it where possible (e.g., bytilegenvhen two-valued-only
simulation is possible and doing it when possible). Overognthis speed penalty is a
primary goal of our work.

Our intermediate representation bears some resemblanmeaxy decision diagrams
(BDDs—see, e.g., Bryant's survey [16]), buffér enough to make their manipulation very
different. Compared to the most common type of BDD, the ROBDD (refjunelered
BDD), our programs may test variables irffdrent orders and multiple times along a path.
Although certain styles of BDDs (e.g., free BDDs) relax thistrietion, our formalism is
even less like most BDDs because it can communicate withali,itse., assign and later test
the value of the variable assigned, whereas BDDs typically make assignment at their
leaves. As a result, most BDD algorithms, which are able tarassdisciplined variable
orderings and a single type of node, are inapplicable forapptication. Others, however,
have used BDDs to synthesize software [19].

Our algorithm is like a partial evaluation of a three-vals&dulator on programs rep-
resented as graphs, which resembles many other techniugsiferating sequential code
from concurrent models [31]. Our algorithm, as a sitted, orders the nodes under forks
and generates a purely sequential program. While this isgptglundesirable for certain
systems, more clever techniques, such as the one desaniddpter 3 could probably be

woven into this three-valued simulator to morf@a@ently generate sequential code.

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 75
4.6 Summary

To illustrate applying partial evaluation to solve complsegues in compiling DSLs, we
presented a PE technique for compiling synchronous mod@parately. Although our
algorithm was originally designed to generate monotomedtvalued programs from two-
valued ones to work with the heterogeneous synchronouslrabcemputation, it can have
other applications. The general idea of partially simaiginetworks and recording the re-
sults as a branching program resembles some approachentratjng &icient simulators
for gate-level circuit descriptions [58, 5]. While these aygrhes use a BDD-like repre-
sentation, our technigue suggests the possibility of seédyg “forgetting” inputs, which
gives an interesting tradeffdbetween #iciency and code size.

The experimental results show our algorithm is practicalni@dest-sized programs.
However, it does not work well for large programs and may gatesexponential code. We

expect to solve this problem by further research.

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 76

(@) (b)
Figure 4.1: (a) A two-valued GRC. Arcs with bubbles are takeenva variable is 0. (b)

After adding data dependence nodes and arcs to it.

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 77

| I
E=0 c 1< ¢ !

| I

| I

| I

| I

F=0 D | D |

| I

| I

| I

| I

B B E=1 | B I

| I

| I

| I

| I

E E=1 E=0 E=1 CE E=0 |
| I

| I

| I

F=0 F=1 F=0 | F=0 |I
I

Figure 4.2: Three-valued projection of the GRC in Figure &).1produced by our algo-
rithm. Arcs with solid bubbles are taken when a variablesi®as unknown. Figure 4.9

shows the construction of the nodes in the dotted region.

procedure Main(G)
Add data dependencies
s = topological sort of the augmented graph
ComputeRelavantVars()
Set vall] = L for all variables
Set ctrljn,i] = L for all nodes & successors
Set termf,i] = L for all sync & exit Ivls

Construct(root of5, val, ctrl, term)

Figure 4.3: The Main procedure

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION

procedure ComputeRelavantVars()
fori=1,...,Ndo{scheduleisy,..., sy}

Set relevanarcsg] = 0
Set relevanvarsfs] = 0
foreachj=1,...,Ndo

for eacharcs, — s; with k < i do

adds, — s; to relevantarcsfs]
if s; tests or set any variablethen

addv to relevantvarsis]

Figure 4.4: ComputeRelevantVars

78

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION

1: function Constructg, val, ctrl, term)

2:

3:

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

if nis nullthen
return null {bottom of the program
Clear nodestate{partial function on nodes
nodestateh] = 1 if nis the root node, otherwise
for eacharcp iR g in relevantarcsp] do
nodestatef]] = nodestatef]] OR ctrl[p, i]
var_state= val {partial function on variablgs
for eachv not in relevantvarsin] do
var_statef] = DONTCARE
if BuiltNode[(n, var state, nodestate] existsthen
return BuiltNode[n, var state, nodestate]
m = node followingn in s{on which to recurse
for each successon; of n do {assume flow-through
ctrl[n,n;] = nodestatep]
if nodestatep] = 0then {node known not to run

PropagateZeros(nodestate, ctrl, val)

79

Create chainy; = 0) — (v, = 0) — --- — (v = 0) for eachv; where valfs] = 0

Add an arc fromy, = 0) —» Constructn, val, ctrl,term)
n’ = the first node in the chain: ¥{ = 0)”
else{nodestate[n] is# O}
n’ = MakeNode(n, val, ctrl, term nodgtate)
if n.typeis not switch or predicate-onthen
n” = Construct(n, val, ctrl,term)
Link(n’, n”")
BuiltNode[(n,var state,nodestate] = n’

return n’

Figure 4.5: The Construct Function

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION

1: function MakeNodeq, val, ctrl, term, nodestate)
2. n’=NULL
casen.ty peof

3
4: Assignv-to-one:

5: if nodestatep] = 1 and val{/] = L then

6: n’ = Copy() {assignv-to-one that executgs
7 vallv] = 1

8: Enter:

9: if nodestateh] = 1then
10: n = Copy() {Enter that executgs

11: Terminate-ai-:

12: ¢ = SyncMapp] {the sync node related witt}
13: term[c][I] = term[c][l] OR nodestate]

14: Sync:

15: BuildSyncf,ctrl,term)

16: Switch or predicate-on-:
17: n’ = BuildConditionf, m,val,ctrl,term)

18: return n’

Figure 4.6: The MakeNode Function

80

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION

1: function BuildConditionf, m,val,ctrl,term)

2:

3:

4:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

20:

if nis predicate-orv+and vall] is knownthen
ctrl[n,val[v]] = nodestate] {active branch
ctrl[n, 1-val[v]] = 0 {inactive branch
n’ = Constructn, val, ctrl,term)
else{switch or predicate with unknown variable
n" = Copy()
for each successon, of ndo
ctrl[n, i] = nodestatef] {active branch
for each successon; of n other tham; do
ctrl[n, j] = O {inactive branch
if vis not NULL then {predicate value is }
vallv] =i
Add an aran’ — Construct(n, val, ctrl,term)
if nis a predicateéhen
for each successon, of n do
vallv] = L
ctrl[n, i] = nodestatep] {active branchgs
Add an arav — Construct{n, val, ctrl,term)

return n’

Figure 4.7: The BuildCondition Function.

81

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION

function BuildSyncf,ctrl,term)
unknownctrl = false
findmax= false
for each i in term[n], max to
min do
if term[n][i] is O then
ctrl[n][i] = O;
else
if findmax is falsehen
findmax= true
if term[n][i]is L then
unknownctrl = true

if unknownctrl is true

then
ctri[n][i] = L

else
ctri[n][i] =
nodestate[n]

if term[n][i] is 1then
break

return ctrl

(@)

Figure 4.8: (a) The BuildSync Function and (b) the PropagateZfunction

function PropagateZeros(
nodestate, ctrl, val)
if nis nullthen
return
nodestaté = nodestate
for eacharct iR ndo
nodestaté[n] =
nodestaté[n] OR ctrl[t, i]
if nodestaté[n] is O then
for each successon; of ndo
ctrl[n,i] =0
if n.typeis Assignv-to-zerothen
vallv] =0

m = node followingnin s

PropagateZeros{, nodestaté, ctrl, val)

(b)

82

CHAPTER 4. PARTIAL EVALUATION FOR SEPARATE COMPILATION 83

A=1 C=0D=0B=0 A=1C=1D=1B=1L A=1 C=0D=0B=1
(@) (b) ()

Figure 4.9: (a), (b), (c) Possible simulation states up@chang node 14. Cases (a) and
(b) are equivalent since the relevant variables (E and Fxtatd of node 14 (the one with
incoming arc(s) from outside of the subgraph) are the samee @3 is diferent. Cases
(a) and (b) share the node that tests E, whereas case (®scteat=0 node in the dashed
box in Figure 4.2.

Chapter 5 84

Chapter 5

Partial Evaluation for Unrolling

Recursion

Hardware design requires static specifications, yet dynawitware facilities like recur-
sion provide flexibility and may be useful in hardware desi§o there is a need to for
removing recursion from specifications. Static elaboraéinables a compiler to transform
the dynamic description of a system to a static implemesria#h concurrent language for
system design might use recursion as a convenient way tteateacurrent structures or
processes. Static elaboration tries to statically evalsath dynamic structures and thus
allows users to algorithmically build up a concurrent systeThe compiler then trans-
forms the resulting static description of the system byainsating necessary components.
However, not all dynamic structures can be evaluated atbticTherefore we use partial
evaluation to elaborate. It enables the same language toededith static and dynamic
operations and have the recursive structures compiled.away

In this chapter, we introduce a partial evaluation techaitipat is able to unroll a recur-
sive program, allowing it to be implemented in hardware. \&gib with our motivation.
Then we present a static elaboration technique that aratzeompile time the call graph
of a program with mutually recursive functions to produc@attened” result that uses only

bounded resources, often inlining functions fdliceency. To illustrate the algorithm, we

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 85

demonstrate an elegant implementation of a pipelined FIFSHIM with recursive func-
tion calls. Also, we include an implementation of FFT usiagursive calls in Appendix B,
which is succinct yet predictable in terms of resourcesalyinwe show the experimental

results that compare the numbers of functjitmeads before and after unrolling.

5.1 Compilation of Recursive Programs

Widely adopted in software languages, recursion provitgeslegant solution to complex
and even infinite computations and data structures. It isldoodivide-and-conquer al-
gorithms, which can also be solved using traditional iteeastructures. The advantage of
the recursive approach is the succinct way it defines thelgmolnd it is usually easier to
verify. One disadvantage, however, is the run-time spaogtexity. The Towers of Hanoi
problem, for example, can be solved in three lines with r&ouar (two recursive function
calls and one move), but requires a call stackpfaheren is the number of disks to move.

Because of its potential infinite behavior, recursion islyaused in embedded soft-
ware, which usually has much stronger predictability regments. Often, the number of
function calls in a design must be static, which is not obsiou guaranteed in a design
with recursion.

SHIM [69], a concurrent language targeted at embedded aoétand hardware, pro-
vides recursive function calls. This interesting languagpect enables SHIM users to
create parallel structures through recursion. Comparintpecstit way of listing these
structures in a parallel statement, parametrized reaicsll is a more succinct and flexi-
ble solution.

To enable the language to define both static and dynamictopesathe SHIM compiler
statically elaborates recursive calls and thus boundsgheescomplexity and maximum
number of function calls in a design.

We present the static elaboration algorithm that we useenSHIM compiler. The

algorithm works in two steps. First, it decomposes the abitow of the program into a

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 86

collection of (mostly) tail-recursive functions, whicheathe extended basic blocks in the
program. Then, following the call graph of these functiahperforms constant propaga-
tion and unrolls loops of mutually recursive functions byking variant copies of them.
Using this technique, the elaboratdfeztively estimates the space complexity of the pro-

gram and unfolds it.

5.2 Static Elaboration

The static elaboration algorithm removes recursion frontag@am when the recursion
depth can be bounded. Ideally, the elaborator will genexatew program whose function
call graph (CG) is acyclic. This procedure is nontrivial mecursion implies cycles in the
call graph. If the elaborator fails, i.e., the CG remains icyafter the transformation, we
fall back on the original recursive program and explain thatwere not able to statically
analyze the recursion. This may be a problem for boundinguress, but it means that we
are still able to run the program even if the elaborator fails

Figure 5.1 shows the main algorithm. Starting from the IR, alg®rithm decomposes
each function into extended basic blocks and then treatssath block as a (usually tail-
recursive) function. Thus, the control flow graph is transfed into a function call graph
whose root is the entry block of the main function. This stegyrgreatly increase the
recursion in the program since iteration is treated in theesway as recursion. Convert-
ing iterations into loops is for simplifying the algorithmigsentation. Operating on the
decomposed program, the algorithm propagates constahtgsvthat can be statically de-
termined, while unrolling the call graph. After unrollintpe algorithm cleans up the code
by eliminating dead variables and removing unused funaiguments. Also, functions
with a single entry are inlined to minimize the final numbefwfctions. This process trans-
forms the IR in Figure 5.3(b) to Figure 5.5, which is exactlva-stage parallel pipeline.

The unroll procedure, shown in Figure 5.2, is the key prooeduthe algorithm. Start-

ing with the root function, this procedure performs botherqprocess and intra-process

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 87

constant propagation to generate a new set of function®utitiecursion. By intra-process
propagation we mean to pass value between functions anéshlatich are treated as
functions during analysis, through function calls and oarftow between blocks respec-
tively.

Each process, therefore, is decomposed into single-efdckd with tree-structured
control flow and similarly the program is decomposed intocpsses. The intra-process
analysis becomes straightforward since no loops need tofsdered. The inter-process
analysis, on the other hand, iterates on a list of functi@mstiined with actual parameters,
calledunrolling. A recursive process may be unrolled several times. Theitigogener-
alizes the parameters to either a constant value or not dacar(®IAC). For each pair of
a function and an assignment of actual parameters to it,quaniersion of the function is
made by propagating the actual values throughout the famcitihe new function is added
to theunrolled set, mapping from the pair of original function and actuabpaeters. All
these new functions compose the reconstructed program.

The unroll iteration continues until no new actual paramassignment is found for
any function, or when the number of actual parameter setsdféer a function exceeds a
user defined limit. To avoid generating exponentially lacgele, the algorithm creates a
new function only when the original function is called witthew set of actual parameter
values. A function called at fferent places in the original program with the same set
of values is not duplicated. After unrolling, a design whoa# graph contains mutually
recursive functions is either completely expanded to actikacyclic graph or is left cyclic
because the recursion is truly unbounded (e.g., the dep#pisndent on run-time data) or
because it requires more function duplication than we allengito allow.

Constant propagation in the unrolling procedure is spedlfor SHIM. Since a inter-
face variable represents a channel, even when it is knowa ¢toibstant during the analysis,
it cannot be simply replaced with the constant number in atfan call statement. Other-
wise the called function will lose track of the channel it coomicates through. However,

the channel may become redundant if all values it passeg iocmstants and it is not con-

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 88

nected to any subchannels. In this case, it can be elimifi@tedthe interface and replaced
with concrete numbers in related expression. The chammeFigure 5.3(a), for example,
can be removed. Like a loop index, it is served for control floa:, being used to deter-
mine when the recursive construction terminates. When thesae structure is statically
elaborated, this channel is useless and will be eliminated.

The procedure for eliminating unused channels aims at Wersables, which in SHIM
are channels. The rule is simple. A chanaoglf a function f will be removed fromf’s
formals if a constant is passed in throughndc is not passed as parameter to any function
called inf, and also no run time communication (e.g. regis found onf. Such ac will
be transformed into a local variable and assigned a constard passed in. The parameter
nin fifo__0() in Figure 5.4, for example, will be become a local varahith a constant
value of 3. Thus, redundant channels are removed from thetiftumdeclarations after this

step.

5.3 Unrolling a Pipelined FIFO in SHIM

SHIM provides a cohesive model for both hardware and soé&wasigns, with determin-
istic concurrency. It follows a C-like syntax where a progrsncomposed of functions.
Neither global variables nor pointers are allowed. Inst&dIM includes a mechanism
for concurrent function calls through tipar construct and rendezvous-style inter-process
communications through theextoperator. Figure 5.3(a) shows a SHIM program that de-
fines a five-stage FIFO. Recursive function calls, such ag friidhe example, are allowed
and can be combined with thpar statement. These features enable SHIM’s model to be
expressive while being strict.

In the SHIM compiler, we use an intermediate representgti®pbased on three ad-
dress code, inheriting the function-statement-expreskierarchy. Figure 5.3(b) shows
the IR for the program in Figure 5.3(a). The formal paransetdra function declaration

are identified as either inputs (plain) or outputs (labelath\&). Loops and predicate

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 89

procedure Main(program, limit)
Decompose every function in program to extended basic block
Make every block a function
root= main entry function
n = number of root’s formal parameters
vs = a set of length n whose elements are NACs
unrolled=]
unrolling = [(root, vs) |
for each function fdo

unrolledtimes]f]= 0

Unroll(limit, unrolled, unrolling, unrolledtimes)
functions= functions defined in unrolled set
Eliminate unused channels for all functions
Eliminate dead code for each function

Inline functions

Figure 5.1: The Main procedure.

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION

procedure Unroll(limit, unrolled, unrolling, unrolledtimes)
while unrolling set is not emptgo
(f, vs) = first pair in unrolling
if (f, vs) is not found in unrolledhen
n = unrolledtimesif]
if (n+ 1) > limit then
fr=f
goto END
else
n=n+1
vmap= empty
ps= formal parameters of f
for eachp in psdo
v = value corresponding to p in vs
add p-v to vmap{v can be a const or NAC
f’ = arenaming of f corresponding to (f, vigonst propagation on f bogly
set f’ body to empty
for each statement s in f's body in ordeio
(s’, vmap’) = ConstPropagation(s, vmap)
add s’ to f’ body
if s involves one or parallel function catlsen
for eachg called in sdo
gvs= actual parameters g is called with
add (g, gvs) to unrolling set if none exists
g’ = a renaming of g corresponding to (g, gvs)
replace g with g’ in s statement
END: remove (f, vs) from unrolling
add (f, vs}»f’ to unrolled

Figure 5.2: The Unroll procedure.

90

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 91

. . main()
void main() { local int32 a

int a; .

] local int32 b
int b;]

] local int32 n
int n = 3;

n=3

. . source(a) : fifo(a, b, n) : sink(b);
source(a); par fifo(a, b, n); par sink(b);

}
fifo(int32 i, int32 &o, int32 n)

. local int32 c
void fifo(int i, int &o, int n) { .
. local int32 m
int c;
. m=n-1
intm=n - 1; .
ifnot m goto _else3

if (m) g(i, o : fifo(c, o, m);

. . goto _endif4
g(i, ©; par fifo(c, o, m);

_else3:
g, o);
_endif4:

else g(i, 0);

}

void int b, int &c -
9) A } g(int32 b, int32 &c)

void source(int &a) {...} .
source(int32 &a)

id sink(int b) {...
void sink(int b) {...} sink(int32 b)

(a) SHIM Code (b) IR Code

Figure 5.3: A FIFO program.

expressions are dismantled into statements, labels, d@od.go

The program in Figure 5.3 is constructing a pipelined FIF@retsource() reads every
input, sends it to fifo() through channal fifo() processes the data and put the result on
channelb; sink(), which is waiting on channdl, finally collects the result and returns. In
fact, fifo() is composed by some small concurrent procesgQrthat are pipelined. fifo()
recursively constructs these instances of g() while camsirg the pipeline size by, which
is a compile time constant in the example. For simplicity,améy show the details of the
main and fifo functions in Figure 5.3, which we will use to dttate our algorithm. We
assume the others (g(), source(), and sink()) are simplgiturs without recursion.

In this section, we demonstrate our algorithm’s operatiothe recursive fifo() function

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION

main()
local int32 a
local int32 b
local int32 n
n=3
source__0(a) : fifo__0(a, b, n) : sink__0(b);

fifo__0(int32 i, int32 &o, int32 n)
local int32 ¢
local int32 m

m= 2

g(i, ¢ : fifo__1(c, o, m);

fifo__1(int32 i, int32 &o, int32 n)
local int32 ¢
local int32 m

m=1

g(i, ¢ : fifo__2(c, o, m);

fifo__2(int32 i, int32 &o, int32 n)
local int32 c
local int32 m
m=20
g, o)
source__0(int32 &a)

g(int32 b, int32 &c)

sink__0(int32 b)

Figure 5.4: The FIFO after unrolling

92

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 93

main()

local int32 a

local int32 b

local int32 c__fifo__0

local int32 c__fifo__1
source__0(a) : g(a, c__fifo__0)
: g(c__fifo__ 0, c__fifo__1)
: g(lc__fifo__1, b) : sink__0(b);

source__0(int32 &a)
g(int32 b, int32 &c)

sink__0(int32 b)

Figure 5.5: The FIFO after inlining

in the FIFO example (Figure 5.3).

Figure 5.6 shows the step by step procedure of decomposthgranlling the program.
Comparison of the two call graphs in Figure 5.6(b) and (f),obefand after the static
elaboration respectively, illustrates thi@eet of the unroll procedure which eliminates the
original cycle of fifo:._LO — fifo:: __L1 — fifo::__LO.

Each extended basic block (EBB) (Figure 5.6(a)) is treateldikunction, whose pa-
rameters are variables alive at the entry of the block. fifo@, for example, has four
formal parameters (Figure 5.6(b)). At the beginning, theng)dunction calls fifo() with
n = 3, which is passed to fifa:LO while all its other formal parameters are set to NAC
(Figure 5.6(c)). We use (*) to represent NAC in Figure 5.6ichtrefers to either unknown
or not-a-constant value in our algorithm.

The unroll procedure maintains two sets during the itematibhe unrolling set keeps
all pairs of function and parameters to be processed, wheheaunrolled set records all
pairs which have been processed and the process resultheeorresponding functions
newly constructed after unrolling. By this, the elaboratm avoid duplicate work. It does

not have to unroll a functigparameter pair that have been unrolled before. The furstion

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 94

in the unrolled set and in unrolling are illustrated as sall dashed nodes respectively
in (Figure 5.6(c) - (e)). For fifo() example, the unrolling starts with [(fifo:2_L1, (*,
* * 3))]. This only pair, being unrolled, generates a newdtion fifo_0::__L1(), which
is added taunrolled as a mapping of (fifo. L1, [*, *, 3]) —fifo_0::__L1() (Figure 5.6(c)).
This constant is propagated to the following functions fifd:1() and fifo:._L2(), which
are added to the unrolling set. After evaluation with thisafevalue, a specified copy of
fifo::__L1 is connected to fif®::__LO (Figure 5.6(d)). Thefnot prediction is removed in
fifo_0::__L1 since the elaborator knows that the par call branch wiltaken in this case.
Therefore, two other new pairs are added to the unrollingceesidering that the pairs
are not present in unrolled. The functions, i.e., EEBs, infifieratively add themselves
to the unrolling set untih = 1 when in fifo:2_L1 the else branch is taken. The resulting
functions are shown in Figure 5.6(e) while Figure 5.6(f)slirates the corresponding call
graph, which obviously has no cycles.

All the unrolled functions are combined together and indirrs shown in Figure 5.5,
compose into a program without recursive calls.

The unrolling process can also be used for hardware syathgsvith some extra work,
such as to make all parallel function calls unique. A parabd “g() : g()” is not a problem
in software, but in hardware it is because every functiohlvglsynthesized to a processor
which cannot run in parallel with itself. Therefore, theglrparallel called instances of
g() in main() in Figure 5.5 will be modified to be d.():g 2():g-_3() where these renamed

functions are simply duplications of g().

5.4 Experimental Results

To experiment with our static elaborator, we implementededtalgorithms in SHIM using
recursion: the Fast Fourier Transform (FFT), square-remtguNewton’s Method, and the
pipelined FIFO example from Section 5.3; the complete im@etation of FFT in SHIM

is presented in the appendix. We compared the number ofifunscin the original pro-

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION

{fifo::__LO}
m=n-1
ifnot m goto _else3
goto __ L1
_else3:
g(i, o);
goto __ L2

/

{fifo::__L1}
_ L1
g(i, c) : fifo(c, o, m);
goto __ L2

\

{fifo::__L2}
_ L2

(@)

{fifo_0::__LO(*, *, *, 3)}
m=2
goto __ L1

\

{fifo::__LO(i, c, o, n)}

{fifo::__L1(i, c, o, m)}

’ ffifo:__L2()} ‘ ’ {g(b, c)}

(b)

{fifo_0::__LO(*, *, ¥, 3)}
m=2
goto_ L1

A

{fifo_0::__L1(%, * *, 2)}
_ L1
g(i, c) : fifo_1(c, o, m);

goto _ L2

— {fifo_1::__LO(*, *, *, 2)}
{flfo_O..L_ZI'_Z()} m=1
i goto __ L1

l

{fifo_1::__L1(*, * * 1)}

{fifo_0::__L1(*, *, *, 2)}
L
(i, c) : fifo_1(c, o, m);
goto __ L2

_ L1
(i, c) : fifo_2(c, o, m);
goto _ L2
‘/{fifo_Z::_LO(*, * % 1)}
{fifo_1::__L2()} m=0
L2 g(i, o);
goto _ L2

7777777

I {fifo_0z:__L20)} |
L - - — _ J

-_—————

| ffifo_1(%, % 2)} | ‘7{9?*,:)}7‘
Lo __Z s

(d)

\

{fifo_2::__L2()}
_ L2

(e)

{oC)k

{fifo_0::__LO(*, *, *, 3)}
m=2
goto _ L1

-_—————

{fifo_0::__LO(*, *, *, 3)}

{fifo_0::__L1(* *,* 2)}

{fifo_0::__L2()} ‘ ’ {fifo_1:__LO(*, *, *, 2)}

{fifo_1::__L1(* *, *, 1)}

51}

{fifo_2::__LO(*, *,

{fifo_1::__L2()}

{fifo_2::__L2()}

{9k

(f)

95

Figure 5.6: Unrolling the fifo(). (a) CFG of EBB after decompmsi. (b) CG of de-
composed functions. (c) After static elaboration on entnyction fifo:_LO with n = 3.
Dashed nodes are functions in unrolling set whereas theé soks are in unrolled set.(d)
After elaboration on fifo L1 with m = 2. (e) CFG completely unrolled. (f) CG after

unrolling.

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 96

gram, the unrolled program, and finally the inlined prograombined with the factor—a
compile-time constant that defines the recursion depth fadter for FFT, for an instance,
is the input size. The results are shown in Table 5.1.

Depending on the factor, a program may grow fairly largerafteolling, as the “Un-
rolled” column shows. The reason is obvious: it exhausfilists all functions customized
with possible parameter sets. Most of the customized fanstihowever, simply pass con-
trol to their successor functions and thus are eliminateat aflining. Extreme cases, such
as Sqrt and FIFO, can be simplified to a constant number ofitumez On the other hand,
the FFT only shrinks by half. Although most of the control étinons remaining are very
small in code size, they are necessary for the synchroaizafiparallel function calls and
therefore cannot be eliminated.

Besides the factor, a user may set a limit that bounds the memimumber of times
a function will be unrolled (Figure 5.2). To test itfect, we set the limit to 100 when
unrolling FFT-128 and FFT-256. The result shows the numbérfsinctions generated
become very close. For the rest of the experiment where thi¢ is not specified, we
assume the number is big enough for the algorithm to fullpliadl functions. This limit

setting helps user tdtectively bound the maximum number of function calls in a gesi

5.5 Related Work

Recursion is not a common feature of hardware languagesgialipdor synthesis. Sys-
temC, a G-+ like language for modeling hardware designs, allows recaorsMany syn-
thesis tools for SystemC [66][42] provide static elabanatphases that cope with finite
loops, but not with recursion, which is much harder to bowesgpecially when it involves
mutually recursive calls. Another tool created by Moy ef6][uses static elaboration to
extract high-level architecture information from System@grams. It establishes static
structures in the program and creates their instances. vwwe does not deal with dy-

namic structures such as pointers. Our approach is moreajearel takes care of both

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION

Example Number of Functions Factor Limit
Org Unrolled Inlined
FFT 9 37 20 8
919 455 128
2073 1032 256
132 61 128 100
135 63 256 100
Sart 3 12 2 10
102 2 100
1002 2 1000
FIFO 5 14 4 10
104 4 100
2004 4 2000

Table 5.1: Experimental Results

static and dynamic operations.

Other few hardware languages that allow recursion include Bind Arvind’s Blue-
spec [44], Li and Leeser’s HML [55], and Bjesse et al.'s Lav][1All of these are based
on functional languages. Bluespec provides very powerdticseélaboration that deals with
recursion. However, the language is quitfatient from SHIM. Its syntax decides that re-
cursion is only used to describe sequential operationdewtiSHIM it can be applied to
concurrent structures.

Lava provides a framework based on Haskell for user to desigranalyze their imple-
mentations on FPGAs. The sorting network designs shownreiin work [21, 20] demon-
strate how to describe recursive circuit in Lava. Becausdsainguage targets at FPGAs, it
strictly requires that recursion be bounded at compile tiGwr approach, by contrast, tar-
gets hardware and software designs. Therefore we deal withdmunded and unbounded

recursive calls.

CHAPTER 5. PARTIAL EVALUATION FOR UNROLLING RECURSION 98

Rugina and Rinard [64] describe a recursion unrolling algaritailored to divide and
conquer programs. Given a recursive function, the main isléa recursively unroll this
function to a certain depth by inlining previous unrolledsien of the same function but
with less depth. They use condition fusion to optimize thesgated code. Our approach is
more general because it handles mutually recursive fumctidis whose recursion depths
are not given to the compiler. Also, because function caby ilme parallel in SHIM, not

every recursive function call can be inlined. The inlinimggess has to be done carefully.

5.6 Summary

To illustrate the method of customizing partial evaluafiona specific DSL, we presented
a static elaborate algorithm for SHIM, a concurrent languaigviding recursive function
calls that can be used to construct concurrent structuegmelly. For a SHIM program
with recursion, the algorithm analyzes the program’s cedpy and unrolls the recursive
calls to produce flattened code that uses bounded resourhespartial evaluation tech-

nique enables SHIM users to make their designs both suammatctesource-bounded.

Chapter 6 99

Chapter 6

Conclusions

In this final chapter, we summarize our major contributiond autline some possible

future work.

6.1 Contributions

Specialized partial evaluation can bieetively applied to solve compilation issues aris-
ing in domain-specific languages. The concise syntax of x8hplifies the development
process and enables the compiler to have a more comprebemsierstanding of the pro-
gram’s behavior. To take advantage of this and design a gimgWPE technique for a DSL,
itis necessary to deeply understand the computationatljgemeof the language. The chal-
lenge, therefore, is to create a customized PE techniqueidiees in-depth analysis of the
language’s semantics and fits well the specific paradigm. rébelts we achieved taking
this approach are impressive.

We demonstrated three concrete examples of designing REigees to generate code
from DSLs. We did not provide a general partial evaluatordibthese languages because
we observe that their radicallyféierent models require that each PE technique be specifi-
cally designed for that model to achieve interesting leeélzptimization.

These three PE techniques addressé@mint essential issues in generating code from

CHAPTER 6. CONCLUSIONS 100

concurrent, deterministic languages. We expect that thivrsity will illustrate the poten-
tial of PE to solve dferent compilation issues for DSLs.

For simulating concurrency on a single-threaded procesgaed is one of the key
factors. The algorithm for slicing concurrent programsspreed in Chapter 3 provides a
low-cost solution for it. By transforming a concurrent flovagh to a program dependence
graph, the compiler exposes more concurrency in the pragsdmeh gives the scheduler
more flexibility. It aggressively forms as many large atotslmcks as it can to minimize the
time spent switching among them. Guard variables are adustbte and recover states
in the statically scheduled code. This technique has beecessfully implemented in
the Columbia Esterel Compiler. The experimental results sireat speedup over existing
techniques. However, how to apply the same methodologynter slynchronous concurrent
languages is not clear. Finding a way to dismantle a synclu®noncurrent program to an
acyclic flow graph with data dependence may be the first step.

We also considered the problem of separate compilatiortw@oé engineering, which
defines a systematic and disciplined approach to develdpmeguires most designs to be
split into modules. However, this can bdfitiult for synchronous programs since normally
they can only respond to complete inputs. For a module thav@ved in a communica-
tion cycle, some of its inputs may be unknown at run time. T&erasynchronous module
respond correctly to partially known inputs, we inventecafgorithm to provide a prelim-
inary solution to this issue, which we presented in Chaptéfidough partial evaluation,
the compiler explores all possible execution paths, aligwt to interpolate the correct
behavior with unknown inputs and add this to the generatee.ctt works like a partial
evaluation of a three-valued simulator. Again, we applied @lgorithm to Esterel. The re-
sults show it is practical for modest-sized programs, bdibés not work for large programs
because the branching-like simulation may lead to an eiglos the number of reachable
state when the decisions of early segment of code stroffiiggta later execution paths. We
explain the situation more and propose a possible researattidn in Section 6.2.

The third algorithm we presented (Chapter 5) statically @lates recursive function

CHAPTER 6. CONCLUSIONS 101

calls in a concurrent program. By compiling their programmgishis static elaboration
technique, programmers can use recursion to create cemt@omponents and have them
instantiated at compile time. This enables the user to lupld concurrent system conve-
niently and algorithmically. The partial evaluation preseanvolves constant propagation
and procedure inlining, fairly typical compiler techniguéiowever, they are customized to
fit SHIM: the asynchronous and concurrent DSL on which we grpented. The recursive

FFT example we implemented in SHIM demonstrated that thiseleBnique is practical.

6.2 Future Work

Most of our algorithms could be improved further to make theare general and#ctive.
As an example, we suggest how we might apply Program Depead@raphs to separate
compilation to better handle large programs.

The techniques we presented in this dissertation perfditme partial evaluation.
However it may also make sense for DSLs to consider onlinggbavaluation, which

benefits from knowing input information.

6.2.1 Separate Compilation of Large Synchronous Programs

The algorithm we proposed in Chapter 4 cannot deal with laygelsonous programs
because in it may generate exponentially large code thdticenall possible sequential
execution paths of the original concurrent program. The R&Bnique we presented in
Chapter 3 may help to avoid code explosion. We show two casesewising a PDG would
generate smaller code than our current approach.

Figure 6.1 shows two cases that may cause an explosion inzia@®fsthe generated
code. They are represented in graph code, which we definedapt@h4. The graph in
Figure 6.1(a) is composed of a chain of predicates. Assumeldision of predicaté
does matter in generating code that runs after prediBatEollowing the rule described

in Chapter 4, the compiler should not “forgeA”s decision before runnin®. Therefore,

CHAPTER 6. CONCLUSIONS 102

(a) (b)
Figure 6.1: Graph examples that may generate exponenti@ asing the algorithm in

Chapter 4 (a) A chain of predicates. (b) Interleaving threads

when constructing the new graph that explicitly definesoastifor unknown inputs, our
algorithm will make three copies @ under each control successorAf(will run, will
not run, might run). Every copy of subgrajghwill contain a subgraph fo€ if the same
assumption applies to it. In such a sequence, a chain liker&ig.1(a) will be expanded
into a tree with exponentially many more nodes than the chain

Figure 6.1(b), a fragment of graph code from the exampleraragn Figure 2.1, is
actually a variant of (a). Data dependence forces the twowroent threads in the program
to be interleaved. Therefore they actually run sequentiailich like the predicate chain
in Figure 6.1(a) would. It follows that the graph constrachy the algorithm of Chapter 4
for this fragment may also grow exponentially large.

However, such an exponential increase in code can be avditieel construction al-
gorithm is applied after the program is translated into a RID@ context-switching code

is added. Consider Figure 6.2, which shows the predicaten¢hdtigure 6.1(a) disman-

CHAPTER 6. CONCLUSIONS 103

Figure 6.2: The PDG transformed from Figure 6.1(a)

tled into parallel predicate trees, each of which will exppéma small subgraph with three
branches after applying the tri-branch construction atigor. Once this is done, we can
use the algorithm in Chapter 3 to sequentialize the consDG. The size of the graph

generated with this approach would be linear of the origgnaph size.

Chapter 6 104

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and d&ey D. Ullman.Compilers, Principles, Technigues,

[2]

[3]

and Tools Addison-Wesley, Reading, Massachusetts, 1988.

Martin Alt and Florian Martin. Generation ofiécient interprocedural analyzers with
PAG. InProceedings of the Second International Symposium orc#adlysis (SAS)
pages 33-50, London, UK, 1995. Springer-Verlag.

Laurent Arditi, Amar Bouali, Hedi Boufaied, Gael Clave, Mad Hadj-Chaib, Laure
Leblanc, and Robert de Simone. Using Esterel and formal rdsttmincrease the
confidence in the functional validation of a commercial DSI. Proceedings of
the ERCIM Workshop on Formal Methods for Industrial Criticglsg&ms (FMICS)

Trento, Italy, June 1999.

[4] Arvind, R.S. Nikhil, D.L. Rosenband, and N. Dave. High4égynthesis: an essential

[5]

ingredient for designing complex asics. @omputer Aided Design, 2004. ICCAD-
2004. IEEEACM International Conference on, Vol., Iss., 7-11 Nov. 2@@&ges 775—
782, 2004.

Pranav Ashar and Sharad Malik. Fast functional simatatising branching pro-
grams. InProceedings of the IEEECM International Conference on Computer
Aided Design (ICCAD)pages 408-412, San Jose, California, November 1995.

BIBLIOGRAPHY 105

[6] Lennart Beckman, Anders Haraldss@sten Oskarsson, and Erik Sandewall. A par-
tial evaluator, and its use as a programming tcdtificial Intelligence 7:319-357,
1976.

[7] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Ngdlalbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous language=ai2 laterProceed-
ings of the IEEE91(1):64-83, January 2003.

[8] Geérard Berry. Esterel on hardwarBhilosophical Transactions of the Royal Society
of London. Series A339:87-103, April 1992. Issue 1652, Mechanized Reasoning

and Hardware Design.

[9] Geérard Berry, Amar Bouali, Xavier Fornari, Emmanuel LedinoticENassor, and
Robert De Simone. Esterel: A formal method applied to avisoitware develop-

ment. Science of Computer Programmirg6(1):5-25, January 2000.

[10] Geérard Berry and L. Cosserat. The ESTEREL synchronous prognagniaiguage
and its mathematical semantics. In S. D. Brooks, A. W. Roscoe,@& Winskel,
editors,Seminar on Concurrengyolume 197 ol ecture Notes in Computer Science

pages 389-448. Springer-Verlag, Heidelberg, Germany}.198

[11] Gérard Berry and Georges Gonthier. The Esterel synchronamgrgmnming lan-
guage: Design, semantics, implementatio8cience of Computer Programming
19(2):87-152, November 1992.

[12] Valérie Bertin, Michel Poize, and Jacques Pulou. Une nouvedtthate de compila-
tion pour le language ESTEREL [A new method for compiling tls¢elel language].
In Proceedings of GRAISyHM-AAA.lle, France, March 1999.

[13] Lars Birkedal and Morten Welinder. Partial evaluatidnStandard ML. Master’s
thesis, DIKU, University of Copenhagen, Denmark, August3.99

BIBLIOGRAPHY 106

[14] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam &agh Hardware design
in Haskell. InProceedings of the Third ACM SIGPLAN International Confeecoi
Functional Programming (ICFR)pages 174-184, Baltimore, Maryland, 1998.

[15] A. Bondorf. Towards a self-applicable partial evaludiar term rewriting systems.
Master’s thesis, FIXME, July 1987.

[16] Randal E. Bryant. Binary decision diagrams and beyondbbimgtechnologies for
formal verification. InProceedings of the IEEECM International Conference on
Computer Aided Design (ICCADpages 236—243, San Jose, California, November
1995.

[17] Joseph T. Buck, Soonhoi Ha, Edward A. Lee, and David G.9deschmitt. Ptolemy:
A mixed-paradigm simulatigprototyping platform in G+. In Proceedings of the

C++ At Work ConferenceSanta Clara, California, November 1991.

[18] Kimberley Burchett, Gregory H. Cooper, and Shriram Kniamurthi. Lowering: a
static optimization technique for transparent functiagealctivity. INPEPM '07: Pro-
ceedings of the 2007 ACM SIGPLAN symposium on Partial evaluahd semantics-
based program manipulatiopages 71-80, New York, NY, USA, 2007. ACM Press.

[19] Massimiliano Chiodo, Paolo Giusto, Attila Jurecskagiamo Lavagno, Harry Hsieh,
Kei Suzuki, Alberto Sangiovanni-Vincentelli, and Ellenrsavich. Synthesis of soft-
ware programs for embedded control application$rivceedings of the 32nd Design
Automation Conferen¢c@ages 587-592, San Francisco, California, June 1995. Asso-

ciation for Computing Machinery.

[20] Koen Claessen, Mary Sheeran, and Satnam Singh. Thendasdyverification of a
sorter core. IrProceedings of Correct Hardware Design and Verification Mdtho
(CHARME) volume 2114 ofLecture Notes in Computer Sciengmages 355-369,
Livingston, Scotland, September 2001.

BIBLIOGRAPHY 107

[21] Koen Claessen, Mary Sheeran, and Satnam Singh. Usirg tbaglesign and verify
recursive and periodic sortetaternational Journal on Software Tools for Technology
Transfer (STTT)4(3):349-358, May 2003.

[22] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Toddskéin. MultiJava:
Modular open classes and symmetric multiple dispatch fea.Jén Proceedings of
Object-Oriented Programming, Systems, Languages, andicagpns (OOPSLA)
pages 130-145, Minneapolis, Minnesota, 2000.

[23] C. Consel and S. C. Khoo. Semantics-directed generatienRyblog compiler. In
J. Maluszyski and M. Wirsing, editord2rogramming Language Implementation and
Logic Programming, 3rd International Symposium, PLILP ,/%assau, Germany,
August 1991 (Lecture Notes in Computer Science, vol., p28)es 135-146. Springer-
Verlag, 1991.

[24] Charles Consel and Oliver Danvy. Tutorial notes on pbetialuation. InProceedings
of the Symposium on Principles of Programming Language®(B®ages 493-501,

Charleston, South Carolina, January 1993.

[25] Charles Consel, L. Hornof, Julia L. Lawall, Renaud Mar@tMuller, J. Noy, Scott
Thibault, and E.-N. Volanschi. Tempo: Specializing systeapplications and be-
yond. ACM Computing Surveys, Symposium on Partial Evaluation (9C8H3es),
September 1998.

[26] Charles Consel and Siau Cheng Khoo. Parameterized paréilation ACM Trans-
actions on Programming Languages and Systelfig3):463—-493, 1993.

[27] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegraad, F. Ken-
neth Zadeck. Hiciently computing static single assignment form and thetrobn
dependence graphACM Transactions on Programming Languages and Systems
13(4):451-490, October 1991.

BIBLIOGRAPHY 108

[28] Matthew B. Dwyer and Lori A. Clarke. A flexible architectufor building data
flow analyzers. InProceedings of the 18th International Conference on Software

Engineering (ICSE)pages 554-564, Berlin, Germany, 1996.

[29] Stephen A. Edwards. Compiling Esterel into sequentidiec InProceedings of the
7th International Workshop on Hardwa&oftware Codesign (CODE)ages 147—
151, Rome, Italy, May 1999. Association for Computing Machyne

[30] Stephen A. Edwards. An Esterel compiler for large colrtiominated systems.
IEEE Transactions on Computer-Aided Design of Integratedis and Systems
21(2):169-183, February 2002.

[31] Stephen A. Edwards. Tutorial: Compiling concurrenglaages for sequential proces-
sors.ACM Transactions on Design Automation of Electronic Syst&(23:141-187,
April 2003.

[32] Stephen A. Edwards. SHIM: A language for hardwsofware integration. If#ro-
ceedings of Synchronous Languages, Applications, andr&mging (SLAP)Elec-
tronic Notes in Theoretical Computer Science, Edinburgbil8id, April 2005.

[33] Stephen A. Edwards. Using program specialization ®egpSystemC fixed-point
simulation. InProceedings of the Workshop on Partial Evaluation and PaogiMa-

nipulation (PEPM) pages 21-28, Charleston, South Carolina, January 2006.

[34] Stephen A. Edwards, Vimal Kapadia, and Michael Halas.m@iting Esterel into
static discrete-event code. Rroceedings of Synchronous Languages, Applications,
and Programming (SLARYolume 153(4) ofElectronic Notes in Theoretical Com-

puter Sciencgpages 107-121, Barcelona, Spain, March 2004. ElsevienSzie

[35] Stephen A. Edwards and Edward A. Lee. The semantics gecudon of a syn-
chronous block-diagram languadgcience of Computer Programmi(1):21-42,
July 2003.

BIBLIOGRAPHY 109

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Jeanne Ferrante, Mary Mace, and Barbara Simons. Gengssiguential code from
parallel code. 11988 International Conference on Supercomputpages 582-592,
St. Malo, France, July 1988. ACM.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warfidre program dependence
graph and its use in optimizatioPACM Transactions on Programming Languages
and System®(3):319-349, July 1987.

Peter L. Flake, Philip R. Moorby, and G. Musgrave. An a@igefor logic strength
simulation. InProceedings of the 20th Design Automation Conferepeges 615—
618, Miami Beach, Florida, June 1983.

Y. Futamura. Partial evaluation of computation pracesn approach to a compiler-

compiler. Systems, Computers, Contrdk$5):45-50, 1971.

Arne J. Glenstrup, Henning Makholm, and Jens P. Sec®dIX: Specialization of
C programs. IrPartial Evaluation—Practice and Theory, DIKU 1998 Interiuegtal
Summer Schoppages 108-154, London, UK, 1999. Springer-Verlag.

Georges Gonthier.Sémantiques et modeles d’exécution des langagesifeeagh-
chrones; application a Esterel. [Semantics and models xafcetion of the syn-
chronous reactive languages: application to Esterellhese d’informatique, Uni-

versie d'Orsay, 1988.

M. Goudarzi, S. Hessabi, and A. Mycroft. Object-orexhiasip design and synthesis.
In Forum on Specification and Design Languages (FDL 0B)ankfurt, Germany,
2003.

S. Harnett and M. Montenyohl. Towardsfieient compilation of a dynamic object-
oriented language. IRartial Evaluation and Semantics-Based Program Manipula-
tion, San Francisco, California, June 1992 (Technical Rep@LEUDCSRR-909)
pages 82-89. Yale, 1992.

BIBLIOGRAPHY 110

[44] James C. Hoe and Arvind. Hardware synthesis from termitiegy systems. /LSl
'99: Proceedings of the IFIP TC¥G10.5 Tenth International Conference on Very
Large Scale Integrationpages 595-619, Deventer, The Netherlands, 2000. Kluwer,
B.V.

[45] C.B. Jones, editoL.isp as the language for an incremental compufdre MIT Press,
1964.

[46] N. D. Jones, P. Sestoft, and H. Sgndergaard. Mix: Aapfflicable partial evaluator
for experiments in compiler generatiobisp and Symbolic Computatip8(1):9-50,
1989.

[47] Neil D. Jones, Carsten K. Gomard, and Peter Sesteéfirtial Evaluation and Au-
tomatic Program GenerationPrentice Hall, Upper Saddle River, New Jersey, June
1993.

[48] J. Jgrgensen. Generating a pattern matching compjlealtial evaluation. In S.L.
Peyton Jones, G. Hutton, and C. Kehler Holst, editétsnctional Programming,
Glasgow 1990pages 177-195. Springer-Verlag, 1991.

[49] Gilles Kahn. The semantics of a simple language forlpgnarogramming. Innfor-
mation Processing 74: Proceedings of IFIP Congresspagies 471-475, Stockholm,
Sweden, August 1974. North-Holland.

[50] John B. Kam and J&ey D. Ullman. Global data flow analysis and iterative algo-
rithms. Journal of the ACM23(1):158-171, 1976.

[51] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Keest Jdéfrey Palm, and
William G. Griswold. An overview of Aspectd.ecture Notes in Computer Science
2072:327-355, 2001.

[52] Gregor Kiczales, John Lamping, Anurag Menhdhekar, €Ntaeda, Cristina Lopes,

Jean-Marc Loingtier, and John Irwin. Aspect-oriented paogming. In Mehmet

BIBLIOGRAPHY 111

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Aksit and Satoshi Matsuoka, editoRfoceedings European Conference on Object-
Oriented Programmingpages 220-242, Berlin, Heidelberg, and New York, 1997.
Springer-Verlag.

G. Kildall. A unified approach to global program optiration. InProceedings of the
Symposium on Principles of Programming Languages (POpdges 194-206, 1973.

Stephen Cole Kleenelntroduction to Metamathematicsvan Nostrand, Princeton,

New Jersey, 1952.

Yanbing Li and Miriam Lesser. HML: An innovative hardwadesign language and
its translation to VHDL. IrProceedings of the International Conference on Computer
Hardware Description Languages and their Applications (CHDPThiba, Japan, Au-
gust 1995.

Matthieu Moy, Florence Maraninchi, and Laurent Ma#{@ontoz. Pinapa: An ex-
traction tool for SystemC descriptions of systems-on-g-clin Proceedings of the
International Conference on Embedded Software (Emspéiyyes 317-324, Jersey
City, New Jersey, September 2005.

Gilles Muller, Barbara Moura, Fabrice Bellard, and Charles Consel. HarissaxA fl
ible and dficient java environment mixing bytecode and compiled codeCOOTS
pages 1-20, 1997.

Rajeev Murgai, Fumiyasu Hirose, and Masahiro Fujitagicesynthesis for a single
large look-up table. Itnternational Workshop on Logic Synthegpages 6-11-6-19,
1995.

André Costi Nacul and Tony Givargis. Code patrtitioning for synthesis obed
ded applications with Phantom. Rroceedings of the IEEZECM International Con-
ference on Computer Aided Design (ICCAPages 190-196, San Jose, California,
November 2004.

BIBLIOGRAPHY 112

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Hanne Riis Nielson and Flemming Nielson. Bounded fixechpieration. InPro-
ceedings of the Symposium on Principles of Programming Wages (POPL)pages
71-82, Albuquerque, New Mexico, 1992.

David A. Penry and David I. August. Optimizations foriemalator construction sys-
tem supporting reusable componentsPhoceedings of the 40th Design Automation

Conferencepages 926931, Anaheim, California, June 2003.

Dumitru Potop-ButucaruOptimizing for Faster Simulation of Esterel ProgranhD
thesis, INRIA, Sophia-Antipolis, France, August 2002.

Dumitru Potop-Butucaru. Optimizations for faster extéan of Esterel programs. In
Proceedings of the 1st International Conference on Formahidds and Models for

Codesign (MEMOCODEpages 227-236, Mont St. Michel, France, June 2003.

Radu Rugina and Martin Rinard. Recursion unrolling for dé/iand conquer pro-
grams. InProceedings of the Workshop on Languages and Compilers fail&a

Computing (LCPC)volume 2017 oL ecture Notes in Computer Scienpages 34—
48, Yorktown Heights, New York, August 2000.

Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. @Awmiatic program spe-

cialization for Java. ACM Transactions on Programming Languages and Systems

25(4):452-499, 2003.

C. Schulz-Key, M. Winterholer, T. Schweizer, T. Kuhndaw. Rosenstiel. Object-
oriented modeling and synthesis of SystemC specificati@sp-da¢ 00:238-243,
2004.

Barbara Simons and Jeanne Ferrante. ficient algorithm for constructing a con-
trol flow graph for parallel code. Technical Report TR-03.4@\, Santa Teresa

Laboratory, San Jose, California, February 1993.

BIBLIOGRAPHY 113

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Bjarne Steensgaard. Sequentializing program depeedgaphs for irreducible pro-
grams. Technical Report MSR-TR-93-14, Microsoft, October3199

Olivier Tardieu and Stephen A. Edwards. R-SHIM: Detemsiic concurrency with
recursion and shared variables. Rroceedings of the 4th International Conference
on Formal Methods and Models for Codesign (MEMOCOD#8ge 202, Napa, Cal-
ifornia, July 2006.

Olivier Tardieu and Stephen A. Edwards. Schedulindependent threads and ex-

ceptions in SHIM. InProceedings of the International Conference on Embedded

Software (Emsoftpages 142-151, Seoul, Korea, October 2006.

Donald E. Thomas and Philip R. Moorbyhe Verilog Hardware Description Lan-

guage Kluwer, Boston, Massachusetts, 1991.

Steven W. K. Tjiang and John L. Hennessy. Sharlit: a foolbuilding optimizers.
In Proceedings of the ACM SIGPLAN Conference on Program LangDag&n and
Implementation (PLDl)pages 82—93, New York, New York, 1992.

Manish Vachharajani, Neil Vachharajani, and David ughist. The Liberty structural
specification language: A high-level modeling languagedommponent reuse. In
Proceedings of the ACM SIGPLAN Conference on Program LangDag&gn and
Implementation (PLDI)June 2004.

G. A. Venkatesh and Charles N. Fischer. Spare: A devetsprmnvironment for pro-
gram analysis algorithmdEEE Transactions on Software Engineeriid(4):304—
318, 1992.

Reinhard Wilhelm. Program analysis—a toolmaker’s pecsive. ACM Computing
Surveys28(4es):177, 1996.

Robert P. Wilson, Robert S. French, Christopher S. WilSaman P. Amarasinghe,
Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Weid,i&hau-Wen Tseng,

BIBLIOGRAPHY 114

[77]

[78]

[79]

Mary W. Hall, Monica S. Lam, and John L. Hennessy. SUIF: Arrasfructure
for research on parallelizing and optimizing compilerACM SIGPLAN Notices
29(12):31-37, 1994.

Kwangkeun Yi and Williams Ludwell Harrison Ill. Autontia generation and man-
agement of interprocedural program analysesProceedings of the Symposium on
Principles of Programming Languages (POPRIpages 246—259, Charleston, South
Carolina, 1993.

Jia Zeng and Stephen A. Edwards. Separate compilairasyfhchronous modules. In
Proceedings of the 2nd International Conference on Embe8déware and Systems
(ICESS) volume 3820 of_ecture Notes in Computer Scienpages 129-140, Xi'an,

China, December 2005.

Jia Zeng, Cristian Soviani, and Stephen A. Edwards. Geimg fast code from con-
current program dependence graphs.Ptoceedings of Languages, Compilers, and
Tools for Embedded Systems (LCTHEges 175-181, Washington, DC, June 2004.

Chapter A 115

Appendix A

AG Syntax

ag-phase:

Phase identifier (parameter-lisg,:) compound-statement

parameter-list:
parameter

parameter-list, parameter

parameter:
type identifier

type:
basic-type
extensible-class-type
Set < type>

Map < type, type>

basic-type:one of

int bool void

extensible-class-typ&ne of

Alias Opnd Instr Block Region Func

APPENDIX A. AG SYNTAX

compound-statement:

{ statementg

statements:

statement

statements statement

statement:

variable-declaration
function-definition
extend-class-definition
assignment-expressign;
if-else-statement
foreach-statement
phoenix-foreach
continue ;

break ;

return expressiog: ;
cpp-code-segment

Compound-statement

variable-declaration:

type variable-declaration-lisg

variable-declaration-list:

variable

variable-declaration-list, variable

variable:

identifier

identifier= expression

116

APPENDIX A. AG SYNTAX 117

function-definition:
basic-function-definition
transfer-function-definition

compute-function-definition

basic-function-definition:

type identifier(parameter-lisf,;) compound-statement

transfer-function-definition:

typeTransFunc (direction) compound-statement

compute-function-definition:

compute-function-nameidentifier,,;) compound-statement

compute-function-namene of

compose meet result

extend-class-definition:

extend class extensible-class-type compound-statement

assignment-expression:
variable-or-field assignment-operator expression

expression

variable-or-field:
variable-or-field-> identifier

identifier

APPENDIX A. AG SYNTAX 118

expression:
numeric-literal
variable-or-field
expression binary-operator expression
I expression
- expression
variable-or-field (variable-list:)

(expression

variable-list;
variable-or-field

variable-list, variable-or-field

binary-operator:one of

+ - F < > && || <= >= = ==

assignment-operatorone of

if-else-statement:
if (expression statement

if (expression) statementlse statement

foreach-statement:

foreach (type identifierin expressiomheregy direction,,) compound-statement

where:

where expression

direction: one of

forward backward

APPENDIX A. AG SYNTAX 119

phoenix-foreach:

phoenix-foreach-keyword parameter-lisg,:) compound-statement

cpp-code-segment:

/% C++-program-texts/

Chapter B 120

Appendix B

Recursive FFT Example in SHIM

/‘.“:7‘::‘::':7‘::‘::’:7‘:3’:7‘::‘:5’:7‘::‘:7‘::‘::':7‘::“:‘.':7‘::':7‘::“:*.':7‘::’:7'::‘::':7‘::‘::':7‘::’:7‘:

An in-place complex-to-complex FFT

7‘:7“:7‘:7‘::':7‘::‘:7':7‘:7’:7‘:*‘.’:7‘:7‘:*:‘::'r'.‘::‘:7’:7‘:7’:7‘::‘:‘.’:7‘:;’:**‘.’:7‘:'.“:'.':7‘::':7‘:/

struct complex{ //structure of complex number
float real;
float imag;

1

// main function
// which reads a series of input sample p
// and outputs a series of q after transform.

void main(complex p, complex &q){
int n = 8; //sample rate

stage(p, q, n, 1);

// for n input samples,
// log(n) stages will be built recursively,
// each of which is characterized with a different "step" size.
void stage(complex a, complex &b, int n, int step){
int f;
int i;

complex tmp;

if (step == n){

APPENDIX B. RECURSIVE FFT EXAMPLE IN SHIM

for(i = 0; i < nj; i++)
next b = next a;

return;

butterflies(a,tmp,0,0,n,step);
par
stage(tmp, b, n, (step*2));

void butterfly(complex x, complex y, complex w,
complex &xx, complex &yy){
complex t;

recv X; par recv y;

t = multiply(w, y);
yy = minus(x, t);
xx = plus(x, t);

// iteratively constructs butterfly() for each stage
void butterflies(complex a, complex &b,
int f, int i, int n, int step){
complex bb;
complex bl, b2;
complex al, a2;

complex w;

if (f >= step)

return;

if (A >=n) {
f += 1;
i=f;
butterflies(a,b,f,i,n,step);
return;

w.real = cos(£f*PI/(2*step));
w.imag = -sin(£*PI/(2*step));

for(int j = 0; j < n; j++){

121

APPENDIX B. RECURSIVE FFT EXAMPLE IN SHIM

recv a;
if(j == 1)
next al = a;
par
if(j == (i+step))

next a2 = a;

3
par
butterfly(al, a2, w, bl, b2);
par
butterflies(a,bb, f, (i+2*step),n,step);
par
{
for(int j = 0; j < n; j++){ //synchronize output
recv bb;
if(j == 1)
next b = next bl;
else if(j == (i+step))
next b = next b2;
else
next b = bb;

//facility functions

float sin(float x){
float x3,x5,x7;

if(x > PI/2) x =PI - x; //PI = 3.14

x3
X5

x"3/Q2 * 3);
(x3 * x72)/(4 * 5);
X7 = (x5 * x72)/(6 * 7);

return (x - x3 + x5 - x7);

float cos(float x){
return sin(PI/2 - x);

122

APPENDIX B. RECURSIVE FFT EXAMPLE IN SHIM

complex plus(complex x, complex y){
complex z;
z.real = x.real + y.real;
z.imag = x.imag + y.imag;

return z;

complex minus(complex x, complex y){
complex z;
z.real = x.real - y.real;
z.imag = x.imag - y.imag;
return z;

complex multiply(complex x, complex y){
complex z;
z.real = x.real * y.real - x.imag * y.imag;
z.imag = x.real * y.imag + x.imag * y.real;

return z;

123

