
Optimal Splitters for Database Partitioning
with Size Bounds

Kenneth A. Ross
∗

Columbia University
kar@cs.columbia.edu

John Cieslewicz
∗†

Columbia University
johnc@cs.columbia.edu

ABSTRACT
Partitioning is an important step in several database
algorithms, including sorting, aggregation, and joins.
Partitioning is also fundamental for dividing work into
equal-sized (or balanced) parallel subtasks. In this pa-
per, we aim to find, materialize and maintain a set of
partitioning elements (splitters) for a data set. Un-
like traditional partitioning elements, our splitters de-
fine both inequality and equality partitions, which al-
lows us to bound the size of the inequality partitions.
We provide an algorithm for determining an optimal set
of splitters from a sorted data set and show that it has
time complexity O(k lg2 N), where k is the number of
splitters requested and N is the size of the data set.
We show how the algorithm can be extended to pairs of
tables, so that joins can be partitioned into work units
that have balanced cost. We demonstrate experimen-
tally (a) that finding the optimal set of splitters can
be done efficiently, and (b) that using the precomputed
splitters can improve the time to sort a data set by up
to 76%, with particular benefits in the presence of a few
heavy hitters.

1. INTRODUCTION
Partitioning is an important component of a scalable

database system. It is commonly used for fundamen-
tal operations such as joins, aggregation, sorting, and
dividing work into balanced pieces. Balanced pieces of
work are relevant for parallel processing (to get good
processor utilization) or memory-constrained processing
(to get good spatial locality).

Current partitioning paradigms include hash-partitioning
and range-partitioning [5]. A problem with both of
these paradigms is that neither can guarantee a non-
trivial upper-bound on the size of a partition. Common
keys, sometimes known as “heavy hitters,” may cause a
partition to be much larger than the average partition
size. This is problematic for two reasons:

• If the complexity of processing each partition is su-
perlinear in the partition size, such as for sorting,
unbalanced partitions are potentially inefficient.

• If the partitioning is done to divide a job into
pieces to be executed in parallel, an unbalanced

∗Supported by NSF Grant IIS-0534389
†Supported by a U.S. Department of Homeland Security
Graduate Research Fellowship

partitioning could lead to an inefficient use of the
parallel resources.

We propose an alternative range-partitioning scheme
in which a table with N records is partitioned using
a set of k distinct keys into 2k + 1 partitions. Unlike
traditional range-partitioning, our ranges involve strict
inequalities, and we have k additional partitions explic-
itly devoted to single keys.

There are two main advantages to this scheme, which
uses the same number of splitters as traditional range-
partitioning. Firstly, we can provide an upper bound
on the size of the inequality partitions. By choosing
splitters that cover the heaviest hitters, we can ensure

that no inequality partition contains more than ⌈ (N−k)
(k+1)

⌉
elements. (This is a worst-case bound; we can often do
better when there are heavy hitters as we will show in
Section 4.)

Secondly, in a database context, one often can lever-
age the knowledge that an equality partition contains a
single key to process the partition more efficiently. Ex-
amples include:

• For sorting, the partition does not need to be fur-
ther processed.

• For aggregation, a scalar aggregation (with run-
ning aggregates in registers) is likely to be much
more efficient than a grouped aggregate (with run-
ning aggregates in a hash table).

• For joins of fixed-length records, a matching key in
a joined table can use a simple memcpy operation
for the whole partition, rather than having to do
key matching for every record.

The splitters can be computed either on-line or off-
line. In an on-line computation, one could sample the
column being partitioned. A sample of O(

√
N) elements

appears to be a good choice [15]. Since the number of
partitioning elements k is likely to be many orders of
magnitude smaller than the number N of records, it is
feasible to sample say 10k records from the table with
cost negligible compared to the cost of a table scan.
With such oversampling, it is highly likely that heavy
hitters can be identified from the sample [7]. The al-
gorithm for computing the splitters would then be the
same as the off-line computation described below, but
using the sample rather than the full data set.

In an off-line computation, one can compute an op-
timal set of splitters. In Section 2 we provide an algo-

rithm for computing this optimal set from a sorted col-
umn in O(k lg2 N) time. The sorted input could come
from a tree index on the column, or from an explicit
sort of the column itself. We have implemented this al-
gorithm, and show that it is practical, taking fractions
of a second for realistic memory-resident examples.

The algorithm simultaneously computes the exact count
in each partition. The count can be an important piece
of information. For example, it allows a partition-based
sorting algorithm such as sample-sort [9] to partition
the data into contiguous regions, so that each partition
can be sorted in place to generate the final sorted result
without further data movement.

The splitter structure can provide time savings at a
fraction of the space cost of alternatives. For example,
the C-Store system advocates the physical storage of
multiple versions of a single table according to multiple
sort keys [21]. For large tables, the number of physical
representations would be limited by the amount of avail-
able storage and (depending on the implementation) by
the cost of incremental maintenance for updates. Our
splitter structure can save a substantial fraction of the
sorting cost, using a data structure that is orders of
magnitude smaller than a table or an index. (We will
quantify these claims in Section 4.)

Precomputed splitters are also useful for partitioning
on parallel machines to make sure that work is balanced
across processors. In the case of a join, using a splitter
set from one of the participating tables may give unbal-
anced partitions for the other table. We provide a mod-
ification of our optimal splitter finding algorithm that
chooses an optimal splitter set for a pair of tables using a
column (with a common domain) from each. This algo-
rithm uses a cost function to give the best possible cost
bound on the generated partitions for a given number
of splitters. This algorithm uses O(k lg3 N) time.

As well as providing the performance benefits men-
tioned above, a splitter set possesses many of the statis-
tical properties of an equi-depth histogram, and can be
used as such for approximate query processing [12] or
for selectivity estimation of range predicates [1]. It can
also provide exact selectivities for heavy hitters, like a
compressed histogram [19].

An important contribution of this splitter technique is
its robustness given any distribution. We provide guar-
antees on the size of the inequality partitions generated
by the splitters, without requiring special knowledge
about the input such as the number of unique keys or
information about heavy hitters.

Section 2 presents the definition of splitters as well as
splitter finding algorithms for single columns and mul-
tiple tables. We present refinements to these optimal
splitters in Section 3. An experimental evaluation of
the splitter finding algorithm, efficient data set parti-
tioning, and an application to sorting can be found in
Section 4. Section 5 presents related work. We conclude
and discuss future work in Section 6. Proofs that are
not in the main text can be found in Appendix A.

2. COMPUTING THE SPLITTERS

2.1 Terminology
We assume an ordered data type, such as a number

or string, for the partitioning key. A set of k distinct
keys s1, . . . , sk called splitters defines 2k + 1 partitions:

• k equality partitions of the form {x|x = si}, i =
1, . . . , k.

• k − 1 inequality partitions of the form {x|si < x <
si+1}, i = 1, . . . , k − 1.

• Two inequality partitions {x|x < s1} and {x|x >
sk}.

A table T may be distributed to partitions according
to a splitter set; each record is mapped to a single parti-
tion based on the value of a particular column of T . The
breadth of a splitter set for a table T is the maximum
cardinality among all inequality partitions of T .

A splitter set S is optimal for table T and cardinality
bound k if, among all splitter sets with at most k ele-
ments, S has minimal breadth for T . By limiting the
size of the biggest inequality partition, optimality en-
sures that these partitions are (to the extent possible
given the data distribution) well-balanced.

2.2 Splitters for Single Columns
We now present Algorithm 2.1 in Figure 1, whose pur-

pose is to find (if possible) a set of up to k splitters that
yield breadth at most b for a given data set.

Lemma 2.1. Algorithm 2.1 is correct.

Corollary 2.2. It is always possible to split N records
using k splitters so that at most ⌈N−k

k+1
⌉ elements are in

each inequality partition.

Corollary 2.3. A key that occurs at least ⌈N

k
⌉ times

in a data set of size N must be represented in any opti-
mal splitter set of size k.

Proof. If not, then some inequality range would con-
tain too many elements to be optimal.

Lemma 2.4. Algorithm 2.1 takes time
O(min{(N/b), k} lg N).

Proof. The number of iterations is at most
min{(N/b), k}. In each iteration, the work is O(lg N):
the index of the first nonmatching key can be found by
doubling the index range until a distinct key is found,
then using binary search to locate the earliest nonmatch.

Algorithm 2.2 in Figure 2 uses Algorithm 2.1 repeat-
edly to find the best bound b for a data set, given k.

Theorem 2.5. Algorithm 2.2 returns an optimal split-
ter set.

Lemma 2.6. Algorithm 2.2 takes time O(k lg2 N).

Proof. The number of iterations is at most lg⌈N−k

k+1
⌉.

In each iteration, the work is O(k lg N) by Lemma 2.4.

2.3 Multiple Tables
If two tables R1 and R2 are often joined on a shared

attribute C, we might try to utilize a precomputed split-
ter set to make the join process more efficient. This
would be a space-efficient alternative to materializing

Algorithm 2.1.
Input: Number of records N ≥ 1, number of keys k ≥ 0, bound b ≥ 1, Records r[0], . . . , r[N−1] in ascending

key order.
Output: Either (a) “error”, indicating that the records cannot be split using k splitters in a way that ensures

all inequality partitions have cardinality no more than b; or (b) A minimal-length sequence of up to
k splitters (together with partition counts) that ensures all inequality partitions have cardinality no
more than b.

Method: start=0; i=0;
while (start + b) < N {

if i≥k return error;
s[i] = r[start+b];
next = index j of first record after r[start+b] with r[j]>r[start+b], or N if no such j exists;
prev = index m of earliest record before or at r[start+b] with r[m] = r[start+b];
count[2i] = prev-start; // Even index counts are for inequality partitions
count[2i+1] = next-prev; // Odd index counts are for equality partitions
start = next;
i = i+1;

}
count[2i] = N-start; // final inequality partition
return s[0],. . . ,s[i-1],count[0],. . . ,count[2i];

Figure 1: Algorithm for finding splitters on a single column.

Algorithm 2.2.
Input: Number of records N ≥ 1, number of keys k ≥ 0, Records r[0], . . . , r[N − 1] in ascending key order.
Output: A bound b and a sequence of up to k splitters that ensures all inequality partitions have cardinality

no more than b.
Method: UpperB = ⌈N−k

k+1
⌉; /* Corollary 2.2*/

LowerB = 1;
Do a binary search on b between UpperB and LowerB, calling Algorithm 2.1 at each iteration. Move
to the upper half when “error” is returned, and move to the lower half when b is feasible. When the
smallest feasible value of b has been found, return b and the splitters provided by Algorithm 2.1 for
that value of b.

Figure 2: Using Algorithm 2.1 to find the best bound for a given data set when partitioned by k
splitters.

and maintaining the full join result. There are several
alternative splitter choices, depending on the efficiency
goal. In what follows we focus on the inequality par-
titions, since the equality partitions are easier to pro-
cess (no key matching is needed) and they can be repli-
cated/divided among processors if they are large [2].

If the partitioning step is a precursor to a hash join,
then the goal might be to bound the size of the build
partitions so that they fit in the appropriate level of the
memory hierarchy, such as the L2 cache. With this in
mind, one could use a precomputed splitter set for the
smaller of the two tables (say R2) to partition both ta-
bles. (Since the per-record build time is usually more
than the per-tuple probe time, and since less memory
is required, building on the smaller table is usually pre-
ferred.) Even though the size of the R1 partitions may
vary, the R2 partitions will be bounded in size.

There are two drawbacks to this approach. Firstly,
even if R2 is the smaller table, it may happen than
some R1 partitions are smaller than the corresponding
R2 partitions. In that case, we have perhaps partitioned
too finely, and a coarser set of splitters would have been
optimal to achieve the given bound. Secondly, this par-
titioning scheme can lead to highly unbalanced parti-
tions if the distribution of column C values in R1 is very

different from that of R2. In the context of partitioning
for parallelism, such imbalance can lead to unnecessarily
long latencies and/or processor underutilization.

Instead, we propose to construct a splitter set based
on the sorted C columns from both tables. Let N1 and
N2 be the cardinalities of R1 and R2 respectively. We
let r1[0..N1-1] and r2[0..N2-1] denote the sorted lists of
C values from R1 and R2 respectively.

We look for a set of splitters for the combination of r1
and r2 based on a cost function. For the join example
above, a cost model for partitions of R1 and R2 with
sizes p1 and p2 respectively might be:

cost(p1, p2) = build-cost(min(p1, p2))
+ max(p1, p2)probe-cost(min(p1, p2))

(1)

Equation 1 expresses the preference for building the
hash table on the smaller partition. The functions build-cost
and probe-cost may themselves have parameters. For
example, the probe cost may depend on the size of the
hash table, such as whether it fits into the L2 cache or
not. A more practical cost function would also take into
account the number of columns in each of the partici-
pating tables. Despite the possible complexity of the
cost function, it should be fairly obvious that any real-
istic cost function must be monotonic in both p1 and p2.

Algorithm 2.3.
Input: Numbers N1, N2 ≥ 1, number of keys k ≥ 0, bound b ≥ 1, Records r1[0], . . . , r1[N1 − 1] in ascending

key order and r2[0], . . . , r2[N2 − 1] in ascending key order.
Output: Either (a) “error”, indicating that the records cannot be split using k splitters in a way that ensures

all inequality partitions have cost no more than b; or (b) A minimal-length sequence of up to k
splitters that ensures all inequality partitions have cost no more than b.

Method: start1=0; start2=0; i=0;
while cost(N1-start1, N2-start2) > b {

if i≥k return error;
find the largest q among {r1[start1], . . . , r1[N1 − 1], r2[start2], . . . , r2[N2 − 1]} such that

cost(c1, c2) ≤ b, where
c1 = number of keys less than q among r1[start1], . . . , r1[N1 − 1];
c2 = number of keys less than q among r2[start2], . . . , r2[N2 − 1];

s[i] = q;
start1 = index j1 of first record in r1 with r1[j1] > q, or N1 if no such j1 exists;
start2 = index j2 of first record in r2 with r2[j2] > q, or N2 if no such j2 exists;
i = i+1;

}
return s[0],. . . ,s[i-1];

Figure 3: Finding splitters for multiple tables.

Algorithm 2.4.
Input: Numbers N1, N2 ≥ 1, number of keys k ≥ 0, Records r1[0], . . . , r1[N1 − 1] in ascending key order,

and records r2[0], . . . , r2[N2 − 1] in ascending key order.
Output: A bound b and a sequence of up to k splitters that ensures all inequality partitions have cost no

more than b.
Method: UpperB = cost(N1, N2);

LowerB = cost(0, 0);
Do a binary search on b between UpperB and LowerB, calling Algorithm 2.3 at each iteration. Move
to the upper half when “error” is returned, and move to the lower half when b is feasible. When the
smallest feasible value of b has been found, return b and the splitters provided by Algorithm 2.3 for
that value of b.

Figure 4: Using Algorithm 2.3 to find the best bound for a given data set when partitioned by k
splitters.

Adding more records to the build and/or probe phases
can only increase the cost of the join, all else remaining
equal. In what follows, we assume only that we are given
an integer cost function that (a) is monotonic, and (b)
gives equal weight to all records in a table. (Condition
(b) is necessary if we wish to compute the cost based
simply on counts.)

A set of splitters defines partitions in both r1and r2.
The cost function for a partitioning range can be calcu-
lated based on the number of records from each list that
fall within the partition’s range.

Our problem can now be phrased as follows: Find a
set of up to k splitters for r1 and r2 such that the biggest
cost among all inequality partitions is minimized. A
splitter set is optimal if it meets this condition.

For a fixed monotonic cost function, we can modify
Algorithm 2.1 to give Algorithm 2.3 in Figure 3. We
omit the count calculations for brevity.

Lemma 2.7. Algorithm 2.3 is correct.

The asymptotic complexity is slightly higher that Al-
gorithm 2.1, due to the complexity of the step that de-
termines the largest q value.

Lemma 2.8. Let N = N1 +N2 be the total size of the
input. Algorithm 2.3 takes time O(k lg2 N).

Proof. The number of iterations is at most k. In
each iteration, the work is O(lg2 N) for the step to find
the largest q. One can use an exponentially expanding
search followed by binary search to find the appropriate
q. Within that loop, we perform a similar search to find
the latest value in each input array that is less than q,
in order to compute c1 and c2.

Figure 4 shows Algorithm 2.4 for finding the best par-
titioning bound for multiple tables.

Theorem 2.9. Algorithm 2.4 returns an optimal split-
ter set.

Lemma 2.10. Let N = N1 + N2 be the total size of
the input to Algorithm 2.4, and suppose that the cost
function is bounded above by a polynomial function of
its inputs. Then Algorithm 2.4 takes time O(k lg3 N).

Proof. The number of iterations is at most
lg(cost(N1, N2)−cost(0, 0)). For a polynomially bounded
cost function, lg(cost(N1, N2) − cost(0, 0)) = O(lg N).
In each iteration, the work is O(k lg2 N) by Lemma 2.8.

3. REFINEMENTS

A Hierarchy of Splitters
Unfortunately, there is no guarantee that an optimal
set of splitters for k = x has any intersection with the
optimal set of splitters for k < x. So in general it is
not possible to take a subset of the splitters to use for
smaller partitioning factors.

Fortunately, both the space and time requirements
for computing and representing the splitters is linear
in k. Thus, given a maximum k value of K, we can
compute splitter sets of size 1, 2, 4, 8, . . . , K with total
cost approximately double that of computing just the
K-splitters alone. Having a set of variable granularities
will allow one to partition to the extent needed for the
particular operation (and no more).

Incremental Maintenance
The counts can be incrementally maintained over time
as database updates occur. A large number of updates
might create new heavy hitters and cause the splitters
to no longer be optimal. Periodic recomputation of the
splitters would be required to bound the divergence from
optimality. In situations such as data warehousing that
do updates in batches, new optimal splitters could be
computed during the batch update window. Despite
the possible divergence from optimality, the maintained
counts still provide a bound on the size of the inequality
partitions.

Higher Dimensions
Histograms over multiple dimensions are used to esti-
mate selectivities and provide approximate query an-
swers when dimensions are correlated (see [10] for a
survey). Multidimensional partitioning might also be
useful for making database operators more efficient. Ex-
amples include partitioning a data set according to a
composite key, and partitioning a table on one attribute
while at the same time applying a selection condition
on another attribute. Finding optimal partitioning ele-
ments in two or more dimensions is NP-complete [17],
and so we expect to be satisfied with efficiently com-
putable heuristic algorithms.

There are a number of well-known data structures
for multidimensional data access [4]. Many of these
data structures take balanced partitioning into account
when choosing partitioning dimensions and values. One
could construct one of these tree-based data structures
and store just the partitioning elements from the higher
levels of the tree. However, none of these structures
pay special attention to equality on the splitter values,
meaning that a heavy hitting point (or plane) in mul-
tidimensional space could still cause a major imbalance
in the tree.

There are several ways one could generalize our ap-
proach to higher dimensions. One could find kx op-
timal x-splitters and ky optimal y-splitters in a one-
dimensional fashion, and then define a grid of (2kx +
1)(2ky + 1) partitions. Alternatively, one could find kx

optimal x-splitters, and then find ky optimal y-splitters
within each x-partition. This second approach requires
more splitters, but can better handle correlated dimen-
sions. One could even balance the assignment of y-
splitters to x-partitions so that x-partitions with a wider
y range get more y splitters.

Even though the one-dimensional choices are optimal,
these approaches do not guarantee that the cardinality
bound of the two-dimensional regions is optimal. The
optimality of one-dimensional projections of a multidi-
mensional partitioning structure is as good a guarantee
as one can achieve in polynomial time, given the NP-
completeness of the multidimensional problem, unless
P=NP.

4. EXPERIMENTAL EVALUATION
We implemented the splitter-finding and partitioning

algorithms in C++ and performed an experimental eval-
uation on real hardware, an unloaded Linux server with
an Intel Core 2 Duo processor. The specifications of
our experimental platform can be found in Table 1. Al-
though the Core 2 Duo processor has two cores, our
implementation is single threaded and only one proces-
sor core was used during the experiments. For all ex-
periments, the input is memory resident before timing
begins.

Processor Core 2 Duo 2.4 GHz (E6600)
RAM 4 GB

L2 Cache 4 MB
TLB 256 entries [3]

Operating System Linux (2.6.18 kernel)
C++ Compiler GCC 4.1.1

Compiler Options -O3 -funroll-loops -msse2

Table 1: Experimental Platform

We conducted experiments with a number of input
distributions that are encountered in practice: (1) uni-
form, (2) sorted, (3) heavy hitter, (4) sequential, (5)
zipf, (6) self-similar, and (7) moving cluster. The meth-
ods described in Gray et al. [6] were used to generate
the probablistic distributions. In all cases, the input
consisted of 1 GB of 16 byte tuples, for a total of 226

tuples. Each tuple contains an 8 byte partitioning key
and an 8 byte payload, which could be a record ID.
For each distribution type we generated input with 2a

unique partitioning key values, where a = 1, 2, . . . , 24.
In the heavy hitter input, one value accounts for 50%

of the group-by keys, while the other values are cho-
sen uniformly from the other group-by keys. The se-
quential distribution consists of input records in seg-
ments, each consisting of a numerically increasing se-
quence of group-by values. For example, with 10000
group-by values, the sequence of group-by values would
be 1, 2, . . . , 10000, 1, 2, . . . , 10000, 1, 2, The self-similar
distribution uses an 80-20 proportion, and the Zipf dis-
tribution uses an exponent of 0.5. In the moving-cluster
distribution with c ≥ W , record number i is chosen uni-
formly from the range ⌊(c−W)i/r⌋ to ⌊(c−W)i/r+W ⌋,
where c is the target group-by cardinality, r is the num-
ber of records, and W is a window size. For c < W
moving-cluster reverts to a uniform distribution. We
use W = 1024.

4.1 The Splitter-Finding Algorithm
We implemented the splitter-finding algorithm in C++

to empirically verify its running time and confirm its

(a) Varying k (N = 226) (b) Varying N (k = 1048575)

Figure 5: Time to find splitters on uniform input.

(a) 2048 Unique Keys (b) 2040 Unique Keys

Figure 6: Partition sizes on uniform input using 511 splitters, sorted largest to smallest.

practicability. Figure 5 shows the time required to find
k splitters on uniform, sorted input of size N . This time
does not include the time to sort the input. The pre-
dicted O(klg2N) running time is confirmed: Figure 5(a)
shows the running time to be linear in k and Figure 5(b)
shows the running time to be quadratic in lgN . For 1
GB of input, a reasonable number of splitters can be
found in one second or less, making splitter-finding a
relatively inexpensive database task.

The data structure for partitioning requires an array
of the k splitters as well as the starting offsets for each
of the 2k + 1 partitions. Our keys are 8 bytes, so our
splitters are 8 bytes as well. We use 4 byte offsets, giving
a total data structure size of about 16k + 4 bytes. For
most of our experiments we use k = 511, which yields
a total size of almost 8KB. The L1 cache size is 32KB,
meaning that the search step for partitioning is entirely
L1 cache resident. Given that the experimental data
sets are 1GB in size, the partitioning data structures for
511 splitters require only 0.00076% storage overhead.

Figure 6 shows the sizes of the partitions created by
511 splitters on uniform input with (a) 2048 distinct
keys and (b) 2040 unique keys. The blue data points
represent the sizes of equality partitions and the red
data points represent the sizes of the inquality parti-

tions. The horizontal, dotted green line shows the max-
imum inquality partition size bound. For 2048 unique
keys, shown in Figure 6(a), the bound does not appear
to be very tight, because there are only two inequality
partitions whose size is close to the bound. Because the
number of splitters is one less than a power of 2 and
2048 is a power of 2, this distribution represents a type
of worst case situation. One could attempt to partition
using a tighter bound, but it would not succeed. There
are 511 equality partitions, which will account for 511 of
the 2048 unique keys, leaving 1537 keys to be distributed
among the 512 inequality partitions, or just barely more
than three keys per partition. Because there are a fixed
number of inequality partitions, by the pigeon hole prin-
ciple one of the partitions would have to hold at least
four keys. In contrast, a uniform distribution with 2040
unique keys as shown in Figure 6(b) exhibits a much
tighter bound because there are now just under three
keys per inequality partition on average.

The robustness of the splitters for distributions with
heavy hitters is demonstrated in the case of a Zipf input,
as shown in Figure 7. In this case, we see that the
largest partitions are equality partitions that effectively
capture all heavy hitters. The inequality bound is an
order of magnitude smaller than the size of the largest

Figure 7: Partition sizes on Zipf input using 511
splitters, sorted largest to smallest.

equality partition. Because there are no or few values
between heavy hitter values, some inequality partitions
are empty (the flat red line at the right of the chart).
We argue that this is a small price to pay for robust
guarantees on the size of inequality partitions, as well
as the special equality handling of heavy hitters, without
needing to know anything about the input distribution.

4.2 Efficient Partitioning
In order to make the partitioning step as efficient as

possible, we hand-optimized the partitioning code. We
used some of the same optimization methods described
by Sanders and Winkel for their sample-sort algorithm
[20]: (a) we used conditional move instructions rather
than branches, to avoid misprediction penalties and to
convert control dependencies into data dependencies;
(b) we instructed the compiler to unroll the inner loop
(which uses a fixed partitioning depth), and we pro-
cessed multiple1 keys at a time to expose a higher de-
gree of instruction-level parallelism; (c) we invoked the
compiler with flags allowing it to use instructions (in
particular, conditional moves) specific to the hardware
platform (see Table 1); (d) we allocated memory to ex-
actly fit the partitions, so no end-of-partition check is
needed when incrementing the partition index. How-
ever, unlike [20], our algorithm handles both equality
and inequality partitions, with no extra work in the in-
ner loop. Our partitioning implementation works for
numbers and short (≤ 8 byte) strings. The cost for
variable length strings or user-defined data types would
be higher. Nevertheless, numeric codes representing row
ids are common in databases and are typical of columns
on which partitioning would take place. The code for
finding the appropriate partition for a key is shown in
Figure 8; the generated machine code contained no con-
ditional branch instructions.

In order to ensure that the conditional moves were
generated as outlined in Figure 8, using a single com-
pare instruction, we had to write the first three lines of
the inner loop in assembly language. We also write to
each partition starting at a random location, and then
wrap around at the end of the partition. This random-

1Three keys at a time appeared to work best on our
platform.

ness helps avoid degenerate behaviors, such as repeated
conflict misses in the TLB when the partitions have size
that is a large power of 2. Other differences from the
sample-sort of [20] include: (a) we assume that the split-
ters and partition counts are precomputed, so we can
avoid the sampling and counting steps of sample-sort;
(b) our splitters are guaranteed to be optimal; (c) for
equality partitions, we avoid the recursive sort step en-
tirely.

Figure 9(a) shows the performance of our partition-
ing implementation on the various input distributions.
The spike in execution times around 511 to 1023 unique
keys is due to TLB thrashing. As the number of unique
keys in the distributions requires more active output
partitions than the TLB can cover, partitioning time
increases.2 The sorted distribution does not experience
this TLB coverage problem because consecutive input
tuples map to the same partition. Even considering
the TLB overhead, partitioning is very efficient on all
distributions.

Based on performance measurements, an average of
93 instructions are required to locate an element’s par-
tition and then copy it into that partition. On uniform
input, our partitioning implementation retires between
1.1 and 1.68 instructions per cycle (IPC), depending on
the number of unique keys. This is a reasonable IPC
considering that each element processed requires read-
ing from and writing to RAM. An improvement in IPC
may be possible, but we leave further optimization to
future work.

As the number of splitters used increases, as shown
in Figure 9(b), the partitioning cost increases. This is
because good partitioning performance relies on fast,
cache-resident access to the partitioning data structures,
such as the splitters and partition offsets. When that
data does not fit in the cache, each tuple processed from
a uniformly distributed input causes many cache misses
in both the binary search and offset lookup, slowing
performance dramatically.

4.3 Using the Splitters to Regenerate a Sorted
Data Set

We apply our partitioning implementation to improve
the performance of recreating a sorted data set. Sup-
pose that at some point in the past, the data set was
sorted and splitters calculated. The data set has since
lost that sort property; for instance, it may have been
sorted on a different attribute. To sort this data set,
we first partition it and then apply stl::sort to each of
the inequality partitions. We choose to compare against
stl::sort from the GCC STL library, which uses a quick-
sort variant called Introsort [16], because it is regarded
as one of the fastest general purpose sorting implemen-
tations [20].

Figure 10 shows the improvement achieved by various
numbers of splitters on one uniform data set. The best
performance is achieved when the number of splitters is
255 or 511. For 255 and greater numbers of splitters,
the inequality partitions fit within the L2 cache of our
processor, resulting in cache resident sorting tasks. At

2Using large memory pages may help mitigate this prob-
lem by increasing the TLB coverage, but such issues are
beyond the scope of this paper.

int findpartition(N,d,k,p) {

// N = number of keys, one less than a power of 2; d = lg(N+1);

// k = search key; p[1..N] is the partitioning array, p[0] contains -MAXINT

low = 0; hi = N+1; mid = hi>>1; // shift is division by 2

for(i=0; i<d; i++) { // loop can be unrolled if d is fixed

CMP k,p[mid]; // compare key with p[mid]

CMOVl hi,mid; // if key smaller, move hi down

CMOVg lo,mid; // if key larger, move low up

mid = (low+hi)>>1; // if key equal, do nothing to low or hi!

}

temp = mid<<1; // even numbers are inequality partitions

return temp - (k==p[mid]); // odd numbers are equality partitions

}

Figure 8: Code for finding a partition for a key.

(a) Various Distributions (k = 511) (b) Various k (Uniform keys = 224)

Figure 9: Partitioning performance

511 splitters, the splitter data structures needed for par-
titioning are also L1 resident, resulting in more efficient
partitioning. Increasing the number of splitters beyond
this point actually results in lower improvement or even
worse performance than stl::sort. This is because the
partitioning step becomes more expensive as the splitter
data structures cease to be L1 and then L2 cache res-
ident as well increased cache pressure caused by more
output partitions. For all subsequent experiments, 511
splitters are used.

Figure 11 shows the improvement of our partition-
then-sort approach to simply sorting the entire data set
with stl::sort on multiple input distributions. To provide
an idea of sort cost on our experimental platform, con-
sider the case of sorting 1 GB of input with 224 unique
keys. Sorting with stl::sort takes 10.5 seconds. In con-
trast, our sort-then-partition approach takes 7.89 sec-
onds in total, with 2.09 seconds spent partitioning and
5.8 seconds spent sorting the inquality partitions with
stl::sort.

The partition-then-sort approach performs well, par-
ticularly if heavy hitters are present in the input. For
instance, regardless of the distribution, when the num-
ber of unique keys is less than the number of splitters,
partitioning will place almost all tuples into equality

partitions that do not require further sorting. In Fig-
ure 11, this is the reason for the better than 60% im-
provement over naive stl::sort for all distributions when
the number of unique keys is less than 511. The heavy
hitter, Zipf, and self-similar distributions show an im-
provement of at least 25% in all experiments. This is
due in large part to the guarantee that heavy hitters
will be placed in equality partitions that do not require
further sorting.

Sorted and moving cluster benefit the least from par-
titioning. In the case of sorted input, partitioning is un-
necessary, but it does provide a small benefit by creating
smaller chunks of the data set to be sorted, resulting in
better cache usage. The clustering present in the mov-
ing cluster input provides some of the benefit of parti-
tioning, resulting in faster sort times that make it more
difficult for partition-then-merge to show an improve-
ment. This is because elements in the moving cluster
data set are already close to their final sorted partition.
Therefore, initial quicksort partitioning passes do not
need to swap elements, leading to fast execution because
there is good branch prediction and no data movement.
When elements must be swapped, they are only moved
within a small region of the input, which is more likely
to be cache resident.

Figure 10: Partition-then-sort improvement
over stl::sort (224 unique keys).

Figure 11: Partition (k = 511) and sort perfor-
mance improvement compared to stl::sort.

After initially falling, the partition-then-sort perfor-
mance improvement on the sequential distribution in-
creases as the number of unique keys in the data set
becomes quite large. This is likely because stl::sort,
which uses Introsort [16], chooses poor pivots. Introsort
may detect the poor pivot choices and switch to an-
other sorting algorithm (heapsort) that is less efficient
than quicksort, but does not have as bad a worse-case
running time.

In comparison with Sanders and Winkel [20], our partition-
then-sort implementation performs better (to the extent
that their Pentium 4 results may be compared with our
Core 2 Duo results). One expects this improvement be-
cause we do not require a sampling or counting step (the
splitters are precomputed), and because we have special
handling for equality partitions, which do not need to
be sorted after partitioning. Also, unlike [20], we our
evaluation considers a variety of data distributions.

5. RELATED WORK
There has been much work on histogram construction

for database applications [10], but most of this work
has been focused on the problems of approximate query
processing [12] and/or selectivity estimation [1]. As a
result, the desired error metric may be different. For

example, Ioannidis and Poosala define a notion of “V-
optimality” based on the sum-squared error [11]. Ja-
gadish et al. provide a dynamic programming algorithm
for calculating histograms that are optimal according to
an arbitrary error metric [13]. However, this algorithm
takes time O(kN2) in the worst case, making it im-
practical for large data sets containing tens of millions
of records. Also, it does not do any special process-
ing for heavy hitters. Compressed histograms [19] set
aside some space to keep values with high frequencies
in singleton buckets. However, compressed histograms
have not previously been used to save work in database
operators for singleton partitions. Muthukrishnan et al.
have shown that optimal rectangular partitioning in two
or more dimensions is NP-hard [17].

Poosala and Ioannidis study histograms for estimat-
ing the size of a join result [18], and show that the low-
est sum-squared error is achieved using two V-optimal
histograms on the input relations’ join columns. They
also use a cost function to compute balanced partitions
for a parallel join. Their cost function uses the two
separate V-optimal histograms on the participating ta-
bles to determine the workload distribution. For us, the
cost function is used to determine a single splitter set
for the tables considered jointly. Further, our notion
of optimality that is based on the maximum partition
cost more directly matches the load-balancing applica-
tion, where one has to wait until the termination of the
slowest partition. Most other previous work on load
balancing joins for parallelism handles skew only on the
build relation [14, 8, 2]

Materialized views make queries faster by allowing
the query processor to avoid recomputing certain subex-
pressions of the query. The cost of a materialized view
is the space needed to store it, and the time needed
to keep it (and its indexes) up to date. Our splitter
set can be thought of similarly. The splitter set allows
some query operations (such as sorts and joins) to be
performed faster than they could before. The mainte-
nance of the counts for a splitter set is straightforward,
and the space occupied is (in most practical situations)
negligible relative to the size of the original table.

6. CONCLUSION AND FUTURE WORK
In this paper we have introduced a novel method for

efficiently extracting optimal splitters for database par-
titioning from a sorted data set. We use these split-
ters to create both equality and inequality partitions,
and guarantee size bounds on the inequality partitions.
The data structures required to support splitter calcu-
lation and partitioning require a very small amount of
storage overhead, making the calculation and storage of
optimal splitters a low cost operation. These optimal
splitters can be used to create partitions with guaran-
teed size bounds, improving the performance of sorting,
joins, aggregation and parallel processing.

We have validated the running time and partition
bound guarantees experimentally, by implementing these
algorithms on real hardware. We also present an ef-
ficient partitioning implementation that avoids condi-
tional branches when calculating which partition an ele-
ment belongs to. We further demonstrate that the split-
ters are robust regardless of the distribution of the data

set. Finally, we use the optimal splitters and our par-
titioning implementation to improve the performance
of sorting various 1GB data sets by up to 76% over
stl::sort.

One avenue for future work is to extend partition-
ing with size bounds to hash partitioning. Perhaps one
could place heavy hitters in special buckets within the
hash table. Nevertheless, creating hash buckets that are
optimally balanced seems like a difficult problem. We
also plan to develop an efficient parallel implementation
of the splitter-finding and partitioning algorithms for
use on a multi-core architecture.

7. REFERENCES
[1] Surajit Chaudhuri. An overview of query

optimization in relational systems. In PODS,
pages 34–43, 1998.

[2] David J. DeWitt, Jeffrey F. Naughton,
Donovan A. Schneider, and S. Seshadri. Practical
skew handling in parallel joins. In VLDB, pages
27–40, 1992.

[3] Jack Doweck. Inside intel core microarchitecture.
Viewed on-line December 2007.
http://www.hotchips.org/archives/hc18/3 Tues/
HC18.S9/HC18.S9T4.pdf.

[4] Volker Gaede and Oliver Günther.
Multidimensional access methods. ACM Comput.
Surv., 30(2):170–231, 1998.

[5] Shahram Ghandeharizadeh and David J. DeWitt.
Hybrid-range partitioning strategy: A new
declustering strategy for multiprocessor database
machines. In VLDB, pages 481–492, 1990.

[6] Jim Gray, Prakash Sundaresan, Susanne Englert,
Kenneth Baclawski, and Peter J. Weinberger.
Quickly generating billion-record synthetic
databases. In SIGMOD Conference, pages
243–252, 1994.

[7] Peter J. Haas and Arun N. Swami.
Sampling-based selectivity estimation for joins
using augmented frequent value statistics. In
ICDE, pages 522–531, 1995.

[8] Kien A. Hua and Chiang Lee. Handling data skew
in multiprocessor database computers using
partition tuning. In VLDB, pages 525–535, 1991.

[9] J.S. Huang and Y.C. Chow. Parallel sorting and
data partitioning by sampling. In Proc. of
Symposium on Parallel Algorithms and
Architectures, pages 627–631, 1983.

[10] Yannis E. Ioannidis. The history of histograms
(abridged). In VLDB, pages 19–30, 2003.

[11] Yannis E. Ioannidis and Viswanath Poosala.
Balancing histogram optimality and practicality
for query result size estimation. In SIGMOD
Conference, pages 233–244, 1995.

[12] Yannis E. Ioannidis and Viswanath Poosala.
Histogram-based approximation of set-valued
query-answers. In VLDB, pages 174–185, 1999.

[13] H. V. Jagadish, Nick Koudas, S. Muthukrishnan,
Viswanath Poosala, Kenneth C. Sevcik, and
Torsten Suel. Optimal histograms with quality
guarantees. In VLDB, pages 275–286, 1998.

[14] Masaru Kitsuregawa and Yasushi Ogawa. Bucket

spreading parallel hash: A new, robust, parallel
hash join method for data skew in the super
database computer (sdc). In VLDB, pages
210–221, 1990.

[15] Conrado Mart́ınez and Salvador Roura. Optimal
sampling strategies in quicksort and quickselect.
SIAM J. Comput., 31(3):683–705, 2001.

[16] David R. Musser. Introspective sorting and
selection algorithms. Softw., Pract. Exper.,
27(8):983–993, 1997.

[17] S. Muthukrishnan, Viswanath Poosala, and
Torsten Suel. On rectangular partitionings in two
dimensions: Algorithms, complexity, and
applications. In ICDT, pages 236–256, 1999.

[18] Viswanath Poosala and Yannis E. Ioannidis.
Estimation of query-result distribution and its
application in parallel-join load balancing. In
VLDB, pages 448–459, 1996.

[19] Viswanath Poosala, Yannis E. Ioannidis, Peter J.
Haas, and Eugene J. Shekita. Improved
histograms for selectivity estimation of range
predicates. In SIGMOD Conference, pages
294–305, 1996.

[20] Peter Sanders and Sebastian Winkel. Super scalar
sample sort. In European Symposium on
Algorithms, pages 784–796, 2004.

[21] Michael Stonebraker, Daniel J. Abadi, Adam
Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Samuel
Madden, Elizabeth J. O’Neil, Patrick E. O’Neil,
Alex Rasin, Nga Tran, and Stanley B. Zdonik.
C-store: A column-oriented dbms. In VLDB,
pages 553–564, 2005.

APPENDIX

A. SUPPLEMENTARY PROOFS

Definition A.1. A splitter si in a splitter set s0, . . . , sm

satisfies a bound b to the left in a sorted array r, if the
inequality interval immediately to the left of si in r (ei-
ther the leftmost inequality partition if i = 0, or one
defined by si−1 and si) has cardinality at most b.

Lemma A.1. Algorithm 2.1 satisfies the following loop
invariant immediately before the if statement: Either
i = 0, or there is no set of i splitters for r[0],...,r[N-1]
that extends further to the right than s[i-1] while satis-
fying the bound b to the left of each splitter.

Proof. The proof is by induction. The base case i =
0 is trivial. Suppose the invariant holds for i = m ≥ 0.
We show it also holds for i = m + 1. By the induction
hypothesis, either m = 0, or m > 0 and no set of m
splitters that satisfies the bound b on the left of each
splitter, extends beyond s[m-1].

If m > 0, let j be the index of the first element r[j]
with r[j]>s[m-1], as in Algorithm 2.1. The maximal ex-
tension beyond s[m-1] (that satisfies the bound b between
s[m-1] and s[m]) occurs when s[m]=r[j+b] as ensured by
Algorithm 2.1. If a smaller value of s[m] was chosen,
it would not extend as far to the right in r. If a larger
value of s[m] was chosen, then the inequality partition
between s[m-1] and s[m] would violate the bound b. The
reasoning for m = 0 is similar, considering the leftmost
inequality partition.

Proof of Lemma 2.1: Algorithm 2.1 is guaranteed
to terminate because i is incremented on every iteration,
and the loop terminates (at the latest) when i ≥ k.

We first need to prove that when Algorithm 2.1 pro-
duces a set of i splitters, that there are at most k of
them, that i is minimal, and that the inequality parti-
tions they define satisfy the bound b. (The correctness
of the counts is straightforward.) By construction, we
can only exit the while loop when i ≤ k, so there are
at most k splitters returned. Also by construction, the
splitters are located at most b elements to the right of the
first element non included as a previous splitter. Thus,
all ranges to the left of a splitter satisfy the bound. The
minimality of i follows for Lemma A.1. Finally, the loop
ends when there are no more than b elements remaining
to the right of the final splitter. This concludes the first
part of the proof.

We now need to prove that when Algorithm 2.1 re-
turns ”error”, it is impossible to find any set of at most
k splitters that satisfy the bound b. If k = 0, then the
algorithm returns error if and only if b < N , which is
correct. For what follows, we assume k > 0.

Assume that Algorithm 2.1 returns error, which must
happen in the if statement. Since k > 0, i = k > 0
and by Lemma A.1, there is no set of k splitters for
r[0],...,r[N-1] that extends further to the right than s[k-
1] while satisfying the bound b to the left of each splitter.
By the while condition, (start+b)<N, and so there are
more than b elements in the rightmost inequality parti-
tion. Thus no set of k splitters that satisfy the bound b
exists. 2

Proof of Lemma 2.7: A result analogous to Lemma A.1
holds, due to the monotonicity of the cost function. The
remainder of the proof is similar to the proof of Lemma 2.1.
2

	Introduction
	Computing the Splitters
	Terminology
	Splitters for Single Columns
	Multiple Tables

	Refinements
	Experimental Evaluation
	The Splitter-Finding Algorithm
	Efficient Partitioning
	Using the Splitters to Regenerate a Sorted Data Set

	Related Work
	Conclusion and Future Work
	References
	Supplementary Proofs

