Newspeak: A Secure Approach for Designing Web Applications

Kyle Dent Steven M. Bellovin
kdent @eagl ass. com snmb@s. col unbi a. edu
Columbia University Columbia University

Technical Report CUCS-008-08

Abstract

Internet applications are being used for more and more itapbbusiness and personal purposes.
Despite efforts to lock down web servers and isolate datshdlere is an inherent problem in the web
application architecture that leaves databases nedgssgposed to possible attack from the Internet.
We propose a new design that removes the web server as altngsteoonent of the architecture and
provides an extra layer of protection against databasekattalVe have created a prototype system that
demonstrates the feasibility of the new design.

1 Introduction

Web applications are pervasive on the Internet. They handle many Kitrdsmsactions and provide impor-
tant functions to people and business. There are many differentagh@®to implement a web application,
but a typical application employs the now classic 3-tier architecture. A usegstsl a client, normally a
browser, to a web server. The web server passes the requestpplanaidon, which in turn makes use of
a backend database both to access dynamic information and to store asmaiidn. In this scheme, the
web server is the external contact to web clients. They are expectedftiemaly, but the application is
also available to any number of clients that may not be so friendly. The weérsits on the front line of a
hostile network and is the most exposed piece in the architecture.

The database is the business-critical piece and typically contains cliemhaifon as well as inventory
and possibly other business-strategic data. It might also have senditivmétion such as partner pricing
and customer credit cards. A successful attack on the database eatob#y loss to business. A likely
attack path to the database server is through the frontend web servér wdtessarily sits on the hostile
network and must have a communication channel to the backend databasgerirfion the application to
function. This project proposes a new approach to secure the crititddase portion of the web application
architecture.

2 Motivation

To understand the issues involved in securing a web application more ¢iypconsider, for example, an
ecommerce application selling books. Customers browse the catalog of lmovad, select one for pur-
chase, and complete the financial transaction providing payment andshipformation to the bookstore.

e Browse the catalog

1. the browser sends requests to the web server providing searctacrite

the web server passes the search criteria to an application
the application parses the search criteria, generates a query fatébase
the database receives the query, and returns a list of hits

a s~ N

the application formats the list to display
6. the web server sends the formatted list back to the client in reply to its driginaest

e Select for purchase

1. the browser identifies a particular book from the database

N

the web server passes the item id and possibly information about theneustothe application

w

the application queries the database for customer and item information

B

the application formats (possibly pre-filled) screens to capture custaterto complete the
transaction

5. the web server sends formatted screens to the browser
e Complete the transaction

1. the browser sends all the information necessary for purchasingthe including information
about the book, customer shipping information and customer financial infiormsuch as a
credit card number

2. the web server passes the purchasing and financial data to the tmplica

3. the application, after validating financial information, inserts data for #ms#ction and deducts
the purchased items from inventory

4. the application formats an appropriate response
5. the web server sends the formatted response to the browser

Notice from the descriptions that clients send their requests through theemedr, but ultimately their
business is with the database servers. Applications run on the web gselfeor on dedicated application
servers, as in Sun Microsystem’s J2EE or Microsoft's .NET framewotkkewise, the database server
software could run on the same machine as the web server, although condatatigses run on their own
dedicated boxes.

This point is worth stressing: while web site defacements should be avoiddédething else, they
generate bad publicity — the fate of a business depends on the securitdatfatsmses. Even unauthorized
read access can be expensive — California’s data breach notificatibmdguires that individuals be in-
formed if their personal data is exposed; write access can be far woragine the consequences for a bank
if account data is modified. Protecting databases is far more important thiciomg web sites that access
them.

From another perspective, our goal is to contain the effects of bugst &&curity problems are due
to buggy code; indeed, a National Academies study [16] found that §5@ERT advisories issued up
to that point described problems that could not be fixed with cryptograghyninating bugs from code
seems difficult at best [2] and probably impossible. Given that, we musttswur focus to minimizing
their effects on security. Small, simple programs are much more likely to bectamd secure [3]. The
challenge, then, is this: can we redesign our web applications so thatim@sef the databases relies on
simple programs, rather than on large, complex web servers and the applicatiokedrby them?

Lcalifornia Civil Code§1798.82 et seq.

3 Security Issues

Application developers and system administrators already take many tioesao protect systems. Moving
databases into an isolated network helps to protect them from the outsédleraPty the database subnet is
not reachable in any direct way from the hostile network. (The subgetnisrally accessible from an internal
corporate network to make administration and maintenance easier.) Themnvets see given special access
to the database layer for the application to function. Usually special atcpesvided through dedicated
network interfaces between the database systems and the web or appligatemsssuch that the web
server has both an outside interface for access from the Internetramside interface for access to the
database. See Figure 1.

e 1
o u I !
1 s |
Internet | |S Web/App Server P Database
I d !
¢ e |

Figure 1: Isolating databases into separate subnets.

Isolating the database helps, but the web server is still exposed to thecodtsidmpromise of the web
server can provide an attacker special access to the database.

3.1 Protecting a Web Server

Because of the web server’s special position where it straddles a hadtierk and an internal private one,
it is important to ensure that it is well protected. The article “How we defaosd.apache.org” [9] is an
interesting read and a cautionary tale that highlights the importance of barefintaining a web server.
Below are some of the steps administrators employ to ensure the integrity of Hiegamers:

¢ Limit services running on the web server systenWeb servers should be dedicated to their tasks. To
avoid the unexpected interplay of multiple services (such as describell, it web server systems
to that single function. Likewise, if the web server allows for selecting madatecompilation or
through configuration, limit your build or configuration to just the web sesevices you need. If
your server is not executing CGl scripts, remove that function from e server, for example.

e Limit the access given to the web server proceds$ possible, compartmentalize the web server to
limit its access to other parts of the system. If an attacker is able to compromisertiee fie will
have only limited access to other parts of the system. Unix provides the dystem call and with
some effort a web server can execute within a chrooted environment.

e Carefully configure the web server and its environmentFor example, use a dedicated account to
run the web server process. On Unix disallow following symbolic file linkenftbe web server and
pay careful attention to file permissions. The web server account madti®¢o read the files but be
sure that there is no chance of the account writing to them. Set the permsissianportant files even
more strictly. For example, a web server that starts with a privileged atcanmead its configuration
and SSL [15, 6] key files before dropping privileges. Set the permmissio those fields so that the
web server account cannot read them.

e Keep the operating system and web server software up-to-dat€eep the latest patches applied on
both the system and the web server software. As vulnerabilities are digcbin software packages,
it's important to eliminate them with the latest fixes.

e Limit network users’ ability to execute scripts Scripts executing in the context of the web server
must never be able to run arbitrary commands on the system. Also CGI pregteould be able to
handle any kind of input (even malicious).

4 The Persistent Problem

Consider these the minimum steps required before exposing a web setlerltdernet. But even with
these and other precautions, there are several classes of attackslatetase that are still possible against
the most tightly secured server.

Following the steps described would have stopped the attack aptehe. or g site as described. But
the database could still be vulnerable. In the first place, applications th&msee not immune to attack.
Improper input validation and other careless coding practices can expesapplication and network to
attackers. If an application accepts input that goes into database qulkeeesSQL injection attacks can
occur. See [4] and [5] for two examples of this type of attack. Therera@y more.

Locking down an application and plugging vulnerabilities one at a time as teayiscovered is not an
effective approach to securing a site. A piecemeal approach praeédesity only until the next accidental
misconfiguration or zero-day attack. There have been attempts to pratabbde systems more systemat-
ically from injection-style attacks; see, for example, [1, 7] and many oth@®L injection attacks have
even reached popular culture; detet p: / / xkcd. conf 327/ .) Whatever success they have provided,
they are not meant to address the inherent problem that the web seavenssed component of the overall
architecture.

Note that built-in database access controls do not solve the problem. 'Jodsly applications effec-
tively run in “system high mode” [17], where the web server has fuleasdo the database. More precisely,
the login to the database is done by the web server, independent of vgleich tiansactions it is processing.
Thus, any action that could be performed on behalf of a legitimate user beupedrformed by the web
server itself.

5 A New Approach

We have considered a new approach wherein we remove the web #selfeas a trusted component of
the system. The web server is the front line and exposed to the outsideapProach was to devise a
scheme that would provide no way for the web server to subvert theataaerver. In other words, even if
an attacker has completely compromised the web server, he or she shioutd gearticular advantage for
launching an attack on the database.

As noted earlier, in general a web application does not manage the daitsadfs Instead, it contacts a
dedicated database server process via some sort of communicationglcidre nature of this channel is
crucial; if it is unconstrained, an attacker with control of the web serarrsend commands such as

sel ect ~*

If the channel is strongly limited — in particular, if it does not accept sudatbrconstructs — we can
achieve a significant increase in database security.
Our model is Orwell’'dNewspeak, a language in which it was not possible to construct disloyal thoughts.

The purpose of Newspeak was not only to provide a medium of exprefsidhe [proper]
world-view . .. but to make all other modes of thought impossible.

There would be many crimes and errors which it would be beyond [apsfgpower to commit,
simply because they were nameless and therefore unimaginable. [11]

For example, there was no word meaning “freedom”.

Is it possible to turn the idea of Newspeak into something beneficial to appihicsgicurity? Could
access to the database occur only through a new “language” thattdalksm an attack? Could there be a
language that could remove unintended side-effects that open sealag?hThat idea provides the basis
for our new approach.

5.1 Requirements

Roughly the requirements for a scheme to eliminate the web server as a trustednent are

1. Authentication is established from the web browser to the database sétiveut the web server
brokering the request. We could possibly allow different levels of aithtion too but authorization
is determined by the database.

2. When the browser sends sensitive data like credit card numbersasmqrds to the database server,
there is no opportunity for the web server to read the sensitive data.

3. No query coming through the web server can obtain information that it isutborized to see.

4. No query from the web server can alter information that it is not authdtia change.

Even if an attacker is able to compromise the web server, it should be impassiise it to attack the
database. In other words there is no advantage in having full conttiobafeb server.

6 Design

We are proposing a new module that sits between a web application and as#atdb determine if such
an approach is practical, we have created a prototype called Propylaeuenname comes from Greek
architecture and describes a monumental entrance to a sacred endlosum®st famous of which is the
Acropolis of Athens. Entering the Acropolis was permitted or denied at thgyfaeum. Our Propylaeum is
an access control daemon designed to sit between a web application aladabase server it uses for run-
time data lookup and data persistence. The daemon determines what datoopeare allowed based on
its access control configuration. It also provides decryption of f@ivalues so that they are not accessible
by any processes running on the web server. Web clients use cliertesiddo encrypt private values, such
as passwords or credit card numbers. Data values that are neetleslbgb application for providing its
function remain in plain text.

When a request is sent to the database server, the Propylaeum dasterarines the actions to perform.
Query statements additionally go to a decryption module, which changes a# ehtirypted strings into
the correct plain text values.

The overall security scheme is composed of three main modules.

1. Client-side encryption

2. Database access control

3. Database decryption

Propylaeum thus provides three separate functions:

e It protects sensitive data from possibly-compromised web servers
¢ It provides sanitization of requests to the database engine

¢ It blocks direct communication from the web server to the database engine

The web application delivers to the client the JavaScript code and thgl®eom public key that will
be used to encrypt the private information. This makes up the first modthie sEheme and sits on the web
client. This module encrypts individual pieces of private data beforengtibg the contents of a form to
the web application. A more sophisticated design could use S-HTTP [14pi8ur prototype, we used an
ad hoc scheme, since no production web browsers implement S-HTTRoangditlin Javascript appeared
infeasible.

Any fields that do not affect the application’s function can be encryptettiat the application itself can-
not read the values since it does not have the Propylaeum privat&€h@yveb application is not concerned
with those values, it only needs to pass them to the database.

The web application connects only to the Propylaeum daemon. The datsrasemust be configured
not to accept connections directly from the web server. This can lmergatished either by binding it to the
loopback interface or by configuring firewall rules on the server tokdlbe web server from connecting to
it. The web application makes its connection to the Propylaeum daemon, whiatm ipasises the request
to the database server after it determines that the requested queryiséealdied out. Direct access to the
database could be permitted from trusted systems on a different interfwewgh firewall rules.

7 Implementation

The Propylaeum proof-of-concept is written as a Perl daemon. Howthe connection information it
needs to send queries to the database server. It also contains priyatetdic keys for communicating with
web clients.

7.1 Configuration

At start up it reads its configuration file. The configuration file is a simple Xd#tucture that defines legal
values for variables, named actions and then one or more database tjugrshould occur for each action.
The DTD defining the XML is as follows:

<! ELEMENT propyl aeum (vari abl es*, acti on+) >

<! ELEMENT vari abl es (all owed-val ue+) >

<! ELEMENT al | owed- val ue EMPTY>

<I ATTLI ST al | owed- val ue var nanme CDATA #REQUI RED>
<I ATTLI ST al | owed- val ue regex CDATA #REQUI RED>

<! ELEMENT action (query+)>
<I ATTLI ST acti on name CDATA #REQUI RED>

<! ELEMENT query (#PCDATA) >

The first section defines query template variables, which will be used witleiry g@mplates later in the
file. Variable definitions are not required, but when they are usedjdaeexpression specifies the valid
values permitted for the variable. For example, a field that should contairdaitg can have the regular
expressiorj 0- 9] +. Any attempt to include other characters causes the action to be rejected.

This field, of course, implements the sanitization function. Clearly, regulanressions cannot describe
all possible legal inputs; still, they can describe very many. More importdatting programmers to think
about legal syntax improves the odds that they will do some sanitization. g Soide, nothing will stop a
lazy programmer from specifyiny. =" as legal.)

The second section of the file defines one or more actions. Each acticomamn one or more queries
to be executed when the action is called by the application. Figure 2 showspéeszonfiguration file.

When an application requests the actiBldY_BOCK, the assigned SQL commands are executed. Note
also that the SQL contains variable names enclosed in double brackets. aWeb application makes a
request for an action, it also provides a set of name-value pairseMatises are used to expand the double-
bracket variables when executing the queries. Additionally, duringblarexpansion, Propylaeum checks
the provided value against the regular expression for that variablthe IValue contains any characters
disallowed by the regular expression, the request is rejected with ameessage.

The actions provide the isolation layer between the web applications andtdizagda. Note carefully
the difference between these actions and SQL stored proceduresd $tocedures are a better way for
applications to do database queries, in that they can largely eliminate SQL injattécks. Our goal,
though, is protecting the database agaamstweb server compromise. We thus limit the web application
so that it can talk only to Propylaeum, and further limit what PropylaeumIdisay to the database. We
could use stored procedures here, too, as an additional layer ottfwatethe threat here is inadequate
sanitization.

7.2 Application-to-Propylaeum Communications

The web application establishes a connection with the Propylaeum daenspecifies an action followed
by a carriage return/linefeed (CRLF) combination followed by one or moes lof name-value pairs. The
name-value pairs are used to expand the interpolated variables in the agfiiutiash in the Propylaeum
configuration file.

The grammar for communications between a web application and the Propydiaeunon is as follows:

REQUEST — ACTI ON PAI RS CRLF

PAIRS — PAIR | PAIR PAI RS

PAIR — NAME = VALUE CRLF

NAME — <any series of ASCI| characters, except ‘= >
VALUE — <any series of ASCI|I characters>

The Propylaeum daemon replies with a single line that contains either the $d&Y” or ‘ERROR'.
The error reply is followed by a short message describing the problem.

An example of a Propylaeum request is show in Figure 3. Natice that cénfairmation has been
encrypted by the client and is not available in plain text even to the web afipticalhe ‘BUY_BOOK’
action corresponds to the action described in the configuration file in FiglEach of the actions in the file
will be executed against the database using the values supplied with tlestedaiues that are in plain text
are prefaced with the strind’LAl N: ’ to indicate that those should not be decrypted.

Figure 2: Example Propylaeum configuration file

<?xnm version="1.0" ?>
<pr opyl aeunr

<vari abl es>

<al | oned- val ue varname="1SBN' regex="[0-9-]">

<al | oned- val ue var name="NAME" regex="[A-Za-z0-9-]">
<al | oned- val ue varname="CC' regex="[0-9]">
</vari abl es>

<action nane="LI ST _BOOKS">

<query>

SELECT 1 SBN, TITLE, AUTHOR FROM CATALOG
</ query>

</ action>

<action nane="BOOK DETAI L">

<query>

SELECT | SBN, TITLE, AUTHOR, | MAGEURL FROM CATALOG WHERE I SBN = '[[I SBN]]’
</ query>

</ action>

<acti on nane="BUY_BOX'>

<query>

| NSERT | NTO BOOKORDER VALUES(' [[I1SBN]]', [[NAVE]]’, [[ADDRESS]]’ ,
"[[CC]", NULL)

</ query>

<query>

UPDATE | NVENTORY SET | NSTOCK = I NSTOCK-1 WHERE | SBN = "[[I SBN]]’

</ query>

</action>

</ pr opyl aeune

Figure 3: Example Propylaeum request

BUY_BOK

PLAI N: | SBN = 9780060589462

NAME = B4bNsahVr yxCRocj _YY50hdmhqgl 1Ej adf BDI j dsf e
ADDRESS = aK2Ft RdeOhVB4bN5ahVr yxCRocj dmhqqyxLaLr LCh
CC = gyxLaLr LGh9DXPI aK2Ft RdeOhVJvLkt B4AbN5ahVry

OKAY

Figure 4: Example HTML file with crypto.js and a public key

<ht m >
<head>
<title>Book Details</title>
<script src="/crypto.js"></script>
<script>
var key = [76009799, 192309627, 43776032, 73342735, 24371]
var nmod = [17]
function submt _forn() {

docunent . forns[0] . nane. val ue =

r saEncode(key, nod, docunent . f or ms[0] . cc. nane)

wi ndow. al ert ("subnmitting CC' + docunent.forns[0].cc.val ue)
return true
}
</script>
</ head>
<body>
<h1>Book Detail s</hl>

7.3 Encryption

The encryption on the client side of our current implementation is accompligied the JavaScript Crypto
library [8]. The web application delivers the JavaScript and the Prepyfapublic key through HTML
pages. Figure 4 illustrates the beginning of an HTML file that includes thypt o. j s library file and the
public key as well as a JavaScript routine to encrypt the credit card eumis shown, a web application
has only to include the code to pull in the library and a function that encryptsehsitive form elements.
Propylaeum contains a decryption module with the private key. This keyeis iasdecrypt the protected
values.

8 Evaluation

8.1 Security

Obviously we cannot say that the design described here is a foolpecafity plan that will eliminate
attacks on databases. In fact, a SQL injection attack is not impossible. Hgwieg architecture does
provide several advantages to provide protection and mitigate the camseguof an attack. Simplicity
goes a long way towards improving security and Propylaeum enfoross stoucture and modularization of
functions simplifying web applications. Any coding mistake that would allow ah 8{gction attack, for
example, would be limited to one section of the Propylaeum application. Thedketipthat developers do
not have to write their own database access code, where each time thenakislg a fatal mistake. Errors
in web applicationgannot result in SQL injection attacks nor in other direct database access.

A patrticular implementation will require a careful security review to ensurettiecryptography is
done correctly, and that the code does not contain security flaws.

8.2 Ease of use

Once a Propylaeum service is installed, it actually makes applications denatbgasier. Developers do
not need to worry about database drivers and connections sinesdétasls are handled within Propylaeum.
It also makes for a clean division of tasks where the database acaéisgesaan be written as configuration
items that are separate from the application code. The application develwget only specify a simple

action and all of the details are handled by Propylaeum. Similarly changes datidigase are isolated to a
single location making maintenance easier.

8.3 Performance

We have not measured the performance of even a quasi-production inmpéetimie of Propylaeum. Our

server-side code is in Perl; our client-side code is in JavaScript. Fortiner the key lengths used in our
prototype are too small to be effective in a true security-sensitive applicalibe response time is not
noticeably longer using Propylaeum. The algorithms from [8] encodedorarsession key, which is used
to encrypt individual values. According to the site, encryption of a typdcdine shopping order occurs
within 1 to 2 seconds using a 1024-bit key. Decrypting takes longer andymay long as 5 to 30 seconds.

A better analysis can be done by assuming use of S-HTTP [14, 13]. T¥H#H] in essence, a Cryp-
tographic Message Syntax (CMS) encoding of encrypted text [10]. SGMes traditional hybrid pub-
lic/symmetric cryptography: a random symmetric traffic key is encrypted withidipkey; the traffic
key is then used to encrypt the actual data.

Because of the limited use of public keys in CMS, and because of the exp&uosing them, S-HTTP
implements several optimizations. For one thing, key caching is possible.isTpatrties communicating
via S-HTTP can cache the result of a public key encryption or decryjdioth reuse the traffic key without
redoing the expensive public key operation. Furthermore, an S-HéM@rs— in our case, the Propylaeum
daemon, not the web application — could generate a new traffic key addtderthe client; this key can
be used for subsequent messages, thus avoiding the expense okpuldjerations.

Similar optimizations are currently used for SSL. Because of that, we cantiad the performance of
S-HTTP (and hence the performance of the cryptographic layer pfyRreum) will be roughly equal to that
of SSL, if implemented in production-quality code. If a separate SSL layestiased, the CPU cost of the
cryptography should be roughly equal.

There is likely to be more of a latency and cost penalty from the extra comntiamsdnop to reach the
Propylaeum server. We expect that this will be modest. Indeed, expadre frequently used today, for
load balancers, SSL accelerators [12], etc. We consider the cosstedpecially when balanced against
the programming savings in the web application.

That said, some CPU savings are possible if applications make carefof theeencryption and leave
non-private information in plain text. It is not clear that this is actually wortieviApplications could still
run over SSL to protect from external eavesdropping and then gnanjy those values requiring the added
protection all the way through to the database; this would provide proteg®&inst some forms of traffic
analysis.

A production-quality Propylaeum daemon would also want to provide ds¢abannection pooling,
so that new database connections are not required for every applicatjoest. There are other database
access optimizations possible, including caching of common queries thafsetrtioe cost of the additional
security overhead.

10

9 A Variant Implementation

Propylaeum is not a traditional “defense in depth” scheme. To unddriardifference, consider a variant
implementation. Assume that there is no cryptography at the Propylaeum lizgteiad, all database trans-
actions — that is, all requests from the client through the web server tathbase — contain a per-client
authenticator. If the web server or its applications are compromised, rscthat are active during that
period are indeed at risk. In typical e-commerce sites, however, mostats are not active most of the
time. A portion of the database is at risk, but only a very small portion. THedfuhe database — that is,
the vast bulk of the company’s assets — will remain intact.

In this version, the purpose of Propylaeum is to implement NewspeakisT itairevents all potentially-
dangerous SQL queries. For example, there is no command that will list tine database. Similarly,
Propylaeum enforces the per-user authentication requirement, sometimas-abvious ways. Consider
a web storefront. Obviously, access to customer records must be thcditbexth Less obviously, purchase
requests — adding an item to a shopping cart — must be authenticated. IAfieelaservers do not buy
things; users do. The database operation that debits the stockroom by one item is thesta#ted. By
contrast, such an operation could be a denial of service attack, if ddieausly by a compromised web
server.

Similar design considerations can be applied to payment. Today, traditionadppdibations can per-
form billing by retrieving credit card numbers from a database and sgridém to a payment server. In a
Newspeak-based design, there is no verb for “give me a credit cantber”. Instead, the web application
would say “chargeV zorkmids to credit card #3”. The Propylaeum daemon would do the cantheure-
trieval and billing request, but only if the request were properly authatetic The web application, though,
could request a precis of the credit card (the last four digits, the car] the user's name for that card,
etc.), that being a permitted verb in Newspeak.

10 Conclusions

Buggy web applications are and will remain a serious security threat. dndeggy web servers are and will
remain a problem. Several years ago, Microsoft's Internet Inform&gmver (11S) had so many security
holes that a major consulting company warned its clients not to use it. (Thiabaglwas lifted a few years
later.) Apache 2.2 has had at least 13 security advisories against it. hBllenge for an organization is
protecting what matters most: its databases.

Traditional approaches have not worked very well. In particular, tved gf bug-free code has (not
surprisingly) proved infeasible. We assert that a better direction fdor site security — and indeed, for
security architecture in general — is to assume that certain components @ulye Accordingly, we
should design systems that minimize the resulting damage.

Propylaeum and Newspeak are examples of this design paradigm. Wketlagsthis is a better path to
protecting what really matters.

References

[1] S. Boyd and A. Keromytis. SQLrand: Preventing SQL injection attadksProceedings of the 2nd
Applied Cryptography and Network Security (ACNS) Conference, volume 3089, pages 292—-304. Notes
in Computer Science, Springer-Verlag, 2004.

[2] Frederick P. BrooksMythical Man-Month. Addison-Wesley, first edition, 1975.

11

[3] William R. Cheswick and Steven M. BellovinFirewalls and Internet Security: Repelling the Wily
Hacker. Addison-Wesley, Reading, MA, first edition, 1994.

[4] Security Focus. Demarc PureSecure authentication check SQL imjeailoerability. http://
www. secur it yf ocus. coni bi d/ 4520.

[5] Security Focus. LogiSense Hawk-i login SQL injection vulnerability.

[6] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 protocol. Netec@pmmunications Corporation,
November 1996.

[7] William G. J. Halfond and Alessandro Orso. Amnesia: analysis and mamitéor neutralizing sql-
injection attacks. IMASE ’05: Proceedings of the 20th IEEE/ACM international Conference on Auto-
mated software engineering, pages 174-183, New York, NY, USA, 2005. ACM.

[8] John M. Hanna. JavaScript shopping & cryptohtt p://shop-js. sourcef orge. net/
crypto2. htm

[9] Hardbeat and{}. How we defaced www.apache.ordnt t p: / / www. dat al oss. nl / paper s/
how. def aced. apache. org. t xt .

[10] R. Housley. Cryptographic message syntax (CMS). RFC 38%rret Engineering Task Force, July
2004.

[11] George Orwell.Nineteen Eighty-four. Harcourt Brace Jovanovich, Inc., 1949.

[12] E. Rescorla, A. Cain, and B. Korver. SSLACC: A clustered S8teterator. InProceedings of the
11th USENIX Security Conference, August 2002.

[13] E. Rescorla and A. Schiffman. The secure HyperText tramsfapcol. RFC 2660, Internet Engineer-
ing Task Force, August 1999.

[14] E. Rescorla and A. Schiffman. Security extensions for HTML. R¥869, Internet Engineering Task
Force, August 1999.

[15] Eric RescorlaSS. and TLS Designing and Building Secure Systems. Addison-Wesley, 2000.
[16] Fred B. Schneider, editofrust in Cyberspace. National Academy Press, 1999.

[17] R. Shirey. Internet security glossary, version 2. RFC 494@rhet Engineering Task Force, August
2007.

12

