
LinkWidth: A Method to Measure Link Capacity and
Available Bandwidth using Single-End Probes.

Sambuddho Chakravarty
Department of Computer

Science
Columbia University

sc2516@cs.columbia.edu

Angelos Stavrou
Department of Computer

Science
Columbia University

angel@cs.columbia.edu

Angelos D. Keromytis
Department of Computer

Science
Columbia University

angelos@cs.columbia.edu

We introduce LinkWidth, a method for estimating
capacity and available bandwidth using single-end con-
trolled TCP packet probes. To estimate capacity, we
generate a train of TCP RST packets “sandwiched” be-
tween trains of TCP SYN packets. Capacity is com-
puted from the end-to-end packet dispersion of the re-
ceived TCP RST/ACK packets corresponding to the
TCP SYN packets going to closed ports. Our technique
is significantly different from the rest of the packet-
pair based measurement techniques, such as CapProbe,
pathchar and pathrate, because the long packet trains
minimize errors due to bursty cross-traffic. Addition-
ally, TCP RST packets do not generate additional ICMP
replies, thus avoiding cross-traffic due to such packets
from interfering with our probes. In addition, we use
TCP packets for all our probes to prevent QoS-related
traffic shaping (based on packet types) from affecting
our measurements (eg. CISCO routers by default are
known have to very high latency while generating to
ICMP TTL expired replies).

We extend the Train of Packet Pairs technique to ap-
proximate the available link capacity. We use a train
of TCP packet pairs with variable intra-pair delays and
sizes. This is the first attempt to implement this tech-
nique using single-end TCP probes, tested on a range of
networks with different bottleneck capacities and cross
traffic rates. The method we use for measuring from
a single point of control uses TCP RST packets be-
tween a train of TCP SYN packets. The idea is quite
similar to the technique for measuring the bottleneck
capacity. We compare our prototype with pathchirp,
pathload, IPERF, which require control of both ends as
well as another single end controlled technique abget,
and demonstrate that in most cases our method gives
approximately the same results if not better.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Infor-
mation Theory—Value of Information

General Terms
Measurement, Experimentation

Keywords
link capacity, available capacity, single-end tool, link
measurement tool

1. INTRODUCTION
The scale and complexity of the Internet makes the

task of understanding and analyzing its properties ex-
tremely difficult. The diffuse style of administration
and operation means that even such basic information
as topology or link capacity is spread across multiple en-
tities with little incentive to share it. This knowledge,
however, is necessary for the design and development
of better management tools, communication protocols,
and mechanisms that are network-related. As a con-
crete example, there is little information available on
the distribution of access-link capacities and available
bandwidth for end-users (e.g., how fast can the average
user send/receive data from the network). Although our
interest is motivated by our work on distributed denial
of service defense mechanisms [14, 24], such information
is more generally useful. For example, if end users can
estimate this information for different network paths
then, given a choice between different mirrors, the user
can choose the one with the best access characteristics.

This recognition has spurred research in this area,
with several efforts focusing on estimating available ca-
pacity between two hosts [10, 17, 27, 19, 22], and mea-
suring the capacity of an arbitrary network link respec-
tively [15, 10, 22, 8]. Most of these tools (eg. abget,
PathLoad, PathChirp, IPERF etc.) use a technique
called Self Loading of Periodic Streams (SLoPS). Al-
though accurate, tools that measure the available ca-
pacity require two-ended control, i.e., that the two end-
points of a path collaborate in the measurement. Thus,
the utility of such tools is limited, given our goal to
conduct large-scale and/or opportunistic measurements
of arbitrary links and paths. One notable exception is
abget [4], which uses SLoPS with a remote TCP based

1

server to act as the remote measurement anchor point.
We present LinkWidth, a novel technique for mea-

suring both installed and available capacity for Inter-
net paths. We measure install capacity by employing a
modified version of the Recursive Packet Train (PATH-
NECK) method [8]. In addition, in contrast to previous
work that depends on a two-ended Self-Loading of Pe-
riodic Streams (SLoPS) [22] approach, we implemented
an extention of the single-ended Train of Packet-Pair
[22, 2] (TOPP) algorithm to measure available capac-
ity.

Recursive Packet Train (RPT), used originally in path-
neck, uses a train of large sized (≈ 500bytes) UDP
packets (which the authors called the load packets),
sandwitched between trains of samller UDP packets (≈
60bytes) at the begining (head measurement packets)
and the end of the train (tail measurement packets)
with increasing and decreasing TTL values respectively.
At each hop of this entire train the sender receives two
ICMP TTL Expired packets. The time difference be-
tween two such consecutive ICMP TTL Expired packets
is accepted as the received dispersion of the train for the
particular hop. LinkWidth employs a modified version
of RPT, where the head and tail packets are replaced by
TCP SYN packets going to closed ports on consecutive
hosts along the path to the host that is being probed.
Later sections of this paper elaborate how this mod-
ified RPT is being used for estimation of end-to-end
installed/bottleneck capacity.

The Train of Packet Pairs is quite similar to SLoPS.
In fact rather than measuring the end-to-end OWD of
packet train arriving the receiver, TOPP goes of in-
creasing the sending rate to reach a point where the
sender is attempting to send fater than the available
capacity. Further increasing the sending rate above the
available capacity, the packets get queued at the inter-
mediate routes while the receiver cannot receive faster
than the available capacity(bandwidth) of the slowest
link(i.e most congested link, in case the most congested
link’s present/instantaneous available capacity is lower
than the available capacity of that of the slowest phys-
ical link). Thus, as long as the sender is still sending
within the available capacity, the receiving rate is not
more than that the available capacity . Thus the ratio
of sending rate to the receiving rate is close to unity.
When the sending rate is more than the available ca-
paity, the sender goes on trying to send faster while the
receiver cannot receive faster than the available capac-
ity.

LinkWidth doesn’t adhere to the TOPP model verba-
tim. Instead of increasing the sending rate, as described
by the authors, a binary search procedure is used to
converge to a value of sending rate which is within the
end-to-end available capacity. The ratio of received dis-
persion to sending dispersion is used the search criteria.

The search is contingent upon convergence parameters
which are user defined thresholds, depending upon how
much opportunistic/reactive we want our probe trains
to be. Detailed explaination of this techniques is pre-
sented in later sections of this paper.

We evaluate LinkWidth using a variety of tests, both
over controlled environments (with controlled degrees
of cross-trafficburst ness) and on the Internet (where
there is no control over the cross traffic). We compare
the results obtained via LinkWidth with the ground
truth (when known) and against the measurements ob-
tained from other tools. We thereby conclude empiri-
cally that for most cases we are accurately able to de-
termine the capacity and closely reach the bottleneck
available capacity when compared other known tools
such as IPERF [27] which set up an end-to-end TCP
connection and estimate the available capacity.

In summary, the contributions of our work are:

• A novel extension of Recursive Packet Train and Train
of Packet Pair techniques for single-ended estimation
of installed capacity and available capacity of network
links and paths, without collaboration from the network
or the remote endpoint.

• An implementation of LinkWidth in the form of a
tool for Linux 2.6.

• An experimental evaluation of the measurement ac-
curacy of LinkWidth using various scenarios both in
controlled network environments and on the Internet.
Paper Outline Section 2 outlines the related work. In
section 3, we introduce our extensions to TOPP and
RPT techniques and how we used them to measure
both installed and available capacity of Internet paths.
We analyze our experimental results and present per-
formance comparisons of our approach to known tools
in section 4. Section 5 concludes the paper.

2. RELATED WORK
There exists a wealth of tools for measuring Installed

or Bottleneck Capacity of an end-to-end path. Dovrolis
et. al. have presented an accurate definition of this
metric [3]. Consider a network path P as a sequence
of fist-come first-served (FCFS) store-and-forward links
that transfer packets from a sender S and receiver R.
Each link i transmits data with a constant rate of Ci bits
per second, referred to as link capacity or transmission
rate. The bottleneck link capacity or installed capacity
is the minimum transmission capacity of all links in P .
More formally, ifH is the number of hops(links) in P , Ci

is the capacity of the link i, and C0 is the transmission
rate of the sender, then the path capacity is:

C = min(Ci) i ∈ {0, . . . ,H}

Note that the link capacity is independent of the traffic
load on the path.

2

On the other hand,the bottleneck link capacity is
measured by injecting two back-to-back packets into the
network and thereby measuring the dispersion (time de-
lay between the end of reception of the first packet to
the end of reception of the last packet) [23, 3]. Pathchar
[7, 10] appears to be one of the most accurate tools to
estimate the slowest link of an end-to-end IP Path. Fig-
ure 1 displays the measuring principle behind this tech-
nique: two back-to-back packets are sent from a one link
to another via a low capacity bottleneck link (we shall
refer to such bottleneck link as the narrow link or the
slow link). When this packet pair leaves the narrow link
for a faster/higher capacity link, a gap is introduced be-
tween the packet pair which is proportional to the slow
link’s capacity.

The Packet Train method enlarge the packet-pair
dispersion by increasing the number of packets. The
received dispersion is measured between the end of the
first packet and the end of the last packet of the train
[22]. Thus, the end-to-end capacity is measured as:

C = (N − 1) ∗ L

∆R(N)

for a train of N packets, where the L is the size of each
packet (in bits) and ∆R(N) is the end-to-end dispersion
of the entire train [22, 13, 20].

LinkWidth uses a variation of the Recursive Packet
Train [8] (originally RPT was used in Pathneck [8, 9]).
Packet train has its obvious advantages over the packet
pair method: IP, inherently unreliable connectionless
protocol, can potentially fragment large size packet and
may even reorder them. This is especially true for large
sized packets. Packet train method overcomes such an
effect by sending long trains of packets. Smaller cross
traffic packets in such long trains don’t add significant
end-to-end dispersion to cause much perturbation in the
measurements. Packet pair suffer from size dependent
over-estimation and under-estimation effects [13].

Other tools which measure bottleneck capacity such
as pchar [15], clink [6] and bing [21] are not as accu-
rate as pathchar under various/adverse link and cross-
traffic conditions. The experimental results which jus-
tify our claim, have been presented in later sections
in this paper. Although all previous tools implement
packet pair method in some form, they suffer from ca-
pacity under-estimation and capacity-overestimation ef-
fects due to various link and cross traffic conditions [13,
20]. LinkWidth uses long trains of TCP RST packets
(sent back-to-back in real-time) can be used effectively
to compute the bottleneck link capacity under various
link and traffic conditions. Moreover, this value is ca-
pacity is used as an upper bound in our measurement
of available capacity (using a modified version of Train
of Packet Pair method).

[3] furthur defines Available or Un-utilized Capacity

Figure 1: Basic Packet Pair Dispersion Tech-
nique: The two packets go from a high-capacity
link to a slow one and then to a high-capacity
link introducing a delay between the pairs

as the a function of the link’s utilization. If ui is the link
utilization for link i (where 0 ≤ uile1) over a certain
time interval, the average spare capacity of link i is
Ci(1 − ui). Thus, the available capacity of P in the
same interval can be defined as:

A = min([Ci(1− ui)]), i ∈ {0, . . . ,H}

Available capacity has been further classified as Avail-
able Bottleneck Link Capacity, Surplus Available Ca-
pacity and Proportional Share Capacity by Melander,
Bjorkman et. al. [2]. Most research [2, 22, 3, 11, 28]
have acknowledged available capacity to be defined as
something quite similar to this definition.

There are two broad types of available capacity esti-
mation techniques, viz. Self Loading of Periodic Streams
(SLoPS) and Train of Packet Pair (TOPP) [22]. The
idea behind both these techniques is not radically dif-
ferent. In SLoPS one of the hosts (the sender S) send
to the other host (the receiver R) a stream of packets
over a fixed path P . The receiver measures the One-
Way-Delay(OWD) of such trains in succession[18]:

∆R = TR
arrive − TS

send = Tarrive − Tsend +Offset(S,R)

As long as S sends to R within the available capac-
ity, the OWD such trains remains constant. When the
sender injects packets at a rate faster than the available
capacity (minimum spare capacity), the OWD starts to
grow linearly (see figure 2).

To measure the OWD of each of the trains, SLoPS
requires both sender S and receiver R to have either
synchronized clocks or add to the difference in time of
reception and sending, the clock drift offset the hosts.
This requirement makes SLoPS difficult to be used in
situations where we do not have control over the clock
of the host at the other end of path P . Some of the
most commonly known available capacity estimation
techniques use the SLoPS technique.

TOPP [2] is not very different from SLoPS: the sender
iteratively sends a train of packet pair at some rate Oi

(typically 0 ≤ Oi ≤ C(bottleneck capacity)) over the
fixed path P to receiver R. Assuming R receives these
train of packet pairs at some rate Mi, the ratio Oi/Mi is
calculated. Theoretically, this ratio should be exactly

3

Figure 2: Variation of One Way Packet De-
lay(OWD) versus Number of Packets Sent in
SLoPS: OWD remains constant as long as the
sending rate is within the available capacity;
grows linearly when the sending rate exceeds the
available capacity

one as long as the sender sends within the available
capacity (figure 3 shows a variation of O/M versus O).
When the sender sends faster than what the receiver
can receive, the ratio grows linearly with respect to the
sending rate Oi (the receiver cannot receive faster than
the available capacity; this is shown by the knee point,
τ , in figure 3). A train of packet pair is definitely better
than just a pair.

Since TOPP relies only on the sending and receiv-
ing rates (sending and receiving dispersions)of the en-
tire train, it is a suitable of measurement technique for
single-end point controlled technique. SLoPS requires
either the clocks of the hosts to be synchronized or the
clock offset to be taken into account during the measure-
ment of the OWD of each train. This makes SLoPS dif-
ficult to be implemented as a single-end point controlled
technique.

LinkWidth is the first tool to implement a single-
end controlled tool for measuring end-to-end capacity
using an optimized Train of Packet Pair. We use a
binary search over the range (0 to C(the end-to-end ca-
pacity); A, the available capacity cannot possibly more
than the C). Other tools commonly known for measur-
ing available capacity are pathrate [3], pathchirp [28],
pathload [11], IPERF and lately abget [4] (which is the
only other single-end controlled available capacity es-
timation technique which gives a measure of both the
upload and download capacity). Most of these available
capacity estimation tools use SLoPS technique for mea-
surement of available capacity; LinkWidth, to the best
of the knowledge of the authors, is th only tool that
implements single-end controlled tool that uses an opti-
mized version of TOPP to compute available capacity.

3. MEASUREMENT APPROACH
This section discusses our measurement methodology

for both installed and available capacity from a single

host. We extend some of the existing tools and de-
scribed in the previous section 2. We begin this section
with some background information about of TOPP and
RPT and then we analyses the design and implementa-
tion details of our modified RPT and TOPP and how
we integrated them into LinkWidth.

3.1 Train of Packet Pair (TOPP)
In Train of Packet Pair (TOPP) method the sender S

sends trains of packet pairs at gradually increasing rates
from to the receiver R. Assuming a train of packet pair
sent with an initial dispersion of Ro. The probe pack-
ets have size of L bytes and thus the offered rate of the
packet pair is O = L/Ro. As long as O ≤ A, TOPP
assumes that the train of packet pair will arrive at the
receiver with the same rate with which it was injected
into the network by the sender, i.e. M = O. If O > A,
the measured rate at the receiver will be M < O. As per
[2] that the received rate M is a fraction of the sending
rate O when the sending rate O exceeds the available
capacity A. Typically, M = (O/(O +X)) ∗ C

Thus,
M = (O/(O +X)) ∗ C
or O/M = (O +X)/C
or O/M = (O + C −A)/C
or O/M = O/C + (1−A/C)

This gives a linear variation of O/M versus O in the
case where O > A . This is illustrated in figure (Figure
3)

Figure 3: Variation of the Ratio (Offered Rate
(O) / Measured Rate (M)) versus Offered Rate
(O) : O = τ is available capacity and the ratio
O/M = 1. O > A is indicated by the linear in-
crease of O/M with increase in O

Here the graph displays the available capacity achieved
at O=τ . The very idea of TOPP isn’t far from SLoPS

4

but we neither SLoPS nor TOPP verbatim. We propose
a modification of the original TOPP to include a binary
search technique to estimate the value of available ca-
pacity continent upon two convergence parameters θ
and ε described in a later subsection 3.4).

As long as the sender injects packets at a rate within
available capacity A, it must be received at the same
rate. In case of cross-traffic, the probe packets may have
to wait in queues, thereby possibly incurring additional
queuing delay(s) between the first and last packet of the
train (possibly resulting in additional end-to-end dis-
persion). This is due to best effort routing of the Inter-
net which may multiplex probe traffic with cross-traffic.
Thus, less cross-traffic would result in more available ca-
pacity for the probe packets. The greater the available
capacity, the higher the chances of the train of packet
pairs to be forwarded with rates at which it was injected
into the network by the sender. This justifies the fact
why small cross traffic on high bandwidth links has less
effect on our probes (as presented in section 4). The
available capacity measure in such cases is usually close
to the maximum installed link capacity. This is also the
case for other available capacity estimation tools, such
as IPERF, which set up an end-to-end TCP connection.
Elastic TCP flows utilize all the un utilized available ca-
pacity; hence what we measure from LinkWidth (which
uses such train of packet pair probes) is not very differ-
ent from what we measure when using IPERF. These
results are presented and explained in detail in a later
section of this paper (section 4). Corollary to this obser-
vation, in case of a non-elastic Constant Bit Rate (CBR)
UDP traffic, the available capacity (the “head room”)
may not increase considerably. Thus, what we measure
as the installed link capacity is actually the bandwidth
un utilized by the aggressive CBR UDP cross traffic
(section 4).

3.2 Pathneck (Recursive Packet Train)

Pathneck proposed by Ninigin Hu et. al. [8], used
Recursive Packet Train (RPT) technique to locate bot-
tleneck links and measure the end-to-end installed bot-
tleneck capacity. The recursive packet train uses a train
of back-to-back UDP packet (called load packets) which
are appended and prepended by another train of UDP
packets called measurement packets. Figure 4 describes
the arrangement of packets in the pathneck arrange-
ment.

Evident from the arrangement of packets in RPT,
the TTL values of each of the head and tail measure-
ment packets would decrement to zero at each hop of
the train. This would send ICMP TTL Expired pack-
ets back to the sender. The dispersion between two
consecutive ICMP TTL expired packets at the source
from the same router would give a good approximation
of the dispersion of the packet train as perceived at the

Figure 4: Arrangement of packets in RPT Path-
neck: IP TTL values increase from 1...30 (head
measurement packets);intermediate load pack-
ets TTL=255;IP TTL values decease from 30...1
(tail measurement packets)

router.

3.3 The TCP Variant of RPT

We modified the RPT method used by pathneck and
incorporated TCP SYN packets in place of UDP/ICMP
packets as was described in the previous section. TCP
SYN packets being sent to a closed TCP port (on which
no service is waiting for incoming connections) are used
as the head and tail measurement packets. Any oper-
ating system, adhering to standards, would reply back
to such with a TCP RST+ACK packet.

Our arrangement (Figure 5) somewhat attempts to
emulate the UDP based RPT. The head measurement
packets which are sent to even port numbers that match
up with the tail measurement packets going to the next
consecutive odd port numbers (the original RPT imple-
mentation uses the 16-bit IP Identification field of the
IPv4 header for this purpose).

Figure 5: TCP based variant of RPT:TCP
SYN packets to even port offset (head mea-
surement packets);Intermediate TCP RST (load
packets);TCP SYN Packets to odd offset (tail
measurement packets)

From the arrangement (Figure 5), we see each of
the consecutive SYN segments in the arrangement be-
ing sent of the consecutive routers along the path to the
destination. Starting with a certain base port number
BASE-PORT, each of the consecutive packets are sent
to consecutive even destination port numbers BASE-
PORT+2, BASE-PORT+4, BASE-PORT+6, BASE-
PORT+(2 ∗ N). Thus, packet sent with destination
port as BASE-PORT+2 is sent to router 1, with BASE-

5

PORT+4 is sent to router 2, with BASE-PORT+6 is
sent to router 3 and so on such that the one going to
BASE-PORT+(2 ∗ N) is sent to the destination hop.
This arrangement of packets forms the head measure-
ment packets. This is followed by the TCP RST load
packets; and finally the tail measurement packets which
are sent to consecutive odd destination port numbers
BASE-PORT+3, BASE-PORT+5, ..., BASE-PORT+2∗
N + 1 (each being sent to the consecutive routers along
the path to the destination). The reason for using such
port numbering is to match up each of the head mea-
surement packet’s TCP RST+ACK reply (from even
TCP port number) with that due the tail measurement
packet (from the next consecutive odd TCP port num-
ber). Thus, the measured time dispersion between two
such consecutive TCP RST+ACK packet (coming from
two consecutive port numbers) gives the end-to-end dis-
persion of the entire train measured for that particular
router.

There are two inherent advantages of the above arrangement:-

1. Most of the single-ended controlled methods for
measuring the capacity and / or available capacity
make, use of ICMP TTL expired packets. Com-
mercially available routers give very low priority to
ICMP packet generation / forwarding resulting is
large end-to-end gaps being inserted between the
ICMP TTL expired packets. This leads to capac-
ity underestimation. We avoid, as much as possi-
ble, such a situation using TCP packets.

2. The load packets used here are TCP RST packets
which don’t result in the ICMP Destination Un-
reachable packets which used to be generated in
case of older UDP/ ICMP based techniques such
as Pathneck and CapProbe. This avoids reverse
cross-traffic for the forward probe traffic.

3.4 TCP Based Train of Packet Pairs (TOPP)
- Available Capacity Estimation

A certain variation of the Train of Packet Pair method,
described earlier, is used to measure the available capac-
ity of an end-to-end IP path. A single-end controlled
technique, requires the sender to send packets at vary-
ing sending rates and to measure the varying receiv-
ing rates, and thereby converging to a value of avail-
able capacity (A = Oi (some sending rate less than
the capacity C)) depending on whether O/M ≈ 1 or
O/M > 1. The arrangement of packet train (figure 6.
Rather than using an iterative linear increment to Oi

(where 0 ≤ Oi ≤ C) we perform a binary search over
the entire range [0, C] to select values for Oi and decide
if we are sending within available capacity or more than
that.

Binary Search Procedure Used to Compute the
Available Capacity

The value of available capacity converges to a value Oi

, such that OMIN ≤ Oi ≤ OMAX (OMIN being zero
in all cases and OMAX being the upper bound - C).
LinkWidth iteratively performs a binary search over the
range [OMIN , OMAX] . At each iteration , LinkWidth
send the Train of Packet Pairs at OMID, where OMID =
(OMIN +OMAX)/2. At each iteration, the ratio of end-
to-end dispersion of the packet train as received Rm

versus the end-to-end dispersion with which the sender
injects it into the network Ro, is compared with the
convergence parameter ε. If this ratio (Rm/Ro) > (1−
ε) we go on trying with faster sending rate by setting
OMIN = OMID. However, if the ratio exceeds unity ,
we know we have sent more than the available capacity
and we slow down our sending rate by setting OMAX =
OMID.

There is also a possibility of the received dispersion
less than the sending dispersion; resulting in capacity
over estimation. This phenomenon is explained more
clearly by Kapoor et. al [13]. This is experienced when
the ratio Rm/Ro < 1− ε (the convergence parameter).
In such a situation we set OMAX = OMID to reduce our
sending rate to a new value which is half of the previ-
ous value. The algorithm converges when the difference
OMAX − OMIN is less than the granularity parameter
θ.

The following algorithm summarizes the procedure to
compute available capacity

1. Start with a range of sending rate 0 bps - C bps
(the end-to-end bottleneck capacity) (OMIN = 0
bps and OMAX = C bps).

2. If |OMAX−OMIN | < θ then report A = (OMIN +
OMAX)/2 and stop the search procedure

3. Perform the experiment by sending the train of
packet pair with appropriate sending rate and com-
pute O/M = Rm/Ro ; (Ro = end - to - end disper-
sion of the train at the sender-side ; Rm = end - to
- end dispersion of the train at the receiver-side)

4. If ((Rm/Ro) >= 1−ε)and((Rm/Ro) <= 1) (send-
ing rate is within available capacity and we can try
sending faster), set OMIN = OMID and go back
to step 2

5. Else if (Rm/Ro) > 1 (we are above the available
capacity and hence need to back off), set OMAX =
OMID and go back to step 2

6. Else if ((Rm/Ro) < 1− ε) (we are above the avail-
able capacity and hence need to decrease our send-

6

ing rate O), set OMAX = OMID and go back to
step 2

This is what we had selected to “tune” LinkWidth’s
convergence conditions, based upon the results when
we measured the end-to-end available capacity with a
IPERF, which sets up an end-to-end TCP connection.
We know we have sent more than the available capacity
and we slowdown the sending rate by setting OMAX =
OMID.

This is in accordance to the theoretical background
described in [2]; sender and receiver dispersion is al-
most the same as long as the sender sends within the
available capacity. Thus, ideally, the ratio should be
exactly one as long as the sender sends within avail-
able capacity. However, we never get a ratio of ex-
actly one due to errors in our time computation (in-
herent to Intel x86 platform). Since, we don’t have
any knowledge of the cross-traffic, we needed some fig-
ures to determine what values could we approximate
as “unity” for the purpose of our making the decision
for the binary search (so as to decrease or increase the
sending rate by half). Thus we “tuned” the conver-
gence parameters by correlating with the results which
we achieved by running IPERF. The real Internet traf-
fic emulation being anyways a hard problem with the
existing hardware and software within a lab environ-
ment, we required this “tuning” of LinkWidth to deter-
mine correctly the installed and available cross traffic
for the emulated/shaped link capacities and the crude
Internet workload generation we used. When running
LinkWidth Accross hosts connected to the Internet, we
required tuning the convergence parameters ε and θ
with some idea of what to expect as the installed and
available capacity (when compared with IPERF). As
presented in the section 4, when the ratio lies in the
range of 0.9000 to 0.9999 we assume that we are send-
ing within our available capacity. This is also proven
with correlating to what we achieve with IPERF. The ε
parameter for such experiments was set to 0.1. Thus, as
long as the ratio is less than one and more than 1−ε we
assume we are within the available capacity and hence
go on increasing the sending rate.

3.5 Implementation Methodology

The implementation methodology for implementing
LinkWidth is simple. It involves merging the two tech-
niques described above, namely the TCP based RPT
with the TCP oriented TOPP implementation.

LinkWidth is implemented from an existing imple-
mentation of PATHNECK [8]. UDP / ICMP TTL Ex-
pired Packets used for measuring the end-to-end disper-
sion of the Train of Packet Pair at the destination is re-
placed with a TCP based implemented. The head mea-
surement packets, the load packets and the tail mea-
surement packets are such as that described earlier (Fig-

Figure 6: Arrangement of Packets in
TOPP:TCP SYN packet used as head mea-
surement packet;Intermediate TCP RST load
packets;TCP SYN packet used as tail measure-
ment packets

ure 5). The head measurement packets are so arranged
such that the first head packet and the first tail mea-
surement packet are destined to the first hop in the
path. The second head and the second tail packet are
destined to the second host and so on till the end of the
train. The head measurement packets are sent to even
port numbers while the tail measurement packets are
send to the next consecutive odd ports. This is as per
the description of TCP based RPT (subsection 3.3).

The TCP based RPT procedure gives us a measure
of the end-to-end installed/bottleneck capacity C. This
estimation of C is used as an upper bound in the bi-
nary search procedure used by our TCP based Train
of Packet Pair method. The figure 6 described the ar-
rangement of packets in the TCP based TOPP. Our
TCP based TOPP procedure uses an iterative binary
search to try out capacities in the range [0, C] and con-
verges (by using the algorithm outlined in the previous
subsection 3.4) to a value of available capacity.
The following are the input parameters that LinkWidth
takes:-

• num load pkts = Number of load packets for the
TCP based RPT

• θ = granularity parameter (in bps)

• ε = convergence parameter

• payloadSize = Payload Size (in Bytes)

• npackets = Number of packets per train

• ∆rt = Inter-Pair gap (in microseconds)

• Inter-Train delay (in seconds)

• Output file

Arrangement of Packets in the TCP Based TOPP

The figure 6 describes the arrangement of packets used
by the TCP based TOPP. Here

• R = End-to-end dispersion of the train

7

• ∆ri = Intra pair gap for a given sending rateOi, (1 ≤
i ≤ K), assuming we converge to the available ca-
pacity within K trains

• ∆rt = Fixed Inter pair gap for each train

Thus,
R = (m∗∆ri)+(m−1)∗∆rt +2∗m∗packetSendT ime

m = number of packet pairs per train (used in TCP
based TOPP; m = npacket/2)

packetSendT ime= time to inject a packet of payloadSize
bytes into the network (by the probe host). This is a
function of the packet size being used for the probe and
is determined anew every time LinkWidth is run.

Our implementation of LinkWidth needs to change
the sending rate O depending upon the ratio Rm/Ro.
Thus, we need to control the sending rate by controlling
the intra-pair or inter-pair delays. We thus choose the
inter-pair delay ∆ri to be computed anew for each train.
The intra-pair delay ∆rt is accepted in as user input
and chosen as a constant for each of the equations (it
wouldn’t have been possible to compute two unknowns
∆ri and ∆rt from a single equation).

3.5.1 Computation of Intra - Pair Gaps

From (Figure 6) above, the intra-pair gaps can be
computed as follows:-

trainLen = The number bytes from the end of the first
packet to the end of the last packet

From the previous section we have the formula for end-
to-end gap of the sending train as

Ro = (m∗∆ri)+(m−1)∗∆rt +2∗m∗packetSendT ime
or O = (trainLen ∗ 8)/Ro

Solving for ∆ri, given that the values of the other vari-
ables are known and with the approximation m−1 ≈ m
we get

∆ri = (trainLen∗8)/(O∗m)−(∆rt+2∗packetSendT ime)

Thus, for each train ∆ri value is computed anew. O
varies between OMIN (0) and OMAX (C - the bottleneck
capacity). The sending train rate is varied by varying
this intra-pair gaps (∆ri) while the value of inter-pair
gap ∆rt stays fixed (It is accepted as an input from the
user program).

Controlling the Inter-Pair and Intr-Pair Gaps in
Real-Time

It is essential to introduce precise delays to implement
the Inter-Pair and Intra-Pair gaps for sending pack-

ets in real-time (for accurately controlling the sending
rates). For ensuring that LinkWidth sends out pack-
ets with precise inter-packet/intra-packet delays, we use
the system call nanosleep(). The process scheduling is
switched to real-time SCHED FIFO with highest schedul-
ing priority. This essentially gives maximum CPU time
slices to the process; not achievable with the conven-
tional SCHED OTHER non-real-time Round Robin schedul-
ing. Small delays of less than 2 microseconds are thus
implemented as busy waiting loops. This technique
works correctly in case of Linux 2.4. Linux 2.6 actu-
ally switches a task to sleep state and can cause a dis-
patch latency which can as high as 10 microseconds;
hence failing to ensure real-time delays [25]. The high-
res timers feature (CONFIG HIGH RES TIMERS) en-
ables POSIX timers and nanosleep() to be as accurate
as the hardware allows (around 1 usec on typical hard-
ware).This feature is transparent - if enabled it just makes
these timers much more accurate than the current HZ
resolution[26].

Thus we have presented the entire picture of how
LinkWidth measures installed and available capacity
using a variant of RPT , used originally in Pathneck,
and thereby uses this result and a single-end point con-
trolled TCP variant of TOPP to estimate the available
capacity.

4. EXPERIMENTS AND RESULTS
LinkWidth has been designed to determine the in-

stalled and available capacity to any host connected
from only one host in the network. The objective is
to determine the installed and available capacity to a
host, especially having low access link capacity (ideally
an individual user connected to the Internet through a
DSL / Cable ISP Link to the Internet). To emulate
such a link, we set up an in-lab testbed (Figure 7).
Here the dashed and double-headed arrow represents
the traffic shaped link (used to emulate the slow access
link). The probing host, H3, runs a copy of LinkWidth
to determine the available capacity to the host which
can be seen as a crude approximation of the end host.
There is also a host, H1, which generates the cross traf-
fic (viz. CBR-UDP and elastic HTTP cross traffic to
H2). For measuring the Installed and Available Ca-
pacity of across hosts connected across a Wide Area
Network we run LinkWidth and other known tools to
probe for installed and available capacity to hosts con-
nected to the Interest (Figure 8) and to the PlanetLab
Network [1]. The next two subsections describe in de-
tail the installed and available capacity estimation over
an in-lab test-bed and across hosts connected to the
Internet and to the PlanetLab Network.

4.1 Network Topology and Experimental Setup
for Lab Experiments

8

The following topology (Figure 7) was used for the
in-lab experiments. Our motivation is to measure the
Installed and Available Capacity of the traffic shaped
slow access link, shown using the dashed and double-
headed arrow (connecting H2 to router R2), from the
probe host H3, in the absence / presence of cross traffic
generated by host H1 connected to the network using a
fast 100Mbps Fast Ethernet Link.

Figure 7: In Lab Test Bed : Used for measuring
the installed and available capacity of the slow
link connecting H2 to router R2

Test bed configuration

CPU: Intel Celeron 2.0 Ghz.
OS: Linux 2.4/Linux 2.6.17 (patched with Linux high
resolution timer)
Packages: RedHat 9.0 / Fedora Core 5
Network Interface Card: Integrated 10/100 Ether-
net Adaptors
Network Link Emulation: Nistnet [16] (for emulat-
ing the slow access link we used nistnet to traffic shape
a 100 Mbps ethernet link to the required link capacity)

Figure 7 describes how to experimental testbed was
setup. Host H1 generates cross traffic to the host H2
which is connected to the rest of the network through a
traffic shaped slow link (shown through the dashed and
double-headed arrow connecting H2 to the router R2).
Router R2 emulates a slow access link using Nistnet [16]
network link emulation program. The probe host H3
runs a copy of LinkWidth and various other installed
/ available capacity estimation tools. The operating
system used on all the machines was Linux 2.6.15. The
probe host ran both Linux 2.4 as well as Linux 2.6.17
patched with the Linux High Resolution Timer [26] .

4.2 Network Topology and Experimental Setup
for Hosts Connected Across the Internet

The topology (Figure 8) was used for the measuring
the capacity available capacity of hosts connected across
the Internet. Basically the measurement involved mea-
suring the installed and available capacity of the end-
to-end path connecting hosts across real Internet using
LinkWidth. The idea is to validate the results we ob-

tain by running LinkWidth against what we get when
we run other tools (IPERF and PATHCHAR).

Figure 8: Measuring Capacity of Hosts Con-
nected to the Internet

4.3 Experiments and Results

The experiments for measuring installed and avail-
able capacity were performed both in an in-lab setup
(where we could control parameters such as bottleneck
link capacity and cross traffic rate) as well as across
hosts connected to the Internet (where such parame-
ters couldn’t be controlled).

Results of Measuring Installed and Available Ca-
pacity

For the in-lab experiments we used the topology as
shown in Figure 7 as described in previous subsection
(subsection 4.1). The measurement of installed and
available capacity involved generation of non-elastic Con-
stant Bit-Rate(CBR) UDP traffic and elastic HTTP
traffic.

Note: All measurements units used in this pa-
per are Mega Bits Per Second (Mbps) where 1
Mbps = 1x106 bits.
1I=Installed Capacity/A=Available Capacity
2The first result is obtained with Linux 2.4 while the second
is obtained with Linux 2.6.17 patched with the high preci-
sion timer patched. Very evidently, using the high precision
timer patch, we can send packets back-to-back with least
possible delays; while in case of measurement of available
capacity, we cannot generate the precise inter-packet delays
packet delays less than 1 usec, which prevents us from send-
ing the packet at the full capacity by decreasing the inter-
packet gaps to small non-zero values. Evidently, this is an
upper bound of the smallest possible delays which prevents
us from controlling sending rates faster than about 78 Mbps
(even in the absence of cross traffic)
4U=Available capacity for uploading to server/D=Available
capacity for downloading from server

9

CBR/UDP Cross
Traffic Rate(Mbps) 0 20 40 50
LinkWidth 88(I)/87(A)1 90(I)/78(A)2 66(I)/63(A) 48(I)/45(A) 43(I)/40(A)
Iperf 82 0.50-40 5-38 6-15
Bing 83 88 90 70
Pchar 82 68 45 38
Pathchar 80 62 45 32
Clink 78 48 47 43
Pathrate 98 N/A N/A N/A3

PathLoad 95 87-90 64.20 - 92.40 0-3.35

PathChirp 73 65 66.5 66.5
abget 30-40U/50-60D 4 20-30U/0-20D 10-20U/20-40D 40-50U/20-50D

Table 1: Installed and Available Capacity for CBR/UDP Cross Traffic (Units : Mbps)

The CBR-UDP traffic was generated using Real-time
UDP Data Emitter (RUDE) and Collector of RUDE
(CRUDE) [12]. To generate TCP workloads, we used
HTTPERF [5]. The slow link (shown as the dashed
and double-headed link in Figure 7) was emulated using
Nistnet. To measure the installed and available capac-
ity to H2 from R2 (over the slow access link) in the
presence of cross-traffic, we ran LinkWidth and some
other tools viz. IPERF, pathchar, pathload, between
the probing host H3 and H2.

We thus present in table 4.3 the results obtained from
measurement of installed and available capacity of the
slow link using the various tools and by varying the
CBR/UDP cross-traffic flowing over the slow access link
connecting R2 to host H2. As evident from the results,
what we measure as the installed capacity is the actu-
ally the un-utilized capacity of the link. Unlike reactive
TCP traffic, CBR/UDP is aggressive and doesn’t slow
down in the presence of cross-traffic. Thus we are never
able to achieve the full capacity of the link in case of
aggressive CBR/UDP cross traffic. Thus what we mea-
sure as the installed capacity is actually the un-utilized
link capacity (available capacity) and hence what we
measure as the available capacity is almost the installed
capacity.

The same experiment is repeated with decreasing the
link capacity of the slow access link connecting H2 to
R2 to 10 Mbps. The table 2 presents the results from
the experiment. In both cases, part of the link capacity
being used up by CBR/UDP cross traffic can never be
used (the CBR/UDP cross-traffic is as aggressive and
opportunistic as the probe traffic).

Next, we present results obtained from generating
elastic TCP cross-traffic. For this we generate two dif-
ferent kinds of workloads, one using wget(this results in
single, long lived TCP connections for large files) and
the using HTTPERF (which gives multiple, simulta-
neous short lived ones). In each case the web server

is run on the host H2 while the client programs (wget
and httperf) are run on the host H1. The probe host
H3 is used for measuring the installed and available
capacity of the traffic shaped slow link connecting H2
to the router R2. The following table 4.3 presents re-
sults obtained from measuring installed and available
capacity in the presence of elastic long lived connec-
tions (achieved by running many single-threaded wgets
from H1 to H2 over the traffic shaped bottleneck link
connecting R2 to H2).

The TCP connection setup by wget tries to achieve
the maximum capacity. However, the presence of prob-
ing cross traffic from the tools mentioned in table 4.3,
would cause the packets to be queued (further may
also cause them to be dropped); thereby causing TCP
to reduce its sending rate. Thus, this lower sending
rate would make room for the probe traffic and hence
the available capacity achieved is the one available to
the probe traffic in the presence of elastic wget traf-
fic. TCP traffic being non-aggressive and elastic, makes
room for the aggressive probe traffic (in case of tools
like LinkWidth which doesn’t set up a true up a true
end-to-end TCP connection) or shares the bandwidth
equally with the end-to-end TCP probe traffic of tools
like IPERF, Pathchirp etc. LinkWidth does take into
account the fact that the received dispersion Rm is more
than the sending dispersion Ro (in case the aggressive
sender is sending more than the end-to-end available
capacity), thereby halving the sending rate Oi. Even
then, the criteria we use to decrease the sending rate in
LinkWidth is more aggressive and greedy than slow start
and multiplicative decrease used by plain vanilla TCP.
. This cause LinkWidth to grab a larger share of the
end-to-end installed capacity (resulting in a slight over-
estimation of the available capacity). However in later
subsections, we see that the LinkWidth in fact under-
estimates the available capacity in the presence of assy-
metric and lossy link(s) (just to avoid over-estimation

10

CBR/UDP Cross
Traffic(Mbps) 0 2 5
LinkWidth 9.6(I)/9.5(A) 9.3(I)/7.4(A) 4.6(I)/3.2(A)
Iperf 8.5.1 6.2 3.53
Bing 10 7.5 5.8
Pchar 10 N/A N/A3

Pathchar 10 9.1 6.7
Clink 10 7.2 5.9
Pathrate 9.6 9.4-9.6 9.1-9.5
PathLoad 9.2 6.2 0-3.4
PathChirp 10 7-10 9.3-9.5
abget 10-90 U/0-10 D 10-90 U/0-10 D 10-90 U/0-10 D

Table 2: Installed and Available Capacity for CBR/UDP Cross Traffic Rate for Lower Bottleneck
Capacity (10Mbps) (Units : Mbps)

Bottleneck Link Capacity(Mbps) 10 30 70 100
LinkWidth 9.6(I)/5.5(A) 30(I)/24(A) 70(I)/58(A) 82(I)/75(A)
Iperf 6.2 26 29-57 38-67
Bing 10 67 95 97
Pathchar 9.8 56 66 74
Clink 8.2 65 78 82
Pathrate 9.2 N/A N/A N/A3

Pathload 7.2 22 50-80 85
Pathchirp 7-12 30-60 54 62.5
abget 10-90 U/0-10 D 0-10 U/60-70 D 0-10 U/10-70 D 0-20 U/30-70 D

Table 3: Installed and Available Capacity Estimation in the Presence of Long-Lived WGET Workloads
(Units : Mbps)

resulting from the measured Rm lower than the actual
value of Rm).

These results however don’t clearly show how much is
the actual available/utilized capacity of the path is and
presence of both probe traffic and cross traffic. It only
shows how much the probe traffic is able to achieve,
with no concrete evidence of the of our hypothesis that
what is achieved is actually a share of the bandwidth
(where one of the share is for our probe traffic while the
other share is due to the cross traffic).

Experiments where the cross-traffic is due to multiple
simultaneous TCP connections, where the capacity is
equally shared equally (best effort) amongst all multiple
(simultaneous connections) and where the probability
of the probe traffic to be be successfully sent (without
transmission errors and re-ordering) is equally likely as
that of the TCP cross-traffic, would give an accurate
measure of the available capacity. Moreover, we are
trying to achieve a situation where our probe trains are
aggressive; while at the same time reactive enough to
slow down the sending rate upon reaching a rate where
the end-to-end dispersion of the receiver is not more
that the sending dispersion by a factor of ε. In such a
situation the end-to-end dispersion of the packet train

(or train of packet pairs) should be same with which
it is sent out from the sender (Rm/Ro ≈ 1 ± ε). Thus
we used HTTPERF to generate multiple simultaneous
connections over the (traffic shaped slow link) path from
the H1 to H2 via R2. We probed the link from H3 to
H2, using LinkWidth, IPERF and abget. The results
of the experiment can be observed in the table 4.

As evident from table 4 in most of the cases what we
achieve is only a share of the entire capacity. HTTPERF
supports simultaneous connections. The number of con-
nections at any time is controlled by the connection rate
(expressed as the number of connections per second) pa-
rameter. The number of calls per connection controls
the number of HTTP requests per connection (we emu-
late session oriented HTTP workloads). The longer the
number of calls per connections, the longer the lifetime
of the connections and the more aggressive they are.
For N connections per second, sharing the link with ca-
pacity C, the achieved capacity of our probe should be
approximately C/(N+1). The results presented in table
4 are thus in accordance with our hypothesis. This is in
fact what we achieve, and had been verified IPERF. In
the process we have also evaluated the effectiveness of
abget. As evident abget is not able to correctly deter-

11

Conn./sec 2 3 10
LinkWidth 2.9(I)/2.0(A) 3(I)/1.08(A) 2.8(I)/0.368(A)
Iperf 2.57 0.991 0.406
abget 0-100 U/0-10 D 0-100 U/90-100 D 0-100 U/0-100 D
Conn./sec 2 3 6
LinkWidth 4.8(I)/2.7(A) 5.1(I)/2.3(A) 4.95/0.864
Iperf 2.75 2.86 0.991
abget 0-100 U/70-90 D 0-100 U/70-90 D 0-100 U/10-30 D
Conn./sec 2 5 10
LinkWidth 8(I)/4.8(A) 9(I)/3(A) 8/0.97(A)
Iperf 5.49 2.3 0.862
abget 10-90 U/0-10 D 10-90 U/0-10 D 0-10 U/0-10 D
Conn./sec 2 5 25 6

LinkWidth 48.6(I)/36(A) 47(I)/12(A) 37(I)/3(A)
Iperf 27 5.2 1.2
abget 0-100 U/0-100 D 0-100 U/0-100 D 0-100 U/10-90 D
Conn./sec 1 4 10
LinkWidth 95(I)/80(A) 94(I)/21(A) 94(I)/13(A)
Iperf 74 22 10
abget 0-100 U/0-100 D 0-100 U/0-100 D 0-100 U/0-100 D

Table 4: Installed and Available Capacity for Short Lived Elastic HTTP Cross Traffic (Units : Mbps)

mine the available capacity for very small link capacities
which is congested with cross traffic. The installed and
available capacity, as what we observed is close to what
is achievable by an end-to-end TCP connection (which
IPERF does).

Measuring Capacity and Available Capacity of
Hosts Connected to the Internet and PlanetLab

There was no way to control the cross-traffic across
hosts connected to the Internet. That is exactly why
we tried to measure the installed and available capac-
ity of hosts connected to the Internet using LinkWidth
and verified them using IPERF (to verify available end-
to-end available capacity) and pathchar (to verify the
end-to-end bottleneck capacity) 7. The following table
5 gives a comparison of LinkWidth, Pathchar and Iperf
when measuring the installed and available capacity to
three separate destinations. The first two are two hosts
in two different universities connected to the Internet.
The third is a privately owned computer connected to
the Internet through a local ISP. All these hosts were
probed from a host within our university’s Local Area
Network.

These experiments were repeated by probing various
geographically dispersed hosts, connected to the Plan-
etLab network. The results are presented in table 6.

Our results are quite close to those obtained from us-
ing IPERF (which creates an end-to-end TCP connec-
tion). Pathload, on the other hand, apparently over-
estimates the results in the presence of uncontrolled
9UL=Uplink Capacity DL=Downlink Capacity

Tool Used LinkWidth Pathchar Iperf
Host 1 62(I)/0.3(A) 42 0.5
Host 2 56(I)/1.03(A) 35 0.6
Host 3 5(I)/3.4(A) 6 5.2

Table 5: Measuring Installed and Available Ca-
pacity of Geographically Dispersed Hosts Con-
nected to the Internet (Units : Mbps)

cross-traffic. When probing using LinkWidth in debug
mode (with verbose output), we observed lot of packet
losses and re-ordering. This is due to the fact that the
access link in this case is asymmetric (allowing faster
downloads than uploads, which causes the inter-packet
delay of the reply probe packets to be skewed, result-
ing in incorrect estimation of the received dispersion).
Our measurement technique cannot account for error
thus introduced in our estimate of installed and avail-
able capacity. Moreover, other unknown/unpredictable
factors such as host state/activity and network cross-
traffic patterns, makes it difficult to pin point if this
variation in the inter-packet delay is due to the asym-
metic properties of the access link/network or due to
the host/network being probed. This variation of the
inter-packet delays results in incorrect estimation of the
received dispersion Rm.

5Interrupt Coalescence Detected in Receiver NIC
3Goes on measuring without converging
6Number of calls per connection = 2
7IPERF gives an accurate estimate of the available capac-

12

Tool Used Iperf Pathload Linkwidth Bottleneck Link
planetlab-1.cs.princeton.edu(US) 36.5(UL)/19.5(DL) 9 40 92(I)/18(A) 216.27.100.53
lefthand.eecs.harvard.edu(US) 5.45(UL)/4.94(DL) 84 94(I)/7(A) 140.247.2.62
planet1.pittsburgh.intel-research.net(US) 11(UL)/0.728(DL) 42 47(I)/12(A) 128.59.255.89
planetlab2.cis.upenn.edu(US) 23(UL)/30(DL) 97 80(I)/18(A) 199.109.4.13
planet3.berkeley.intel-research.net(US) 2.6(UL)/0.707(DL) 19 10(I)/3(A) 128.59.255.14
planet2.cc.gt.atl.ga.us(US) 9.5(UL)/9.5(DL) 95 76(I)/14(A) 143.215.193.9
planetlab2.cs.dartmouth.ed(US) 0.25(UL)/0.2(DL) 92 85(I)/0.15(A) 192.5.89.218
planetlab2.xeno.cl.cam.ac.uk(EUR) 2.59(UL)/0.12(DL) 96 93(I)/19(A) 128.232.103.202
planetlab-1.fokus.fraunhofer.de(EUR) 0.2(UL)/1.98(DL) 0.8 39(I)/0.172(A) 199.109.4.13
onelab1.inria.fr(EUR) 1.94(UL)/1.92(DL) 86-97 20(I)/3(A) 138.96.250.190
supernova.ani.univie.ac.at(EUR) 2.13(UL)/0.7(DL) 0 38(I)/1.1(A) 131.130.32.152
planetlab2.tmit.bme.hu(EUR) 2.20(UL)/2.18(DL) >945 84(I)/2(A) 152.66.244.49
planetlab-1.man.poznan.pl(EUR) 2.15(UL)/2.15(DL) 98 6.5(I)/2.1(A) 150.254.210.61
csplanetlab1.kaist.ac.kr(ASIA) 1.4(UL)/1.2(DL) 6 68(I)/1(A) 199.109.7.13
ds-pl3.technion.ac.il(ASIA) 1.4(UL)/1.47(DL) 97 70(I)/2.8(A) 128.139.233.2
sjtu2.6planetlab.edu.cn(ASIA) 8(UL)/2(DL) >17.385 75.5(I)/15(A) 202.112.61.13

Table 6: Measuring Available Capacity of Geographically Dispersed Hosts Connected to the Planet-
Lab Network (Units : Mbps)

5. CONCLUSION
In this paper we described LinkWidth, a single-end

controlled tool to measure the installed/bottleneck ca-
pacity and the available/un-utilized bandwidth. We
give implementation details of how we extended the two
existing techniques (Recursive Packet Train and Train
of Packet Pair), to employ TCP RST packets sand-
wiched between TCP SYN packets. In addition, we
show how to use a binary search approach to estimate
installed/bottleneck and available/un-utilized capacity
through a single tool.

Our experimental results for both installed and avail-
able capacity in various scenarios indicate that LinkWidth
gives a good estimate of the installed and available ca-
pacity when compared to well accepted tools like PATHCHAR
and IPERF. However, we cannot accurately measure
links that exhibit packet loss or are assymetric which
seem to require a two-ended measurement tool. In lab
experiments using CISCO routers, the RPT packet train
method reports very accurate measurements of bottle-
neck capacity. Small cross-traffic packets do not intro-
duce significant change to the end-to-end dispersion of
the train. This decreases our error due to capacity un-
derestimation or overestimation (otherwise prevalent in
the older packet pair methods). Moreover, use of sym-
metric links/paths ensures that the perceived value of
received dispersion is not very different from the correct
value.

ity available for a TCP as it sets up a client-server connec-
tion and tries the send at best effort capacity. Pathchar,
although takes long to converge, closely estimates the in-
stalled/bottleneck capacity under various scenarios of link
capacities and cross-traffic rate

When we deploy our tool in the Internet from a sin-
gle vantage point, we have no knowledge of what cross-
traffic/link conditions to expect at the other end of the
path. The only way our variant of Train of Packet Pair
tries to react to congestion due to cross-traffic, is by
observing the sending and “perceived” reception rate of
the train of packet pairs. Although not as accurate as
IPERF a two-end controlled tool, we are able to achieve
a good estimate of available capacity/bandwidth. To
optimize our estimates and to converge faster, we can
use knowledge of the link cross-traffic and available band-
width to “tune” some of our tool. However, given the
fact that our tool is not using any congestion control, we
appear to be more aggressive in measuring available ca-
pacity and thus get higher values when compared with
tools that use regular two-end TCP connections to per-
form the same measurements.

6. REFERENCES
[1] “planetlab”. http://www.planet-lab.org/.
[2] B.Melander, M.Bjorkman, and P.Gunningberg.

New end-to-end probing and analysis method for
estimating bandwidth bottlenecks. In Proceedings
of GLOBECOM 2000, November 2000.

[3] C.Dovrolis, P.Ramanathan, and D.Moore.
Packet-dispersion techniques and a
capacity-estimation methodology. IEEE
Transactions on Networking, December 2004.

[4] D.Antoniades, M.Athanatos, A.Papadogiannakis,
E.P.Markatos, and C.Dovrolis. Available
bandwidth measurement as simple as running
wget. In Proceedings of Passive and Active
Measurements, March 2006.

13

[5] D.Mosberger and J.Tai. HTTPERF. http:
//www.hpl.hp.com/research/linux/httperf/,
1998.

[6] A. Downey. CLINK. http://www.kitchenlab.
org/www/bmah/Software/pchar, 1999.

[7] A. Downey. Using pathchar to estimate internet
link characteristics. In Proceedings of ACM
SIGCOMM 1999, August 1999.

[8] N. Hu, L. E. Li, Z.M.Mao, P. Steenkiste, and
J. Wang. End-to-end available bandwidth:
Measurement methodology, dynamics, and
relation with tcp throughput. In Proceedings of
ACM SIGCOMM 2004, August 2004.

[9] N. Hu, L. E. Li, Z.M.Mao, P. Steenkiste, and
J. Wang. PATHNECK. http://allendowney.
com/research/clink/clink.1.0.tar.gz, 2004.

[10] V. Jacobson. PATHCHAR. http://www.caida.
org/tools/utilities/others/patchar/, 1997.

[11] M. Jain and C. Dovrolis. End-to-end available
bandwidth: measurement methodology, dynamics,
and relation with tcp throughput, 2002.

[12] J.Laine, S.Saaristo, and R.Prior. RUDE and
CRUDE. http://rude.sourceforge.net/, 1999.

[13] R. Kapoor, L. Chen, L. Lao, M. Gerla, and
M. Sanadidi. Capprobe: A simple technique to
measure path capacity. In Proceedings of ACM
SIGMETRICS 2004, August 2004.

[14] A. D. Keromytis, V. Misra, and D. Rubenstein.
SOS: Secure Overlay Services. In Proceedings of
ACM SIGCOMM, pages 61–72, August 2002.

[15] B. Mah. PCHAR. http://www.kitchenlab.org/
www/bmah/Software/pchar, 1997.

[16] M.Carson and D.Santay. NISTNet-A Linux-based
Network Emulation Tool. http:
//www-x.antd.nist.gov/nistnet/nistnet.pdf,
2003.

[17] M.Jain and C.Dovrolis. End-to-end available
bandwidth: Measurement methodology, dynamics,
and relation with tcp throughput. In Proceedings
of ACM SIGCOMM 2002, August 2002.

[18] M.Jain and C.Dovrolis. “pathload a measurement
tool for end-to-end available bandwidth”.
http://www-static.cc.gatech.edu/~jain/
talk/pam02.ppt, 2002.

[19] N.Hu and P.Steenkiste. Evaluation and
characterization of available bandwidth probing
techniques. IEEE JSAC Special Issue in Internet
and WWW Measurement, Mapping, and
Modeling, August 2003.

[20] A. Pasztor and D. Veitch. The packet size
dependence of packet pair like methods. In In
IEEE/IFIP International Workshop on Quality of
Service (IWQoS), 2002.

[21] P.Beyssac. BING. http://fgouget.free.fr/
bing/bing_src-1.3.5.tar.gz.

[22] R. Prasad, M.Murray, C. Dovrolis, and K. Claffy.
Bandwidth estimation:metrics, measurement
techniques, and tools. In Proceedings of IEEE
Network 2003, August 2002.

[23] S.Keshav. “congestion control in computer
networks”. UC Berkely Technical Report TR-654,
September 1991.

[24] A. Stavrou and A. Keromytis. Countering DoS
Attacks With Stateless Multipath Overlays. In
Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS),
pages 249–259, November 2005.

[25] T.Gleixner and I.Molnar. Linux Programmer’s
Manual. Linux Man Page Section 2 : System Call
nanosleep().

[26] T.Gleixner and I.Molnar. Linux High Resolution
and Tickless Timers.
http://kerneltrap.org/node/6750/, 2006.

[27] A. Tirumala, F. Qin, J. Dugan, J. Feguson, and
K. Gibbs. IPERF.
http://dast.nlanr.net/projects/Iperf/,
1997.

[28] V.Ribeiro, R.Riedi, R.Baraniuk, J.Navratil, and
L.Cottrell. pathchirp: Efficient available
bandwidth estimation for network paths. In
Passive and Active Measurements Workshop
2003, 2003.

14

