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Abstract—Traditionally, TCP has been considered unfriendly
for real-time applications. Nonetheless, popular applications such
as Skype use TCP due to the deployment of NATs and firewalls
that prevent UDP traffic. This observation motivated us to study
the delay performance of TCP for real-time media flows using an
analytical model and experiments. The results obtained yield the
working region for VoIP and live video streaming applications
and provide guidelines for delay-friendly TCP settings. Further,
our research indicates that simple application-level schemes, such
as packet splitting and parallel connections, can significantly
improve the delay performance of real-time TCP flows.

I. I NTRODUCTION

The popularity of real-time applications, such as VoIP and
video streaming, has grown rapidly in recent years. The
conventional wisdom is that TCP may be inappropriate for
such applications because its congestion controlled reliable
delivery may lead to excessive end-to-end delays that violate
the real-time requirements of these applications. This has led
to the design of alternative UDP-based transport protocols [1]–
[3] that favor timely data delivery over reliability while still
providing mechanisms for congestion control.

Despite the perceived shortcomings of TCP, it has been
reported that more than 50% of the commercial streaming
traffic is carried over TCP [4]. Popular media applications
such as Skype [5] and Windows Media Services [4] use TCP
due to the wide-deployment of NATs and firewalls that often
prevent UDP traffic. Furthermore, TCP is by definition TCP-
friendly [2], and is a mature and widely-tested protocol whose
performance can be fine tuned.

The gap between the perceived shortcomings of TCP and its
wide-adoption in real-world implementations motivated us to
explore the following questions: (1) Under what conditions can
TCP satisfy the delay requirements of real-time applications?
(2) Can the performance of these applications be enhanced
using simple application-layer techniques? We address these
questions in the context of two real-time media applications
that are characterized by timely and continuous data delivery:
VoIP and live video streaming.

To understand all aspects of the performance of these appli-
cations, we conduct an extensive performance study using both
analytical models and real-world experiments. The analytical
models allow us to systematically explore the delay perfor-
mance over a wide range of parameter settings, a challenging
process when relying on experimentation alone. The extensive
literature on TCP modeling and analysis is geared towards
file transfers assuming either persistent [6], [7] or short-lived

flows [8]; and more recently towards video streaming [9], [10].
To the best of our knowledge, we are the first delay-based
analytical study of TCP for real-time flows.

We use both test-bed and Internet experiments to validate
the models and to measure the TCP delay over a wide range
of paths in the Internet. We analyze how the delay depends
on the congestion control and reliable delivery mechanisms
of TCP. We further study the impact of recent extensions
such as window validation [11] and limited transmit [12].
The results obtained yield guidelines for delay-friendly TCP
settings and may further be used to compare the performance
of TCP with alternative protocols [2], [3] and experimental
real-time enhancements for TCP [13]–[15]. We analyze two
application-level schemes, namely, packet-splitting and paral-
lel connections that can significantly improve the performance
of a real-time media application.

Our research reveals that real-time applications performance
over TCP may not be as delay-unfriendly as is commonly
believed. One reason is that the congestion control mechanism
used by TCP regulates rate as a function of the number of
packets sent by the application. Such a packet-based conges-
tion control mechanism results in a significant performance
bias in favor of flows with small packet sizes, such as VoIP.
Second, due to implementation artifacts, the average conges-
tion window size can overestimate the actual load of a rate-
limited flow. This overestimation results in reduced sensitivity
to timeouts and an improvement in the delay performance.

The main contributions of this paper are:
• We present a Markov model for the delay distribution of

a real-time TCP flow (Section III-B).
• We predict the working region for VoIP and live stream-

ing flows based on our model. VoIP operates well when
the packet drop rate is below 2% and the RTT is lower
than 200 ms. Live streaming operates well when the drop
rate is under 10% (Section V).

• We show that the delay added by TCP is on the order of
the network round-trip time when the flow’s data rate is
roughly one third of the fair-TCP rate (Section V-A).

• We develop guidelines and simple application-level
heuristics for improving the performance of TCP-based
real-time applications. The most promising heuristic uses
parallel-connections with shortest-queue first policy and
achieves up to 90% delay improvement. For a single con-
nection, a packet-splitting heuristic improves the delay
performance by 30% on average (Section VI, VII).
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Fig. 1. Transport-layer queueing delays

II. A PPLICATION SETTING

We study a general real-time media application, with a
Constant Bit Rate (CBR) source, that sends data across the
network using TCP. CBR is the most basic and dominant
encoding for media flows in the Internet [16]. We assume
that Nagle’s algorithm is disabled since real-time applications
often disable this mechanism to improve sending delays [17].
Hence, each packet can be immediately transmitted after it is
written by the sender application.

A common characteristic of real-time applications is their
low tolerance for end-to-end delay, the level of which depends
on the application. While live video streaming can tolerate
delays of a few seconds [4], VoIP typically requires less
than 200 ms of end-to-end delay [18]. The low VoIP delays
are often obtained by using small packets corresponding to
20 ms or 30 ms of audio. Real-time TCP flows differ from
greedy TCP flows in that they are inherently rate-limited and
have variable packet sizes. We discuss the implications of
these characteristics, on the delay performance of TCP in
Section V-B.

We use the packet delay distribution to evaluate the perfor-
mance of real-time TCP flows. From the delay distribution, we
derive the delay jitter which is the standard deviation of the
packet delay, and the application-level packet loss rate which
is the portion of packets that arrive beyond their playback
time. These metrics are closely correlated with user-perceived
video and audio quality [18], [19], and hence are used as an
approximate performance measure. The packet loss metric
is determined by theα-percentile delay bound, defined as
follows: a delay valued of α-percentile corresponds to1− α
portion of packets that are delayed more thand time units.

A. TCP Delay Components

Real-time applications that use TCP run the risk of receiving
low perceived quality. The additive-increase-multiplicative-
decrease (AIMD) rate regulation scheme of TCP may delay
data delivery by introducing throughput fluctuations when
congestion occurs. Packet retransmissions, the mechanism
used by TCP to provide lossless data delivery, can further
introduce undesirable transport-layer delays.

TCP uses two buffers to provide congestion-controlled
reliable data delivery: the send buffer and the receive buffer.
The purpose of the send buffer is twofold [13]. First, it
absorbs rate mismatches between the application sending rate
and the transmission rate of TCP. Second, it stores a copy
of the packets outstanding in the network should they be

retransmitted. Hence, packets are held in the TCP send buffer
due to rate mismatch and retransmissions. Note that only the
unsent packets held in the send buffer, hereafter referred to
as the backloggedpackets, can contribute to the delay of
newly admitted packets to the send buffer. The purpose of
the receiver buffer is to hold out-of-order packets while a
loss is being recovered. This buffering results in head-of-line
(HOL) blocking delay. Figure 1 illustrates the three delay
components of a TCP connection: sender-side delay, network
delay, and receiver-side delay. The sender-side delay is caused
by the congestion control and reliable delivery mechanisms in
TCP, whereas the receiver-side delay is caused by the in-order
delivery guarantee of TCP. f

III. M ODELING TCP DELAY

Our model builds upon the detailed TCP model in [20]
that predicts the performance of TCP from the viewpoint
of throughput. We extend this model in three ways. First,
we include the TCP buffer dynamics in order to predict the
delay performance of TCP. Second, we incorporate the limited
transmit [12] and window appropriateness [11] mechanisms
to accurately capture the loss recovery latency of TCP. Third,
we model the effect of window inflation [21] to improve the
accuracy of the model for small congestion windows.

We assume that the sender is using a NewReno TCP [22]
implementation. Later on in Section III-C we extend the
TCP model to support other commonly found TCP variants
such as SACK and Reno. Before describing the delay model,
we briefly describe the mechanisms provided by TCP. For a
detailed description of TCP’s behavior, we refer the interested
reader to [17], [22].

A. TCP Background

For completeness, we now describe the basic mechanisms
used by the TCP protocol. TCP is window-based protocol that
uses a feedback-based rate regulation scheme. The idea is to
use a congestion window to regulate the amount of data that
can be outstanding in the network at any time. TCP relies
on losses as congestion feedback. It uses two mechanisms
to detect packet losses: fast retransmit and timeout. If the
sender receives three duplicate acknowledgements, it assumes
that the data indicated by the acknowledgements is lost and
immediately retransmits the missing data. This mechanism is
called fast retransmit. After sending the missing data, TCP
uses the fast recovery algorithm to govern the transmission of
new data until a non-duplicate ACK arrives. Due to the round-
trip time (RTT) needed for the receipt of the loss indication,
fast recovery typically takes on the order of the path’s round-
trip-time [8].

The other loss recovery mechanism provided by TCP is the
timeout mechanism. The TCP sender sets a timer for each
transmitted packet. In case it receives less than three duplicate
ACKs and the timer expires, the packet is retransmitted and the
window size is reduced to one. If the first packet after a timeout
is lost, TCP will double the length of the next timeout period.
This doubling, usually called exponential backoff, continues
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Fig. 2. A high-level view of a model for a TCP connection with a CBR
source. The sender alternates between application-limited and network-limited
periods. While network limited, it moves between several congestion control
algorithms: slow-start (SS), congestion avoidance (CA), and loss recovery
(LR).

until the retransmitted packet is successfully delivered. Since
the initial timeout duration is typically on the order of several
round-trip times (e.g,4RTT according to [2]), timeout-based
loss recovery is usually longer than fast recovery.

To regulate its sending rate, TCP uses an AIMD scheme:
it increases the congestion window linearly fast as long as
there is no loss, and reduces the window size by half upon the
receipt of three duplicate ACKs. If a timeout event occurs, it
reduces the window size to one.

B. Model for TCP Delay

We consider a data source that sends fixed-size packets at
regular intervals across the network using TCP. Throughout
the paper, we assume that the average throughput provided
by TCP satisfies the data generation rate. However, transient
congestion episodes can lead to TCP throughput fluctuations
and to variable delays. As long as no packet is dropped,
TCP will not add any delay to the data delivery beyond
that of the network. After a packet drop, TCP reduces its
throughput, and introduces additional delay for as long as the
throughput it provides does not satisfy the sending rate of the
flow. Thus, transient congestion episodes cause the flow to
oscillate between an application-limited period and a network-
limited period. A network-limited period is defined as any
period in which the TCP sender is limited by the congestion
window. Otherwise, the sender is application-limited. The
behavior of a TCP connection with a CBR source is depicted
in Figure 2. While the TCP sender is network-limited, it moves
between several congestion control algorithms: slow start,
congestion avoidance, and loss recovery (e.g., fast recovery
and retransmission timeout). Our model captures the subtleties
of the slow start algorithm [21] to improve the delay prediction
accuracy.

We make several simplifying assumptions as follows. First,
the TCP sender uses a packet-based congestion control mech-
anism, an assumption motivated by the wide-deployment of
packet counting (ACK counting) TCP implementations [23].
Second, we assume that the slow start threshold is equal
to half of the load in packets per round-trip time (ppr).
This assumption is justified when a significant portion of

Abbreviation Definition

CBR Constant bit-rate
AL Application limited
BC Byte-counting

MSS Maximum segment size
PI Packetization interval

CVW Congestion window validation
Bps Bytes per second
pps Packets per second
ppr Packets per round-trip time

TABLE I
SUMMARY OF PAPER ABBREVIATIONS

Notation Definition

f load in packets per second
r load in packets per round-trip time (ppr)
a packet size
w congestion window size
b backlog size
l indicates whether loss recovery is required
p segment loss probability
T0 initial timeout duration
L forward network delay

TABLE II
SUMMARY OF MODEL NOTATIONS

the losses occurs during application-limited periods1, as is
the common case observed in our traces. Third, we do not
model the effect of delayed acknowledgements (ACKs) since
real-time applications will disable this mechanism to improve
the delay performance. For simplicity of notation, we assume
that the flow’s load inppr is an integer. For convenience, we
summarized the notations used in this paper in Table II.

We model the behavior of a TCP source by a Markov chain
with a finite state spaceS = {(w, b, l)} and a probability
transition matrix Q = [qs;s′ ], s, s′ ∈ S. Each state is
represented by an ordered triple(w, b, l), where w is the
current congestion window size,b is the current backlog size,
and l indicates whether a loss has been detected and needs to
be recovered from (l > 0) or not (l = 0). The backlog size
value is used to indicate whether the sender is application-
limited (r ≤ w, b = 0, wherer is the load inppr), or network-
limited. Due to flows with small packets the window limitation
can be either in bytes per RTT (b > 0), or in packets per RTT
(w < r, b = 0), as described in Section V-B. The window size
value is used to distinguish between the two loss recovery
strategies employed by TCP: fast recovery (w > 0, l = 1) and
retransmission timeout (w = 0, l ≥ 1, where l indicates the
current exponential back-off stage). Table III lists the rules
for classifying an arbitrary states = (w, b, l) according to the
congestion control phases of TCP.

The TCP sender changes the congestion window size and
the congestion control algorithm based on the packet loss
feedback. For example, in the absence of packet loss, the TCP
source moves from states = (w, b, l) to states′ = (w+1, b′, l)
if it is in congestion avoidance. More specifically, each state

1 [21] recommends that the slow start threshold should be set to half of
the packets in flight when fast recovery is invoked.
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Classification Condition

Application-limited r ≤ w, b = 0, l = 0
Network-Limited 0 < w, b 6= 0 or w < r, b = 0

Congestion avoidance r/2 < w, l = 0
Slow start w ≤ r/2, l = 0
Fast recovery 0 < w, l = 1
Timeout w = 0, l = 1, . . . , 6

TABLE III
STATE CLASSIFICATION

has at most three outgoing transitions that correspond to the
following events: the receipt of a fast retransmit loss indica-
tion, the receipt of a timeout loss indication, and successful
data delivery. Detailed description of the Markov chain and
the transition probabilities can be found in Appendix A.

Since TCP is a byte stream protocol, it can assemble a
number of small packets into one data transmission unit,
known assegment. Packet assembly can occur when small
packets are sent and the sender is backlogged and is avoided
when large packets are sent. Due to packet assembly a small-
packet TCP flow reacts to congestionby adapting both the
segment size and the congestion window, as demonstrated
below.

The backlog evolution(i.e., the TCP send buffer evolution)
for two successive statess = (w, b, l) and s′ = (w′, b′, l′), is
modeled by

b′ =





max {0, afts;s′ − wM} if w′ > 0, l′ = 0
max {0, afts;s′ − (w + 3)M} if w′ > 0, l′ = 1
max {0, afts;s′} if w′ = 0, l′ ≥ 1

(1)

M =
{

a if w = r, b = 0, l = 0
MSS otherwise

wheref is the load in packets per second,a is the packet size
of the flow, MSS is the maximum segment size (typically
536 or 1460 bytes [27]),M is the size of the sent segment
which depends on whether the sender is network-limited
(M = MSS) or not (M = a), and ts;s′ is the time taken
for the transition froms to s′, which we will soon define.
The first term in (1)afts;s′ models the increase in backlog
size due to newly admitted packets to the send buffer. The
second term (e.g.,wM ) models the decrease in backlog size
due to the transmission of segments. The number of segments
sent isw for a loss-free transition andw + 3 for a transition
to fast recovery state. The latter case accounts for segment
transmissions caused by the receipt of duplicate ACKs, a
mechanism known as window inflation [21]. We assume that
no segments are sent during a sequence of timeout states.

The time taken for a transition from states to states′,
denoted byts;s′ , is modeled by

ts;s′ =





1/f if AL,w′ > 0, l′ = 0
RTT + 3/f if AL,w′ > 0, l′ = 1
2min {l−1,6}T0 if AL,w′ = 0, l′ ≥ 1
RTT otherwise

(2)

where for brevity we useAL , r ≤ w, b = 0 to denote the
condition for an application-limited state. In the absence of

packet loss, the time spent in an application-limited state is
the inter-sending time of the flow, denoted by1/f . Due to
the round trip-time needed to receive the first duplicate ACK,
the time spent in an application-limited state that receives a
fast retransmit loss indication is RTT +3/f . In the absence of
timeout loss indications, the time spent in a network-limited
state is taken to be RTT, a common modeling assumption
[6], [8]. The time spent in a sequence of timeout states is
taken to beT0, 2T0, . . . , 64T0, whereTo is the duration of the
initial timeout. The initial timeout duration is approximated
by 4RTT , as suggested in [2].

The delay at the sender is approximated by the backlog size,
as follows. Observe that the packets left behind in the send
buffer after a successful transition must have arrived while
the transmitted packet was backlogged. Hence, a transmitted
packet that leaves behind a backlog of sizeb has been buffered
for at leastb/(af). The delay of a packet sent in a loss-free
state is thus modeled by

L + b/(fa) (3)

whereL is the one-way network delay, which is assumed to
be constant.

The head-of-line blocking delay at the receiver is deter-
mined by the loss recovery latency. This latency consists of
the time it takes TCP to detect a loss and the time it takes
the retransmitted packets to arrive to the receiver. Due to the
round-trip time needed for the first duplicate ACK feedback,
we assume that the time required to receive a fast retransmit
loss indication is at mostRTT + 3/f . Further, we assume
that fast recovery always takes a single RTT regardless of the
number of packets lost in a transmission window, as suggested
by [8]. Since TCP is an in-order protocol, the receiver does not
deliver out-of-order packets to the application till the missing
packets have arrived. Hence, the delay of thei-th packet sent in
a state that receives a fast retransmit loss indication, is modeled
by

L + RTT + b/(fa) + (3 + i)/f, (4)

where i = 0 represents the delay of the lost packet. Using
equations (3) and (4), we can express the TCP delay of the
i-th packet sent in a states that transitions to a states′ as:

d
(i)
s;s′ = L +





b/(fa) if w′ > 0, l′ = 0
b/(fa) + RTT + (3 + i)/f if w′ > 0, l′ = 1
0 if w′ = 0, l′ ≥ 1

(5)

The number of packets sent during this transitionns;s′ is given
by

ns;s′ =





bfts;s′c if AL,w′ > 0, l′ = 0
bmin {b, wMSS} /ac if AL,w′ > 0, l′ = 0
bmin {b, (w + 3)MSS} /a if w′ > 0, l = 1
0 if w′ = 0, l ≥ 1

(6)

The first case in (6) corresponds to an application-limited state
where a single packet is sent for every loss-free transition. The
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second case corresponds to a network-limited state in which
the number of sent packets is determined by the number of
backlogged packets that fit into the congestion window. The
third case accounts for window inflation, and the forth one
accounts for idle timeout states.

We obtain the stationary distribution of the Markov chain for
the TCP source,πs, using standard steady-state discrete-time
Markov analysis; see for example [24]. LetNt be the number
of packets successfully sent in some time interval[0, t] and
let Nt(d) be the number of packets out ofNt that experience
delay ofd. Then, the portion of packets sent that experience
delayd is given byNt(d)/Nt. Let D be the steady state delay
distribution of a TCP connection with a CBR source defined
over some finite intervalA. Using renewal theory [24], we can
now compute the steady state delay distribution.

D = d w.p. lim
t→∞

Nt(d)
Nt

∀d ∈ A

= d w.p.

∑
s∈S πs

∑
s′∈S ds;s′

∑ns;s′
i=1 Ids;s′=d∑

s∈S πs

∑
s′∈S ds;s′ ns;s′

∀d ∈ A

(7)

where I is the indicator function,πs is the steady-state
distribution of the chain, andds;s′ and ns;s′ are given in
(5) and (6), respectively. The above equation can be solved
numerically to yield the application’s performance statistics,
namely, the TCP delay jitterσD and theα-delay percentile
arg max xP{D < x} < α, as well as other useful statistics
such as the average delayE(D) and the portion of time that

the sender is backlogged

∑
s∈S:s=(w,0,l),r≤w

πs

∑
s′∈S

qs;s′ ts;s′∑
s∈S

πs

∑
s′∈S

qs;s′ ts;s′
.

C. Transition Probabilities of the Markov Chain

We now explain how to obtain the transition probabilities
of the Markov chain. Each state is associated with at most
three outgoing transitions representing the following events:
the receipt of a fast retransmit loss indication, the receipt of
a timeout loss indication, and successful delivery of window
data. In our derivation of the transition probabilities, we
consider both correlated and random packet losses, typical for
FIFO and RED routers, respectively.

1) Random Packet Losses:The random packet loss model
is the most basic loss model. It assumes that a packet is
dropped independently of others with some fixed probability,
denoted byp. This loss behavior is likely to arise when the bot-
tleneck router implements a RED queueing scheme [25]. We
use the random packet loss assumption to validate the model in
scenarios with configured packet drop rates (see Section IV-A).

We build on the modeling results of [26] to obtain the
transition probabilities of the Markov chain. According to
[26], a NewReno sender transitions to fast recovery if three
duplicate ACKs are received and none of the retransmitted
segments are lost. Thus, given a window size ofw and a
backlog size ofb, the fast retransmit and timeout probabilities

pf (w, b) andpt(w, b), respectively, can be expressed as

pf (w, b) =





0 if w < 4∑w−3
i=1 Bp(w, i)(1− p)i if 4 ≤ w, AL

p
∑w−3

i=1 Bp(w − 1, i− 1)(1− p)i otherwise
(8)

pt(w, b) =
{

1− pf (w, b)−Bp(w, 0) if AL
p− pf (w, b) if AL

(9)

where AL denotes the condition for an application-limited
state (see Section III-B) andBp(w, i) is the probability to
havei losses out of a window ofw segments and is given by

Bp(w, i) =
(

w

i

)
pi(1− p)w−i (10)

The fast retransmit probability given in (8) accounts for
the Markov chain structure. The second case represents the
transition probability from a network-limited state wherew
segments are sent, and the third case represents the transition
probability from an application-limited state where a single
segment is sent per loss-free transition. Complete description
of the transition probabilities can be found in Appendix
A. Markov chains for TCP SACK and TCP Reno can be
obtained by modifying (8) according to the SACK and Reno
fast retransmit probabilities given by equations (4) and (2),
respectively, in [26]. The corresponding timeout probability is
determined by the expression in (9).

2) Correlated Packet Losses:Under this model, when a
packet is lost, all the following packets sent within the same
window are also lost. This loss process is likely to arise when
the bottleneck router uses drop-tail queuing. Therefore, we
apply this loss assumption to validate the model in drop-
tail router environments (see Section IV-B). Padhyeet al. [6]
derived the loss recovery probability under the correlated loss
assumption2, which we use to obtain the transition probabil-
ities of the chain. According to [6], given a window sizew,
the probability that a loss indication is a timeoutQ̂(w) is:

Q̂(w) = max
{

1,
(1− (1− p)3)(1 + (1− p)3(1− (1− p)w−3))

1− (1− p)w

}

(11)

Taking into account the Markov chain structure as in the ran-
dom packet loss case, the fast retransmit transition probability
can be modeled by:

pf (w, b) =
{

Q̂(w)(1−Bp(w, 0)) if AL

Q̂(w − 1)p if AL
(12)

The corresponding timeout probability formula has the same
form as (9).

D. Modeling Byte-Based Network Limitations

So far we have assumed that the network-limitation is in
packets per second i.e., the bottleneck in the network is a
drop-tail queue in units of packets. However, if the bottleneck

2The timeout probability derivation in [6] assumes a TCP Reno implemen-
tation.
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is in bytes per second i.e., the bottleneck in the network is a
drop-tail queue in units of bytes, a small packet is less likely
to be dropped than a large packet flow [27]. Consequently,
small-packet flows may experience lower delays than large-
packet flows. Since the performance may differ significantly
it is necessary to design both packet-based and byte-based
versions of the model.

When the queue size is maintained in bytes, small packets
have a higher probability to be admitted to a nearly full
queue. We assume that a small packet of sizea is A/a times
less likely to be dropped than a large packet of sizeA, as
suggested by [28]. Recall from Section III-B, that a TCP flow
reacts to congestion by adapting the segment size and that
the segment size depends on whether the sender is network-
limited (MSS) or not (a). Hence, the packet drop probability
used to derive the transition probabilities from application-
limited states should be scaled so that it is proportional to the
packet size. More specifically, the fast retransmit and timeout
probabilitiespb

f (w, b) and pb
t(w, b), respectively, for a byte-

based bottleneck are computed by:

pb
f (w, b) =

{
pf (w, b) if AL

p̃
∑w−3

i=1 Bp̃(w − 1, i− 1)(1− p̃)i if AL
(13)

P b
t (w, b) =

{
pt(w, b) if AL
p̃− pb

f (w, b) if AL
(14)

wherep is the probability that a fully-sized segment is lost,
p̃ = p a

MSS is the probability that ana-byte segment is
lost, and pf (w, b) and pt(w, b) are given by (8) and (9),
respectively.

E. Modeling Congestion Window Appropriateness

The congestion window behavior during application-limited
periods is implementation dependent. One option is that the
congestion window size retains memory of an inflated con-
gestion window used to clear the recent data backlog. This
behavior causes the congestion window size to overestimate
the actual amount of data sent by the TCP sender. It is, in
fact, the common case observed in our test-bed and Internet
experiments. Another option is that the congestion window
size reflects the actual load of the application. This is likely, if
TCP sender applies the congestion window validation (CVW)
extension [11].

Since the performance of a rate-limited flow may differ
significantly depending on this implementation artifact, our
model accounts for both variants, as follows. The congestion
window is either decayed to the application’s load inppr
(CVW) or left intact (non-CVW) upon a transition from a
network-limited state to an application-limited state. Com-
plete description of the congestion window evolution can be
found Appendix A. The scenario where the window grows
arbitrarily large during application-limited periods, pointed out
by [11], was not observed in our traces, and hence is not
modeled.

F. Modeling the Limited Transmit Mechanism

Here we model the effect of the limited transmit mecha-
nism [12]. This mechanism improves the loss recovery effi-
ciency of TCP when a congestion window is small or when
a large number of segments are lost in a single transmission
window. It allows the sender to send a new data segment upon
the receipt of each of the first two duplicate ACKs, thereby
increasing the chance to receive the three duplicate ACKs
needed to trigger the fast retransmit algorithm.

Limited transmit can lead to successful loss recovery using
fast retransmit and fast recovery if the following conditions
hold [26]: (a) three duplicate ACKs are received. That is,
one or two duplicate ACKs are received for a single trans-
mission window and at least two or one, respectively, of the
corresponding transmitted segments are not dropped in the
network (b) none of the retransmitted segments are lost. Let
pl(w, b) be the probability to transition to fast recovery given
a congestion windoww, a backlog sizesb, and assuming that
limited transmit is used. Under the assumption of random
packet losses (see Section III-C1),pl(w, b) can be computed
as

pl(w, b) = B̃(w, w − 1)(1− p)w−1(1− p)2Iw>1

+ B̃(w,w − 2)(1− p)w−2(1− p2)Iw>2 + pf (w, b)Iw>3

(15)

B̃(w, b) =
{

B(w, i) if AL
pB(w − 1, i− 1) if AL

(16)

where pf (w, b) is the fast retransmit transition probability
assuming limited transmit is not used (e.g., (8)),B(w, i) =(
w
i

)
pi(1 − p)w−i is the probability to havei losses out of

a window of w segments, andI is the indicator function.
The corresponding timeout probability formula has the same
form as (9). Note that (16) accounts for the fact that the
number of segments sent in a state depends on whether the
sender is application-limited (where a single segment is sent
per loss-free transition) or not (wherew segments are sent
per transition). As in Section III-D, we account for byte-
based bottlenecks by replacingp with a scaled probability
p̃ = p a

MSS when computing the transition probabilities from
an application-limited state. Similar reasoning can be applied
to derive the transition probabilities of the Markov chain when
correlated packet losses are assumed.

G. Computation Complexity

The complexity of the TCP delay computation directly
depends on the size of the state space of the Markov chain.
We use trail and error to select a state space size that
is small enough and allows us to efficiently evaluate the
performance over the set of network environments considered
in Section IV. To solve the Markov chain, we select the
maximum window sizewmax to be wmax = 8r and the
maximum backlog size, measured in units of packets,bmax

to be bmax = 4T0f = 16r. Since the state space includes
the loss recovery variablel which captures the exponential
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backoff stage in timeout states, the number of states in the
Markov chain is6bmax + 2bmaxwmax.

IV. M ODEL VALIDATION

We evaluated the model using a controlled network envi-
ronment and Internet experiments. We use “CBR-TCP” to
denote a TCP connection with a CBR source, “FTP” for
a TCP connection with bulk data transfer, and “web” for
a TCP connection with HTTP traffic. For the controlled
network environment, we consider a single CBR-TCP flow
with configured packet drops, and multiple CBR-TCP flows
competing with FTP and web flows in a topology consisting
of a router with a drop-tail queuing scheme. For the Internet
experiments, we consider CBR-TCP flows from broadband
residential clients with DSL access and CBR-TCP flows from
institutional clients with high-bandwidth access (i.e., Planet-
Lab clients). Table IV summarizes the configurations for the
controlled environment and Internet experiments.

Experiment configurations

Controlled
Single flow Linux 2.6, Windows XP
Multi-flow Linux 2.6

Internet
Planet Lab Linux 2.6
DSL Linux 2.6, Windows XP

TABLE IV
EXPERIMENT CONFIGURATIONS FOR MODEL VALIDATION AND TCP

DELAY ANALYSIS .

We wrote a tool that can send and receive bidirectional
CBR over TCP flows with different packet sizes at constant
intervals. The bit-rate of a CBR-TCP flow is determined by
the packet size and packetization interval (PI), i.e., the inter-
packet generation time. We use packet sizes of 174, 724, and
1448 bytes and packetization intervals of 20 ms and 30 ms as
these choices approximately reflect one way voice (64 kb/s) [1]
and video flows (300 kb/s and 573 kb/s) [4], [13]. For ease
of presentation, we call 174-byte, 724-byte, and 1448-byte
packet flows small (VoIP), medium, and large (video) flows,
respectively.

We conducted the experiments using Linux (kernel versions
2.6.17.8 and 2.6.9) and Windows XP machines. Both oper-
ating systems yielded similar delay performance and hence
Windows XP results are not shown. The flexibility of Linux
in configuring system and session-level TCP-related options
allows us to assess their impact in isolation. We configured
the following system-level options for the experiments. On
the sender machine, we set the congestion control algorithm
to New Reno [22] and disabledssthreshuse from last TCP
connection. We enabled the SACK option on both ends to
improve the loss recovery latency. We disabled the byte-
counting (BC) option because it causes the congestion window
to increase as a function of the number of bytes sent and hence
results in increased delays. Detailed results on the impact of
BC can be found in Section V-D. Note that disabling byte-
counting can make the system susceptible to ACK-division
attacks [29].

Nistnet

Configured drop rates

CBR-TCP

source

CBR-TCP

sink

Nistnet

Drop-tail queue

Drop rates:0.1% -10%

Link delay: 20 ms,100 ms,300 ms

CBR-TCP

 sources

FTP & web

 sources

CBR-TCP

 sinks

FTP & web

 sinksLink delay: 100 ms

Link capacity: 3 Mb/s, 30 Mb/s

...

...

...

...

Fig. 3. Experiment setup for model verification in a controlled environment.

Starting with Linux kernel 2.6.18, congestion window val-
idation can be enabled or disabled. As described in Sec-
tion V-C, the use of congestion window validation can in-
crease sensitivity to timeouts for CBR-TCP applications. We
therefore suggest that this option be disabled.

We also configured the following session-level options. We
set the TCP buffer size of the receiver application to the
maximum value allowed by the system to ensure that a TCP
sender is never limited by the receiver window. We disabled
Nagle’s algorithm and delayed ACKs on both ends. The above
system and session-level settings represent a delay-optimized
and aggressive configuration for TCP. For model verification
and TCP delay analysis, we present the delay distribution, 95th
percentile delay, and mean delay.

A. Model Validation Using Configured Drop Rates

We performed model validation experiments for different
packet drop rates on a test-bed that emulates a wide range of
network environments, as shown in Figure 3.

The router ran NIST Net [30], a network emulation program
which can introduce constant delay, and can drop packets with
configured loss ratesregardlessof their size. NIST Net was
configured with drop rates of 0.1%, 0.5%, 1%, 2%, 3%, 5%
and 10% and a fixed round-trip propagation delay of 20 ms,
100 ms, and 300 ms. The delay setting choice approximately
reflects the local, US coast-to-coast, and trans-continental de-
lays. In the experiments, we do not consider loss rates greater
than 10% because for such high loss rates the average TCP
throughput does not usually satisfy the bit-rate requirement of
the CBR-TCP flow. For each set of parameters, we ran the
experiment for five minutes and repeated each experiment ten
times.

The results for model validation are presented in Figures 4
and 5. Figure 4a and Figure 4b present the predicted vs.
measured 95th percentile and mean TCP delay, respectively,
for a range of network parameters. Figure 5a shows the
predicted vs. measured cumulative TCP delay distribution.
Figure 5b shows the relative prediction error with respect to
the actual measurement for a loss rate of one percent. The
prediction accuracy of the model stems from capturing the
send buffer dynamics using the backlog size, as described
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Fig. 4. (a) predicted vs. measured 95th percentile TCP delay for a range
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legend label). (b) predicted vs. measured mean TCP delay for the same set
of parameters as in (a).
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Fig. 5. (a) predicted (M) vs. measured (E) cumulative TCP delay distribution
for small (174-byte) and large (1448-byte) packet sizes. (b) relative error of
the model for small, medium (724-byte) and large packets.

in Section III-B. In general, the modeling error increases as the
packet loss rate increases. This is intuitive because an increase
in the packet loss rate results in more frequent throughput
fluctuations and hence in larger variations in the backlog size.
We elaborate on the model prediction accuracy in the next
section.

B. Model Validation Using Routers with Drop-Tail Queues

We consider a scenario where multiple CBR-TCP flows
compete with FTP and web flows for a bottleneck router with
a drop-tail queueing scheme, as shown in Figure 3. The drop-
tail queue can be maintained in units of packets and bytes.
When the queue size is maintained in bytes, small-packets are
less likely to be dropped than large-packets, and hence small-
packet flows perform better than large-packet flows under the
same network conditions.

We used the Linux test-bed from Section IV-A and modified
NIST Net to incorporate a drop-tail queue. We devised a
multi-flow setting in which five small and large CBR-TCP
flows compete with five long-lived FTP and varying number
of web flows. This choice was inspired by the configuration

used to evaluate the performance of TFRC-small packets [27].
We used SRI and ISI traffic generator [31] to generate ex-
ponentially distributed web traffic with a mean duration of
50 ms and a constant packet size of 512 bytes. The round-trip
propagation delay was set to 100 ms for all experiments, and
the link bandwidth was set to 3 Mb/s and 30 Mb/s for small
and large-packet flows. For each configuration, we ran the
experiment for five minutes and repeated it five times.

For small CBR-TCP flows, the packet and byte queues
were configured as 100 packets and 50,000 bytes respectively.
Ideally, the byte queue size should be MSS*100 packets or
1,500,000 bytes (MSS is 1500 bytes for Ethernet [32]). How-
ever, this number overestimates the packet queue equivalent
since the packet sizes of CBR-TCP and web flows are less than
one MSS. Thus, we set it to 50,000 bytes which approximately
reflects the average of CBR-TCP (174 bytes), web (512 bytes),
and FTP (1448 bytes) flows, a choice motivated by [27].
Similarly, for large-packet flows, we set the byte queue to
100,000 bytes which approximately reflects the average of
CBR over TCP (1448 bytes), web and FTP flows.

Table V and VI present the measured and predicted 95th per-
centile delay for small and large packet flows, respectively for
a packet and byte-based queue. The 95th percentile statistics
are abbreviated with 95%. From these tables and Figure 5 we
observe that the prediction accuracy of the model decreases as
the available network bandwidth seen by the TCP connection
decreases. More specifically, the accuracy decreases as the
connection utilization, the ratio of the flow’s bit-rate to the fair-
TCP bit-rate [27], increases. The model prediction accuracy is
low when the connection utilization is close to one, because
the actual delay grows arbitrary large and hence the size of
the state-space of the model should be increased accordingly.
However, this is not the case, since we truncate the state-space
size to reduce the computational complexity.

Note that the percentile delays for small and large flows are
not directly comparable because the link bandwidths for the
two settings were different, and hence loss rates and queuing
delays are different. Also note that we present results for a
packet and byte-based queue for large-packet flow. This is
because our experiment setting comprised of competing web
flows whose packet size was 512 bytes.

C. Model Validation Using Internet Experiments

We performed model validation using Planet-Lab environ-
ment, and machines connected to home DSL. For Planet-Lab
experiments, we ran our sender and receiver application on
machines located at US (California, New York), Europe (UK,
France), Asia (China). For each sender and receiver pair, we
ran our tool for small and large-packet flows for thirty minutes
and repeated the experiments five times over randomly selected
days from February to June, 2007. For DSL experiments, we
ran sender on machines located in US, Israel, and Pakistan
and receiver application was in New York.

Surprisingly, for the majority of Planet Lab flows we
observed a handful of losses (< 0.5%). Hence, the 95th
percentile delay was close to the network delay for which
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Model validation for small-packet flow (174 bytes)

Web
flows

Packet queue Byte queue

LR
(%)

RTT (s) 95% jit-
ter (s)

95% de-
lay (s)

Model (s) Con.
Util.

LR
(%)

RTT (s) 95% jit-
ter (s)

95% de-
lay (s)

Model (s) Con.
Util.

0 1.02 0.317 0.136 0.410 0.487 0.272 0.20 0.172 0.069 0.135 0.122 0.065
10 1.60 0.380 0.169 0.498 0.690 0.408 0.55 0.178 0.099 0.183 0.128 0.112
15 2.31 0.371 0.205 0.644 0.721 0.479 0.81 0.180 0.111 0.233 0.130 0.137
20 3.39 0.383 0.263 1.335 1.853 0.601 1.24 0.182 0.140 0.308 0.192 0.172
25 5.61 0.385 0.447 6.173 2.255 0.774 2.41 0.185 0.204 3.057 0.755 0.244

TABLE V
MODEL VALIDATION FOR FIVE SMALL CBR-TCPFLOWS COMPETING WITH FIVEFTP FLOWS AND VARYING NUMBER OF WEB FLOWS.

Model validation for large-packet flow (1448 bytes)

Web
flows

Packet queue Byte queue

LR
(%)

RTT (s) 95% jit-
ter (s)

95% de-
lay (s)

Model (s) Con.
Util.

LR
(%)

RTT (s) 95% jit-
ter (s)

95% de-
lay (s)

Model (s) Con.
Util.

0 0.75 101 0.101 0.215 0.309 0.618 1.25 101 0.151 0.460 0.57 0.798
10 0.81 101 0.093 0.265 0.401 0.642 1.28 101 0.159 0.594 0.59 0.808
25 0.90 101 0.094 0.289 0.431 0.677 1.34 101 0.174 0.914 0.61 0.826
50 1.20 101 0.110 0.608 0.610 0.782 1.79 101 0.229 1.890 0.67 0.955
100 2.91 101 0.310 4.880 1.670 1.218 3.18 101 0.544 5.978 1.91 1.273

TABLE VI
MODEL VALIDATION FOR FIVE LARGE CBR-TCPFLOWS COMPETING WITH FIVEFTP FLOWS AND VARYING NUMBER OF WEB FLOWS.

the model provided a good match. Similar low loss rates were
observed for DSL experiments. The DSL losses were clustered
and resulted in consecutive retransmission timeouts. Since
these clustered loss events were rare, we did not have enough
data to reliably apply the model. The low loss rate observed in
the DSL measurements may stem from over-provisioning in
the Internet and the low-bandwidth requirement of CBR-TCP
flows.

V. D ISCUSSION

In this section, we present the working region for VoIP and
live video streaming flows carried over TCP and discuss the
key factors that influence the performance of CBR-TCP flows,
deduced using our model and experiments.

A. Working Region

We now identify the conditions under which TCP can satisfy
the delay requirements of VoIP and live media streaming.
For VoIP, we assume that the interactive latency limit is
200 ms [18] and for live video streaming we assume it is 5 s,
a choice motivated by [4]. The working region for VoIP and
live video streaming is defined as the range of loss rates and
RTTs where the 95th percentile delay and the maximum delay
is below 200 ms and 5 s, respectively.

Figure 6 demonstrates the working region for the two
applications, which was obtained using the random-drop ex-
perimental setup described in Section IV-A. We observe that
the VoIP delay threshold is satisfied when the RTT is less
than 200 ms and the packet drop rate is lower than 2%. The
streaming threshold is satisfied when the loss rate is below
10%. The RTT has marginal effect on the streaming threshold
and hence can be ignored. These regions were obtained under

the assumption that the bottleneck limitation is in packets per
second. Hence, the working region can be larger when the
bottleneck limitation is in bytes per second. Note that a non-
delay friendly setting of TCP (see Section IV) can significantly
constrain the working region.

The loss rate and the round-trip time jointly determine the
fair-TCP rate [27]. The ratio of the CBR rate to the fair-TCP
rate, hereafter called theconnection utilization, represents how
much the CBR rate is lower than the throughput provided by
the TCP connection. This ratio can be viewed as an approxi-
mate measure for the delay performance of TCP, as suggested
by [9]. Therefore, we characterize the working region using
this measure. Figure 7 shows the delay performance as a
function of the connection utilization and the packet size of the
flow for a loss rate of one-percent. We observe that the delay
curves have similar shapes. At first, the delay increases little or
linearly with the connection utilization. However, as network
congestion increases, queueing delays at the TCP sender start
building up and the TCP delay increases drastically, exhibiting
exponential-like growth. The results indicate that, in general,
the delay added by TCP is on the order of the path’s round
trip time when the connection utilization is below one third.

B. The Effect of Packet Size on Performance

Our traces indicate that small-packet flows perform signifi-
cantly better than large-packet flows under the same network
conditions. In this section, we explain the reason for the
observed performance bias using TCP traces taken from our
test-bed environment.

Figure 8 demonstrates the performance improvement when
the flow’s packet size is reduced. The figure shows the TCP
delay and the corresponding window size vs. time for a large
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1448-byte (left side plots) and a medium 724-byte packet
flow. Both send 100 packets per second over a link with RTT
of 200 ms. We used Nist Net to drop a single packet from
each flow so that both flows detect a loss at time 0.5 s and
become network-limited. Since the loss is recovered using fast
retransmit, the HOL blocking delay, given in (5), is at most
1.5 ·RTT + 3 · 20 ms = 360 ms.

Although both flows are limited by the same congestion
window size during network-limited period, their loads in
bytes per second (Bps) differ; the load in Bps of the medium-
packet flow is half of the load in Bps of the large-packet flow.
For the large-packet flow, the rate mismatch between the the
constant load and linearly increasing throughput of TCP will
result in data backlog buildup with quadratic-like shape, as
shown in time interval [0.76 s, 2.4 s]. For the medium-packet
flow, the packet assembly capability of TCP kicks in and
reduces backlog buildup. The resulting delays are now on the
order of the packet inter-sending time, i.e., 20 ms. We omit
similar results for small-packet flows.

The reason for the performance gain observed is that the
congestion control mechanism varies the TCP throughput as
a function of the number ofpacketsin flight, rather than as
a function of the number ofbytes in flight. Although both
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flows experience the same throughput fluctuations in pps, the
throughput fluctuations in Bps can be significantly smaller for
the small-packet flow. The smaller the packet size, the smaller
the magnitude of the throughput fluctuations, and the lesser
the delay. Thus, packet-based congestion control results in a
significant performance biasin favor of small-packet flows.

In general, the delays of small-packet flows tend to be
dominated by loss recovery latency, whereas those of large-
packet flows tend to be dominated by the delays induced by
congestion control, as demonstrated in Figure 9.

The performance bias described above creates an incen-
tive for real-time applications to improve their performance
without network assistance. The reasoning is simple: if a
large packet flow experiences worse performance than a small
packet flow, then why not masquerade a large packet flow as a
small packet flow? The application can simply send few small
packets at evenly spaced intervals instead of a large packet,
thus improving its own performance while still maintaining
the same sending rate in bytes per second.

Figure 10 demonstrates the potential performance improve-
ment obtained via such an approach. The flow in left side
plots is the baseline. It sends 100 packets per second over a
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Fig. 10. TCP delay and congestion window size for a large-packet flow (left
side plots). The right side plots shows delay and window size for a similar
flow where each MSS-size packet is split by half.

300 ms RTT symmetric network and uses MSS-sized packets.
The flow in the right side plots sends 200 packets per second
and uses a half MSS-sized packets. Both flows have the
same bandwidth requirement in bytes per second and both
experience two close-by losses.

As expected, both flows exhibit the same performance dur-
ing application-limited and loss recovery periods. Since TCP
adapts its throughput based on the number of packets in flight,
the magnitude of the throughput fluctuations is significantly
smaller for the medium packet flow, resulting in lower delays
(e.g., the peak delay in our example is lower than that of
the large packet flow by 45%). From these examples it can
be clearly seen that the performance gain of packet splitting
comes from the reduction in the AIMD-induced delays.

C. The Effect of Timeout on Performance

Since a real-time flow is rate-limited, it has the potential
of causing the connection’s congestion window to be small.
Hence, the chance of sending enough segments for the receiver
to generate the three duplicate ACKs becomes small, too.
This can harm the delay performance as the sender may need
to rely on lengthy retransmission timeouts for loss recovery.
Nonetheless, our traces show that the likelihood of timeouts
is low.

One reason for the small number of timeouts observed
is TCP’s use of an invalid congestion window which over-
estimates the actual amount of data sent. This overestima-
tion happens implicitly for CBR-TCP flows, because during
application-limited periods, the TCP sender retains memory
of an ‘inflated’ congestion window used to clear the recent
data backlog. This implementation artifact is in fact the
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common case3 observed in our traces. The scenario where
the window grows arbitrarily large during application-limited
periods, pointed out by [11], was not observed in our traces.
For example, the congestion window value in Figure 8 over-
estimates the actual load of large and medium-packet flow by
30% and 40%, respectively. Alternatively, a TCP sender can
use congestion window validation [11] and have the window
size reflect the actual amount of data sent. This will result in
more timeouts. Retransmission timeouts can also be avoided
when the limited transmit mechanism [12] is used, which
is enabled by default in Linux 2.6 and Windows XP. This
mechanism enables a TCP sender to send a new data segment
upon the receipt of each of the first two duplicate ACKs,
thereby increasing the chances of the three duplicate ACKs to
arrive. For instance, when the window overestimates the load
by 40% and the packet loss rate is 10%, our model yields
that, on average, 15% of the timeouts are avoided by window
invalidation and 35% are avoided when both mechanisms are
in use. The magnitude of savings is significant for lower loss
rates and for smaller windows.

D. Sensitivity to Bottleneck Router Limitation and Byte-
counting

As Internet router behavior is not well specified, bottlenecks
in the network can include limitations in pps, in Bps, and even
in both [27]. Different network limitations produce different
packet drop rates: large and small packets will experience
the same packet drop rates when the network limitation is
in pps, whereas, in the other case, small-packet flows can
experience lower drop rates than large packet flows. Since
TCP’s delay performance improves as the packet drop rate
reduces, a byte-based bottleneck is biased in favor of small
packet flows, as shown in Table VII . A typical TCP sender
will most likely operate in the lower two quadrants of the table
due to the dominance of packet-based congestion control TCP
implementations.

Allman [29] proposed a modification to how TCP increases
its congestion window during slow-start and congestion-

3Since Windows XP does not allow applications to sample the window
state, we used similar techniques to those in [23] to verify this observation.



12

0 10 20
0

2

4

6

8

Number of FTP flows

D
el

ay
 [s

ec
]

Small−packet flow

Max (pq)
95% (pq)
Max (bq)
95% (bq)

0 10 20
0

2

4

6

8

Number of FTP flows

D
el

ay
 [s

ec
]

Large−packet flow

Max (pq)
95% (bq)

Fig. 12. 95% end-to-end delay for five VoIP and varying number of FTP
flows. The 95% statistics are averaged over five VoIP flows.

Byte-based drops Packet-based drops

Byte-based cong. control + None
Packet-based cong. control +++ ++

TABLE VII
THE PERFORMANCE BIAS IN FAVOR OF SMALL PACKET FLOWS; ’+++’
REPRESENTS THE LARGEST BIAS AND’N ONE’ REPRESENTS NO BIAS.

avoidance. The proposed modification known as byte-counting
increases the congestion window based on the number of bytes
being acknowledged by each arriving ACK, rather than the
number of ACKs. The purpose of this mechanism is to ensure
that TCP rate-increase fairly represents the application rate.
The mechanism is not enabled by default in Linux and has
not been implemented in Windows XP. If enabled, it can
reduce the performance gain of real-time small-packet flow
such as VoIP, as the congestion window is incremented only
after MSS-sized data has been acknowledged.

Figure 11 shows the 95% delay for small-flows competing
with web flows in a packet vs. byte queue setting and em-
pirically highlights the gain in favor of small packet flows
for byte-based queues. This figure also shows that byte-based
queues have a relatively significant impact than disabling byte-
counting mechanism on the performance of a small-packet
flow.

E. Sustainable FTP flows

A question of interest is how many FTP flows can be
sustained with CBR-TCP flows going through a bottleneck
router, if the x percentile delay of CBR-TCP flow must be
below a certain threshold. Interactive CBR-TCP flows such
as VoIP and video chat have low tolerance for delay, and
hence a small delay threshold while streaming traffic can
tolerate delays of few seconds. Using the bottleneck router
configuration from Section IV-B, we run an experiment where
five small and large CBR-TCP flows compete with varying
number of FTP flows for a drop-tail router. The drop-tail router
maintain its queue in units of packets and bytes. Figure 12
shows the 95% and maximum delay for small and large CBR-
TCP flows.

Note that the delays of small and large-packet flows are
not directly comparable due to the difference in bottleneck
bandwidth and drop-tail queue size.

VI. D ELAY REDUCTION APPROACHES

We discuss two application-level heuristics that can improve
the delay of large-packet flows by reducing the delays induced
by the congestion control mechanism.

A. Packet-Splitting

As described in Section V-B, TCP has a bias in favor of
small packet flows. The bias for small packet flows comes from
the fact that during network-limited periods, TCP can combine
several application packets into one transmission segment. A
question arises whether a large CBR-TCP flow can improve its
delay performance by splitting every MSS-sized packet into
smaller packets, while maintaining the same workload byte
rate. We call this schemesplitN, whereN is the packet-split
factor.

Using our model and test-bed, we analyzed the performance
of this scheme with various split factors for a wide-range of
network environments. The results presented in Table VIII
are for the bottleneck router considered in Section IV-B that
maintains its queue in units of packets and bytes. We find
that there is a tradeoff between the delay performance and the
split factor. A split2 scheme gives the best performance under a
wide-range of network settings, whereas schemes with a higher
split factor yielded diminishing gains or performed even worse
than a no-split scheme. The performance degradation occurs
due to the increase in the burstiness of the flow.

Note that the performance ofsplitN is relatively better for
a byte-based bottleneck queue. This stems from the fact that
byte-based bottleneck queue are biased in favor of small packet
flows, as explained in Section V-D.

There are at least two ways to implement asplitN scheme.
One way is to split every generated packet intoN packets and
send them immediately. The other mechanism is to send the
split portions of the packet over the packetization interval. In
practice, this pacing may be difficult to achieve as packetiza-
tion intervals are typically 20 ms or 30 ms and a split factor of
four will require sending packets at a granularity of 5 ms or
7 ms, a challenging task with current operating-systems. Thus,
we use the former approach to implement thesplitN scheme.

Note that even though thesplitN scheme does not change
the workload byte-rate, the total byte-rate of a flow increases
due to the overhead of TCP/IP headers for additional packets.
Hence, a wide-scale adoption of such an approach runs the
risk of degrading the performance of all flows due to higher
network congestion.

B. Parallel-Connections

A straight-forward approach to improve the delay perfor-
mance of a CBR-TCP flow is to stripe its load across multiple
TCP connections. This scheme can be considered a ‘hack’
as it attempts to lower delays by increasing TCP throughput.
A ‘blind’ parallel-connection scheme will send packets over
multiple TCP connections in a round-robin fashion. This will
improve performance if loss recovery is not dominated by
timeout retransmissions, which is the common case observed
in our traces. However, it can potentially degrade performance
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No heuristic Packet-splitting (pq) Packet-splitting (bq) Parallel-conn

Web
flows

baseline split2 split4 split2 split4 par2 par5

LR
(%)

95%
de-
lay

LR
(%)

%
Im-
prov.

LR
(%)

%
Im-
prov.

LR
(%)

%
Im-
prov.

LR
(%)

%
Im-
prov.

%
Im-
prov.

%
Im-
prov.

0 0.75 0.215 0.74 12.2 0.81 -15.4 0.73 50.4 0.65 43.3 41.1 75.7
10 0.81 0.265 0.72 27.2 0.91 13.1 0.83 44.5 0.64 51.7 46.8 80.5
25 0.90 0.289 0.77 19.7 1.10 -52.8 0.86 50.2 0.82 47.6 50.4 82.7
50 1.20 0.608 1.10 17.5 1.58 -90.8 1.32 1.12 1.21 21.4 73.6 91.7
100 2.91 4.886 2.88 -2.2 3.18 -13.3 3.27 -1.55 3.25 -3.73 91.6 94.8

TABLE VIII
THE RELATIVE PERFORMANCE OF PACKET-SPLITTING AND PARALLEL-CONNECTION SCHEME. ’ PQ’ AND ’ BQ’ ABBREVIATE PACKET-QUEUE AND

BYTE-QUEUE RESPECTIVELY.

because load per-connection is reduced resulting in small
window sizes (see Section V-C).

To overcome these shortcomings, we devised an ‘intelligent’
scheme which selects a connection for packet transmission
that is not in the timeout state and has the smallest TCP
send queue. While both schemes attempt to improve the delay
performance by increasing the aggregated TCP throughput, the
‘intelligent’ scheme outperforms the ‘blind’ scheme because
it dynamically avoids connections with large queues and in
timeout states. Further, this strategy will cause the average load
on non-timeout connections to be higher than that on timeout
connections which in turn improves loss recovery efficiency.

We used the model to evaluate the performance of the
‘blind’ scheme over the range of network environments con-
sidered in Section IV. The blind scheme improved the perfor-
mance only when the TCP’s loss recovery was not dominated
by timeouts and yielded diminishing gains when more than
four connections were used.

We implemented the ‘intelligent’ parallel connection
scheme in Linux because unlike Windows XP, it allows to
sample the TCP state and send queue size. For simplicity
we denote this scheme byparN, where N is the number
of parallel-connections used. We evaluate the performance
of par2 and par5 schemes for small and large-packet flows
using the experimental settings of Section IV-B, and present
the results in Table VIII. The RTT was 100 ms and the
packetization interval was 20 ms, so the load per connections
for par5 scheme is one ppr. Thus, the parallelization spectrum
for a CBR-TCP flow ranges from a single flow to having as
many flows as the packet rate per RTT.

Parallel-connection scheme outperforms the packet splitting
scheme because it increases the aggregated throughput and
does not introduce any additional traffic apart from connection
setup and tear-down. par5 performs better than par2 because,
on average, it has more non-timeout connections to choose
from, which increases the overall throughput.

VII. D ELAY-FRIENDLY GUIDELINES

We present delay-friendly guidelines for VoIP and live video
streaming applications using TCP. We categorize them into
TCP-level and application-level guidelines.

A. TCP-level guidelines

• Nagle’s algorithm and delayed ACKs should always be
disabled.

• To increase the loss efficiency of TCP, we suggest that
SACK be enabled, limited-retransmit should be used, and
congestion window validation during application-limited
periods and byte-counting should be disabled.

• The initial window size should be set to four seg-
ments [33].

• Some operating systems (e.g., Linux) use thessthresh
value from last connection. We suggest thatssthresh
inheritance be disabled.

• Application should set the TCP receiver buffer size such
that the TCP transmission mechanism is only limited by
TCP congestion-control mechanisms.

As a general rule, the above TCP-level configurations should
be set on a per-connection basis if the underlying operating
system supports it. Note that these guidelines do not require
any change in the TCP stack.

B. Application-Level guidelines

• Playout buffer Applications such as VoIP and
interactive-video have tight playout requirements whereas
live video streaming may tolerate delays on the order of
few seconds. Ideally, an application should dynamically
set the playout buffer on the order of the network round-
trip time. However, an application using TCP must be
aware that TCP is a reliable and in-order delivery protocol
and any loss it suffers adds a latency on the order of
network round-trip time. For a CBR-TCP application, it
at least takesL + RTT + 3/f4 to recover from a single
TDACK loss and at least4×RTT to recover from a TO
loss.
If timeouts are uncommon and the losses TCP suffers
are likely to be TDACKs, a CBR-TCP application can
statically set its playout buffer toL + RTT + 3/f. Such
a setting works rather well for small-packet flows such
as VoIP, as during network-limited periods TCP can
combine the transmission of several small packets into
a single packet. This is a ‘sweet spot’ which masks TCP

4L is the one-way network latency andf is the packet sending rate
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Fig. 13. Masking TCP delay variations for small and large packet flows for
one and three percent losses. The round-trip link delay was 100 ms.

delay variations over a wide range of environments, as
shown in Figure 13.

• Large-packet flows The delay performance of large-
packet flows can be improved by parallelizing the flow
over multiple connections. If supported by the underlying
operating system, an application should take into con-
sideration the TCP buffer size and congestion-avoidance
state to decide which connection to use. Splitting MSS-
sized packets by half is beneficial for large-packet flows
if a single connection is preferred.

• Silence suppressioncan reduce the TCP congestion
window during idle periods, and hence reduce the loss
recovery efficiency of TCP [34]. We therefore suggest
that an application should continue sending minimal
traffic during silence periods to maintain its congestion
window. Specifically, a CBR-TCP application with a rate
of x packets per RTT should send at leastx packets
during silence periods. The size of the packets sent during
silence periods can be one-byte if TCP ACK-counting
mechanism is being used, which increases the congestion
window based on the number of packets sent rather than
bytes.

• MSS to packet-size ratioWe recommend that the ratio
of MSS to packet size be an integer so that the packet
assembly capability of TCP will yield the lowest sending
rate in pps during congestion.

• Proactive packet drop The queue buildup at the TCP
sender can give good clues about delays packets will ex-
perience. By examining the queue size, an application can
potentially infer the delays a new packet will experience.
Thus, it may choose to drop packets at the sender, if the
queue size crosses a certain inferred delay threshold.

• In-order delivery mechanism The delays of small pack-
ets tend to be dominated by in-order delivery mecha-
nisms, i.e., during network-limited periods, packets lie in
the receiver buffer waiting for lost packet(s) to arrive.
A potential modification to the TCP operating system
API can allow the application to peek into its receive
buffer and extract out-of-order packets. Although this
modification requires changing the receive API to receive
our-of-order packets, it does not change the network
semantics of TCP.

VIII. R ELATED WORK

There is an extensive literature on analytical and experimen-
tal evaluation of TCP. We present only those studies closely
related to ours (see [7] for a comprehensive survey). The
majority of TCP modeling studies are geared towards file
transfers assuming either persistent [6] or short-lived flows
[8]. Our work differs from past work in that we consider non-
greedy rate-limited flows with real-time delivery constraints.
More recently, the performance of TCP-based video streaming
has been analytically analyzed by [9]. The receiver buffer size
requirement for TCP streaming has been determined in [10].
These papers combine a TCP throughput and application-
layer buffering models to compute the portion of late packets,
whereas we directly model the transport-layer delay of TCP.
Our work further differs from those above in that we consider
applications with tight constraints such as VoIP.

Goel et al. [13] present an empirical study of kernel-
level TCP enhancements to reduce the delays induced by
congestion-control for streaming flows. The performance of
TCP for real-time flows has also been considered by [14], [15].
However, unlike our study, these papers propose a modification
to the TCP stack. Application-layer heuristics for improving
the loss recovery latency of TCP have been suggested [34].
These heuristics are geared towards bursty traffic flows and
hence may not be effective for real-time flows.

IX. CONCLUSION AND FUTURE WORK

We have presented a Markov-chain TCP delay model for
CBR-TCP flows. The model captures the behavior of VoIP
and streaming flows. We used the model to predict the working
region of these flows and verified it using a real-test bed and
in Planet-Lab. We explored the impact of TCP mechanisms
and presented system and application-level guidelines for
improving the delay friendliness of CBR-TCP applications.
The delay performance of a large-packet flow can be improved
using packet-splitting or parallel-connection heuristic.

This study is the first-step in understanding the use of
TCP for VoIP and live-video streaming applications, and by
no means advocates the use of TCP over UDP for these
applications. We have used delay and jitter to evaluate the
performance of CBR-TCP flows. However, user-perceived
performance typically evaluated through Mean Opinion Score
(MOS) is a better metric. The user-perceived performance of
real-time CBR-TCP flows is the subject of future work.

APPENDIX A
MODEL FORREAL-TIME TCP FLOWS

We model a TCP connection with a CBR source using
a finite state Markov chain. Each state represents a triple,
(w, b, l), wherew is the current congestion window size,b
is the current backlog size, andl is either1 or 0 depending
on whether any loss needs to be recovered in the current state
(l = 1), or not (l = 0). Let q(w,b,l);(w′,b′,l′) be the probability
associated with a transition from states = (w, b, l) to state
s′ = (w′, b′, l′). Let t(w,b,l);(w′,b′,l′) be the time taken for this
transition. Letd(w,b,l);(w′,b′,l′) be the delays associated with
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packets sent in this transition. Packet delays are represents
by an ordered list denoted as(di)n

i=1, where di is the ith
element of the list andn is the list’s length. For brevity, we
use the notation{x}+ , max{0, x}. Our model accounts for
CVW and non-CVW TCPs by either decaying the congestion
window or leaving it intact when entering an application-
limited state, as follows. For a CVW TCP, we use the notation

{w + 1|2w} ,





w + 1 if r/2 < w, 0 < b′

2w if w ≤ r/2, 0 < b′

r if r ≤ w, b′ = 0

whereas for a non-CVW TCP we use

{w + 1|2w} ,





w + 1 if r/2 < w, 0 < b′

2w if w ≤ r/2, 0 < b′

w if r ≤ w, b′ = 0

The CBR source is characterized as follows. Letf be the load
in packets per second,r = fRTT be the load in packets per
round-trip time, anda be the packet size. LetL be the forward
network latency andT0 be the duration of the initial timeout.
The state transition probabilities, the delays associated with the
transitions, and the times taken for the transitions are given
in Table IX. The states in this table are grouped into four
categories that correspond respectively to the states of a TCP
sender (a) application-limited (b) network-limited and loss-free
(c) fast recovery (d) and retransmission timeout
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q(w,0,0);(w,0,0) = 1− p r ≤ w
t(w,0,0);(w,0,0) = 1/f r ≤ w
d(w,0,0);(w,0,0) = L r ≤ w

q(w,0,0);(b(r+3)/2c,3,1) =
∑w−3

i=1

(
w−1
i−1

)
pi(1− p)w r ≤ w

t(w,0,0);(b(r+3)/2c,3,1) = RTT + 3/f r ≤ w

d(w,0,0);(b(r+3)/2c,3,1) = (L + RTT + i/f)3+w
i=1 r ≤ w

q(w,0,0);(0,T0fa,1) = p−
∑w−3

i=1

(
w−1
i−1

)
pi(1− p)w r ≤ w

t(w,0,0);(0,T0fa,1) = T0 r ≤ w

q(w,b,0);({w+1|2w},(b+RTTfa−wMSS)+,0) = (1− p)w 0 < w, 0 < b or r ≤ w, b = 0

t(w,b,0);({w+1|2w},(b+RTTfa−wMSS)+,0) = 1/f 0 < w, 0 < b or r ≤ w, b = 0

d(w,b,0);({w+1,2w},(b+RTTfa−wMSS)+,0) = (L + b/(fa))
bmin{b,wMSS}/ac
i=1 0 < w, 0 < b or r ≤ w, b = 0

q(w,b,0);(b(w+3)/2c,(b+RTTfa−(w+3)MSS)+,1) =
∑w−3

i=1

(
w
i

)
pi+1(1− p)w 0 < w, 0 < b or r ≤ w, b = 0

t(w,b,0);(b(w+3)/2c,(b+RTTfa−(w+3)MSS)+,1) = RTT 0 < w, 0 < b or r ≤ w, b = 0

d(w,b,0);(b(w+3)/2c,(b+RTTfa−(w+3)MSS)+,1) = (L + RTT + b/(fa) + (3 + i)/f)
bmin{b,(w+3)MSS}/ac
i=1 0 < w, 0 < b or r ≤ w, b = 0

q(w,b,0);(0,b+T0fa,1) = 1− (1− p)w −
∑w−3

i=1

(
w
i

)
pi+1(1− p)w 0 < w, 0 < b or r ≤ w, b = 0

t(w,b,0);(0,b+T0fa,1) = T0 0 < w, 0 < b or r ≤ w, b = 0

q(w,b,1);(w,(b+RTTfa−wMSS)+,0) = 1 0 < w

t(w,b,1);(w,(b+RTTfa−wMSS)+,0) = RTT 0 < w

d(w,b,1);(w,(b+RTTfa−wMSS)+,0) = (L + b/(fa))
bmin{b,wMSS}/ac
i=1 0 < w

q(0,b,l);(1,(b+RTTfa−MSS)+,0) = 1− p 1 ≤ l ≤ 6

t(0,b,l);(1,(b+RTTfa−MSS)+,0) = RTT 1 ≤ l ≤ 6

d(0,b,l);(1,(b+RTTfa−MSS)+,0) = (L + b/(fa))
bmin{b,MSS}/ac
i=1 1 ≤ l ≤ 6

q(0,b,l);(1,b+2lT0fa,min{l+1,6}) = p 1 ≤ l ≤ 6

t(0,b,l);(1,b+2lT0fa,min{l+1,6}) = 2lT0 1 ≤ l ≤ 6

TABLE IX
TCP DELAY MODEL : DEFINITION OF THE STATE TRANSITION PROBABILITIES, TIMES TAKEN FOR THE TRANSITIONS AND THE DELAYS ASSOCIATED WITH

THE TRANSITIONS.


