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Abstract

Polymorphic malcode remains one of the most troubling threats for information security and intru-
sion defense systems. The ability for malcode to be automatically transformed into to a semantically
equivalent variant frustrates attempts to construct a single, simple, easily verifiable representation. We
present a quantitative analysis of the strengths and limitations of shellcode polymorphism and consider
the impact of this analysis on the current practices in intrusion detection.

Our examination focuses on the nature of shellcode decoding routines, and the empirical evidence
we gather illustrates our main result: that the challenge of modeling the class of self-modifying code is
likely intractable – even when the size of the instruction sequence (i.e., the decoder) is relatively small.
We develop metrics to gauge the power of polymorphic engines and use them to provide insight into
the strengths and weaknesses of some popular engines. We believe this analysis supplies a novel and
useful way to understand the limitations of the current generation of signature-based techniques. We
analyze some contemporary polymorphic techniques, explore ways to improve them in order to forecast
the nature of future threats, and present our suggestions for countermeasures. Our results indicate that
the class of polymorphic behavior is too greatly spread and varied to model effectively. We conclude that
modeling normal content is ultimately a more promising defense mechanism than modeling malicious
or abnormal content.

1 Introduction
Code injection attacks have traditionally received a great deal of attention from both security researchers and
the blackhat community [2, 15], and researchers have proposed a variety of defenses, from artificial diversity
of the address space [6] or instruction set [20, 5] to compiler-added integrity checking of the stack [12, 16]
or heap variables [38] and “safer” versions of library functions [4]. Other systems explore the use of tainted
dataflow analysis to prevent the use of untrusted network or file input [11, 32] as part of the instruction
stream. Finally, a large number of schemes propose capturing a representation of the exploit to create
a signature for use in detecting and filtering future versions of the attack. Signature generation methods
are based on a number of content modeling strategies, including simple string-based signature matching
techniques like those used in Snort [40]. Many signature generation schemes focus on relatively simple
detection heuristics, such as a traffic characteristics [39, 22] (e.g., frequency of various packet types) or
identification of the NOP sled [42], while others derive a signature from the actual exploit code [26, 46, 28]
or statistical measures of packet content [44, 43, 31], including content captured by honeypots [47].
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1.1 Polymorphism
While injected malcode can follow a wide variety of internal arrangements in order to trigger a particular
vulnerability, such code is conceptually structured as a set that contains a NOP sled, a sequence of positions
containing the targeted return address, and the actual executable payload of the exploit i.e., shellcode. Re-
cent years have seen the application of polymorphism and metamorphism techniques to disguise malcode
[19]. Some approaches to polymorphism were based on replacing sequences of instructions with seman-
tically equivalent variants (metamorphism). Another approach is to use code obfuscation and masking,
such as encrypting the shellcode with a randomly chosen key. A decoding engine is then inserted into the
shellcode and must run before the exploit to reverse the obfuscation during runtime, resulting in a fairly
standard conceptual format for shellcode: [nop...][decoder][encrypted exploit][ret addr...]. Only the de-
coding routine now need be polymorphic; this task proves less daunting than morphing arbitrary exploit
code. Rapid development of polymorphic techniques has resulted in a number of off-the-shelf polymorphic
engines [19, 14, 29, 7]. Countermeasures to polymorphism range from emulation methods [35, 3] to graph-
theoretic paradigms aimed at detecting the underlying vulnerability [8] or signatures based on higher order
information such as the control-flow graph of the exploit [25, 9].

1.2 The Challenge of Modeling Decoder Polymorphism
Our motivation is derived from the question of whether it is possible to compute and store all members of
the class of decoders – and if so, how difficult such a task would be. Doing so would enable us to determine
the range, type, and power of signatures required to defeat polymorphic techniques, and it would allow us
to build statistical models of such malcode. Since normal network data traffic should not contain executable
binaries (with program downloads being a relatively rare exception), being able to detect the presence of a
decoder within such a data stream would provide a strong indication that the data contains malicious content.
In our study of polymorphism, we assume that the payload can be disguised perfectly and do not attempt to
model the payload portion of the malcode. Instead, our work focuses on examining the decoder portion of
the malcode because we feel that it is the most constrained portion of the attack vector, since it represents
executable code which must perform a specific decryption role. Furthermore, we do not attempt to model the
NOP sled portion of the malcode (as a number of previous research efforts have); we discuss why modeling
NOP sleds is hard, if not intractable, as shown by [19, 14].

The research we describe in the remainder of this paper began to address the aforementioned challenge
problem by generating a mapping of decoder space. Our original goal aimed at using this pre-computed
mapping to discover whether or not we could augment current signature and statistical detection techniques
with a fast classification method to detect byte strings that were likely decoders embedded within that traffic.
We shortly discovered, however, that the decoder sequences our system generates could easily be used to
frustrate the capabilities of both signature-based systems and content-based anomaly detections tools –
particulary those based on frequency of n-grams [43] and more advanced n-gram traffic profiles such as
Anagram [21].

1.3 Contributions
Our research results provide a number of contributions that help improve understanding of the polymorphic
shellcode problem:

• We propose metrics that can be used to gauge the strengths of polymorphic engines, and use these to
examine some of the current state-of-the-art engines. We believe our methodology to be novel and
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insightful in a space that has generally been lacking in quantitative analysis.

• We illustrate the ultimate futility of relying on straightforward string-based signature schemes by
showing that the class of n-byte decoder samples spans n-space. Although our results should not be
interpreted as a call for the immediate abandonment of all signature-based techniques, we believe that
there is a strong case for investigating other protection paradigms and techniques.

• We propose methods that can be used to enhance the design of polymorphic engines in an effort to
forecast potential future threats.

• We show that given any normal model, there is a significant probability that a sucessful targeted attack
can be crafted against it.

The remaining sections analyze a range of polymorphic shellcode behaviors and present empirical evi-
dence that the class of self-modifying code is indeed too large to compute and store in a compact signature-
based representation. Our analysis helps explain why signature-based detection currently works, why it
may work in the short term, and why it will progressively become less valuable. We also discover that shell-
code behavior varies enough to present a significant challenge for statistical approaches. Finally, we study
some of the state-of-the-art polymorphic engines and propose metrics to gauge their strengths. We utilize a
combination of emulation, genetic algorithms, and various statistical methods to support our conclusions.

2 Design
The goal of our work is to explore the space of all byte sequences of length n and observe the magnitude
of the subspace spanned by the class of self modifying code within this n-space (i.e., discover how many
decoders can be constructed given n bytes). This problem statement helps us to better understand the
potential difficulty of modeling the decoder class; the number of unique sequences forecasts how many
string-based signature sequences we would need for signature-based detection as well as provides some
insight into the hardness of statistical modeling.

Since the number of possible strings grows exponentially given the length of the byte string (to be
specific, 28·n where n is the length), we restrict our attention to byte strings of length 10 in order to make
our search feasible. Most decoders in the wild have a length of 20 to 30 bytes; however, the transformation
section of code usually makes up a smaller portion of the string. Our restricted, 10-byte examination reduces
the search space to 280 strings. This problem remains intractable if we were to explore the space one byte at
a time. To overcome this difficulty, we make use of genetic algorithms [37]. The remainder of this section
describes our methodology in more detail.

2.1 Decoder Detector
Valgrind’s [30] binary supervision enables us to add instrumentation to a process without modifying its
source code. In particular, Valgrind provides support for examining the memory accesses a process makes.
We implemented a Valgrind tool to detect self-modifying code, which we define as code that modifies bytes
within a small distance of itself. This technique bears similarity to work done by Markatos et al. [35].
Whereas they perform online detection by filtering all network content through the detector to search for
the presence of decryption engines, we use our code generator in an offline manner to precompute a set of
byte strings that perform self-modification. For every 10-byte string, we constructed a new instance of a
program to redirect the thread of execution into the buffer. We center our attention on instruction sequences
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Figure 1: Decoder search engine flow chart. An overview of our decoder search engine. We construct our library
of decoders using a feedback loop that creates candidate decoders, confirms that they exhibit sufficient decoding
behavior, and uses them to generate more samples.

that modify code within 200 bytes of itself in either direction. We define self-write as writing to a memory
location within this range. We define self-modify as reading from a memory location within this range and
then, within the next four instructions, performing a write to the same location, as is the behavior of decoder
instructions such as xor,add,sub,...etc.

2.2 Genetic Algorithms
Genetic algorithms represent an optimization technique from classic AI. These algorithms prove most useful
in problems with a large search space domain: problems where it would otherwise be infeasible to calculate
a closed form equation to directly optimize a solution. Instead, various solutions are represented in coded
string form and evaluated. A function is defined to determine the “fitness” of the string. GA algorithms
combine fit candidates to produce new strings over a sequence of epochs. In each epoch, the search evaluates
a pool of strings, and the best strings are used to produce the next generation according to some evolution
strategy. Genetic algorithms belong to the class of evolutionary algorithms that are modeled after biological
evolutionary processes. For a more detailed discussion, we refer the reader to Norvig and Russell [37].

We defined a fitness function for our experiments that scores each self-write operation a 1 and each self-
modify operation a 3. The higher score for the latter operation reflects our interest in identifying instruction
sequences that represent the xor,add,sub,... behavior of decoders. The sum of the behavior scores of a 10-
byte string defines its fitness. Any string with a non-zero score therefore exhibits polymorphic behavior. We
used a dynamic threshold for minimum acceptable polymorphic behavior as 5% of the average polymorphic
score of the previously found sequences; we bootstrapped with an overall minimum score of 6. The threshold
was used in order to ignore strings which performed one or two modifications only; we wanted to capture
strings that exhibited a significant amount of polymorphic behavior (i.e., it encapsulated some form of a
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loop construct)1 . We stored all strings that met the polymorphic criteria in an associative array (used to
preserve uniqueness) that we term the “candidate decoder” pool. We observed that the average fitness value
reached into the hundreds after a few hundred epochs. We seeded our search engine with two decoder
strings extracted from ShellForge [7] and roughly 45,000 strings from Metasploit [29] in order to obtain a
good distribution of starting positions to begin the search.

Our method uses the following list of evolution strategies, as illustrated in Figure 1. These strategies are
designed to maximizes the range of search in n-space.

1. Increment: The lowest significant byte is incremented by one modulo 255, with carry. We use this
technique after finding one decoder to then undertake a local search of the surrounding space.

2. Mutate: A random number of bytes within the string are changed randomly. Useful for similar
reasons, except we search in a less restricted neighborhood.

3. Block swap: A random block of bytes within one string is randomly swapped with another random
block from the same string. This technique helps move blocks of instructions around.

4. Cross breed: A random block of bytes within one string is randomly swapped with another ran-
dom block from another string. This technique helps combine different sets of instructions.

5. Rotate: The elements of the string are rotated to the left position-wise by some random amount
with a wrap-around. This is to put the same instructions in different order.

6. Pure random: A new purely random string is generated. This adds variation to the pool and help
prevent the search from getting stuck on local max.

For each sequence, we automatically generate a new program that writes the string into a character buffer
between two nop-sleds of 200 bytes each. The program then redirects execution into that buffer, effectively
simulating a buffer overflow attack. We then retrieve the fitness score of that string from the decoder detector,
evaluate it, and continue with the search according to the process described above. Figure 1 shows the control
flow diagram of our system.

An alternative search procedure would parameterize the actual x86 instruction set into a genetic al-
gorithm search package and dynamically write decoders. Unfortunately, the presence of variable length
instructions used in this approach would restrict us from imposing a limit on the size of the examined
strings. Instead, our analysis performs a search for self-modifying code in n-space at the byte level. We
do, however, adopt this alternative approach in the second part of this paper. We connect our initial results
to real-world systems by applying the same analysis techniques to decoders generated using commonly
available polymorph engines.

We only study shellcode behavior for the x86 Intel architecture. The 10-byte strings that we find
mainly represent the substrings that correspond to the self-modification behavior that are present within
full-length decoders that are typically 20 to 30 bytes long. These strings are likely to be the sequences that
any signature-based IDS would need to extract to use in its model or signature database.

3 Evaluation
The main purpose of our evaluation is to assess the hypothesis that the class of self-modifying code spans
n-space where n is the length of the decoder sequence.

1We used a four second runtime limit in our Valgrind decoder detector tool as we periodically find strings that perform infinite
self modifying loops.
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First sequence: 000 000 000 000 000 000 000 008 036 012
Last sequence: 255 255 156 201 159 235 220 007 012 081

Mean: 90.00 65.65 145.09 153.20 138.91 126.89 123.30 138.25 134.30 126.14
Standard deviation: 71.59 71.41 86.23 77.85 80.43 83.74 86.29 82.00 74.86 75.56

Table 1: Candidate decode pool statistics All measurements are shown in decimal form.

3.1 GA Search Results
Our genetic algorithm search found roughly 1.75 million unique sequences after several weeks of searching
with currently no signs of slowing down. In the following sections, we show that the class of n-byte self-
modifying code not only spans n-space but seemingly saturates it as well. These results give us a concrete
idea of the hardness of the polymorphic modeling problem.

To demonstrate that our generated set of polymorphic sequences spans n-space, we first sort the se-
quences. We then show that our sample pool represents a chain of sequences of which the first string is
very close to {x00,x00,...,x00} and the last string is close to {xFF,xFF,...,xFF}. We present
a metric to determine the distance between two strings and use it to show that the distance between con-
secutive sequences are relatively small, indicating a well spread sampling from n-space. Table 1 shows
that the first and last sequences from our candidate decoder pool are relatively close to the opposite ends
of n-space. We also observe a mean close to the center of the space and high standard deviations. These
results support the conclusion that decoders are uniformly and densely spread throughout the space of x86
instruction sequences.
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Figure 2: Results. (a) 1-gram distribution (b) 3-gram scatter plot

For each sequence in our sample pool, we compute a byte histogram, i.e., a 1-gram distribution model.
Statistical IDS detectors typically operate under the assumption that the class of malcode that they attempt
to model exhibit a certain 1-gram distribution, or “byte spectrum” that can be modeled and used to design a
classifier to separate malcode from normal traffic. This paper shows modeling malcode is very hard. In the
ideal case, a particular class of malcode would exhibit a stable 1-gram distribution that can be represented
by some closed form model such as a mixture of Gaussians. Figure 2(a) shows the average histogram of
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Figure 4: (a) Plot of the pair-wise gaps (b) Gap histogram (c) Eigen-gap plot. Notice that in (c) there are two almost
overlapping plots: the solid corresponds to the decoder sequences and the dotted corresponds to randomly generated
numbers in the same range. We are only interested in the fact that the two lines are almost identical and thus the
decoder class is very close to the random distribution.

the sequences, normalized by the variance. We can see that the sample pool contains no distinguishable
distribution but is rather closer to white noise — with the exception of the {x00} and {xFF} values, which
are likely to be padding artifacts. This point in the paper simply says modeling malcode is not easy. Given
this examination of 1-space, we next measured 3-space and display the results in Figure 2(b) to show the
scatter plot of all 3-grams extracted from all of the candidate decoder pool. This plot shows that, for 3-grams,
the space is well saturated.

Now we aim to show that our results for 3-space generalizes to the full 10-space sample pool. We do so,
as previously mentioned, by examining the distance between the links of the candidate decoder chain. We
define a simple metric to allow us to measure the distance between two strings.

δ(x, y) = min
0≤r<n

[∣
∣
∣
∣x(i+r) − y(i+r)

∣
∣
∣
∣

||x|| + ||y||

]

(1)

where x(i) represents the ith character in string x and ||·|| represents the Euclidean norm. The distance is
normalized by the norm of both strings to remove the effect of length on the metric. The smaller the value
for δ(x, y) the more similar the strings are to each other.

In the ideal case we would find all possible decoder samples within 10-space. Since this is not feasible,
we can only make observations of the sequences that we do have, and gauge their relative distributions. For
any two consecutive sequences in the pool, we define gap to be the distance between them according to our
metric described above. A large gap indicates that a large portion of 10-space was not explored, whereas
a small gap indicates good coverage in that section of 10-space. We can then find the gaps between all
sequences in the sample pool and observe if our method failed to explore any portion of 10-space, indicated
by a large gap. The gap between the decoder is the distance from one decoder to the next after all of the
decoders have been sorted. The distance metric is given by equation 1. Figure 3 shows our concept.

Figure 4(a) shows the gap plot of the sequences — uniformly sub-sampled so that plot can be recogniz-
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able. We see that it is relatively well covered, the gaps are relatively stable within a certain range, and there
are no sharp spikes (a big portion of 10-space missing) or large areas of low gaps (over exploration of one
particular section of 10-space).

A histogram of the sequence gaps are shown in Figure 4(b). The histogram shows a bimodal Gaussian
distribution with the first Gaussian centered around the low values. These gaps represent the “increment” and
“mutate” evolution strategies (i.e., after we find one good sequence, we modify it slightly to retest). These
values correspond to roughly only a few bytes being different within the two decoders and the difference
is only by a small amount. The second gaussian represent the larger gaps, which are fewer, and centered
around a value of 0.25, which translates roughly to an average of 1.7-byte difference in each of the 10-bytes,
which is still fairly close.

In addition, we employ a popular clustering approach from machine learning to analyze the randomness
of the distribution of our candidate decoder sequences. Spectral clustering is a graph-theoretic data cluster-
ing algorithm and is useful because it can perform unsupervised learning without any assumptions about the
underlying distributions of the data samples. Instead, it clusters data by finding the optimal cuts in a fully
connected weighted graph where each node is a data sample. The optimal cuts (classification separations)
are the ones that maximize the sum of the edge weights of the individual disjoint subgraphs where the edge
weight is defined by some similarity metric. For our similarity metric2 we used 1

δ(x,y) .
One can view spectral clustering as a relaxation of the classic Normalized Cuts method (which is NP-

complete) into an eigenvector decomposition problem. Spectral clustering helps infer some information
about the separability of the dataset based on observing the eigenvalues of the Laplacian matrix (which is a
matrix representation of a graph). Unfortunately, further discussion of this topic exceeds this paper’s scope;
we refer the reader to Ng et al. [33] for more information.

Our research need only investigate these eigenvalues to show a sufficiently random and well-distributed
candidate decoder pool. We find these eigenvalues using spectral clustering and then generate another
equally sized set of completely random 10-byte strings and run the same analysis on this random set. A quick
comparison of the eigenvalues of these two sets should confirm the randomness of the decoder distribution.

Figure 4(c) shows a plot of the two sets of eigenvalues. The solid line represents eigenvalues generated
for the decoder sequences3 , and the dashed line represents eigenvalues from the random set. We can see that
the candidate decoder pool appears very similar to the random set. This result confirms our hypothesis that
the class of 10-byte decoder sequences spans 10-space. We have demonstrated the span of the decoder class
for 1-space, 3-space and 10-space. We believe the results are likely to carry over to larger n-space since the
larger sequences can contain the lower-length sequences within them.

3.2 Implication of Results
Our results have shown the span of the decoder class. The challenge of signature-based detection is to
model a space somewhere on the order of O(28·n) sequences to catch all potential polymorphic behavior
with a signature-based method. To put this task in perspective, there exist an estimated 280 atoms in the
universe. Thirty-byte decoders represent a space with a magnitude of O(2240) potential signatures – we
would much sooner run out of atoms in the universe before attackers run out of decoders. Thus, signature-
based approaches can only play catch-up with an enemy that has a seemingly endless space to hide.

Potentially more troubling is the implication that regardless of what the normal model of traffic for a
particular site may be, we have shown that there exists a certain probability that a range of decoders would

2The reciprocal of the distance metric has to be used in order to define a positive semi-definite Gram matrix.
3Spectral clustering requires eigenvalue decomposition of matrix of size d × d where d is the number of samples. Therefore,

the sequences were sorted and uniformly sub-sampled.
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fall within the span of that normal model since sequences which exhibit polymorphic behavior span most of
n-space.

4 Analysis of Polymorphic Engines
Our empirical results show that the class of polymorphic malcode is too large to model. Previous research
on automatic signature generation [22, 31] has reported successful detections of many existing polymorphic
engines, some of which are from Metasploit.

In this section, we aim to explain in detail our approach by analyzing some of these popular state-
of-the-art polymorphic engines. We show that the reason why signature based methods are successful is
that individual engines may leave artifacts which can be exploited for detection purposes. However, these
artifacts are not strongly correlated with polymorphic behavior itself and look very different across different
engines — thus they cannot be generalized to detect polymorphic behavior outside of their training class.

In the following sections, we examine the strengths and weaknesses of some of the polymorphic engines
used in the wild today and present metrics which we use to gauge their strength.

We base our work on the following conjectures about polymorphism:
1. Variation Strength: A polymorphic engine is strong if it generates decoders, of length n, that

spans a sufficiently large portion of n-space.
2. Propagation Strength: A polymorphic engine is strong if for the sequence of decoders that it

generates ...~xi−1,~xi,~xi+1..., ~xi looks significantly different from ~xi+1.
Note that we use the vector variable notation to refer to a decoder sample. Under these metrics, we

analyze six popular engines used in the wild today: ADMmutate, CLET, and four engines from Metasploit:
Shikata Gai Nai4, Jumpcall additive, Call4dword and fnstenv mov.

For our analysis we present several metrics which can be used to gauge the strengths of polymorphic
engines then present our layout for a new paradigm in engine design where the challenge is reformulated as
an optimization problem; one where a metric similar to the one we proposed can be used as the optimization
criteria. This work is an attempt at pre-emptively identifying the future potential for polymorphism.

4.1 Variation Strength
For any given polymorphic engine, if the decoders produced by that engine are sufficiently well spread, it
is naturally more difficult to model that engine. Many signatures must be used, and for statistical methods,
any model trained over the samples would increase the false positive rate as they might be forced to over-
generalize.

The images in Figure 5 were generated by taking a single shellcode sample and encrypting it with each
engine 10,000 times to generate 10,000 unique shellcode sequences. From these sequences, the decoder
portion were extracted, sorted, sub-sampled uniformly, stacked together, and finally displayed as an image.
This allows invariances in the samples to show up clearly in the form of vertical bands as shown in Fig-
ure 5. The images easily display the invariant subsequences that these engines generate; these artifacts are
the exploitable signatures that several methods [22, 31] end up locking-on to in order to detect encrypted
shellcode from those engines.

The important thing to note is that these invariances do not hold across different engines – as we can see
from the images, even though these engines perform the same basic actions to decode a string within a small
distance of itself in memory. For example for CLET, the vertical band represents clearing of registers.

4A common Japanese cultural phrase meaning ”nothing can be done about it”.
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(a) (b) (c) (d) (e) (f)

Figure 5: Spectral images to show variation strength (a) Shikata Na Gai (b) jcadd (c) call4dword (d) fnstenv
mov (e) ADMmutate (f) CLET. Each pixel row represents a decoder from that engine and each individual pixel
value represents the corresponding byte from that decoder. The dark region at the upper right corner of (e) is padding
of zero bytes that we added so that ADMmutate’s variable length decoders can be stacked together.

These spectral images demonstrate range of decoders that can be generated using existing off-the-shelf
polymorphic engines. We may then ask, what is the range of sequences we can expect to see in future
polymorphic engines? For this question, we refer to our earlier result that self-modifying code of length n is
likely to span a significant portion of n-space. The spectral bands show that it is possible to train detectors
from sequences generated by various specific engines by focusing on these areas of the decoder. However,
the range of polymorphic behavior is so great that new models must be continuously trained as newer and
newer engines are developed – these bands are clearly not consistent across different engines.

We now present a way to gauge such a variance so that a score may be assigned to describe the range
of decoder polymorphism exhibited by a specific engine. In order to do so, we examine the magnitude and
span of the covariance matrix of the dataset. The covariance matrix is a second order metric used to capture
the variance between any two dimensions for a range of samples seen in a distribution of n-dimensions. The
equation for the covariance matrix5 is given as:

Σ =
1

L

L∑

i=1

(~xi − ~µ)(~xi − ~µ)T (2)

Where ~xi is a decoder sample, and µ is the mean sample, both of which are stored as column vectors.
We want to examine the magnitude of the axis of the space defined by the covariance matrix for the decoders
samples generated by a particular engine to gauge the span of the distribution of its decoders. Recall from
eigenvector decomposition that the vector space can be shifted in place to find a different set of basis vectors
to represent the same space.

Σ~v = ~vλ (3)

Where ~v are the eigenvectors and λ are the eigenvalues. In order to analyze the magnitude of the
decoder sample distribution, we first encode a single shellcode sample 10,000 times to generate 10,000
unique sequences, then use these to generate the covariance matrix according to equation 2. Next, we
perform eigenvalue decomposition of the covariance matrix. We now have a new set of eigenvectors which
spans this matrix, viewable as axes in a new shifted space and the magnitude of the axes are given by
the eigenvalues. We can then sum up the eigenvalues to measure the magnitude of the distribution. We
therefore define the variation strength of a polymorphic engine to be the scaled sum of the eigenvalues of

5Note that in order to define a full ranked covariance matrix, you need more samples than the dimensionality of your data sample
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Figure 6: Gap histograms to show propagation strength (a) Shikata Na Gai (b) jcadd (c) call4dword (d)
fnstenv mov (e) ADMmutate (f) CLET

the covariance matrix of the decoder samples that it generates. An important point to note is that many
decoder samples must be extracted from the engine in order to get an accurate estimate, around 10,000 is an
appropriate number.

υ(engine) =
1

ξL

L∑

i=1

λi (4)

Where λi is the ith eigenvalue and L is the dimensionality of the decoders. ξ is a factor that is used scale
the final score since the magnitude of the eigenvalues can get quite large.

4.2 Propagation Strength
A polymorphic engine might have a restricted span (variance), but if the sequences that it generates are suf-
ficiently different, i.e. they are sparsely spread out and each decoder looks very different from the next, then
it will be difficult to train any generalized statistical models or extract useful signatures until a sufficiently
large number of samples from this engine are seen. The metric therefore, influences how long an engine’s
malcode can propagate before a detector can be properly trained. To visualize the propagation strength of
an engine, we can take our previously defined similarity metric between two decoders (1) and find the gap
between all of the subsequence decoders (sorted). Plotting a histogram of the gaps show how well spread
are the decoders generated by a particular engine. For a hard score, we define the propagation strength of
the engine to be the expected value of the decoder gap, i.e., the centroid of the distribution, weighted by
the number of static bytes present within all of the generated decoders. Figure 6 shows the gap histograms
of the various engines. The histograms with their centroids at higher values exhibit stronger propagation
strength. The variance of the histogram, i.e. the width of the distribution indicates how consistent an engine
is at producing a set of non-similar decoders; the lower the variance (tighter the distribution), the better the
engine performs. We define the propagation strength of an engine as follows:
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Engine Propagation Strength Variation Strength Overall Strength
shikata 23.60 4.79 169.88
jcadd 14.89 3.68 80.68
c4d 7.78 1.09 13.14

fnstenv 8.58 1.18 16.08
admmutate 27.74 6.10 189.26

clet 24.79 4.12 142.62

Table 2: The decoder polymorphism strengths of various engines under our metric (the first four engines are
from Metasploit)

φ(engine) =

[

100 ·

N∑

i=2

p(δ(~xi−1, ~xi)) · δ(~xi−1, ~xi)

]

· (1 −
η

L
) (5)

Where ~xi is the ith decoder generated by the engine, N is the total number of decoders and L is the
length of the decoder. Since the δ(x, y) metric returns values between [0,1] range, we multiply this value by
100 to scale the final score to a number greater than 1. In the case of variable length decoders, the average
length can be used. δ(x, y) is the previously defined equation (1). η is the number of static bytes in all of
the decoder samples, i.e., bytes which are always present within a decoder at a fixed position. Incorporating
this scaling factor into the equation allows us to enforce a heavy penalty on engines that leave consistent
artifacts in their generated decoders, which can be exploited by signature based IDS implementations.

4.3 Strength of a polymorphic engine
We can now define the total strength of a polymorphic engine Π(·) to be a weighted correlation between the
propagation strength and the variation strength.

Π(engine) = φ(engine)α

︸ ︷︷ ︸
· υ(engine)β

︸ ︷︷ ︸
· e

L
γ

+1
︸ ︷︷ ︸

(6)

propagation st. variation st. length-based weight

α and β are parameters to give different weights to the two different metrics. We also add a length based
exponentially decaying factor e

L
γ

+1 to the strength measurement. The adjustable γ parameter allows us to
give more weight to engines that can generate decoders less than this length. This is used to put a favorable
bias on shorter sequences since their variance can be trivially expanded by padding with NOP-equivalent
bytes (described in the following section).

Table 2 presents our ranking of these engines based on these metrics. To get our results, we weighted the
two metrics equally, α, β = 1; we specified ξ = 1000 to reduce the range of the final score and set γ = 35
since many simple decoders are within 25-35 byte range.

4.4 Results
Note that three of the engines from Metasploit are not fully polymorphic, their scores were correspondingly
lower than the other more powerful engines. The CLET polymorphic engine is in reality very good in that
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it allows the user to specify an arbitrary number of decoding i.e. xor then sub then add etc. For our exper-
iments, we tested on the default setting of five instruction operations. While the polymorphic performance
of CLET was on par with that of ADMmutate, we found that all decoders generated by CLET contained a
unique 9-byte signature string which represents a set of instructions used to clear the working registers and
the appropriate jump/call instructions used to load the needed loop counter variable into memory. While
overall, CLET is one of the best engines that we’ve seen, this particular feature makes the decoders easier
to detect than the other engines, thus the lowered score. The CLET team acknowledged as one of their
weaknesses this static structural layout [14].

4.5 Other Polymorphic Strengths
While we have focused our efforts on studying the range of polymorphic decoder routines, we must also
take into account the other sections of malcode which will also have an important impact on detection.
Recalling the conceptual structure of a polymorphic shellcode sample (e.g., [nop...][decoder][encrypted
exploit][ret addr...]), we describe the achievements made by the shellcoder community in disguising each
of these different sections.
• nop-sled: The most basic design of a nop-sled is a buffer of nop instructions {x90,x90,...,x90}
which is inserted ahead of the decoder to safely catch the EIP jump. Many signature-based detection systems
rely on this artifact for detection. However, many innovations have been introduced to make the nop-sled
polymorphic as well, since the nop-sled does not need to consist of actual x90 nop instructions – it only has
to pass the flow of execution safely into the decoder without causing system instability. Toward this end, K2
describes the discovery of at least 55 different ways to write such single byte benign instructions [19] and
implemented this in the well-known ADMmutate engine. For a nop-sled of length n, this implies potentially
55n unique nop sleds.

Another more advanced nop-sled design is deployed in the CLET polymorphic engine [14]. Their
method finds benign instructions by first finding a set of 1-byte benign instructions, then finding a set of
2-byte benign instructions that contains the 1-byte instructions in the lower byte. Therefore, it does not
matter if control flow lands in the 2-byte instruction or if it lands one byte to the right since that position will
hold another equally benign instruction. This method can be used recursively to find benign instructions of
longer length which can be combined to create the nop-sled. No analysis of the potential of this method
exists as far as we know but it is likely to be a very useful polymorphic technique. We can clearly see the
challenge of attempting to model this section.
• ret addr: Without randomization of the address space, the location of the stack and stack variables
on most architectures remains consistent across program executions. Thus, the attacker has an excellent
basis for guessing the value of an injected return address in order to redirect EIP into the injected malcode
buffer. Using signatures based on the presence of specific address values could be possible if we were to
restrict ourselves to specific forms of code-injection attack. However, return address polymorphism is trivial
to implement, one needs only to modify the lower order bits [19]. This method causes control flow to jump
into different positions in the stack, but as long as it lands somewhere in the nop-sled, the exploit still works.
The return address section consists of the return target repeated m number of times, each repeat can be
modified v times (where v is some tolerable variance in the jmp target) for a total of mv possible variations
in this section.
• Spectrum shaping and byte padding: Some recent research has demonstrated the feasibility
of polymorphic blending attacks [17, 24] where the malcode attempts to appear similar to benign traffic
in terms of their n-gram distributions (or at least different enough from known models). The CLET team’s
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polymorphic engine [14] is an example of such an technique. Their engine changes the shellcode to take on a
new form: [nop...][decoder][encrypted exploit][padding][ret addr...]. In this new padding area, junk bytes
are added to make the 1-gram distribution of the entire shellcode appear different. In addition to this, the
shellcode itself is ciphered with different length keys. These keys exhibit various different byte distributions
which are propagated into the shellcode through the xor cipher technique, re-shaping the byte spectrum of
the payload. This technique increases both the variation and propagation strengths of a polymorphic engine
to make it resistant to a statistical IDS such as PayL [43].

Perhaps the biggest threat to IDSes is that all of these individual techniques can be combined into one
single polymorphic engine. Furthermore, [nop...][decoder][encrypted exploit][ret addr...] is really just a
conventional design which works. There is nothing to prevent the attacker from modifying the sections
between the nop-sled and the return address. By using some jmp instructions, it is possible to see shellcode
in the future of the forms:
[nop...][encrypted exploit][decoder][ret addr...]
[nop...][decoder part 1][encrypted exploit][decoder part 2][ret addr...]
[nop...][padding][encrypted exploit][padding][decoder][ret addr...]
...
etc., a grim scenario for signature-based detection.

4.6 Future Threats
In this section we outline some of the potential implications of our results from the previous sections and
provide a glimpse into possible future paradigms of shellcode polymorphism.

Polymorphism as an Optimization Problem Our proposed strength metric not only allows us to esti-
mate the effectiveness of a polymorphic engine but also allows us to conceptually imagine a new paradigm
for polymorphic engine design in the form of an optimization problem where such a metric may form the
optimization criteria. Engine designers might be able to incorporate optimization methodologies from AI,
machine learning, operations research etc, into their designs by heavily parameterizing their engines and
then searching for the optimal parameters which maximizes some strength function such as the one we
proposed.

One such parameterization might simply be to add a small recursively defined nop-equivalent sled in
front of every instruction in the decoder or a subset of instructions, then break apart the decoder into sections,
rearrange them, then add jmp instructions to reconstruct the execution flow. The presence of the nop sled in
front of individual instructions also allows polymorphism in the jmp targets.

These simple methods can be parameterized so that one set of values determine how to rearrange the
instruction blocks and another set of values determine how to generate the nop sleds as well as the positions
to place them. It would then be possible to use optimization functions such as the genetics algorithms method
we used in this paper to find the optimal set of values that maximizes the output of a strength function, thus
maximizing the power of the polymorphic engine.

A Multi-decoder chained polymorphic engine The attacker’s ultimate goal is to be able to generate
stealthy polymorphic engines that have the ability to transform the payload to a specific n-gram distribution
and be themselves part of a site’s normal traffic. It is very unlikely that a single decoder can achieve both
goals simultaneousl, but it is not impossible. We know, for example, that CLET is capable of mapping the
attack payload to a wide range of n-grams, that may cover the n-grams that appear in a site’s normal traffic.
But the CLET engine itself may be detectable. Hence, we can use another polymorph engine to encode
CLET and create a chain of decoders that once decoded completely can map an attack exploit to the set of a
target site’s normal n-grams. To decode the full byte sequence we will have to decode CLET and then CLET
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will decode the payload. In general, we combine two decoders A and B. B can map the payload to a normal
distribution of our choice. A encodes B rendering B undetectable (A is selected appropriately to be part of
the site’s normality model also). The byte sequence A, B and payload and nop sled will not be detectable
by both signature- and content-based IDS. Our work, as discussed in section 3.2 shows that constructing A

is feasible and thus it is likely that standard non-randomized content-based anomaly detection systems will
fail to detect such polymorphic code.

Distributed Calculated Attacks We present a potential scenario for a k-vector worm propagation strat-
egy. Using these concepts the attacker can pre-calculate a large set of highly random encrypted worms
which, as a whole, is difficult to model as confirmed by the analysis tools. He then divides these worms
among multiple k different online repositories (nodes from a botnet perhaps). For each of these repositories
there exists a pre-calculated hash map which links together worms that look significantly different. The
worm behaves normally as it propagates, typically changing its encryption key with each new attack, but
it periodically checks back with the repository and, using the hash map, retrieves and sends out a variant
that is significantly different from itself. This method would make it very difficult for automated signature
generation methods to keep up with the worms — in all probability, by the time a useful set of signatures
have been generated, a new wave of variants has been released (a wave pre-computed to be statistically dif-
ferent from the old). If somehow the defense succeeds in dissecting the worm and uncovering the location
of its designated repository, it will only be one in k vectors compromised, since the worms belonging to
each vector of attack are known to be statistically different from the others. Signature based IDS are likely
to be more vulnerable to this attack.

Training Attacks While one way to attack an IDS is to develop an engine that can generate attacks
which can slip by its sensors. Another attack, as described by Chung et al. [10], is to send a wide range of
attacks against an IDS system, forcing the system to expand their models to catch all of these new threats. If
the attack can force the IDS to sufficiently over-generalize, then the large amount of false positives generated
would make the engine unusable. The optimization paradigm we discussed can be used to launch exactly this
form of attack. By optimizing the variation strength of the engine, the attacker can create a very wide range
of decoders, then artificially lowering the propagation strength, lowers the overall polymorphic strength so
that his decoders are caught in the wild. (This would correspond to generating large amount of compact
clusters of very similar decoders.) However since the variance is high, the cumulative affect of so many
alerts forces the IDS to cover too much ground, reaching into the domain of normal traffic. A statistical
IDS would naturally be more affected by this attack. This idea of exploiting the false positive rate is well
known among the shellcoder community – it is discussed in the documentation and Phrack articles of both
the ADMmutate and CLET engines.

Distributed Denial-of-Sensor Attacks Along the same line of argument, an attacker can find a model
of normal traffic content, then using a distance metric similar to the one proposed in this paper, calculate
a large chain of malcode which are statistically similar to this normal model to some degree d, calculated
using a metric similar to the one we proposed (1). d can be constrained to be just below the threshold for
a front-line malicious content detection system such as Snort but just above the threshold for a second-line
anomaly detection system so that an alert is triggered. On systems where emulation and instrumentation
based defenses are used such as [35], this flood of odd looking content therefore would cause a Denial-of-
Senor attack as the defense cannot process anymore alerts while it is busy in the emulation environment
and possibly a Denial-of-Service, depending on the processing policy. The number of distributed attackers
needed is the inverse of the slow-down factor of the emulation environment. An instrumentation based IDS
would be most affected by this attack.

The results from the first part of the paper show that, since n-byte self-modifying code spans n-space,
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the amount of ammunition for these last two attacks would seem endless and would be simple to generate –
just by mimicking our experiments.

5 Related Work
Although our work illustrates the extreme difficulty IDSs face in reliably detecting polymorphic shellcode,
we would not report such results without being confident in the ability of the IDS community to answer this
challenge. The next section proposes outlines of some countermeasures that we believe may be helpful, and
we review the current state-of-the-art in this section to help motivate that discussion. Since we cover various
detection and protection techniques in Section 1 as part of our introduction to the problem of signature
generation for polymorphic shellcode, we provide only a brief treatment of these topics here. For related
work in complexity analysis, Spinellis showed that identification of bounded length metamorphic virsuses
is NP-complete [41]. In addition, Fogla et.al[17] showed that finding a polymorphic blending attack is also
an NP-complete problem.

Attack Techniques Aleph0ne illustrated the basics of smashing the stack [2]. The virus writer Dark
Avenger’s Mutation Engine influenced the shellcoder K2 to develop shellcode polymorphism [19]. rix [36]
proceeds to show how to perform alphanumeric encoding, Sinan Eran [15] showed how to smash the kernel
stack, obscue [34] described how to encode shellcode to make it survive ASCII to unicode transformations,
the CLET team [14] developed the technique of spectrum spoofing and how to construct a recursive NOP
sled and most recently the Metasploit [29] project combined vulnerability probing, code injection, and
polymorphism, among other features, into one complete system.

Intrusion Defense Snort [40] is a widely deployed open-source signature-based detector. Exploring
how to automatically generate exploit signatures has been the focus of a great deal of research [22, 39, 31, 26,
47, 46, 28, 3]. To generate a signature, most of these systems either examine the content or characteristics
of network traffic or instrument the host to identify malicious input. Host-based approaches filter traffic
through an instrumented version of the application to detect malcode. If confirmed, the malcode is dissected
to dynamically generate a signature to stop similar future attacks.

Abstract Payload Execution (APE) [42] examines network traffic and treats packet content as machine
instructions. Instruction decoding of packets can identify the sled, or sequence of instructions in an exploit
whose purpose is to guide the program counter to the exploit code. Krugel et al. [25] detect polymorphic
worms by learning a control flow graph for the worm binary with similar techniques. Convergent static
analysis [9] also aims at revealing the control flow of a random sequence of bytes. The SigFree [45] system
adopts similar processing techniques, and Markatos et al. [35] propose running every packet through an
emulation environment to detect the presence of polymorphic malcode.

Statistical content anomaly detection is another avenue of research, and PayL [43] models the 1-gram
distributions of normal traffic using the Mahalanobis distance as a metric to gauge the normality of incoming
packets. Anagram [21] caches known benign n-grams extracted from normal content in a fast hash map and
compare ratios of seen and unseen grams to determine normality.

Research on vulnerability-specific protection techniques [13, 8, 18] (and dynamic taint analysis [11, 32]
in particular) explores methods for defeating exploits despite differences between instances of their encoded
form. The underlying idea relies on capturing the characteristics of the vulnerability (such as a conjunction
of equivalence relations on the set of jump addresses that lead to the vulnerability being exercised: in other
words, the control flow path).

Proactive Techniques Preventing intrusions by removing the weaknesses of current execution envi-
ronments is another area of active research. Data Execution Prevention (DEP) is used in the latest Windows
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OS to flag certain memory areas as non-executable in order to prevent code injection, similar to the WˆX
feature in BSD systems. StackGuard and similar techniques [12, 16] instrument the stack to detect unau-
thorized modifications such as those stemming from a buffer overflow. Program shepherding [23] validates
branch instructions in IA-32 binaries to prevent transfer of control to injected code and to ensure that calls
into native libraries originate from valid sources. Abadi et al. [1] propose formalizing the concept of Control
Flow Integrity, observing that high-level programming often assumes properties of control flow that are not
enforced at the machine language level. CFI statically verifies that execution remains within a control-flow
graph (the CFG effectively serves as a policy).

Randomization based defenses work on the principle of making the host a moving target. Address
space randomization prevents return-into-libc type attacks. Instruction set randomization [20, 5] has been
proposed to make it impossible for the attacker to write executable code for a target system. Randomized
stack header padding is used in BSD to add a small offset to the location of the return address buffer on the
stack in order to cause the [return addr..] portion of the attacker’s code to misalign.

6 Countermeasures
Our analysis of polymorphism and its future potential suggests that it may be unwise to continue relying
on modeling malcode as a form of intrusion detection. Our analysis (which confirms the work of other
researchers) also questions the ultimate utility of string-matching signatures. Such reactive measures funda-
mentally surrender the initiative to the adversary and force the defender to continuously re-adjust signatures
and defenses based on the attacker’s innovation. The growing potential of polymorphism raises the complex-
ity of the malcode models that the defenders have to identify and threatens to make each attack a zero-day.

A change of strategy can help intrusion detection systems recapture the initiative. We believe that, in
many cases, switching to a combined-arms strategy founded on host-based randomized defense offers a way
forward. In addition, we believe that randomizing the modeling of normal content or behavior can help
system defenders recapture the initiative and force attackers to continuously re-adjust their methods against
a moving target.

Our research also suggests that straightforward normal content modeling also requires improvment.
Because network traffic may look similar enough across sites, an attacker can pre-train his attacks. If
malicious code spans n-space, then an attacker has a large space to match against these normal traffic
models. However, if we model selected sub-portions of the traffic, we would weaken an attacker’s ability
to train his attack. Instead of focusing on a malcode modeling problem of complexity O(28·n), we force
the attacker to guess what part of n-space to aim his malcode into. As a result, the attacker has a O( 1

28·n )
chance of success; a move that effectively turns the vast scale of n-space to our favor, and defeats most of
the previously mentioned future threats.

Many of the defensive measures we mention in Section 5 have a good deal of potential, although they
are not always trivial to implement or deploy, especially for legacy systems. For example, DEP can be
costly, and it is only activated for system services by default. StackGuard, WˆX, and randomized instruc-
tions cannot be easily applied to legacy systems, and emulation environments (in the case of ISR) incur a
heavy performance penalty. Therefore, IDSs that act as a first line of defense will always have a valuable
place. For example, anomaly detectors can rapidly drop confirmed attacks against a randomized model, and
sending unverified ones (ideally a very small percentage of traffic) into a more heavily instrumented, host-
based environment for testing can help reactively update the IDS models. When available, the public-facing
services of the host would utilize randomized defense such as DEP, ISR, etc. Finally, sites can employ a
collaborative security approach [27]: multiple sites with similar services can automatically share data on
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the malicious content they encounter so that all participating members may have a chance to update their
models before they face the same threat.

7 Conclusions
Our empirical results demonstrate the difficulty of modeling polymorphic behavior. We presented a set
of analysis techniques that can help gauge the strengths of polymorphic engines, and we examined some of
the state-of-the-art polymorphic engines with these techniques. We explained why signature-based modeling
works in some cases, and confirm that the long-term viability of such approaches matches the intuitive belief
that polymorphism will eventually defeat these methodologies. We illustrated scenarios that the polymorphic
threat can explore in the future and discussed the implications for existing IDS systems.

We argue that while signature-based methods may work in the short term, empirical evidence shows that
they cannot generalize enough to protect against future attacks. Therefore, we believe that the strategy of
modeling malicious behavior leads to an endless game of keeping up with the attacker. To help counter this
threat, we presented our recommendations for countermeasures and conclude that future intrusion detection
systems must prevent attacks by modeling the class of good content or application behavior. In short, we
believe whitelisting normal content or behavior is ultimately safer than blacklisting arbitrary and highly
varied malicious behavior or content.
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