

 1

SIMPLEstone - Benchmarking Presence Server
Performance*

Vishal K. Singh and Henning Schulzrinne

Department of Computer Science, Columbia University

{vs2140, hgs}@cs.columbia.edu

 Date: 10
th

 Feb 2006

Abstract: Presence is an important enabler for communication in Internet telephony

systems. Presence-based services depend on accurate and timely delivery of presence

information. Hence, presence systems need to be appropriately dimensioned to meet the

growing number of users, varying number of devices as presence sources, the rate at

which they update presence information to the network and the rate at which network

distributes the user’s presence information to the watchers. SIMPLEstone is a set of

metrics for benchmarking the performance of presence systems based on SIMPLE.

SIMPLEstone benchmarks a presence server by generating requests based on a work load

specification. It measures server capacity in terms of request handling capacity as an

aggregate of all types of requests as well as individual request types. The benchmark

treats different configuration modes in which presence server interoperates with the

Session Initiation protocol (SIP) server as one block.

1. Introduction
SIMPLEstone is an extension of SIPstone [1] for presence. It defines the benchmarking

mechanism and metrics to be used for evaluating the performance of presence servers and

deployments. The benchmark can be used to determine the impact of the presence traffic

on the network and the request handling capacity of the presence server. The benchmark

generates presence traffic for the server and measures the maximum request rate that the

server can process in a timely manner without dropping new incoming requests. The

presence traffic to be generated is specified in the workload specification which contains

details like request rates for each message type and transport protocol to be used for tests.

The test results are reported in terms of request handling capacity along with other details

such as use of privacy filter and composition policy [14].

One way in which presence systems behave differently from the Session Initiation

Protocol (SIP)-based call processing systems is that every incoming presence update

(PUBLISH) generates multiple notification messages which are sent to all the watchers

[5]. Hence the outgoing network traffic can be high for every presence update.

Additionally, the benchmark metric for presence server cannot be only based on

measuring request handling capacity as the processing for each type of request is

different, e.g., a PUBLISH [11] message causes composition and filtering [11] operations

and generates multiple NOTIFY messages, whereas a SUBSCRIBE [10] message

triggers creation or renewal of subscription and filtering to generate a single NOTIFY

message. Also, the processing can be different based on different event types. Hence, to

benchmark a presence server it is not sufficient to consider only the user population and

*
 This work is supported by Verizon Labs.

 2

the number of requests; rather, it is also important to consider details which determine the

amount of processing done by the server, e.g., the number of watchers per presentity [5]

and filter complexity for each of them.

The objective of SIMPLEstone is to define presence benchmarking specifications to

perform network and server capacity planning and dimensioning. The impact of presence

traffic on the network needs to be considered to appropriately provision the network

resources. This traffic may also influence quality of service of other delay sensitive

applications. Additionally, the capacity of the server to handle presence requests must be

determined. A presence service provider needs to determine how many servers are

required for a given user population. Similarly, a server software provider needs to

specify the request handling capacity of his server. The benchmark metric can be used for

comparing different presence servers. Another design objective is repeatability of tests

and ease of specifying the workload. This is also useful for acceptance testing after an

upgrade or change in the network, e.g., changes in configuration or changes in the

network topology.

The remainder of this document is organized as follows: Section 2 presents an overview

of presence server, Section 2.1 explains steps involved in presence processing, Section 3

explains factors affecting presence server performance; Section 4 explains the issues in

choosing a benchmarking metric. Section 5 explains the SIMPLEstone benchmarking

tool, our implementation architecture and components, workload specification and test

types we have implemented. Section 6 discusses benchmarking methodology,

measurement methodology and SIMPLEstone metrics to be reported. Finally, we present

conclusions in Section 7 and references in Section 8.

2. Presence Server
A presence system allows for users to subscribe to each others presence [5] (availability

and willingness for communication) information. The users (watchers) subscribe to

presence information of other users (presentity) using SIP SUBSCRIBE requests and are

notified about the changes in state of other users by SIP NOTIFY messages. Presence

data for a user (presentity) is published from different presence sources using SIP

PUBLISH. Figure 1 shows a basic flow of messages in a presence system. Diverse

sources of presence information like wireline and wireless phones, applications like

calendars and meeting makers, location sensors update presence information to the server

using SIP PUBLISH message. This presence data is processed to give to the watchers a

consistent view of the status of the presentities they are interested in.

 3

2.1 Presence Processing Overview

A presence system supports three primary operations which internally may involve

multiple operations. The three primary operations are (a) subscription. (b) notification

and (c) publication. We briefly describe these and then explain the presence data

processing on presence server.

a) Subscription: A watcher subscribes to the presence status of a user by sending

SIP SUBSCRIBE request to the presence server. Upon receiving SUBSCRIBE

request, the server performs authorization [12] of subscription and sends the status

of presentity using a SIP NOTIFY request. The subscription can be rejected,

approved or put in pending state depending upon the result of authorization. Once

a subscription is approved, the presence document is delivered whenever the

presentity’s status changes. The watchers specify the rules for watcher filtering

[13] in the SUBSCRIBE request.

b) Notification: The presence state of the presentity is conveyed to the watchers by

delivering the presence document to them. The presence server delivers presence

state information documents by sending SIP NOTIFY messages to the watchers.

The presence document can either be in PIDF [6] or RPID [9] format. The

presence document is filtered according to the presentity-specified and watcher-

specified filters before being delivered to the watchers.

c) Publication: The sources of presence send information to the server for

aggregation and distribution using SIP PUBLISH messages. The PUBLISH

request triggers presence data processing which eventually generates a consistent

view of the presentity on the server. This also triggers NOTIFY requests to be

sent to all the watchers of the presentity, to update them with latest presence

status.

Figure 2 shows the different stages of presence processing once the presence data is

received. The published presence information for each presentity is composed [14] to a

candidate presence document. Composition is done based on a composition policy [14]

which in turn can be determined by presence authorization [12]. The composition policy

can be same for all presentities or it can be different for different presentities. The

presence server applies a privacy filter [13] on the candidate presence document to

REGISTER

PUBLISH

SIP Proxy/
Registrar

NOTIFY [Reg]

SUBSCRIBE

Watcher NOTIFY
[Presence]

Presentity

Presence

Agent

Figure 1 Basic block diagram of a presence system

 4

generate another candidate presence document. Different information is available to

different subscribers after applying the privacy filter. The output of privacy filtering is the

candidate presence document to which watcher filtering is applied. The filtered presence

document is processed again to generate a difference from the previous NOTIFY body

(for partial notifications [4]) or to ensure that final document after privacy and watcher

filtering does not contain redundant information.

Presence

Sources

PSTN Phone,
Cell Phone,
VOIP Client

Presence Authorization
Presentity specified filter

NOTIFY

candidate
presence
document

privacy

filtering

Watcher

Filter

Composition

Composition

Policy

SUBSCRIBE
specifies

watcher filter

Watchers

PUBLISH

NOTIFY

NOTIFY

final
presence
document

Post

Processing

Composition

candidate

presence

document

filtered
presence
document

 Figure 2 Presence processing overview

3. Factors Affecting Presence Server Performance
In this section, we explain some of the factors which affect the presence server

performance.

Request Rate: Number of messages received and distributed by the presence server

per second affects the amount of processing done by the server. This determines the

throughput of the server. The server needs to maintain the dialog state for all the

subscriptions to send the NOTIFY requests. High rate of updates of presence information

causes higher load on the server and adversely affects server’s throughput.

Presence Privacy Filtering: Every notification is generated after performing the

filtering on composed presence document. Filtering involves rule matching and

transformation on presence document based on matched filter rules. This implies

matching the request attributes with conditions in the filter document and applying

transformations specified in the presentity’s filter document. The amount of load

generated in filtering depends on the complexity of privacy filter document and the size

 5

of presence document. A transformation on a larger presence document may have higher

complexity then a transformation on a smaller presence document.

Composition Policy: The type of composition policy that the server uses to

compose the presence documents determines the processing done by the server in the

composition step. Hence, it affects the server’s performance. There can be simple

composition policies like union or overriding composition policy or complex policies

which do composition based on a rule language.

Watcher Filtering: The size and complexity of watcher filter sent by the watcher in

SUBSCRIBE request affects both the processing on the server as well as the size of

presence document sent to the watcher which in turn affects the presence traffic

generated by the server.

Partial Notification: Partial notification is mechanism used to conserve bandwidth

by sending only the changes in the presence document to the watchers. The server needs

to create the change document either by comparing the composed and filtered presence

document with the last sent document or using any other mechanisms.

Other Factors Affecting Server Performance: The server’s request handling

capacity also depends on factors like transport protocol used (TCP, UDP, or TLS), DNS

look up time, authentication mechanism used, database optimizations and caching, use of

in-memory vs. network based database, connection handling capacity of server, caching

mechanisms, e.g., the filter rules which are frequently used can be stored in memory

(working set of filters which are most frequently used) and need not be queried from

database always. As in SIPstone, benchmarking scheme should generate sufficient load

such that server performance is not overestimated because of caching, etc. A large user

population may require higher look up time for a database based system because of more

number of entries in the database or may require a higher memory for an in-memory

database. Implementation specific factors like the type of XML parsing used for presence

documents i.e., DOM vs. SAX parsing, presence document persistence mechanism i.e.,

storing presence document in database as a string vs. storing serialized DOM, also affects

the server’s performance. Features enabled on the presence server like SNMP support

may also impact server’s performance and must also be considered.

4. Issues in SIMPLEstone Benchmarking Metric
In this section, we explain the issues related to choosing a presence benchmarking metric

and discuss metrics which can be used for benchmarking presence server performance.

Some of the issues related to SIP benchmarking metric e.g., user population, are also

applicable to presence and are explained in Section 3 of SIPstone [1].

User population: The number of users supported by the presence server can be a

measure of presence server performance. However, the number of messages generated

and processed by the server does not strictly depend on the user population. The number

of messages generated per presentity depends on three factors. 1) Average number of

users to whom the presentity has subscribed to. 2) Average number of watchers

 6

subscribed to the presentity. 3) The publication rate from each of the presentity sources.

The presentity sends SUBSCRIBE requests to the user’s he is watching. The presentity

sends NOTIFY request to the user’s watching him. Notification rate for each presentity

varies with number presence sources it has. Each presence source behaves differently and

may have different rates of PUBLISH messages. The PUBLISH rate depends on user

behavior and device behavior. For example, cell phone or Wifi phone’s rate of PUBLISH

may depend on users mobility pattern. Thus, a server with smaller number of users

configured might be processing more messages then a server with more number of users.

Here, we described expressing presence server benchmark in terms of user population

that the presence server can support for a given number of watchers per presentity and a

given rate of PUBLISH requests generated per presentity. However, a better

benchmarking unit can be expressed in terms of number of messages processed by the

server per unit time, which we explain in the next section.

Request rate or number of messages per second: As explained above, the

number of messages processed per unit time for a given user population depends on many

factors. Since, the number of messages processed per second represents the load on the

server more accurately then the number of users, we can use the number of messages

processed and generated per second as a presence server benchmarking metric. The

maximum number of messages that can be processed by the server depends on the ratio

of message types, i.e., ratio of SUBSCRIBE, PUBLISH and NOTIFY requests. To

account for variation in server performance because of different ratios of message types,

SIMPLEstone proposes to measure the message handling capacity for each of the

message types independently as well as for different combinations of message types.

Thus, the benchmarking can be done by loading the server by varying the rate of

PUBLISH message for each presentity, average number of watchers per presentity, their

subscription rates and the number of presentities. This can be expressed using the rate of

PUBLISH requests processed and NOTIFY requests generated by the server.

However, it should be noted that different message types involve different amount of

processing on the server. For example, the processing involved for PUBLISH message

type is different from processing involved for SUBSCRIBE message. Thus, an aggregate

number of messages processed by the server per unit time do not represent the server’s

actual capacity. Additionally, there can be clients requesting presence information on

demand by polling mechanism and not by periodic updates, i.e., clients send

SUSBCRIBE message with expire field set to zero which generates a NOTIFY response

with the presence data without creating a subscription.

5. SIMPLEstone Benchmarking Architecture (and
Implementation)

SIMPLEstone defines a load to be generated for the presence server whose performance

is to be determined. The specified load is generated and response is received by different

components of the benchmarking architecture described in following sections. The

measurements are performed on the server under different load conditions. The servers

 7

request handling capacity is measured in terms of success rate vs. load (requests/sec). In

the following sections we describe the workload specification, our implementation

architecture and a description of tests we used to benchmark the presence server.

5.1 Architecture

The different components of SIMPLEstone architecture are shown in Figure 3. The

architecture consists of the Server under Test (SUT), which is the presence server, one or

more request load generators (Loader) that simulates the presentity sources, one or more

response handlers (Handler) that simulates the watchers and a test coordinator

(Controller – not shown in Figure 3) that coordinates the execution of the benchmark.

 Figure 3 SIMPLEstone Architecture

5.1.1 Server Under Test (SUT)

The SUT consists of the host system(s), including hardware and software, required to

support the SIP-based presence agent and any other components including database(s), if

applicable. All network components between host machines which handle intra-SUT

communications are part of the SUT. The software can consist of the SIP presence agent

and the SIP proxy server either collocated or interoperating. In cases where the SIP proxy

server does not co-reside with the presence server, the proxy server forwards the presence

specific messages to the presence agent so that they can be appropriately processed. The

SUT can have different configurations for failover and load sharing. The SIMPLEstone

benchmark views the different configuration as one black box. To illustrate the idea, two

examples are shown in Figure 4.

PUBLISH

200 OK

Loader

(Presentities)

SUBSCRIBE

NOTIFY

200 OK

200 OK

Handler
(Watchers)

DB

PA
Server Under

 Test

 8

 Figure 4 SUT – Different Test Configurations

In Figure 4, there are two different sample configurations of SUT boxes. The first

configuration consists of a single SIP proxy server forwarding presence request to a

presence server. The second configuration consists of a single stateless SIP proxy server

which distributes load between two different presence servers using a load distribution

algorithm. Also, the different configurations can have different database redundancy

models, e.g., N+1 or 2N. The SIMPLEstone benchmark is agnostic to internal

configuration details of the SUT and determines the load handling capacity of the

specified SUT block. Hence, it allows determining how the SUT capacity scales with

increasing the number of presence servers and/or SIP proxy servers and for different load

distribution algorithms.

5.1.2 Loader

The Loader emulates the presence sources for the presentities and generates SIP

PUBLISH messages at the specified request rate. SIP requests for the benchmark are

generated by user agent clients (UACs). Depending on the request rate to be generated,

one or more Loader instances may be required to generate the load. The requests are sent

to the specified server(s). The Loader should allow the following configuration

parameters to be specified:

1 Rate of requests: This is the rate of generation of PUBLISH requests.

2 Number of presentity: This determines the user population or the number of users

(URI’s) used to generate the PUBLISH request at the specified rate.

3 Transport protocol (UDP or TCP, TLS)

4 Presence message body. This can be PIDF or RPID.

There are additional details like SIP addresses for presentities, the server’s address, but

they are static and do not affect the benchmark.

5.1.3 Handler

The Handler emulates the watchers and sends SUBSCRIBE requests to the server and

handles receipt of NOTIFY requests by sending back the 200 OK response. The main

details of the configuration for the Handler are:

DB

DB

s0
P1-PA

P2- PA

Stateless
Proxy

DB s0

 P1-PA SIP Proxy

Configuration 1 – Single SIP proxy

and presence server.
 Configuration 2 - Two presence

agents in load sharing mode.

 9

1 Number of subscription per presentity i.e., Number of SUBSCRIBE requests per

presentity with a unique “FROM” address in SIP header. It determines the number

of NOTIFY requests generated for each PUBLISH request for that presentity.

2 Rate of SUBSCRIBE request.

3 Transport protocol (UDP or TCP, TLS)

4 Optionally, SUBSCRIBE body i.e., watcher filter, if the impact of watcher

filtering on request handling capacity of server is to be measured.

Other details include subscriber’s SIP addresses, presentities SIP addresses and server IP

addresses. Additionally, the Handler needs to maintain a count of NOTIFY messages

received, which is then correlated with PUBLISH and SUBSCRIBE rates, number of

presentities and subscriptions per presentity to determine the success rate. The Handler

must be able to respond, under load, to an incoming NOTIFY so that the server does not

do retransmission and thus get overloaded because of test infrastructure failure.

5.1.4 Controller

The Controller is the test coordinator that starts the SUT (SIP proxy server(s) and

presence server(s)) as well as Loader and Handler instances on the specified systems. It

also starts the programs or scripts to perform measurements like CPU utilization, memory

utilization and store the measurement results for analysis after the test runs are done.

Depending upon implementation it may use mechanisms such as rsh/rcmd, ssh, .shosts to

login to different hosts and start appropriate application instances and measurement

infrastructure pieces. The measurement infrastructure can do performance measurement

based on scripts or based on SNMP-based tools such as MRTG. However, this is also

independent of the benchmarking mechanism. The benchmark only proposes what

measurements should be performed when the tests are done.

5.2 SIMPLEstone Benchmarking Workload Specification

SIMPLEstone benchmarking workload specifies the following parameters on a per test

basis:

1 Number of presentities and their SIP addresses which the Loader uses to generate

PUBLISH request and Handler subscribes to.

2 Number of watchers and their SIP addresses which the Handler uses for sending

SUBSCRIBE request and accepting NOTIFY requests.

3 Request rate

a. Rate of PUBLISH request. This can be specified per Loader instance or

per presentity. This controls the overall PUBLISH rate.

b. Total initial unique SUBSCRIBE per presentity.

c. Rate of SUBSCRIBE refresh rate. This is optional parameter.

4 Presence (PUBLISH) body: This is required to perform testing with different

body sizes and content types e.g., PIDF, RPID, PIDF-LO.

5 Transport protocol to be used for the test (UDP,TCP,TLS)

 10

6 Filter documents (for testing with different filter sizes).

7 Timeout interval for PUBLISH responses and receipt of NOTIFY for each

PUBLISH message.

8 The host addresses on which SUT, Loader and Handler run and configuration

details for each of them like port numbers, database if any, etc.

5.3 Type of Tests

We have implemented two types of tests to benchmark the presence server.

5.3.1 SUBSCRIBE-NOTIFY TEST(S-N)

SUBSCRIBE-NOTIFY test is performed by varying the SUBSCRIBE request rate to the

server and is used to determine the server’s capacity to handle SUBSCRIBE requests per

second. The test is called SUBSCRIBE-NOTIFY test as every SUBSCRIBE request

generates a NOTIFY request. This test can be used to determine the NOTIFY generation

capacity of the server and subscription handling capacity of server. In particular, this test

can be used to determine the upper limit on number of unique subscriptions that the

server allows, the maximum rate at which the subscriptions can be refreshed and the

maximum SUBSCRIBE request rate that the server can handle. The upper limit on the

number of unique subscriptions is determined by loading the server by sending

SUBSCRIBE requests to unique presentities. The maximum subscription refresh rate can

be determined by sending multiple SUBSCRIBE’s in the same dialog.

Additionally, this test internally measures the impact of presence authorization rules on

the server’s request handling capacity. The subscription may be declined or forbidden or

may be put in pending state depending on the authorization rules for the subscriber. Each

of the subscription states impacts the request processing capacity of server. Therefore, the

result must report the conditions of the test along with the results. Figure 5 shows the

message flow for SUBSCRIBE-NOTIFY test and the actual messages are shown in

figure 6.

 Figure 5 SUBSRIBE-NOTIFY Test

 SUBSCRIBE sip:presentity@example.com SIP/2.0

DB

PA
Server
Under
 Test

Handler

(Watchers)

SUBSCRIBE

200 OK

NOTIFY

200 OK

 11

 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds7

 To: <sip:presentity@example.com>

 From: <sip:watcher@example.com>;tag=12341234

 Call-ID: 12345678@host.example.com

 CSeq: 1 SUBSCRIBE

 Max-Forwards: 70

 Expires: 3600

 Event: presence

 Contact: sip:user@host.example.com

 Content-Length: 0

 NOTIFY sip:user@host.example.com SIP/2.0

 Via: SIP/2.0/UDP pa.example.com;branch=z9hG4bK8sdf2

 To: <sip:watcher@example.com>;tag=12341234

 From: <sip:presentity@example.com>;tag=abcd1234

 Call-ID: 12345678@host.example.com

 CSeq: 1 NOTIFY

 Max-Forwards: 70

 Event: presence

 Subscription-State: active; expires=3599

 Contact: sip:pa.example.com

 Content-Type: application/pidf+xml

 Content-Length: ...

 [PIDF document]

 Figure 6 SUBSRIBE-NOTIFY Test.

5.3.2 SUBSCRIBE: PUBLISH-NOTIFY TEST(S: P-N)

PUBLISH-NOTIFY test is performed by varying the rate of PUBLISH request and is

used to determine the server’s capacity to handle PUBLISH request. PUBLISH request

rate can be varied per presentity for a given user population to achieve the specified rate

of PUBLISH request. In this test, the Handler(s) initially subscribe to the presentities by

sending SUBSCRIBE messages to the SUT. After all the subscriptions are successful, the

Loader starts sending PUBLISH requests at the specified request rate. The Handler

receives NOTIFY messages and send response to NOTIFY messages.

The test can be done with different number of subscriptions per presentity. When the test

is done with single subscription per presentity, it measures the PUBLISH handling

capacity of the server, as in this case the output NOTIFY rate is equal to input PUBLISH

rate. In general, the number of NOTIFY requests = Number of presentity * rate of

PUBLISH * number of subscription per presentity. Each PUBLISH operation results in

one composition and twice the number of watcher times filtering operations (privacy

filtering and watcher filtering) for every presentity. Each one of the subscriber’s may

have different filters and varying in complexity and filter sizes. For the purpose of

benchmark, an average filter size should be considered. The message flow is shown in the

Figure 7 and actual messages are shown in Figure 8.

 12

 Figure 7 PUBLISH-NOTIFY Test

 SUBSCRIBE sip:presentity@example.com SIP/2.0
 Via: SIP/2.0/UDP host.example.com;branch=z9hG4bKnashds7

 To: <sip:presentity@example.com>

 From: <sip:watcher@example.com>;tag=12341234

 Call-ID: 12345678@host.example.com

 CSeq: 1 SUBSCRIBE

 Max-Forwards: 70

 Expires: 3600

 Event: presence

 Contact: sip:user@host.example.com

 Content-Length: 0

 PUBLISH sip:presentity@example.com SIP/2.0

 Via: SIP/2.0/UDP pua.example.com;branch=z9hG4bK652hsge

 To: <sip:presentity@example.com>

 From: <sip:presentity@example.com>;tag=1234wxyz

 Call-ID: 81818181@pua.example.com

 CSeq: 1 PUBLISH

 Max-Forwards: 70

 Expires: 3600

 Event: presence

 Content-Type: application/pidf+xml

 Content-Length: ...

 [Published PIDF document]

 NOTIFY sip:user@host.example.com SIP/2.0

 Via: SIP/2.0/UDP pa.example.com;branch=z9hG4bK4cd42a

 To: <sip:watcher@example.com>;tag=12341234

 From: <sip:presentity@example.com>;tag=abcd1234

 Call-ID: 12345678@host.example.com

 CSeq: 2 NOTIFY

 Max-Forwards: 70

 Event: presence

 Subscription-State: active; expires=3400

 Contact: sip:pa.example.com

 Content-Type: application/pidf+xml

 Content-Length: ...

Loader

(Presentities)

DB

PA
Server
Under
 Test

Handler

(Watchers)

SUBSCRIBE

200 OK

NOTIFY

200 OK

PUBLISH

200 OK

 13

 [New PIDF document]

 Figure 8 SUBSRIBE: PUBLISH-NOTIFY Test

5.4 Consideration for SIP MESSAGE Request

The SIP MESSAGE [15] is an extension to SIP and allows transfer of instant messages.

Since, instant messaging (IM) is closely related with presence. Hence, it is important to

explain the impact of this on presence server performance. SIP MESSAGE is forwarded

like any other SIP request by the proxy server and does not require any processing by the

presence server. Hence, there is no direct impact on the performance of presence server.

However, if the proxy server routing the messages is overloaded by instant message

sessions, the presence traffic may get impacted. Also, the presence statuses of clients can

potentially depend on if they are involved in IM sessions or in other words transmitting

or receiving MESSAGE requests. The performance measurement of SIP proxy server for

MESSAGE request can be done using the SIPstone specification. A new test can be

added to the SIPstone specification with Loader sending MESSAGE and Handler

receiving the message at different request rates. The server’s capacity in successfully

proxying the request determines the throughput for the MESSAGE request.

6. Benchmarking methodology
In our setup, SIMPLEstone benchmarking consists of a series of test runs, with increasing

load levels generated by the load generators, and targeted at the server being tested

(SUT).

Measurement Interval (MI): The measurement interval is defined as the steady state

period during the execution of the test.

Publication rate (PR): Average number of PUBLISH messages per second from each

Loader (source) to the SUT (presentity).

Subscription rate (SR): Average number of SUBSCRIBE sent to SUT per second.

Successful Subscriptions (SS): The number of successful subscriptions per presentity.

Notification rate (NR): Average number of NOTIFY messages generated by server per

second. The average number of subscription and average publication rate per presentity

determines the average notification rate.

Transaction failure probability (TFP): The transaction failure probability is the

fraction of transactions that fail, i.e., where the server does not return a provisional or

final response within the time limit for the PUBLISH or SUBSCRIBE requests. It can

also be NR going down the expected value. NR will go down for following reasons: The

PUBLISH request is dropped or not processed, or, server cannot generate notification.

The SUBSCRIBE request dropping is not considered as cause of NR going down because

in that case the watcher knows that subscription is not created and expected NR is

lowered by that value.

Success rate: The success rate is expressed in terms of successful PUBLISH, successful

SUBSCRIBE and expected NOTIFY requests. Success rate for PUBLISH and

SUBSCRIBE is based on receiving a 2XX response from the server. For, NOTIFY

request this is ratio of obtained NOTIFY to the expected number of NOTIFY requests.

Expected notification rate = Number of PUBLISH per presentity * Number of

SUBSCRIBE for the presentity. If the expected notification rate is equal to the obtained

 14

notification rate as measured on handler, the success rate is 100%. The publication rate

can be varied by changing the rate of PUBLISH requests per presentity. The notification

rate can be varied by increasing the successful subscription per presentity or increasing

the publication rate, for a given user population. In this way, performance, both in terms

of number of messages as well as scalability in terms of number of users can be

determined.

6.1 Measurement Methodology

The request rate is increased until the TFP increases to 5% (success rate comes down to

95%). The tests must run for sufficient duration so that the system reaches steady state as

all the source of presence would PUBLISH the presence document by then. The highest

sustained throughput is reported as the benchmark number. The test operates in an “open

loop” mode, where the arrival of the N+1st request does not depend on the completion of

the Nth request. After running the test at a given request rate, the request rate is increased

to next level and the test is run for specified time duration.

6.2 SIMPLEstone Metrics

 The SIMPLEstone result contains the following details.

• Description of the server farm or cluster configuration and configuration of

servers within it (SIP and presence server interoperation topology). This

includes:-.

- The number of servers used (SIP server as well as presence server count),

- The type of proxy server and its details (e.g., a local database, in-memory, or a

network server) and

- Whether presence server was located on the same host as the proxy server

- Logging mechanism if used

- SNMP and other features if used

- Load balancing scheme used (if any)

• All aspects of the server hardware, in particular

- the CPU count, type and speed,

- the memory configuration,

- the network interface type and speed,

- the disk and disk controller configuration;

• The server operating system and version and any non-standard tunings or

settings, e.g., for network parameters, number of file descriptors

• The type of network segments connecting the Loader(s), the SUT and the

Handler and the network bandwidth on the connecting links.

• The number of connections requested by the clients and accepted by the SUT per

second. The intent is to count only the number of new connections made

successfully by the clients in generating the load for the benchmark.

• CPU and memory utilization of server at various loads;

• Type of test (S-N, S:P-N)

The results of the tests can be reported in the scorecard format shown in the tables (1, 2

and 3) below. All columns except the throughput are configuration and test environment

details. The tabular format takes care of the different functionalities, e.g., type of

composition, support for filtering and their configurations, e.g., size of filters. However,

 15

SIMPLEstone does not mandate that these variables be a part of presence benchmark as it

would introduce too many variations and make the benchmark less useful for comparing

presence servers. Therefore, as described in Section 4 the benchmark can be expressed

only in terms of supported user population or the throughput of the server. Table 1

show that the transport protocol is TCP and shows different combination of composition

policies and filter configurations used for the test runs. Measured throughput is added in

the last column after the test is completed. Depending upon the type of test the

throughput is sum of number of PUBLISH messages per second and number of NOTIFY

messages per second if the subscription is fixed i.e., if the test is of type (S: P-N) or the

throughput can be sum of number of SUBSCRIBE messages per second and number of

NOTIFY messages per second for a varying subscription rate i.e., if the test is S-N type.

Similarly, we can get the results for tests with UDP and TLS protocols. The results

should indicate the total i.e., aggregate success rate, PR, NR, SR and SS for the cluster of

server as well as per-server.

 Table 1 Throughput (request rate/second) for TCP

Protocol Composition Privacy Filter Watcher Filter Throughput

None None

Size = W1

None

 Default

Size = P1

(complexity) Size = W2

None None

Size = W1

None

 Merge

Size = P1

Size = W2

None None

Size = W1

None

 TCP

 Rule Based

Size = P1

Size = W2

 Table 2 Throughput (request rate/second) for UDP

Protocol

Composition Privacy Filter Watcher Filter Throughput

None None

Size = W1

None

 Default

Size = P1

Size = W2

None None

Size = W1

None

 Merge

Size = P1

Size = W2

None None

Size = W1

None

 UDP

 Rule Based

Size = P1

Size = W2

 16

 Table 3 Throughput (request rate/second) for TLS

Protocol Composition Privacy Filter Watcher Filter Throughput

None None

Size = W1

None

 Default

Size = P1

Size = W2

None None

Size = W1

None

 Merge

Size = P1

Size = W2

None None

Size = W1

None

 TLS

 Rule Based

Size = P1

Size = W2

P1 is average number of rules in privacy filter. W1, W2 are average values of watcher

filter sizes (complexity).

Thus, SIMPLEstone benchmark allows reporting the throughput in terms of

- Number of users supported (with assumptions about average number of

sources and watchers per user and configuration details like average PIDF

size, average filter size, composition policy)

- Number of messages per second

Additionally, SIMPLEstone can be used to estimate the bandwidth required on a per

presentity basis that can be used for network capacity planning. However, given a user

population (Number of presentity, number of watchers per presentity, the subscription

and notification rate and average size of presence message bodies) we can approximate

the average bandwidth required as a sum of incoming and outgoing traffic bandwidth.

 The following relationship will apply.

















××

+×

+×

×≈

)____(

)__(

)__(

__

PublishersofNumsizePUBLISHAveragePR

sizeNOTIFYAverageNR

sizeSUBSCRIBEAverageSR

presentityofNumberBW

 Where Num_of_Publishers is average number of presence sources per

presentity. Additionally, the affect of 200 OK for each message in above relationship

must be considered. For a given number of messages, BW required for 200 OK can be

calculated. Also, we need to account for retransmissions.

7. Conclusion
In this report, we described a benchmarking scheme for SIMPLE based presence servers.

We discussed issues in designing benchmarks for presence servers mainly that the server

performance depends on large number of factors. We presented architecture and the

benchmarking methodology to measure presence server performance. Our proposed

benchmark ensures coverage of all factors on which presence server performance may

 17

depend and reports the server capacity in terms of request rate for each request type

individually as well as for tests which involve combination of request types in different

proportions. We also consider performance under different configurations as well as with

different features enabled.

8. References
1. Schulzrinne, H., Sankaran Narayanan, Jonathan Lennox and Michael Doyle,

“SIPstone - Benchmarking SIP Server Performance”.

2. Rosenberg, J., "A Data Model for Presence"draft-ietf-simple-presence-data-model-04,

August 23, 2005.

3. Rosenberg, J., "A Processing Model for Presence" draft-rosenberg-simple-presence-

processing-model-01, July 17, 2005.

4. Lonnfors, M., "Session Initiation Protocol (SIP) extension for Partial Notification of

Presence Information" draft-ietf-simple-partial-notify-05, May 24, 2005.

5. Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and Instant

Messaging", RFC 2778, February 2000.

6. Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W. and J. Peterson,

"Presence Information Data Format (PIDF)", RFC 3863, August 2004.

7. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M. and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June

2002.

8. Rosenberg, J., "A Presence Event Package for the Session Initiation Protocol (SIP)",

RFC 3856, August 2004.

9. Schulzrinne, H., Gurbani, V., Kyzivat, P. and J. Rosenberg, "RPID: Rich Presence:

Extensions to the Presence Information Data Format (PIDF)", draft-ietf-simple-rpid-

08, July 16, 2005.

10. Roach, A., "Session Initiation Protocol (SIP)-Specific Event Notification", RFC 3265,

June 2002.

11. Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication ",

RFC 3903, October 2004.

12. Rosenberg, J., "Presence Authorization Rules", draft-ietf-simple-presence-rules-03,

July 18, 2005.

13. Khartabil, H., "An Extensible Markup Language (XML) Based Format for Event

Notification Filtering" draft-ietf-simple-filter-format-05.txt, March 15, 2005.

14. Schulzrinne, H., “Composing Presence Information”, draft-schulzrinne-simple-

composition-00, July 10, 2005

15. Campbell, B. and J. Rosenberg, "Session Initiation Protocol Extension for Instant

Messaging", RFC 3428, September 2002.

