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Abstract 

The increasing popularity of online courses has highlighted the need for 
collaborative learning tools for student groups. In addition, the 
introduction of lecture videos into the online curriculum has drawn 
attention to the disparity in the network resources available to students. 
We present an e-Learning architecture and adaptation model called 
AI2TV (Adaptive Interactive Internet Team Video), which allows groups 
of students to collaboratively view a video in synchrony. AI2TV upholds 
the invariant that each student will view semantically equivalent content 
at all times. A semantic compression model is developed to provide 
instructional videos at different level-of-details to accommodate 
dynamic network conditions and users’ requirements; video player 
actions, like play, pause and stop, can be initiated by any group member. 
These features allow students to review a lecture video in tandem, 
facilitating the learning process. Experimental trials show that AI2TV 
successfully synchronizes instructional videos for distributed students 
while, at the same time, optimizing the video quality, even under 
conditions of fluctuating bandwidth, by adaptively adjusting the quality 
level for each student while still maintaining the invariant. 

1 Introduction 
Distance learning programs such as the Columbia Video Network 

(www.cvn.columbia.edu) have evolved from fedexing lecture video 
tapes to their off-campus students to streaming videos over the Web. The 
lectures might be delivered “live”, but are more frequently 
post-processed and packaged for students to watch (and re-watch) at 
their convenience. This introduces the possibility of forming “study 
groups” among students who can view the lecture videos together and 
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pause, rewind or fast-forward the video to discussion points, thus 
approximating the pedagogically valuable discussions that occur during 
on-campus lectures. However, conventional Internet-video technology 
does not yet support collaborative video viewing by multiple 
geographically dispersed users. It is particularly challenging to support 
WISIWYS (What I See Is What You See) when some users are 
relatively disadvantaged with respect to bandwidth (e.g., dial-up 
modems) and local resources (e.g., old graphics cards, small disks). 

AI2TV (Adaptive Interactive Internet Team Video) is an e-Learning 
architecture supporting virtual student groups. To that end, we have 
developed the technology for “semantically adapting” standard MPEG 
videos into sequences of still images. This technology automatically 
selects the most semantically meaningful frames to show for each time 
epoch, and can generate different sequences of JPEG images for a range 
of different compression (bandwidth) levels. It was designed with 
typical lecture videos in mind: for instance, it recognizes that it is more 
important to see the blackboard content after the instructor has finished 
writing, than showing the instructor’s back as she writes it on the board. 

The other technical challenges are synchronizing and adapting the 
downloading and display of the image sequences among the distributed 
students, including support for shared video player actions. We have 
developed an approach that achieves this using three mechanisms 
working in tandem: First, the software clocks of the video clients for 
each student are synchronized using NTP, hence they use the same time 
reference with respect to the image sequences, where each image is 
associated with its start and end times relative to the beginning of the 
sequence. Second, the video clients communicate with each other over a 
distributed publish-subscribe event bus, which propagates video actions 
taken by any user to all of the group, as well as other events occurring on 
the video clients. Finally, since we are particularly concerned about 
disenfranchised user communities that have relatively low bandwidth, 
the final contribution of AI2TV concerns enabling the optimization of 
the video quality according to the bandwidth constraints of each user, 
while enforcing group synchronization, through a distributed feedback 
control loop that dynamically adapts each video client. 

This paper presents the architecture and dynamic adaptation model of 
AI2TV, describes how it tackles the challenges of quality optimization 
and synchronization in collaborative video viewing, and provides an 
evaluation of the effectiveness of our approach, with empirical results 
obtained using real lecture videos from Columbia’s Video Network. 
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2  Motivation and Background 
Correspondence courses have been available for over a century, e.g., 

the University of Wyoming began offering extension courses in 1892 
[1], Correspondence courses have traditionally been designed for 
individual students with a self-motivated learning style, studying 
primarily from text materials. 

An NSF Report [2] discusses how technology, from radio to 
television, to audio and video cassettes, to audio and video conferencing, 
has affected distance education. The report states that the recent use of 
Internet technologies, especially the Web, has “allowed both 
synchronous and asynchronous communication among students and 
between faculty and students” and has “stimulated renewed interest in 
distance education”. It also mentions that “stimulating interaction 
among students” can help reduce dropout rates, which it says may be 
higher in distance education than in traditional courses. Finally, it cites 
some studies that “suggest the Web is superior to earlier distance 
education technologies because it allows teachers to build collaborative 
and team-oriented communities”. 

Even though some Internet–based tools, like instant messaging, 
desktop sharing and co-browsing can be used to facilitate the 
communicative aspects of synchronous collaboration, dedicated support 
for synchronous collaboration in long–distance education over the Web 
remains a major concern in courses where group work is encouraged [3], 
since there are few educational tools that offer that kind of support to a 
group of online students [4]. However, it seems that Web-based video 
streaming should enable synchronous collaboration “situated” by 
collaborative lecture video viewing, approximating the experience of 
on-campus students physically attending the class discussion. 

Our AI2TV project contributes to synchronous collaboration support 
for life-long and distance education, and specifically to the problem of 
collaborative video viewing, to foster virtual classrooms and borderless 
education. Our design is intended for small classes or study groups 
within a larger class, and reaches out to disenfranchised users with 
relatively low bandwidths, who constitute a significant portion of the 
Internet user community [5], to allow collaboration with other users who 
enjoy higher bandwidth. Since it is likely that future bandwidth 
improvements will also be unevenly available, our architecture will 
remain effective even when the disparity is between bandwidths that all 
have a higher absolute level of performance than today's. 
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Collaborative video viewing poses a twofold technical challenge: on 
the one hand, all users must be kept synchronized with respect to the 
content they are supposed to see at any moment during play time; on the 
other hand, each individual user should be provided with a level of 
quality that is optimized with respect to her available resources, which 
may vary during the course of the video. 

One way to address the problem of balancing the group 
synchronization requirement with the optimization of individual 
viewing experiences is to use videos with cumulative layering [6], also 
known as scalable coding [7]. In this approach, the client video player 
selects a quality level appropriate for that client’s resources from a 
hierarchy of several different encodings for that video. Thus a client 
could receive an appropriate quality of video content while staying in 
sync with the other members of the group. 

We use semantic compression to produce a video with cumulative 
layering. Our semantic compression algorithm [8] reduces a video to a 
set of semantically significant key frames. That tool operates on 
conventional MPEG videos and outputs sequences of JPEG frames. The 
semantic compression algorithm profiles video frames within a sliding 
time window and selects in that window key frames that have the most 
significant instructional information. 

A conceptual diagram of a layered video produced from this semantic 
compression is shown in Figure 1. While a detailed discussion of that 
video compression algorithm and system is available in Section 4, it is 
interesting to note at this point that the semantic compression algorithm 
produces key frames based on semantic content of instructional videos: 
when there are pockets of relatively high frequency semantic change, 
i.e., more key frames are produced. Therefore, the resulting video plays 
back at a variable frame rate, which adds substantial complexity to the 
bandwidth demands of the client. 

The bottom-left in-set in Figure 1 shows the juxtaposition of 
individual frames from two different quality levels. Each frame has a 
representative time interval [start:end]. For the higher level, Frame 1a 
represents the interval from 1:00 to 1:03, and Frame 1b represents the 
interval from 1:04 to 1:10. For the lower level, Frame 2 represents the 
entire interval from 1:00 to 1:10. In this diagram, Frame 2 is 
semantically equivalent to Frame 1a and 1b together. However, in real 
JPEG frame sequences produced from the same MPEG video for 
different quality levels, start and end times of frame sets rarely match up 
that precisely, and the determination of the optimal frame to 
semantically represent a given frame set remains a research issue. 
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Figure 1: Semantic Video Scenario 

To take advantage of the semantic instructional video compression 
algorithm in order to provide semantically equivalent content to a group 
of students with diverse resources, but still provide the best quality video 
possible at any given moment, we dynamically adjust the compression 
level assigned to each client while watching the video. Thus, for our 
purposes, synchronization of collaborative video boils down to showing 
semantically equivalent frames at all times. To adjust the video clients in 
response to the changing environment, we use an “autonomic” 
controller, to maintain the synchronization of the group of video clients 
while simultaneously fine tuning the quality seen by each student.  

This controller remains conceptually separate from the controlled 
video system, and employs our decentralized workflow engine, named 
Workflakes [9]. Said workflow coordinates the behavior of software 
entities, as opposed to conventional human-oriented workflow systems 
(the use of workflow technology for the specification and enactment of 
the processes coordinating software entities was previously suggested 
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by Wise et al. [10]). Workflakes has also been used in a variety of more 
conventional “autonomic computing” domains, where it orchestrates the 
work of software actuators to achieve the automated dynamic adaptation 
of distributed applications [11, 12]. In AI2TV, Workflakes monitors the 
video clients and consequently coordinates the dynamic adjustment of 
the compression (quality) level currently assigned to each client.  

3  System Architecture 
AI2TV includes a video server, several video clients, an autonomic 

controller, and a common communications infrastructure (the event 
bus), as shown in Figure 2.   

 
Figure 2: AI2TV Architecture. 

The video server provides the educational video content to the 
clients. Each lecture video is stored in the form of a hierarchy of 
versions, produced by running the semantic compression tool with 
different settings. Each run produces a sequence of JPEG frames with a 
corresponding frame index file. The task of the video server is simply to 
provide remote download access to the collection of index files and 
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frames over HTTP. The task of each video client is to acquire video 
frames, display them at the correct times, and provide a set of basic 
video functions. Taking a functional design perspective, the client is 
composed of four major modules: a time controller, video display, a 
video buffer that feeds the display, and a manager for fetching frames. 

The time controller’s task is to ensure that a common video clock is 
maintained across clients. It relies on NTP to synchronize the system’s 
software clocks, therefore ensuring a common time base from which 
each client can reference the video indices. Since all the clients refer to 
the same time base, then all the clients are showing semantically 
equivalent frames from the same or different quality levels. 

The video display renders the JPEG frames at the correct time into a 
window and provides a user interface for play, pause, goto and stop. 
When any participant initiates such an action, all other group members 
receive the same command via the event bus, thus all the video actions 
are synchronized. Video actions are time-stamped so that clients can 
respond to those commands in reference to the common time base. The 
video display uses the current video time and display quality level to 
index into the frame index for the frame to be displayed. Before trying to 
render the needed frame, it asks the video buffer manager if it is 
available. The video display also includes an actuator that enables the 
autonomic controller to adjust the current display quality level. 

The video manager constitutes a downloading daemon that 
continuously downloads frames at a certain level into the video buffer. It 
keeps a hash of the available frames and a count of the current reserve 
frames (frames buffered) for each quality level. The buffer manager also 
includes an actuator that enables external entities, such as the controller, 
to adjust the current downloading quality level. 

The main purpose of the autonomic controller is to ensure that, given 
the synchronization constraint, each client plays at its highest attainable 
quality level. The architecture provides an end-to-end closed control 
loop, in which sensors attached to the target system continuously collect 
and send streams of data to “gauges”. The gauges analyze the incoming 
data streams and recognize adverse conditions that need adaptation, 
relaying that information to the controller. The controller coordinates the 
expression and orchestration of the workflow needed to carry out the 
adaptation. At the end of the loop, actuators attached to the target system 
effect the needed adjustments under the supervision of the controller. 
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In the AI2TV case, sensors at each client monitor for the currently 
displayed frame, its quality level, the quality level currently being 
fetched by the manager, the time range covered by buffer reserve 
frames, and the current bandwidth. Gauges are embedded together with 
the controller for expediency in design and to minimize communication 
latency. They receive the sensor reports from individual clients, collect 
them in buckets, similar to the approach in [13], and pass the bucket data 
structure to the controller’s coordination engine. A set of helper 
functions tailored specifically for this application operate on this data 
structure and produce triggers for the coordination engine. When a 
trigger is raised, it enacts a workflow plan, which is executed on the end 
hosts by taking advantage of actuators embedded in the clients. 

Communication among the video clients, as well as between the 
sensors and actuators at the clients and the autonomic controller, is 
provided by an asynchronous event bus that channels video player 
actions, sensor reports, and adaptation directives.  

4  Semantic Compression of Instructional Videos 
Effective video compression model for collaborative distance 

learning environments is required to provide multiple different 
“versions” of videos, for students that may access instructional content 
using devices that differ significantly in resolution, computing capability, 
storage, and available network resources. Several additional 
requirements exist in this kind of video compression process: First, the 
compression should be content-based, by analyzing instructional content; 
Second, the semantic video compression should produce different levels 
of content summarization, with each level showing different details of 
video content; Third, the compression should be dynamic so that it can 
also handle live instructional videos recorded in classrooms, enabling 
real-time multicasting of instructional videos; Fourth, the compression 
model should be computationally efficient.  

With the consideration of the above requirements, we have developed 
a semantic video compression model for real-time adaptation of 
instructional videos. The compression ratio is tunable, thus different 
levels of compression can be achieved. Each layer contains semantic 
information of the instructional video at a certain level of detail. Since 
this model is specially designed for instructional videos with emphasis 
on the characteristics of this video domain, it is different from previous 
work on signal-level video compression. The scalable coding scheme 
adopted in MPEG-4 compression standard [14] is still based on 
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signal-level video compression. Previous video key-frame-based 
compression and summarization methods [15, 16, 17, 18, 19] are tuned 
for professionally-edited videos such as movies, sports and news videos. 
By comparison, instructional videos are (mostly) unedited videos 
without salient video structures like shots and scenes, and the visual 
content is mostly embedded in handwritten or printed characters/figures.   

The model of semantic compression of instructional videos is 
illustrated in Figure 4. Basically, it is a dynamic video buffer in which 
video frames are evaluated and comparatively insignificant video frames 
are dropped.  For a video buffer of n slots (slots S1, S2, …, Sn), the video 
stream comes into S1, moves through the buffer slots S2, S3, …, Sn in 
order, partially leaks from the buffer at any slot, and finally goes out of 
the buffer at slot Sn. The surviving outgoing frames form a semantically 
compressed version of the instructional video.  
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Figure 4: Dynamic buffer model for semantic compression of instructional videos. 

For each video frame coming into the video buffer, a content analysis 
module first extracts its instructional content. Here the instructional 
video content refers to the textual content on board, paper and slides. To 
extract the text area from video frames efficiently, we use a block-based 
processing approach. We divide each frame into blocks of size of 16 by 
16 and classify these blocks into three categories: paper/board blocks, 
irrelevant blocks and uncertain blocks, based on the portion of paper 
background color pixels in a block. Paper blocks have only paper and/or 
text, and irrelevant blocks have images of the instructor and other 
non-content areas. Uncertain blocks are those that fail this initial coarse 
filter, and they are further processed by more sophisticated and 
expensive techniques, i.e., using region merging and growing techniques 
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to remove holes  in a region. As shown in Figure 5 , the written content is 
extracted, and the irrelevant regions are removed.  
 

 
 

 
 

Figure 5: Content analysis of instructional video frames. 

Based on the content analysis of instructional videos, we define the 
semantic distance between two adjacent video frames as the amount of 
different textual content pixels, and apply a leaking rule to the video to 
achieve semantic video compression. In compressing instructional 
videos, the frames in the video buffer are dropped at a leaking rate 
determined by the incoming frame rate (set by the video source or 
server) and the output frame rate (set by the available bandwidth to the 
client).  The leaking process selects which frame in the video buffer to 
drop, and removes it from the queue.  The queue, implemented as a 
doubly-linked list, then shifts all the frames in lowered-numbered slots 
to their successor buffer slots, freeing up the first slot again.  

In a n-slot (slots S1, S2, …, Sn) video buffer, let be the distance 
from frame  to frame . We first find the minimum of all distances 
between adjacent frames in the video buffer. Suppose the minimum 
distance is , i.e., 

jid ,

if jf

1, +kkd }{min 1,1, ++ = iiikk dd . The frame and have 

the minimum distance in the buffer, indicating that the content of these 
two frames are the most similar among all frame pairs in the buffer. Thus 
we may choose to delete one of and to reduce the content 
redundancy in the buffer. The decision of deleting which one comes 
from the test: Suppose frame and  are adjacent to frame  and 

kf 1+kf

kf 1+kf

kf 1+kf 1−kf
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2+kf , respectively. If , we 
delete frame  in the buffer, otherwise we delete frame . This test 
measures the impact of the deletion, so we always remove the frame that 
makes the remaining frames less redundant in the video buffer. This 
leaking rule computes the effect that dropping either frame  or  
has on their temporal context, and chooses to drop the frame that 
accentuates the semantic individuality of the neighboring frames of the 
evolving compressed video stream. This “Min-Min” leaking rule 
appears to maintain larger semantic differences in the buffer. This  
compression model is applicable to both pre-recorded videos and live 
video signals, and the leaking activities can be recorded in a data 
structure, which is further used for indexing and retrieval applications. 
By choosing a different output frame rate 

},min{},min{ 2,,12,11,1 +−+++− > kkkkkkkk dddd

kf 1+kf

kf 1+kf

outλ , we can compress an 
instructional video into different layers with different level-of-details.  

5  Adaptation Model 
The adaptation scheme we adopt consists of two levels: a higher 

level data flow, and a lower level adjustment heuristic. The former 
directs the flow of data through a logical sequence to provide a formal 
decision process, while the latter provides the criteria as to when to make 
certain adjustments. 

The higher level logic is shown in Figure 6. The diagram shows the 
task decomposition hierarchy according to which the adaptation 
workflow unfolds. Note that the evaluation of clients’ state with respect 
to the group (EvaluateClient) and the issuing of adaptation 
directives (AdaptClient) is carried out as a set of parallel steps. Also 
note that the multiplicity of those parallel steps is dynamically 
determined via the number of entries in the clients variable.  

The adaptation scheme at the lower level falls into two categories: 
directives that adjust the client in response to relatively low bandwidth 
situations, and those that take advantage of relatively high bandwidth 
situations. When a client has (relatively) low bandwidth, it may not be 
able to download the next frame at the current quality level by the time it 
needs to begin displaying that frame. Then both the client and buffer 
quality levels are adjusted downwards one level. If the client is already 
at the lowest level (among those available from the video server), the 
controller calculates the next possible frame that most likely can be 
successfully retrieved before its own start time while remaining 
synchronized with the rest of the group. The client is then directed to 
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jump ahead to that frame. When a client has instead (relatively) high 
bandwidth, the buffer manager starts to accumulate a reserve buffer. 
Once the buffer reaches a threshold value (e.g., 10 buffered frames), the 
controller directs the manager to start fetching frames at a higher quality 
level. Once sufficient reserve is accumulated at that higher level, the 
client is then ordered to display frames at that quality level. If the 
bandwidth drops before the buffer manager can accumulate enough 
frames in the higher-level reserve, the buffer manager drops back down 
one quality level.  

 
Figure 6: AI2TV Workflow diagram. 

6  Evaluation 
Our assessment considers the ability of AI2TV to synchronize the 

clients and to optimally adjust their video quality. Our results were 
computed from client configurations simulating small study groups 
which consisted of 1, 2, 3, and 5 clients together running a semantically 
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summarized video for 5 minutes, with sensors probing clients state every 
5 seconds. The compression hierarchy we employed has 5 quality levels. 

We define a baseline client against which the performance of our 
approach is compared. The average bandwidth per level is computed, by 
summing the size in bytes of all frames produced at a certain 
compression level and dividing by the total video time. The baseline 
client’s quality level is static for the duration of the video. We provide 
the baseline client with the corresponding bandwidth to the video server 
for its chosen level by using a bandwidth throttling tool. Note that using 
the average as the baseline does not account for the inherent variability 
in video frame rate and likely fluctuations in real-world network 
bandwidth, where adaptive control can make a difference. Each 
controller-assisted client is assigned an initial level in the compression 
hierarchy and the same bandwidth as the baseline client for that 
hierarchy level. For each experimental trial, we record any differences 
resulting from the controller’s adaptation of the clients’ behavior vs. the 
behavior of the baseline client, with respect to synchrony and frame rate. 

6.1  Evaluating Synchronization 
The primary goal of our system is to provide synchronous viewing of 

lecture videos to small groups of geographically dispersed students, 
some possibly with relatively meager resources. Our initial experiments 
evaluate the level of synchronization for several small groups of clients 
involved in a video session. Each client is preset at a designated level of 
compression and given the average baseline bandwidth required to 
sustain that compression level. To measure the effectiveness of the 
synchronization, we probe the video clients at periodic time intervals 
and log the frame currently being displayed. This procedure effectively 
takes a series of system snapshots, which we can evaluate for 
synchronization correctness. We check whether the frame being 
displayed at a certain time corresponds to one of the valid frames for that 
time, on any quality level. We allow an arbitrary level here because the 
semantic compression algorithm ensures that all frames designated for a 
given time will contain semantically equivalent information. We obtain 
a score by summing the number of clients not showing an acceptable 
frame and normalizing over the total number of clients. A score of 0 
indicates a fully synchronized system. 

These experiments showed a total score of 0 for all trials, meaning 
that all of the clients were viewing appropriate frames when probed. 
Notwithstanding the variations in the frame rate and/or occasional 
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fluctuations in the actual bandwidth of the clients, no frames were 
missed. This result demonstrates that the chosen baseline combinations 
of compression levels and throttled bandwidths do not push the clients 
beyond their bandwidth resource capacity. 

Then we ran another set of experiments, in which the clients were 
assigned more casually selected levels of starting bandwidths. Said 
casual selection is representative of real-world situations, such as 
receiving Internet audio/video streams, where users must choose a 
desired frame rate for the transmission of the content. The user may have 
been informed that she is allocated a certain bandwidth level from her 
Internet service provider, but may actually be receiving a significantly 
lower rate. The clients were assigned bandwidths one level lower than 
the preset quality level. We ran this set of experiments first without the 
aid of the autonomic controller and then with it. In the former case, 
clients with insufficient bandwidth were stuck at the compression level 
originally selected, and thus missed an average of 63% of the needed 
frames. In the latter case, the same clients only missed 35% of the 
needed frames. Although both situations show a significant fraction of 
missed frames, these results provide evidence of the benefits of the 
adaptive scheme implemented by the autonomic controller. 

This data shows how in typical real-world scenarios, in which 
network bandwidth fluctuations and the variable video frame rate do not 
permit an informed decision about the most appropriate quality level, the 
adaptive technology of our autonomic controller makes a significant 
positive difference. 

6.2  Evaluating Quality of Service 
The most interesting technical innovation of the AI2TV system is our 

autonomic controller approach to optimizing video quality. Here we 
analogously use a scoring system relative to the baseline client’s quality 
level. We give a weighted score for each level above or below the 
baseline quality level. The weighted score is calculated as the ratio of the 
frame rate of the two levels. For example, if a client is able to play at one 
level higher then the baseline, and the baseline plays at an average n 
frames per second (fps) while the level higher plays at 2*n fps, the score 
for playing at the higher level is 2. The weighted score is calculated 
between the computed average frame rates of the chosen quality levels. 
Theoretically, the baseline client should receive a score of 1. Note that 
we formulated this scoring system because other scoring systems (e.g., 
[20, 21, 22]) measure unrelated factors such as the synchronization 
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between different streams (audio and video), image resolution, or human 
perceived quality, and are not constrained by the group synchronization 
requirement. This restriction mandates a scoring system sensitive to the 
relative differences between quality hierarchies. 

Our experiments show that baseline clients scored a group score of 1 
(as expected) while the controller-assisted clients scored a group score 
of 1.25. The one-tailed t-score of this difference is 3.01, which is 
significant for an α value of .005 (N=17). This result demonstrates that 
using the autonomic controller enabled our system to achieve a 
significant positive difference in the quality of service (QoS) aspect that 
relates to received frame rate. Note that the t-score does not measure the 
degree of the positive difference: To demonstrate the degree of benefit, 
we measure the proportion of additional frames that each client is able to 
enjoy. We found that, overall, those clients received 20.4% (± 9.7, 
N=17) more frames than clients operating at a baseline rate. 

Running the client at a level higher than the average bandwidth 
needed puts the client at risk for missing more frames, because the 
autonomic controller is trying to push the client to a better but more 
resource-demanding level. To evaluate that risk, we also count the 
number of missed frames during a video session, which is intended as a 
separate measure of QoS characteristic with respect to the measure of 
relative quality described above. In all of our experiments, there was one 
single instance in which a controller-assisted client missed some frames: 
in particular it missed two consecutive frames in a time region of the 
semantically compressed video that demanded a higher frame rate, while 
at the same time the fluctuating bandwidth available to that client was 
relatively low.  

7  Related Work 
Yin et al. [23] provide an adaptive multimedia distribution system 

based on streaming, multicast and compression technology. They show 
that they can improve the level of QoS, but do not discuss user-level 
action synchronization, and use quality degradation rather than semantic 
compression to adapt to client resource constraints. Walpole et al. [24] 
provide a distributed real-time MPEG player that uses a software 
feedback loop between a single server and a single client to adjust frame 
rates. Their architecture incorporates feedback logic to each video 
player, which does not support group synchronization, while the work 
presented here explicitly supports the synchronization of (semantically 
equivalent) video frames across a small group of clients. 
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An earlier approach to AI2TV is described in [25]. In that version, a 
collaborative virtual environment (CVE) supported a variety of team 
interactions [26], with the optional lecture video display embedded in 
the wall of a CVE “room”. Video synchronization data was piggybacked 
on top of the UDP peer-to-peer communication used primarily for CVE 
updates, which did not work very well due to the heavy-weight CVE 
burden on local resources.  

Our approach to synchronization can be classified as a distributed 
adaptive scheme that employs a global clock and operates proactively. 
The main difference compared to other approaches, such as the Adaptive 
Synchronization Protocol [27], the work of Gonzalez and Adbel-Wahab 
[28], or that of Liu and El Zarki [29], is that our approach is not based on 
play-out delay. Instead, we take advantage of layered semantic 
compression coupled with buffering to “buy more time” for clients that 
might not otherwise be able to remain in sync, by putting them on a less 
demanding level of the compression hierarchy. Liou et al. [30] develop a 
system for synchronizing videos, but that work provides no scalable 
videos and instructional video analysis.  

Liu et al. provide a comprehensive summary of the mechanisms used 
in video multicast for quality and fairness adaptation as well as network 
and coding requirements [31]. Our work can be framed in that context as 
a single-rate server adaptation scheme to each of the clients because the 
video quality we provide is tailored specifically to that client’s network 
resources. 

Instructional video compression, adaptation and indexing are crucial 
for distance learning. Previous key frame selection methods [32, 33] are 
based on video segmentation, frame clustering, or some hybrid of these 
two [34]. In general, segmentation-based key frame selection methods 
choose one or more representative frames for each segmented video 
structural unit as key frames; clustering-based key frame selection 
methods classify frames of the original video sequence into clusters, 
then choose one key frame from each frame cluster.  

However, video indexing and summarization methods based on 
video segmentation [15, 16, 17] appear tuned to highly structured and 
professionally-edited commercial products.  For instructional videos, 
segmentation-based key frame selection is no longer appropriate 
because there are no salient structural units. Video indexing methods 
based on clustering [18, 19] avoid segmentation preprocessing; however, 
most video key frame clustering methods highly depend on thresholds 
that determine the size of cluster, the number of key frames, or the level 
of key frames in a key frame hierarchy. Since these thresholds vary 
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greatly among different video genres or even within the same video 
genre, they are difficult to choose. Furthermore, most clustering-based 
methods are expensive in time and storage. 

8  Conclusion 
We present an e-Learning architecture and prototype system that 

allows small, geographically dispersed student groups to collaboratively 
view lecture videos in synchrony. To accommodate disenfranchised 
users with relatively low-bandwidth, AI2TV employs an “autonomic” 
(feedback loop) controller to dynamically adapt the video quality 
according to each client’s network resources, aiming to provide the best 
quality attainable while remaining in synchrony. We rely on a semantic 
compression algorithm to guarantee that the semantic composition of the 
simultaneously viewed video frames is equivalent for all clients. Our 
system distributes appropriate quality levels of video to clients, and 
automatically adjusts them according to their current bandwidth 
resources. We have demonstrated the advantages of this approach 
through experimental trials using bandwidth throttling to show that our 
system can provide synchronization of real-world distance learning 
lecture videos together with optimized video quality to distributed 
student groups. 

Acknowledgments 
We would like to thank other members of the High-Level Vision Lab 

and of the Programming Systems Lab, particularly Matias Pelenur and 
Suhit Gupta. Little-JIL was developed by Lee Osterweil’s LASER lab at 
the University of Massachusetts, Amherst. Cougaar was developed by a 
DARPA-funded consortium; our main Cougaar contact was Nathan 
Combs of BBN. Siena was developed by the University of Colorado, 
Boulder, in Alex Wolf’s SERL lab. PSL was funded in part by National 
Science Foundation grants CNS-0426623, CCR-0203876, 
EIA-0202063, CCR-9970790 and in part by IBM and Microsoft 
Research. PSL and HLV were funded jointly by EIA-0071954. 

References 
1. Miller, J., Ditzler, C., Lamb, J., Reviving a Print-based Correspondence Study 

Program In the Wake of Online Education, American Association for Collegiate 
Independent Study: Distance Learning: Pioneering the Future, (2003) 

2. The Application and Implications of Information Technologies in Postsecondary 
Distance Education: An Initial Bibliography, Technical Report NSF 03-305, National 
Science Foundation, Division of Science Resources Statistics (2002) 

 17



3. Wells, J.G, Effects of an On-line Computer-mediated Communication Course, Journal 
of Industrial Technology, 37(3), 2000, 
http://scholar.lib.vt.edu/ejournals/JITE/v37n3/wells.html 

4. Burgess, L.A., Strong, S.D., Trends in online education: Case study at Southwest 
Missouri State University, Journal of Industrial Teacher Education, 19(3), May 2003, 
http://www.nait.org/jit/Articles/burgess041403.pdf 

5. Richtel, M., In a Fast-Moving Web World, Some Prefer the Dial-Up Lane, The New 
York Times, April 19, 2004 

6. McCanne, S., Jacobson, V., Vetterli, M., Receiver-driven Layered Multicast, in: ACM 
SIGCOMM. 26(4):117-130., New York, NY, USA, 1996. 

7. Li, W., Overview of the Fine Granularity Scalability in Mpeg-4 Video Standard, IEEE 
Transactions on Circuits and Systems for Video Technology 11(3):301–317, March 
2001. 

8. Liu, T., Kender, J.R., Time-constrained dynamic semantic compression for video 
indexing and interactive searching, in Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition,  (2001). 

9. Valetto, G., Orchestrating the Dynamic Adaptation of Distributed Software with 
Process Technology, Ph.D thesis, Columbia University, Technical Report 
CUCS-022-04, New York, NY, USA, May 2004, 
http://mice.cs.columbia.edu/getTechreport.php?techreportID=82&format=pdf& 

10. Lemer, B.S., McCall, E.K., Wise, A., Cass, A.G., Osterweil, L.J., Sutton,.S.M Jr., 
Using Little-JIL to Coordinate Agents in Software Engineering, in Proceedings of the 
Automated Software Engineering Conference.(ASE 2000), Grenoble, France, 
September 11-15, 2000. 

11. Valetto, G., Kaiser, G., Using Process Technology to Control and Coordinate 
Software Adaptation, in Proceedings of the 25th International Conference on Software 
Engineering. (ICSE 2003), Portland, Or., USA, May 2003. 

12. Parekh, J., Kaiser, G., Gross, P., Valetto, G., Retrofitting Autonomic Capabilities onto 
Legacy Systems, Journal of Cluster Computing, Kluwer (in press) 

13. Gautier, L., Diot, C., Design and Evaluation of MiMaze, a Multi-player Game on the 
Internet, in Proceedings of the IEEE International Conference on Multimedia 
Computing and Systems, Austin, Tx, USA, June 1998 

14. Koenen, R. (ed), Overview of the MPEG-4 Standard, ISO/IEC JTC1/SC29/WG11 
N4668, March 2002, 
http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm 

15. Ardizzone, E., Hacid, M., A Semantic Modeling Approach for Video Retrieval by 
Content, in Proceedings of the IEEE International Conference on Multimedia 
Computing and Systems (ICMCS’99), Florence, Italy, June 7-11, 1999. 

16. Chang, H.S., Sull, S., Lee, S.U., Efficient Video Indexing Scheme for Content-based 
Retrieval, IEEE Transactions on Circuits and Systems for Video Technology, 9(8): 
1269-1279, December 1999 

17. Smith, M., Kanade, T., Video Skimming and Characterization through the 
Combination of Image and Language Understanding Techniques, in Proceedings of 
the Conference on Computer Vision and Pattern Recognition (CVPR’97), San Juan, 
Puerto Rico, June 17-19, 1997 

18. Zhuang, Y., Rui, Y., Huang, T.S., Mehrotra, S., Adaptive Key Frame Extraction Using 
Unsupervised Clustering, in Proceedings of the IEEE International Conference on 
Image Processing, Chicago, Il., USA, October 4-7, 1998.  

19. Girgensohn, A., Boreczky, J., Time-Constrained Keyframe Selection Technique, in 
Proceedings of the IEEE International Conference on Multimedia Computing and 
Systems (ICMCS’99), Florence, Italy, June 7-11, 1999 

 18



20. Baqai, S., Khan, M.F., Woo, M., Shinkai, S., Khokhar, A.A., Ghafoor, A., 
Quality-based evaluation of multimedia synchronization protocols for distributed 
multimedia information systems, IEEE Journal of Selected Areas in Communications 
14(7): 1388–1403, September 1996. 

21. Corte, A.L., Lombardo, A., Palazzo, S., Schembra, G., Control of perceived quality of 
service in multimedia retrieval services: Prediction-based mechanism vs. 
compensation buffers, Multimedia Systems, 6(2):102–112, March 1998. 

22. Wang, Y., Ostermann, J., Zhang, Y.Q., Video Processing and Communications, 
Prentice Hall, 2002, ISBN 0-13-017547-1. 

23. Yin, H., Lin, C., Zhuang, J.J., Ni, Q., An adaptive distance learning system based on 
media streaming, in Proceedings of the 3rd International Conference on Web-Based 
Learning. (ICWL 2004), Beijing, China, August 8-11, 2004. 

24. Walpole, J., Koster, R., Cen, S., Cowan, C., Maier, D., McNamee, D., Pu, C., Steere, 
D., Yu, L., A Player for Adaptive MPEG Video Streaming Over The Internet, in 
Proceedings of the 26th Applied Imagery Pattern Recognition Workshop, Washington 
DC, USA, October 15-17, 1997. 

25. Gupta, S., Kaiser, G., A Virtual Environment for Collaborative Distance Learning 
With Video Synchronization, in Proceedings of the 7th IASTED International 
Conference on Computers and Advanced Technology in Education (CATE 2004), 
Kauai, Hawaii, USA, August 16-18, 2004 

26. Dossick, S.E., Kaiser, G., CHIME: A Metadata-Based Distributed Software 
Development Environment, in Proceedings of the Joint 7th European Software 
Engineering Conference and 7th ACM SIGSOFT International Symposium on the 
Foundations of Software Engineering (ESEC/FSE’99), Toulouse, France, September 
1999 

27. Rothermel, K., Helbig, T., An Adaptive Protocol for Synchronizing Media Streams, 
Multimedia Systems, 5(5):324–336, September 1997 

28. Gonzalez, A.J., Adbel-Wahab, H., Lightweight Stream Synchronization Framework 
for Multimedia Collaborative Applications, in Proceedings of the 5th IEEE 
Symposium on Computers and Communications (ISCC 2000), Antibes, France, July 
4-6, 2000 

29. Liu, H., Zarki, M.E., A Synchronization Control Scheme for Real-time Streaming 
Multimedia Applications, In Proceedings of the Packet Video Workshop 2003, Nantes, 
France, April 28-29, 2003. 

30. Liou, S., Toklu, C., Heckrodt, K., VideoTalk: a Collaborative Environment for Video 
Content Discussion, in Proceedings of the IEEE International Conference on 
Multimedia Computing and Systems, Florence, Italy, June 7-11, 1999.  

31. Liu, J., Li, B., Zhang, Y.Q., Adaptive Video Multicast over the Internet, IEEE 
Multimedia 10(1):22–33, January 2003 

32. Mandal, M. K., Idris, F., Panchanathan, S., A Critical Evaluation of Image and Video 
Indexing Techniques in Compressed Domain, In: Image and Vision Computing, 
17(1):513-529, January 1999 

33. Idris, F., Panchanathan, S., Review of Image and Video Indexing Techniques, Journal 
of Visual Communication and Image Representation 8(2):146-166, June 1997. 

34. Das, M., Liou, S., A New Hybrid Approach to Video Organization for Content-Based 
Indexing, in Proceedings of the IEEE International Conference on Multimedia 
Computing and Systems (ICMCS’98), Austin, Tx., USA, June 28-July 1, 1998. 

 19


