
Easy Email Encryption with Easy Key Management
CUCS-004-18

John S. Koh
Columbia University
New York, NY 10027
koh@cs.columbia.edu

Steven M. Bellovin
Columbia University
New York, NY 10027
smb@cs.columbia.edu

Jason Nieh
Columbia University
New York, NY 10027

nieh@cs.columbia.edu

Abstract
Email privacy is of crucial importance. Existing email encryp-
tion approaches are comprehensive but seldom used due to
their complexity and inconvenience. We take a new approach
to simplify email encryption and improve its usability by im-
plementing receiver-controlled encryption: newly received
messages are transparently downloaded and encrypted to a
locally-generated key; the original message is then replaced.
To avoid the problem of users having to move a single private
key between devices, we implement per-device key pairs:
only public keys need be synchronized to a single device.
Compromising an email account or server only provides ac-
cess to encrypted emails. We have implemented this scheme
for both Android and as a standalone daemon; we show that
it works with both PGP and S/MIME, is compatible with
widely used mail clients and email services including Gmail
and Yahoo! Mail, has acceptable overhead, and that users
consider it intuitive and easy to use.

CCS Concepts •Security and privacy→ Key manage-
ment; Public key encryption; Usability in security and
privacy; Web application security;

Keywords IMAP, email, applied cryptography, PGP, S/MIME,
key management

1 Introduction
Email accounts and servers are an a�ractive target for adver-
saries. �ey contain troves of valuable private information
dating to years back, yet are easy to compromise. Some
prominent examples include: the phishing a�ack on Hillary
Clinton’s top campaign advisor John Podesta [15], the 2016
email hack of one of Vladimir Putin’s top aides [38], the email
leaks of former Vice President candidate Sarah Palin and CIA
Director John Brennan [11, 32], and other similar cases [18].
�ese a�acks targeted high pro�le individuals and organi-
zations to leak their emails and damage their reputations.
In the Podesta leaks, a�ackers perpetrated a spear-phishing
a�ack to obtain John Podesta’s Gmail login credentials, ac-
cess his emails, and leak them to WikiLeaks. Sarah Palin was
subjected to a simple password recovery and reset a�ack
which granted the a�acker full access to her personal email
account on the Yahoo! Mail website. John Brennan’s AOL
web email account was compromised via social engineering.
Adversaries also sometimes seize entire email servers such

as in the cases of cock.li and TorMail [24, 34], or compromise
them, such as in the Sony Pictures email leaks [36].
�e common thread is that a compromise exposes the

entire history of a�ected users’ emails a�er even a single
breach. With the explosive growth in cloud storage, it is easy
to keep gigabytes of old emails at no cost. �e introduction
of Gmail with its massive storage capacity—up to 15 GB for
free, or 30 TB for paid options [37]—opened up the possibility
of keeping email forever. Consequently, users o�en email
themselves to use their inbox as backup storage for important
information, thereby exacerbating the cost of a compromise.

Existing email encryption methods are e�ective but rarely
used and even more rarely used correctly. Examples include
Pre�y Good Privacy (PGP) [4], and Secure/Multipurpose
Internet Mail Extensions (S/MIME). Neither are widely used
as they are too complicated for most users; both senders and
recipients must comprehend public key cryptography and
its infrastructure. �e current paradigm places too much of
a burden on senders who must correctly encrypt emails and
manage keys [30, 35] so even technical users rarely encrypt
their email. �e problem is that existing approaches seek
absolute security via end-to-end encryption at the expense
of usability, creating a chasm between protecting all email
communications via PGP or S/MIME, and using no email
protection at all.
We introduce an approach to encrypted email that ad-

dresses the gaping void between unusable but absolute email
security, and usable but no email security. We change the
problem from sending encrypted emails to storing encrypt-
ed emails since it is a user’s history of emails that is most
tantalizing to a�ackers. Our goal is to mitigate the kinds of
a�acks o�en publicized in the news where email account
credentials are compromised or entire servers are seized. �e
a�ackers have access to emails stored on servers but do not
have access to individual devices. Most of the a�acks are
either simplistic phishing a�acks for email account creden-
tials or server breaches that include innocent users in the
collateral damage. All these compromised emails would have
been protected had they been encrypted prior to any breach
using a key inaccessible to the email service provider. We
therefore seek a client-side encrypted email solution that
can ensure that a user’s emails stored prior to a compromise
remain safe. Furthermore, such a defense must be usable for
average people on a daily basis, and compatible with email
correspondents who do not use encrypted email.

1

CUCS-004-18

We present Easy Email Encryption (E3) as the �rst step
to �lling this void. E3 provides a client-side encrypt-on-
receipt mechanism that makes it easy for users as they do not
need to rely on public key infrastructure (PKI) or coordinate
with recipients. E3 protects all emails received prior to any
email account or server compromise for all of the emails’
lifetime, under similar threat modelassumptions made for
more complex schemes such as PGP and S/MIME; for ease
of discussion we herea�er refer to PGP and S/MIME email
as end-to-end encrypted email.

E3 is designed to be compatible with existing IMAP servers
and IMAP clients to ease the adoption process. An E3 client
downloads messages from an IMAP server, encrypts them in
a standard format, and uploads the encrypted versions. �e
original cleartext emails are then deleted from the server. No
changes to any IMAP servers are necessary. Users require
only a single E3 client program to perform the encryption.
Existing mail clients do not need to be modi�ed and can be
used as-is alongside a separate E3 background app or add-on.
If desired, existing mail clients can be retro��ed with E3
instead of relying on a separate app or on an add-on.

Users are free to use their existing, unmodi�ed mail clients
to read E3-encrypted email as long as they support standard
encrypted email formats. �e vast majority of email clients
support encrypted emails either natively or via add-ons. Oth-
er than the added security bene�ts of encryption, all email
functionality looks and feels the same as a typical email
client, including spam �ltering and having robust client-side
search capability.

Key management, including key recovery, is simpli�ed by
a scheme we call per-device key (PDK) management which
provides signi�cant bene�ts for the common email use case
of having two or more devices for accessing email, e.g. desk-
top and mobile device mail clients. Users with multiple
devices leverage PDK with no reliance on external services.
Users who truly only use a single device still bene�t from
PDK’s key con�guration and management capabilities, but
rely on free and reliable cloud storage for recovery. E3 as
a whole is a usable solution for encrypted email that pro-
tects a user’s history of emails while also providing a simple
platform-independent key management scheme.
We implemented E3 in multiple environments. First, we

created two versions on Android for S/MIME and PGP to
show that existingmail clients can be retro��edwith E3 even
on mobile devices, and E3 works with any standard encrypt-
ed email format. Second, we implemented a daemon-like
Python client that allows users to use existing mail clients. Fi-
nally, we implemented an extension for the Google Chrome
web browser. We tested that the Android and Python pro-
totypes work with popular email services, including Gmail,
Yahoo! Mail, and AOL Mail. We also measured the perfor-
mance of E3 on Android. Our results show that while E3
imposes a one-time cost for email encryption, the total over-
head is quite reasonable from a user perspective. Finally, we

present the results of a user study for E3 that show that users
consider it simple, intuitive, and �exible.

2 �reat Model
�e purpose of E3 is to protect all emails stored prior to any
email account or server compromise, with no so�ware or pro-
tocol changes except for installing E3 itself on a recipient’s
devices. �e primary risk we defend against is to stored mail
on the IMAP server. If the account or server is compromised,
all unencrypted mail is available to the a�acker.
We thus guard against future compromise of the user’s

IMAP account or server. We assume that the IMAP account
and server are initially secure, and that at some later time,
one or both are compromised. We therefore assume that
email services are honest; the threat is external entities try-
ing to access email account data. If email service providers
are not honest, e.g. keeping separate copies of received
emails, then the platform is fundamentally insecure which
is out of scope. However, a server a�ack may occur a�er the
server is discarded by physically compromising the server’s
disks [13]—few organizations erase old disks before disposal.
We assume the enemy is sophisticated but not at the level of
an intelligence agency, i.e., the enemy cannot break TLS.
We do not a�empt to protect against compromise of the

user’s devices or mail clients. If those are compromised,
the private keys used by E3 are available to the a�acker no
ma�er when the encryption takes place. Standard end-to-
end encrypted email makes the same assumption.

3 Usage Model
E3 works with any IMAP email service. To get started, all a
user does is install an E3 client. E3 clients appear to the user
as either a separate one-time use app or as a new feature,
such as an add-on, in their mail client of choice. �is depends
on the user’s platform, operating system, and mail client. Re-
gardless of the exact implementation, the initial setup acts
like any normal mail client, including asking for email ac-
count credentials. By default, the client will be con�gured to
operate in active mode, meaning that the client will encrypt
all email on receipt. �e user at this point continues using
whatever email client he wants and email will work exactly
as before including sending and receiving email, except that
email is transparently encrypted on receipt. Clients that
support encrypted emails identify them as such with visual
indicators to help avoid the potentially confusing issue of
being too transparent [30] as it should be obvious to users
whether an email was encrypted or not.

Users may con�gure multiple devices to use E3. As men-
tioned above, E3 initially defaults to running in active mode
to encrypt emails, but it can also run in passive mode, let-
ting users read E3 encrypted email without performing en-
cryption. Users require only a single active client per email
account, so if a user’s mailbox already has E3 emails, any
additional E3 client defaults to passive mode (which can be

2

CUCS-004-18

toggled by users at will between active and passive mode).
Users who use multiple devices to access their email partici-
pate in a simple, brief, and platform-independent veri�cation
process for each new device with a passive E3 client.
Suppose a user wants to add a new tablet with E3. He

installs a passive E3 client on the tablet which his active
client will detect. �e active client will then prompt the user
to con�rm the newly added device by matching a displayed
veri�cation phrase with the one shown on his tablet during
the E3 setup. �e user must select the correct veri�cation
phrase from a selection of three di�erent veri�cation phrases
displayed on the active client. Additionally, if the user does
not con�rm the new device within a limited window of time,
the request will be canceled and the user will need to restart
the E3 setup process on his tablet. Once the user successfully
adds his new tablet device, the active client will begin to
re-encrypt all the user’s emails so that the tablet can read
them.

Users rarely add new devices ormail clients to their ecosys-
tem, so re-encrypting is an uncommon cost. Adding a new
device generally happens in the following situations: (1) the
user obtained a new device to replace an existing one, or
(2) the user obtained a new device of a completely di�erent
type. If a replacement, then in many cases the old device’s
data will be cloned to the new device so that nothing more
needs to be done. In the second case, a new device type
means the user will need to add it as a new E3 client; howev-
er, any future devices of the same type will fall under case (1)
and will not need to be added as a new E3 client. �is is not
a common occurrence.
�e active client lets the user cancel and undo adding a

new device, such as in the case where the user accidentally
accepts one. When the active client has just added a new
device, it displays a notice to the user that all his emails are
being re-encrypted. �e notice gives the user the option to
cancel the process and return the emails to their original state
(or to dismiss the notice). If the user cancels the process, the
active client rolls back the work it thus far completed. Similar
logic is applied if the user wishes to revoke a device from
his E3 ecosystem. �e user can select the device by name in
the active client and delete it. �e client then re-encrypts all
email to exclude the device.
A user may occasionally lose a device. �e optimal PDK

setup assumes that a user con�gures multiple E3 clients. For
example, many users will o�en have at least two mail clients:
a desktop/laptop client and a mobile client. �erefore, if a
user loses one device, he can still access his E3 encrypted
email on his remaining device(s). PDK with only one device
requires a di�erent solution for recovery if that device is
lost. For users with a single device con�guration, PDK pro-
vides the user with a randomly generated recovery password
which the user must save by printing it out or recording it
somewhere safe. Users do not require a recovery password
if they use multiple devices unless a user fears he may lose

Figure 1. �e required communications between an active
E3 mail client and an IMAP server for encrypting email.

all of his devices simultaneously. �e recovery password can
be used with a PDK client on a new device to regain access
to the user’s emails.
While most mail clients support encrypted email, one

exception is web browser clients such as the Gmail website
and other similar webmail services. Browser add-ons for
encrypted mail exist (and we have also wri�en one), and
it is not unreasonable to expect native browser support if
the demand is great enough. For now, users can install web
browser extensions that integrate with webmail services to
decrypt E3-encrypted email.

4 Architecture
Figure 1 presents a high-level view of E3. An active E3
mail client downloads an email, encrypts it in either PGP
or S/MIME format using a self-generated keypair or X.509
certi�cate, and uploads the encrypted version while deleting
the original. For ease of discussion we refer to PGP keys and
X.509 certi�cates as keypairs consisting of public and private
keys. E3 builds on existing protocols and encrypted email
formats, simplifying its implementation and deployment.
E3 leverages Internet Message Access Protocol (IMAP) [7].
S/MIME implementations rely on X.509 certi�cates and the
S/MIME standard as documented in RFC 5280 [6] and RFC
5751 [25]. PGP implementations follow the OpenPGP stan-
dard in RFC 4880 [4]. We also address search capability, and
key management for multiple devices.

4.1 E3 Modes
Active mode only needs to be enabled on one E3 client.
Any other client can operate in passive mode. �e active
client encrypts received emails and thus is more suited for
an always-connected device. It scans the user’s mailbox for
new public keys labeled as E3 keys. �ese public keys are
securely veri�ed with minimal user interaction by leveraging
reliable transparent (to the user) heuristics and temporal
proximity: the active client, a�er detecting a new key in

3

CUCS-004-18

the mailbox, asks the user if he very recently added a key
and to con�rm the correct veri�cation phrase among a list
of three phrases, two incorrect and one correct. If the user
chooses the right phrase, then the active client begins using
the new key, otherwise it discards the key. We discuss the
key veri�cation system further in Section 4.6. An important
feature of encrypted email formats is that a single email can
be encrypted to multiple public keys so that any one of the
paired private keys can be used to decrypt the entire message.
�us, emails are encrypted using every veri�ed and available
public key, including the active client’s own key. When a
new key is added, the active client re-encrypts emails to old
keys as well as the new key.

Passive mode clients only decrypt emails. Importantly,
this means that an E3 passive client can be implemented
as a one-time use app or add-on which con�gures a user’s
existing, unmodi�ed mail client with an E3 private key. A
passive client’s setup is similar to active mode. �e passive
client generates a keypair and uploads the public key to his
mailbox. Uploaded keys are a�ached to emails with clear
labeling. �e keys are discovered by the active client and
veri�ed by the user with minimal interaction.

4.2 Keypairs without Web of Trust or PKI
Normally, public keys need to be signed by a trustworthy
entity or nobody will trust it. �is forms the basis of PGP
webs of trust and X.509 public key infrastructure (PKI). We
herea�er refer to this general concept as PKI for convenience.
In E3, public keys are never shared with others. �ey

are self-generated and self-signed, and require no PKI. �is
signi�cantly improves E3’s usability over end-to-end secure
email solutions which rely on PKI and sender-recipient co-
ordination. Previous work [35] has shown that users �nd it
confusing to correctly obtain and use public keys. In con-
trast, an E3 user needs only self-signed keys, and any public
key exchanges among his devices are automated.

4.3 IMAP Support and Compatibility
Consider common email operations. Amail client downloads
a message using the IMAP FETCH command. To delete it, the
client uses the IMAP STORE command to mark it with the
\Deleted �ag. IMAP EXPUNGE then purges email marked
for deletion. �e user may compose and upload an email
using IMAP APPEND. �ese four IMAP commands, FETCH,
APPEND, STORE with \Deleted �ag, and EXPUNGE, play
a key role in E3. We henceforth use DELETE as shorthand
for the STORE with \Deleted �ag command.
Figure 1 shows how these four IMAP commands can en-

crypt email on receipt with existing IMAP servers. E3 can be
summarized as downloading a message (FETCH), encrypt-
ing it, uploading the ciphertext (APPEND), and deleting the
cleartext (DELETE and EXPUNGE). Finally, the client en-
sures correctness by synchronizing with the server.

�is series of commands can be generalized to any IMAP
message. It does not ma�er what mailbox or folder the
message is in. �e same process can even be applied to sent
emails as technically, even “sent” messages are just appended
to the IMAP server. All these IMAP commands can be done
in the background, decoupling them from the critical path of
reading email. Additionally, this series of commands is only
relevant for E3 clients in active mode. Passive E3 clients only
download and decrypt encrypted mail as needed.

E3 requires multiple round-trip times (RTTs) with the serv-
er because IMAP does not support message replacement, but
optimizations may be possible in the future. �e proposed
REPLACE command [3] would be preferred over E3’s use
of APPEND, DELETE, and EXPUNGE commands. But, this
RFC extension is not yet supported. �e REPLACE com-
mand would eliminate the multiple RTTs associated with
DELETE and EXPUNGE, which may be relatively large for
small emails, but negligible for large emails. Another opti-
mization would be to use IMAP pipelining, but not all IMAP
servers support it, and REPLACE would obviate the need for
it.

E3 is compatible with TLS [21] (or STARTTLS) which en-
crypts all communications with the IMAP server. Although
eavesdropping is not the primary security focus, E3 with
TLS protects against a�ackers who could otherwise capture
cleartext emails when they are �rst downloaded by the client.
Users only need a single E3 client in active mode to en-

crypt emails which by design avoids race conditions among
multiple active clients. �is follows the standard practice of
discouraging automatic message modi�cations on multiple
IMAP clients, which is a reasonable approach since IMAP
lacks atomicity guarantees. However, users may acciden-
tally enable active mode on multiple clients. E3 thus uses
approaches similar to existing IMAP clients in dealing with
race conditions, such as multiple clients trying to encrypt
the same message.

Currently, the blessed way of achieving pseudo-atomicity
when modifying IMAP messages is to use the IMAP COND-
STORE extension [1]. CONDSTORE is supported by major
IMAP email services and open source servers, including
Gmail and Dovecot. �is extension requires servers to main-
tain a last-modi�ed sequence (mod-sequence) number on
messages which is returned to the client. An active E3 client
which wishes to encrypt a message can take advantage of
this by adding a �ag (either \Flagged or \E3Encrypting
depending on custom �ag support) to a message using a
special UNCHANGEDSINCE modi�er to the normal IMAP
STORE command so that the STORE �ag command will only
succeed if the message has been unchanged; this will also
update the mod-sequence value of the message, so any other
active clients who try to issue the same command for the
given message will fail since it already has been modi�ed.

�e �ag and updated mod-sequence value act like a lock,
thereby alerting other active clients that this message is

4

CUCS-004-18

slated to be encrypted. �en, the client with the lock can
issue normal IMAP commands without racing others. One
potential issue is the active client with the lock may crash
before it completes its work, thereby leaving a dangling
lock. �ere are many ways of addressing this problem. One
method is to use a heuristic based on a message’s received
timestamp. An active client may periodically scan the user’s
mailbox for messages with the \E3Encrypting �ag that have
not been encrypted, and based on the timestamp heuristic,
determine if too much time has passed since the message
was received. For example, if the message has not been
encrypted for three hours since it was received but has the
\E3Encrypting �ag, then the active client may remove and
re-add the �ag to obtain the lock on the message again and
encrypt the message as normal.

If CONDSTORE is not available, an alternative is to make
a best-e�ort using IMAP custom �ags and custom IMAP fold-
ers. �e strategy, like with CONDSTORE, is to mark a mes-
sage with a custom �ag (keyword) entitled \E3Encrypting,
and to move it into an IMAP folder named E3-Temp. �en,
any active E3 client that sees the E3 �ag on a message in the
special temporary folder should not encrypt it. �is does not
rule out race conditions entirely, but will certainly shrink
the window that it could occur within.

4.4 Ciphertext Format
E3 uses the widely supported OpenPGP message or S/MIME
Enveloped-Data formats depending on client preference. E3-
encrypted S/MIME messages can be read using any exist-
ing unmodi�ed mail client that supports S/MIME, including
Apple Mail, Mozilla �underbird, and Microso� Outlook,
assuming at least one E3 private key is available in the local
keychain. �e same holds for PGP. Since these formats only
encrypt the body text, all of the original headers are main-
tained except for the Content-* headers, which are updated
to ones appropriate for encrypted emails. Since the Received
timestamp header is unchanged, mail clients can display
messages in their original order. E3 also adds a custom head-
er, X-E3-ENCRYPTED, to distinguish E3 emails from other
encrypted emails. �is is useful for IMAP servers which do
not support custom �ags or keywords.
E3 normally does not re-encrypt emails that are already

encrypted when received, i.e., when receiving email from
a sender using end-to-end encryption. However, there are
situations where re-encrypting emails is useful such as when
a crypto algorithm or key size is no longer secure. In this
case, E3 can easily re-encrypt existing encrypted email to a
newer crypto standard.

E3’s encryption does not interfere with spam �lters. Spam
�lters can be on servers or on clients. When they are on
the server, such as with Gmail, the mail service can �lter
spam emails before they are encrypted. For client-side spam
�lters, the user’s mail client will detect spam messages and
move or delete them. However, since the client performs the

�ltering, it can apply the �lter before encryption, or decrypt
E3-encrypted messages to scan them for spam.

4.5 Search Capability
Searching is straightforward: index and store the decrypted
content of messages locally. �is is compatible with existing
mail client local search, and provides full, fast local search-
ing. Storing messages locally is a common practice among
modern mail clients, and examples can be seen in Gmail on
Android, Mail on iOS, and Mozilla �underbird and Apple
Mail on desktops. While message content is stored in the
clear locally, we do not worsen security over the norm—many
mail clients already do this. An option for the more security-
conscious is to apply full disk encryption in conjunction with
device-wide security features. An alternative would be to
store ciphertext content locally, but this does not provide any
real security bene�ts since the key is also available locally,
and would also interfere with local searching.

A limitation of encrypted email schemes is that they do not
support searching the body content of encrypted emails on
unmodi�ed email servers. (Headers, including the Subject:
and other metadata �elds, are searchable.) If the server can
bemodi�ed, E3 can be used in conjunctionwith systems such
as SSARES which allows for searchable encrypted email [2].
For unmodi�ed servers, the IMAP SEARCH command can-
not be used, so clients that search both locally and on IMAP
servers will only return results for local search and remote
metadata matches. On the other hand, IMAP search is signif-
icantly slower than local search and is based on naive string
matching which yields low quality results. �us, users o�en
will not wait for IMAP server search results in practice since
local search queries are nearly instant. Furthermore, many
email clients such as K-9 Mail only perform local search
unless remote search is speci�cally enabled, which would
provide the exact same search capability with or without E3.

4.6 Key Management, Migration, and Recovery
E3 eliminates manual public key exchanges. �is simpli�es
the problem of keymanagement by removing half of it. What
remains is the problem of private keys. Traditional security
best practices advise users to never transport private keys
because doing so is insecure. �is advice is almost never
followed in practice because users o�en access email from
multiple devices, all of which need the same private key
when using common secure email usage models.

E3 returns to the traditional security advice of never trans-
porting private keys. In contrast tomost secure email schemes
which assume a user has a single private key, E3 asserts that
a user should have a unique private key for every device. We
refer to this as a per-device key (PDK) scheme as depicted
in Figure 2. With PDK, a user does not need to move any
private keys among his devices. Instead, each of his passive
clients automatically makes available its public key to the
device in charge of encrypting emails, i.e., his selected active

5

CUCS-004-18

Figure 2. �e per-device key (PDK) architecture.

E3 client. �e active E3 client can then encrypt the user’s
emails using the public keys from all of his devices.
�e PDK scheme has several advantages over using a

single private key:
1. Private keys never move and never leave a device.
2. A private key can be “revoked” by re-encrypting

emails to all public keys except for the lost one.
3. Private key recovery, normally mitigated with private

key backups, is reduced to data backup which is easier
and inherent to the design. As long as one device is
available, emails can be decrypted. If all devices and
backups are lost, then emails cannot be decrypted.

4. Public keys can be automatically distributed using
the email account.

5. All keypairs are self-generated and self-signed so
users can freely add new devices as needed.

�e active E3 client detects the user’s public keys uploaded
to his mailbox and uses them to encrypt emails. Passive E3
clients only upload their E3 public keys to the user’s mailbox
and perform no encryption.

Public keys in the user’s mailbox cannot be blindly trusted.
�e active client must securely con�rmwhether a new public
key really belongs to the user. �e active client periodically
scans for new keys, and as a �rst heuristic, ensures that the
sender of the key email (i.e., the “From:” �eld) matches the
address of the account owner; any emails containing keys
from other senders are not accepted. However, this heuristic
alone is not enough to verify the key as an a�acker may
gain access to the email account and upload a malicious
key with the correct sender address, or simply just spoof
it. We therefore augment this check by requiring temporal
proximity and matching a veri�cation phrase. Temporal
proximity means the user has a limited window of time
to accept and verify a newly detected public key. Any keys
which are not accepted within the timewindow are discarded
by the active client.
Temporal proximity relies on veri�ed and signed times-

tamps. A passive client uploads its public key along with

a signed timestamp obtained from services such as Rough-
time [14], and active clients verify if the timestamp is within
the allowed time window and trustworthy. For example, an
active client con�gured to only allow public keys uploaded
within the last 60 seconds will reject any uploaded public
keys with a veri�ed timestamp that is older than 60 sec-
onds. �e timestamp is veri�able since it is signed using the
Roughtime service’s certi�cate. As an additional measure,
the active client will rate limit the number of requests to add
a new key. For example, the client will only consider at most
three key requests in a period of �ve minutes. Any more
than that are suppressed, and a warning is shown to the user
that unusual behavior has been detected.

In addition to temporal proximity, E3 also uses a veri�ca-
tion phrase that is easy for humans to recognize and match.
When a passive client uploads its key, it adds a random-
ly generated veri�cation phrase to the key email which is
prominently displayed on the passive client. �is veri�ca-
tion phrase is also shown alongside two randomly generated
incorrect veri�cation phrases on the active client when it
detects the uploaded key. �e user must select the correct
veri�cation phrase in order to accept the newly added key.
�is multiple choice con�rmation is useful to reduce the
chances of a user accidentally accepting a key.
�e veri�cation phrase is generated at random from a

curated list such as the PGP Word List [19]. �is string is
added to the email containing the uploaded public key and
displayed on the passive client. �e active client displays the
veri�cation phrase from the email along with two incorrect
phrases, and asks the user to choose the one matching the
one in the passive client. As shown in SafeSlinger [10], this
technique is e�ective and usable for quickly authenticating
identities even with only three words. Users who speak
other languages use word lists in their language. Another
option is to rely on a recognizable but randomly selected
or generated image instead of a word-based string. Further
research is needed to be�er understand what kinds of strings
or images real users can correctly recall and verify while
making minimal errors.

�e active client must re-encrypt all emails to include new
public keys. A user may accidentally accept a key he did not
intend to accept, or simply may wish to cancel the process.
�e active client therefore displays a semi-persistent notice
to the user indicating that re-encryption is taking place, but
can be stopped and reversed at any time. If the user stops
and reverses the re-encryption process, the active client re-
processes the emails it re-encrypted, and re-encrypts them
again to the original set of keys.
�e logic for key revocation is nearly the same. In the

exceptional case where a user wishes to revoke one of his
E3 keys, he deletes the key by device name from the active
client’s list of keys. �e active client then re-encrypts all
emails to every key excluding the revoked one.

6

CUCS-004-18

As a side note, advanced users may prefer the tradition-
al �ngerprint-based string matching or QR code scanning
methods of verifying public keys. E3 supports these as well,
but only as an advanced option that is not enabled by default
and therefore not used by normal E3 users.

PDK achieves a streamlined key veri�cation processwhere,
for every newly added key, the user must only agree to an
automatic prompt on the active client, and ensure that the
veri�cation phrase matches the one he recognizes. �is is
in contrast to key veri�cation for end-to-end secure email
which o�en relies on confusing public key �ngerprint match-
ing, QR code �ngerprint scanning which is unavailable for
devices without cameras, and understanding of PKI. E3 key
veri�cation is possible with these standard techniques but
unnecessary given the unique environment in which E3 op-
erates. Another issue with existing end-to-end email is veri-
fying the public key of every new email correspondent. In
E3, adding a new key is a rare occurrence and only happens
when con�guring a new mail client such as when ge�ing a
new device.
PDK’s recovery mechanism inherent to the multi-device

design is available to the majority of users who access email
using two or more devices. However, there may be users who
truly only ever access email with a single device. For these
users, PDK key recovery uses the traditional method of en-
crypting the user’s private key with a password—a recovery
key—and then storing the encrypted private key on a backup
device or in cloud storage. If stored in cloud storage, the
provider should be di�erent from the email service provider.
For example, E3 clients con�gured for Google’s Gmail ser-
vice might store the private key on Dropbox but not Google
Drive. �e key retrieval system adheres to best practices for
secure credentials exchange as seen in the design of Securely
Available Credentials (SACRED) [16].

PDK is also compatiblewith re-encrypting emails to future-
proof them. Algorithms age, so ciphers and key sizes that are
secure today may not be in the future. PDK implementations
can simply download a user’s new keys and purge keys from
the system that are no longer usable.
One avenue for future work is the problem of reading

email on public computers. In this case, users access their
con�dential data on a fundamentally untrusted device which
cannot be trusted with private keys. �is is a concern for all
encrypted email schemes, not just E3. Even though solutions
are technically possible, they are insecure due to the high risk
of unwrapping private keys in an untrusted environment.

5 Security Analysis
E3 does not intend to be an end-to-end, maximum security
solution, but a strict improvement over the norm that is easy
to use and deploy. We sacri�ce a small amount of security to
gain tremendous usability over existing secure email mod-
els. We henceforth show that E3 provides tangible security

bene�ts compared to no email encryption, and compare its
security with traditional end-to-end secure email.

E3 protects all emails for all of their lifetime as long as they
are encrypted before any email account or server compromise.
Standard end-to-end encryption does the same, but E3 does
so without the complexity of public key exchanges and PKI.

Like end-to-end email, E3 protects sent and received mail
assuming all correspondents use E3. Senders can encrypt
their sent email copies as stored on the sender’s IMAP server.
Unlike end-to-end, which require that both the sender and
receiver use it, E3 provides useful protection even if only
one side uses it. If the sender uses it, his emails that are
encrypted before an a�ack are protected from compromise
of his email account or server. �e same holds for the receiv-
er without loss of generality. In other words, E3 provides
be�er protection than end-to-end email for communications
in which one party does not use email encryption because
end-to-end encryption cannot be used and would therefore
provide no protection at all.
If not all email correspondents use E3, it is possible for

an a�acker to compromise the emails of any correspondent
not using E3 to expose email communications with one that
uses E3. Regardless, this property actually confers a bene�t
to E3. E3 can be incrementally deployed since not all cor-
respondents require it. E3 also exhibits network e�ects: it
provides be�er security as more users use it.

Unlike end-to-end email, E3 requires additional measures
to protect against eavesdropping. Fortunately, these mea-
sures are completely transparent to users: E3 uses TLS or
STARTTLS so there is no threat of eavesdropping if TLS is
secure. Furthermore, TLS and STARTTLS are supported and
encouraged by practically all major mail services.
Email may or may not be protected in transit between

SMTP (not IMAP) servers. SMTP server links are increas-
ingly protected by TLS; if not, the problem is out of scope.
Services such as Gmail �ag email that arrive via unprotected
SMTP connections. �at said, such backbone links are very
hard to tap. �e risk, then, is minor.

A�er an email account or server is compromised, E3 can-
not protect newly arriving emails. �is is a limitation com-
pared to end-to-end encryption which protects new emails
sent by other end-to-end users. Nevertheless, we argue that
end-to-end encryption rarely sees actual use among users
and therefore provides no practical security for the majority
of the population. In contrast, E3’s ease of use makes it much
more likely to be adopted while providing a strict security
bene�t. In a mailbox with just a few thousand messages,
compromise of new emails comprises a minuscule percent-
age of total emails. New emails are still important, but it is
clear that encrypting the majority of emails is be�er than
encrypting none.
Email account compromise can happen in many ways,

primarily through credential or key compromise. �at, in
turn, o�en happens because of user error, especially in cases

7

CUCS-004-18

of (spear-)phishing. While devices do have OS-level security
features to help combat phishing, E3 by design also provides
a strong defense. E3 does not try to protect private keys
stored locally since the device is assumed to be secure, so
users are never requested to manage their private keys. �us,
there is no password for a�ackers to phish, and users have
no knowledge of where the private key is stored. �is la�er
intrinsic property of E3 also makes it di�cult for an a�acker
to trick a user into providing his private key—since the user
does not know where it is!
One major obstacle in other secure email schemes is en-

suring availability of the private key on all devices. �ere
is no standard for secure, usable key transport and the mar-
ket is fragmented, so it is di�cult to do a comparison with
E3. We have designed PDK as a secure and usable scheme
that leverages users’ tendency to access email on multiple
devices, and the inherent support for multiple recipients in
encrypted email formats.
An a�acker may try to trick a user into accepting and

authenticating a malicious public key by sending a fake E3
key email to the user. If the user were to accept it, all emails
would be encrypted using the malicious key, allowing the
a�acker to decrypt the user’s email if the account is ever
compromised. �erefore, PDK is only as strong as the key
authentication system used in conjunction with it. �e �rst
line of defense is to ensure that uploaded keys came from the
user’s own email address. Keys a�ached to email from other
addresses are rejected. However, an a�acker may have access
to the email account allowing him to upload keys originating
from a valid address, or simply just spoof the sender �eld. We
therefore rely on temporal proximity such that an a�acker
would need to strike literally minutes or even seconds before
the user generates a new key. Otherwise, the uploaded key
would be rejected for being too old if encountered by the
target at a later time. �is is similar to time-based one-time
password schemes as seen in two-factor authentication, e.g.,
RSA security tokens and Google Authenticator.
An a�acker without access to the mailbox would need

to also correctly guess the randomly generated veri�cation
phrase. An a�acker with access to the mailbox could wait
for the user to upload a new key and then duplicate the key
email but a�ach his malicious key instead. �is would al-
low the a�acker to construct a key email with the correct
veri�cation phrase. However, this requires immediate tem-
poral proximity, i.e., as soon as the user uploads a new key.
Furthermore, the a�acker will likely wait a very long time
before the user adds a new key since adding a new device is
a rare occurrence. By this time, most modern email services
will have warned the user of a suspicious account access.

An adversary may then resort to a denial-of-service a�ack
and send many fake keys to a user in hopes the user will
make a mistake and accidentally verify a malicious key. To
address this, the active client rate limits requests to add new
keys, and shows a warning to the user. As a �nal measure,

the client also immediately discards keys and any on-going
con�rmation prompts from any key emails with duplicated
veri�cation phrases.

�ese checks alone su�ce to exclude most a�acks. On
top of these key veri�cation checks unique to E3, we option-
ally support traditional methods for verifying public keys
including �ngerprint string matching and QR code-based
�ngerprint veri�cation. However, these methods are only be
available to advanced users and are not enabled by default.
E3 considers compromised servers and devices as out of

scope. E3 cannot protect against an IMAP server that is
dishonest from the start. E3 also does not protect against
compromise of the user’s devices or mail clients, but neither
does end-to-end secure email. Similarly, if a user’s device is
stolen, E3 may not protect his email. However, many devices
are password-protected with data encrypted in local storage,
and have remote wipe functionality. In all cases, E3 provides
a strict security bene�t, and makes security no worse than
the current common practice of no email encryption.

6 Implementation
We implemented four prototypes to verify E3 and PDK’s
applicability in common use cases. �e prototypes consist of:
K-9 S/MIME, K-9 PGP (via OpenKeychain), a Python separate
client, and a Google Chrome extension.
�e K-9 implementations require di�erent dependencies

thus motivating the separate prototypes. �e vanilla K-9
Mail client purposely includes no crypto libraries, instead
preferring to o�oad crypto operations to separate crypto
provider applications. However, no such crypto provider
app for S/MIME currently exists. Our K-9 S/MIME imple-
mentation therefore includes the Spongycastle [26] crypto
library and performs all key generation and management on
its own. K-9 S/MIME represents a worst case scenario where
nearly all functionality is implemented from scratch.

�e K-9 PGP (OpenKeychain) implementation contains far
fewer code changes compared to K-9 S/MIME. �is is due to
the OpenKeychain app which is both a keychain and crypto
provider app. K-9 o�oads all PGP crypto operations, and
key storage and veri�cation to OpenKeychain which exposes
an external cross-application API, so it was not necessary
to add a crypto library to K-9. We modi�ed both K-9 Mail
and OpenKeychain to support E3, in particular adding an
API call to OpenKeychain (OpenPGP-API) for storing E3
keys, and allowing OpenKeychain to verify and recognize
emails which have been self-signed by the email recipient
as opposed to the standard PGP use case where it veri�es
signatures based on the email sender.

K-9 PGP also adds optional metadata to existing OpenKey-
chain API calls to avoid redundant code within K-9 Mail. For
example, OpenKeychain exposes an API call to request key
material to which we added optional metadata including the
key’s PGP �ngerprint and QR code bitmap data. Figure 4 de-
picts how this extra metadata is used by K-9 to generate the

8

CUCS-004-18

Figure 3. E3 se�ings and key upload screens. Figure 4. An E3 public key uploaded to a user’s email.

email containing an E3 client’s uploaded public key. Note the
prominent three word veri�cation phrase also in Figure 3.
�e Python E3 daemon generates an E3 keypair and up-

loads it to the user’s mailbox, alongwith supporting E3 active
mode. It currently does not automatically add the key for
use with existing mail clients; this is a work in progress.
However, we sketch out what the solution would look like
on di�erent platforms. On macOS and iOS, we can leverage
the system Keychain which the Apple Mail and iOS Mail
clients already integrate with. �e Python app can add its
E3 keypair to the Keychain with an ACL tailored for the
targeted mail clients [8]. Android has a KeyChain API [9] for
storing system-wide keypairs and can be used in a manner
similar to Apple’s Keychain. However, Android clients that
do not rely on the KeyChain API will require modi�cations;
for example, OpenKeychain must be modi�ed to allow an
app to add an E3 private key to it, then existing PGP clients
can seamlessly use the key. On Windows, the E3 client can
generate a PKCS12 key �le to import into Windows’ cer-
ti�cate store which is used by the Outlook mail client. For
clients such as Mozilla �underbird that do not rely on the
certi�cate store, users can install an E3 add-on.
We also wrote a Google Chrome extension to interface

with the Gmail website and add basic support for reading E3
encrypted emails and key management. �is extension was
a proof of concept to show that reading E3 email on website
clients is possible and practical.

7 Experimental Results
We used our K-9 S/MIME prototype for testing. While K-9 is
roughly 150,000 lines of code, E3 only added about 2,500 lines
excluding crypto libraries. �is suggests E3 comparatively
represents a modest amount of complexity. We verify that E3
works with existing IMAP services, measure its performance
overhead, and evaluate its usability with real users.

Gm
ail

Yah
oo

Ou
tlo
ok

AO
L

Yan
dex

Do
vec
ot

E3 ◦ ◦ ◦ ◦ ◦ ◦

CONDSTORE ◦ ◦

REPLACE

Figure 5. Tested servers and their compatibility with E3.

7.1 Compatibility and Interoperability
To verify that E3 is compatible with existing IMAP and
S/MIME systems, we tested our prototype on several of the
most popular commercial and open-source email servers.
Figure 5 shows the results of our compatibility testing. E3
worked seamlessly with all IMAP email services tested. We
also checked for IMAP CONDSTORE and REPLACE support
with the former enabling be�er IMAP atomicity, and the
la�er enabling be�er performance. We also veri�ed that
unmodi�ed S/MIME mail clients, including Apple Mail, and
�underbird, could be used to read E3-encrypted email.

7.2 Performance
Wemeasured E3’s performance on mobile devices because of
the popularity of mobile email and to provide a conservative
measure as they are resource constrained. We used a Huawei
Honor 5X (8-core Cortex-A53 with 2 GB RAM) smartphone
running Android 6.0.1. We compare the performance of
our modi�ed E3 K-9 Mail client against the standard K-9
Mail client. Both versions were instrumented to obtain mea-
surements. �e E3 K-9 client used OpenSSL 1.1.0b, and the
S/MIME emails used Cryptographic Message Syntax (CMS)
with 128-bit AES CBC for compatibility reasons. All ex-
periments were conducted using Gmail accounts populated
with the same email content, and a WiFi connection to a
small business �ber optic network. We chose to use a real
email service with a typical Internet connection to be�er
understand performance with real limitations, such as asym-
metrical download/upload speeds to the Gmail service. To

9

CUCS-004-18

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0

25
60

0

51
20

0

10
24

00

20
48

00

40
96

00

81
92

00

10
49

00
0

16
38

40
0

32
76

80
0

65
53

60
0

13
10

72
00

Email Content Size (bytes)

0

10

20

30

40

50

60

70

80

90

100

Ti
m
e
(s
)

Total Encrypt-Sync

Initial Cleartext Email Download

Figure 6. Time spent for the one-time “encrypt/synchronize”
compared to the cleartext download. Points right of the line
are emails with a JPG.

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0

25
60

0

51
20

0

10
24

00

20
48

00

40
96

00

81
92

00

10
49

00
0

16
38

40
0

32
76

80
0

65
53

60
0

13
10

72
00

Email Content Size (bytes)

0

1

2

3

4

5

6

7

8

9

10

11

N
o
rm

al
iz
ed

 P
er
fo
rm

an
ce

Encrypt

APPEND

DELETE/EXPUNGE

Synchronize

Figure 7. Normalized time spent for the one-time “encryp-
t/synchronize” relative to the cleartext download (not pictured).
Points right of the line are JPG emails.

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0

25
60

0

51
20

0

10
24

00

20
48

00

40
96

00

81
92

00

10
49

00
0

16
38

40
0

32
76

80
0

65
53

60
0

13
10

72
00

Email Content Size (bytes)

0

10

20

30

40

50

60

70

80

90

100

Ti
m
e
(s
)

Total Encrypt-Sync

Initial Cleartext Email Download

Figure 8. Expected time for the one-time “encrypt/synchro-
nize” with REPLACE compared to the cleartext download.
Points right of the line are JPG emails.

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80
0

25
60
0

51
20
0

10
24
00

20
48
00

40
96
00

81
92
00

10
49
00
0

16
38
40
0

32
76
80
0

65
53
60
0

13
10
72
00

Email Content Size (bytes)

0

1

2

3

4

5

6

7

8

9

10

11

N
o
rm

al
iz
ed
 P
er
fo
rm

an
ce

Encrypt

REPLACE

Synchronize

Figure 9. Normalized expected time for “encrypt/synchro-
nize” with REPLACE relative to the cleartext download (not
pictured). Points right of the line are JPG emails.

account for variability, each measurement was repeated 30
times, the three lowest and highest outliers were discarded,
and an average was taken over the remaining measurements.
We considered email operations where E3 imposes addi-

tional work over a standard email client. We did not measure
searching as it has no overhead compared to a standard mail
client. Wemeasured receiving a new cleartext email in which
E3 downloads, encrypts, and replaces it at the server with
the encrypted version, followed by a quick synchronize.

We used a range of email content sizes from 100 B to 12.5
MB. 12.5 MB is the maximum because when encrypted, it
increases in size to about 24.7 MB due to limitations of the
MIME format. Popular services such as Gmail enforce a 25
MB size limit. Emails of size 100 B to 1 MB were two-part
MIME messages with a plain/text and html/text part.
Larger emails were two-part MIME messages with a one
byte plain/text part, and an a�ached JPG �le.

7.2.1 Encrypt and Synchronize
Figure 6 shows the time it takes to encrypt email and replace
it on the server, and synchronize the client and server. �e
plot labeled “Total Encrypt-Sync” includes: Encryption, AP-
PEND, DELETE and EXPUNGE, and Synchronize. Figure 6
also shows the time to initially synchronize and download
the original cleartext email. �is is strictly not part of E3, but
provides a basis to show the relative cost of E3 compared to
a standard client. �e time to download the cleartext email
was the same for both E3 and unmodi�ed K-9.

Before discussing the results, we highlight two important
points. First, the overhead of encrypt/synchronize is a one-
time cost. Once a message is encrypted and uploaded, it does
not need to be processed again. Second, operations run in
the background so the user is una�ected.

Figure 6 depicts the encrypt/synchronize time in seconds
for each email size. Although the encrypt/sync time is 6× to
11× the time to synchronize cleartext emails, the overhead is
not visible to users as it is processed in background threads.

10

CUCS-004-18

Figure 7 shows the same encrypt/sync measurements as
Figure 6, but normalized to the cost of downloading the
original cleartext email. �is shows a breakdown of the rela-
tive cost of each part labeled: Encrypt, which encrypts the
message; APPEND, which uploads the encrypted message;
DELETE/EXPUNGE, which deletes and expunges the cleart-
ext message from the server; and Synchronize, which veri�es
client-server consistency. �e components are stacked so
that each line is cumulative and the area between lines is
the overhead for the component. For example, the total nor-
malized overhead for 1600 B emails is 8× the initial cleartext
email download, comprising of Synchronize (25%), DELETE/-
EXPUNGE (40%), APPEND (30%), and Encrypt (5%).

Encrypting is brief and generally takes no more time than
downloading cleartext email. �e cost is constant for emails
smaller than 102,400 B, then grows linearly in proportion
to size. �is suggests that for small emails, encryption is
dominated by initialization which includes generating the
IV and encrypting the AES key. Once size grows beyond a
critical mass, encryption time increases as well.
For small emails, the primary overhead is DELETE/EX-

PUNGE’s multiple RTTs which are signi�cant relative to a
short APPEND time. To mitigate this overhead, clients can
issue a single DELETE and EXPUNGE for batches of emails.
For larger emails, APPEND (upload) dominates for two rea-
sons. First, uploading to Gmail was slower than downloading
which magni�es the APPEND overhead. Second, the Gmail
server supports De�ate/Gzip compression, and the cleartext
compresses well. In contrast, ciphertexts are indistinguish-
able from random bits so they cannot be compressed. �us,
E3 APPENDs the full message size. However, the e�ects are
lost for content that is incompressible. �is is the case for
the emails larger than 1 MB since they contained a single
JPG (incompressible) image; they consequently exhibit less
overhead compared to the text emails.
�e remaining overhead is due to Synchronize, which

appears substantial for small messages. �is involves ver-
ifying client-server consistency, updating the UI to show
progress, and processing any pending commands. �is con-
stant overhead—less than a quarter of a second—is magni�ed
for smaller emails, but becomes negligible for larger ones.
Currently, there is no way to replace a message on an

IMAP server in a single operation. �e proposed IMAP
REPLACE extension [3] would eliminate the DELETE/EX-
PUNGE, so REPLACE’s overhead will resemble APPEND
alone. We approximate this by taking Figure 6 and removing
DELETE/EXPUNGE. �is leaves Encrypt and APPEND as
visible in Figure 8. Normalized performance can be seen in
Figure 9. Like Figure 7, Figure 9 is stacked so that each line
is cumulative and the area between lines is the overhead
for the component. �e reduction in the time for the worst
case—small emails—is almost half.

7.3 Usability
A�er its initial con�guration, E3 by default works transpar-
ently to the user. �e user thus does nothing di�erent from
using a regular mail client. As a result, E3’s usability is the
same as a regular mail client for everyday email usage.
E3 can also be implemented to encrypt on demand, a

less transparent way of using email encryption. We do not
recommend this for real implementations since this imposes
more work on the user. However, since it is possible and
also a worst-case implementation for usability, we opted to
study it. We ran an IRB-approved user study with twelve
participants who were asked to use three di�erent email
solutions on a Nexus 7 Android (�alcomm Snapdragon S4
Pro 8064 with 2 GB RAM) tablet running Android 5.0.1. We
compared the usability of an unmodi�ed K-9 client, our E3
K-9 S/MIME client, and an unmodi�ed K-9 client with PGP
provided via the OpenKeychain Android app. While E3 does
not require entry of an encryption password, we con�gured
the E3 K-9 client to prompt for a password which protects
the private key. Although this is more complicated than
how E3 is con�gured in practice, we wanted a conservative
environment for comparison. Each user was provided with
a Gmail account with the same email contents.
All participants had experience with mobile device mail

clients, comprising of nine tech-savvy computer science
graduate students at a well-known research university and
three non-tech savvy adults between the ages of 20 to 60
that were either unemployed or working in blue-collar occu-
pations. �e nine graduate students included several PhD
students in systems and security.
�e participants volunteered in 60 minute sessions in

which they role-played as a tax accountant using email to re-
quest a client’s tax forms. �e 60 minutes comprised three 20
minute sessions, each devoted to using: K-9, E3 K-9 S/MIME,
and vanilla K-9 with PGP (not to be confused with our E3
K-9 PGP implementation). We instructed users to send and
receive emails three times for each email solution within 20
minutes regardless of whether they succeeded or not. �e 20
minute constraint was used to limit the study length. Users
were free to use any resource, including the Internet, other
than the study coordinator. To mitigate the e�ects of short-
term memory on survey results, we randomized the order of
the email clients. To avoid priming participants for favorable
responses, we explained our research purpose only a�er the
surveys had been completed.

A�er participants completed their tasks or reached the 20
minute limit per client, they completed the System Usability
Scale (SUS) [22], an industry-standard questionnaire also
used in many similar studies [27–30], for the system they
had just used. At the end of the study, participants completed
eight additional survey questions speci�c to our research,
and a �nal free-form question requesting any comments. To

11

CUCS-004-18

So
ln.

Co
un
t
Me
an

Std
. D
ev

Mi
n.

Q1 Me
dia
n

Q3 Ma
x

K-9 12 82.12 11.67 65 72.50 82.50 90.00 100
E3 12 81.73 10.82 60 72.50 82.50 90 97.50

PGP 12 34.81 23.09 2.50 18.13 30.50 38.75 47.50

Figure 10. System Usability Scale summarized scores.

ensure that participants actually understood each email solu-
tion they used, the study coordinator explained each system
prior to completing the eight additional survey questions.
�e summarized SUS scores are presented in Figure 10.

�e results were favorable for both K-9 and E3, but PGP
received remarkably low ratings which on average were
about half of the K-9 and E3 scores. �e SUS scores for K-9
and E3 were very similar despite our “naggy” con�guration
prompting for the encryption password. We conclude that
E3 is at least nearly as intuitive to use as K-9 even in the
conservative worst case implementation.
We also directly asked users to compare the three email

solutions which we summarize in Figure 11. Responses are
on a scale of 1 (Strongly Disagree) to 5 (Strongly Agree). In
questions 11-14, users rated both K-9 and E3 as signi�cantly
easier to use than PGP. Interestingly, K-9 with E3 had an
equal average easiness rating with vanilla K-9. �is could be
a�ributed to small inconsistencies in users’ perceptions due
to the randomized order of the study.

In questions 15-17, participants almost unanimously agreed
that E3 provides worthwhile protection. In contrast, a large
majority viewed PGP as not worthwhile. �ey rated PGP
so low because of how confusing and unusable it was. Free
responses from users included referring to PGP as “garbage,”
referring to the key exchange as “wildly impractical,” and
one noting that he has “never actually seen [PGP] used.”
Most users failed to complete the tasks with PGP in the 20
minute limit, even a�er searching the Internet. �e only
participants who succeeded with PGP were the six graduate
students who specialized in security; the other three com-
puter science graduate students did not succeed with PGP.
In contrast, all of the participants succeeded with both K-9
and E3 without seeking any help online.

We draw these conclusions: (1) K-9 and E3 are roughly as
intuitive as the other, and E3 is easy to understand. (2) E3
is easy to use even for non-tech savvy users, and even with
a naggy implementation. (3) E3 is much more usable and
intuitive than PGP. (4) PGP is too unwieldy to actually be
used. Overall, our user study results were very positive in
favor of E3, but further studies with more users and a wider
range of activities would be illuminating.

8 Related Work
�e seminal “Why Johnny Can’t Encrypt” paper illuminated
the confusing process of encrypting email and showed how

�estion (1 = Strongly Disagree, 5 = Strongly Agree) Mean Std. Min. Med. Max

11 I found it easy to use unmodi�ed K-9 w/o encryp-
tion.

4.38 0.96 2 5 5

12 I found it easy to use K-9 w/ E3 encryption. 4.38 0.65 3 4 5

13 I found it easy to use PGP encryption. 2.08 0.95 1 2 4

14 I thought that K-9 w/ E3 was easier to use than
PGP.

4.77 0.44 4 5 5

15 �e extra security with K-9 w/ E3 encryption is
worth the extra steps compared to unmodi�ed K-9
w/o encryption.

4.23 0.73 3 4 5

16 �e extra security with PGP encryption is worth
the extra steps compared to unmodi�ed K-9 w/o
encryption.

2.69 1.44 1 2 5

17 �e extra security with PGP is worth the extra
steps compared to K-9 w/ E3 encryption.

1.92 0.95 1 2 3

Figure 11. Summarized scores for added survey questions.
(�estions are abbreviated for spacing reasons.)

inaccessible PGP is to average users [35]. �ey found that
correctly sending encrypted email is outstandingly di�cult.
Ruoti et al. designed Pwm, usable secure mail that inte-

grates with major email providers while hiding the security
details [30]. �ey found that transparency creates issues
because users mistakenly think they are encrypting mes-
sages when they are not. �is suggests that sending secure
email is the pain point. In later work, Ruoti et al. observe
no signi�cant di�erences between automatic and manual
encryption [28], but this is a separate issue from sending en-
crypted email. Furthermore, Pwm’s key management relies
on a third-party identity-based encryption server.

�ere are approaches to encrypting email on receipt that
rely on modi�cations that are too technical for average end
users. Most examples involve modifying one’s Mail Trans-
fer Agent (MTA) or Mail Delivery Agent (MDA) to encrypt
emails before delivering them to the client [5, 17]. �ese
works also provide no solution for key management.

STREAM is an approach for opportunistic email encryp-
tion [12]. It uses an SMTP and POP proxy for outgoing and
incoming messages but does not consider IMAP.
STEED mail clients perform end-to-end, transparent en-

cryption [20]. STEED is compatible with PGP and S/MIME,
and furthermore, uses trust upon �rst contact (TUFC). STEED
requires a special client-server protocol for encryption and
thus a new IMAP extension. �is creates deployment issues
so STEED is not amenable to incremental deployment.

Lavabit, now defunct, was a commercial service for secure
IMAP email that protected emails in storage. It generat-
ed keys from users’ passwords, and stored users’ keys on
Lavabit servers alongside a set of master private keys. �ese
master keys could decrypt all emails, thus making them
vulnerable to compromises and subpoenas. Furthermore,
Lavabit’s encryption was only available for Lavabit users.

12

CUCS-004-18

Posteo is a paid email service which encrypts its servers’
hard drives and provides the option to encrypt emails, includ-
ing metadata, on receipt [23]. Posteo’s approach is server-
side and requires modifying IMAP servers. Also, the option
to encrypt metadata breaks standard formats.

Tutanota provides a service for sending encrypted emails
to non-Tutanota users [33]. Tutanota does not use standard
encrypted formats. If a Tutanota user emails a non-Tutanota
user, then the decryption password must be conveyed via a
secondary channel. Moreover, the email only contains a link
to the Tutanota website which the recipient must click on
then input the password to decrypt the message. Exchanging
passwords and clicking on a link sent via email to input the
password can be seen as extremely suspicious by users who
are trained to be wary of phishing.
Autocrypt [31] proposes a decentralized and incremen-

tally deployable system for distributing public keys. Key
exchanges are transparent as public keys are transmi�ed via
email headers. Although the goal is to improve usability, the
methods di�er from E3 as Autocrypt focuses on end-to-end,
sender-recipient encryption.

9 Conclusions
We have described and implemented a system called Easy
Email Encryption (E3) for using existing unmodi�ed IMAP
servers and unmodi�ed IMAP mail clients with a simple
E3 client to encrypt and store email. E3 uses an encrypt-
on-receipt model, thus eliminating the need for senders to
understand and use encryption. Keypairs are self-generated
and self-signed, so they do not require complex PKI and
sender-recipient coordination. E3’s per-device key (PDK)
scheme vastly simpli�es the problem of private key handling.
Although E3 does not achieve full end-to-end security, it

is usable because of this. E3 bene�ts from network e�ects:
as E3 use increases, security increases. More importantly,
encrypted emails are protected for their entire lifetime.
We provide a strong defense for emails protected by E3

before compromises of IMAP servers that requires no server
or client changes which eases adoption and implementation,
thus stimulating the growth of network e�ects. We encour-
age any further work in re�ning existing infrastructure or
E3 to support email security while keeping usability in mind
as a �rst-class citizen.

References
[1] D. Cridland A. Melnikov. 2014. IMAP Extensions: �ick Flag Changes

Resynchronization (CONDSTORE) and�ick Mailbox Resynchroniza-
tion (QRESYNC). Technical Report. IETF. 1–52 pages. h�ps://
tools.ietf .org/html/rfc7162

[2] Adam J Aviv, Michael E Locasto, Shaya Po�er, and Angelos D
Keromytis. 2007. SSARES: Secure searchable automated remote email
storage. In Computer Security Applications Conference, 2007. ACSAC
2007. Twenty-�ird Annual. IEEE, 129–139.

[3] S. Brandt. 2016. IMAP REPLACE Extension. RFC Internet-Dra�. IETF.
1–10 pages. h�ps://tools.ietf .org/html/dra�-brandt-imap-replace-02

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. �ayer. 2007.
OpenPGP Message Format. RFC 4880. h�p://www.rfc-editor.org/rfc/
rfc4880.txt

[5] Mike Cardwell. 2011. Automatically Encrypting all Incoming
Email. h�ps://www.grepular.com/Automatically Encrypting all
Incoming Email. (2011).

[6] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, Russ Housley, and
William Polk. 2008. Internet X.509 Public Key Infrastructure Certi�cate
and Certi�cate Revocation List (CRL) Pro�le. RFC 5280. h�p://www.rfc-
editor.org/rfc/rfc5280.txt

[7] M. Crispin. 2003. INTERNETMESSAGEACCESS PROTOCOL - VERSION
4rev1. RFC 3501. RFC Editor. 1–108 pages. h�ps://www.rfc-editor.org/
rfc/rfc3501.txt

[8] Apple Developer. 2018. SecACLCreateWithSimpleCon-
tents - Security — Apple Developer Documentation.
h�ps://developer.apple.com/documentation/security/1402295-
secaclcreatewithsimplecontents?language=objc. (2018).

[9] Google Developers. 2018. KeyChain — Android Develop-
ers. h�ps://developer.android.com/reference/android/security/
KeyChain. (2018).

[10] Michael Farb, Yue-Hsun Lin, Ti�any Hyun-Jin Kim, Jonathan McCune,
and Adrian Perrig. 2013. SafeSlinger: Easy-to-use and Secure Public-
key Exchange. In Proceedings of the 19th Annual International Confer-
ence onMobile Computing & Networking (MobiCom ’13). ACM, New
York, NY, USA, 417–428. h�ps://doi.org/10.1145/2500423.2500428

[11] Lorenzo Franceschi-Bicchierai. 2015. Teen Hackers: A ‘5-Year-Old’
Could Have Hacked into CIA Director’s Emails. VICE Motherboard.
(October 2015). h�ps://motherboard.vice.com/read/teen-hackers-a-
5-year-old-could-have-hacked-into-cia-directors-emails

[12] Simson L. Gar�nkel. 2003. Enabling Email Con�dentiality �rough
the Use of Opportunistic Encryption. In Proceedings of the 2003 Annual
National Conference on Digital Government Research (dg.o ’03). Dig-
ital Government Society of North America, 1–4. h�p://dl.acm.org/
citation.cfm?id=1123196.1123245

[13] Simson L. Gar�nkel and A. Shelat. 2003. Remembrance of Data
Passed: A Study of Disk Sanitization Practices. IEEE Security & Pri-
vacy 1, 1 (January–February 2003), 17–27. h�ps://doi.org/10.1109/
MSECP.2003.1176992

[14] Google. 2018. roughtime - Git at Google. h�ps:
//roughtime.googlesource.com/roughtime. (2018).

[15] Tal Kopan Gregory Krieg. 2016. Is this the email that
hacked John Podesta’s account? CNN Politics. (30 October
2016). h�p://www.cnn.com/2016/10/28/politics/phishing-email-
hack-john-podesta-hillary-clinton-wikileaks/

[16] D. Gustafson, M. Just, and M. Nystrom. 2004. Securely Available
Credentials (SACRED)—Credential Server Framework. RFC 3760. h�p:
//www.rfc-editor.org/rfc/rfc3760.txt

[17] Björn Jacke. 2018. How to automatically PGP/MIME encrypt incom-
ing mail via procmail. h�ps://www.j3e.de/pgp-mime-encrypt-in-
procmail.html. (2018).

[18] Raphael Sa�er Je� Donn, Desmond Butler. 2018. Russian hackers hunt
hi-tech secrets, exploiting US weakness. Associated Press. (7 February
2018). h�ps://apnews.com/cc616fa229da4d59b230d88cd52dda51

[19] Patrick Juola and Philip Zimmermann. 1996. Whole-Word Phonetic
Distances and the PGPfone Alphabet. In Proceeding of Fourth Inter-
national Conference on Spoken Language Processing. ICSLP ’96, Vol. 1.
98–101 vol.1. h�ps://doi.org/10.1109/ICSLP.1996.607046

[20] Werner Koch and Marcus Brinkmann. 2011. STEED–Usable End-to-End
Encryption. Technical Report.

[21] C. Newman. 1999. Using TLS with IMAP, POP3 and ACAP. RFC 2595.
RFC Editor. 1–15 pages. h�ps://www.rfc-editor.org/rfc/rfc2595.txt

[22] U.S. Department of Health & Human Services. 2015. System Usability
Scale (SUS). (2015). h�p://www.usability.gov/how-to-and-tools/
methods/system-usability-scale.html

13

https://tools.ietf.org/html/rfc7162
https://tools.ietf.org/html/rfc7162
https://tools.ietf.org/html/draft-brandt-imap-replace-02
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
https://www.grepular.com/Automatically_Encrypting_all_Incoming_Email
https://www.grepular.com/Automatically_Encrypting_all_Incoming_Email
http://www.rfc-editor.org/rfc/rfc5280.txt
http://www.rfc-editor.org/rfc/rfc5280.txt
https://www.rfc-editor.org/rfc/rfc3501.txt
https://www.rfc-editor.org/rfc/rfc3501.txt
https://developer.apple.com/documentation/security/1402295-secaclcreatewithsimplecontents?language=objc
https://developer.apple.com/documentation/security/1402295-secaclcreatewithsimplecontents?language=objc
https://developer.android.com/reference/android/security/KeyChain
https://developer.android.com/reference/android/security/KeyChain
https://doi.org/10.1145/2500423.2500428
https://motherboard.vice.com/read/teen-hackers-a-5-year-old-could-have-hacked-into-cia-directors-emails
https://motherboard.vice.com/read/teen-hackers-a-5-year-old-could-have-hacked-into-cia-directors-emails
http://dl.acm.org/citation.cfm?id=1123196.1123245
http://dl.acm.org/citation.cfm?id=1123196.1123245
https://doi.org/10.1109/MSECP.2003.1176992
https://doi.org/10.1109/MSECP.2003.1176992
https://roughtime.googlesource.com/roughtime
https://roughtime.googlesource.com/roughtime
http://www.cnn.com/2016/10/28/politics/phishing-email-hack-john-podesta-hillary-clinton-wikileaks/
http://www.cnn.com/2016/10/28/politics/phishing-email-hack-john-podesta-hillary-clinton-wikileaks/
http://www.rfc-editor.org/rfc/rfc3760.txt
http://www.rfc-editor.org/rfc/rfc3760.txt
https://www.j3e.de/pgp-mime-encrypt-in-procmail.html
https://www.j3e.de/pgp-mime-encrypt-in-procmail.html
https://apnews.com/cc616fa229da4d59b230d88cd52dda51
https://doi.org/10.1109/ICSLP.1996.607046
https://www.rfc-editor.org/rfc/rfc2595.txt
http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
http://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

CUCS-004-18

[23] Posteo. 2018. Email green, secure, simple and ad-free - posteo.de -
Features. (2018). h�ps://posteo.de/en/site/features#featuresprivacy

[24] Kevin Poulsen. 2014. If You Used �is Secure Webmail Site, the FBI
Has Your Inbox. WIRED. (January 2014). h�p://www.wired.com/
2014/01/tormail/

[25] B. Ramsdell and S. Turner. 2010. Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 3.2 Message Speci�cation. RFC 5751. RFC
Editor. 1–45 pages. h�p://www.rfc-editor.org/rfc/rfc5751.txt

[26] rtyley. 2018. Spongycastle by rtyley. Github.io. (2018). h�ps:
//rtyley.github.io/spongycastle/

[27] Sco� Ruoti, Je� Andersen, Sco� Heidbrink, Mark O’Neill, Elham
Vaziripour, JustinWu, Daniel Zappala, and Kent Seamons. 2016. ”We’re
on the Same Page”: A Usability Study of Secure Email Using Pairs of
Novice Users. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA,
4298–4308. h�ps://doi.org/10.1145/2858036.2858400

[28] Sco� Ruoti, Je� Andersen, Travis Hendershot, Daniel Zappala, and
Kent Seamons. 2016. Private Webmail 2.0: Simple and Easy-to-Use
Secure Email. In Proceedings of the 29th Annual Symposium on User
Interface So�ware and Technology (UIST ’16). ACM, New York, NY,
USA, 461–472. h�ps://doi.org/10.1145/2984511.2984580

[29] Sco� Ruoti, Je� Andersen, Daniel Zappala, and Kent E. Seamons. 2015.
Why Johnny Still, Still Can’t Encrypt: Evaluating the Usability of a
Modern PGP Client. CoRR abs/1510.08555 (2015). arXiv:1510.08555
h�p://arxiv.org/abs/1510.08555

[30] Sco� Ruoti, Nathan Kim, Ben Burgon, Timothy Van Der Horst, and
Kent Seamons. 2013. Confused Johnny: when automatic encryption
leads to confusion andmistakes. In Proceedings of the Ninth Symposium
on Usable Privacy and Security. ACM, 5.

[31] Autocrypt Team. 2018. Autocrypt 1.0.1 documentation. h�ps:
//autocrypt.org/. (2018).

[32] �e Washington Times 2008. Hacker wanted to ‘de-
rail’ Palin. �e Washington Times. (September 19 2008).
h�p://www.washingtontimes.com/news/2008/sep/19/hacker-
wanted-to-derail-palin/

[33] Tutanota. 2018. Secure email: Tutanota makes encrypted emails easy.
(2018). h�ps://tutanota.com/

[34] Zack Whi�aker. 2015. Servers of email host used in US
school bomb threats seized by German police. (December
2015). h�p://www.zdnet.com/article/email-providers-servers-seized-
by-german-police-admin-forced-to-turn-over-encryption-keys/

[35] Alma Whi�en and J Doug Tygar. 1999. Why Johnny Can’t Encrypt: A
Usability Evaluation of PGP 5.0.. In Usenix Security, Vol. 1999.

[36] WikiLeaks. 2018. WikiLeaks — Sony Archives. WikiLeaks. (2018).
h�ps://wikileaks.org/sony/emails/

[37] Wikipedia. 2018. Gmail. Wikipedia. (2018). h�ps://en.wikipedia.org/
wiki/Gmail#Storage

[38] Robert Windrem. 2016. Payback? Russia Gets Hacked,
Revealing Putin Aide’s Secrets. NBC News. (27 October
2016). h�p://www.nbcnews.com/storyline/ukraine-crisis/payback-
russia-gets-hacked-revealing-putin-aide-s-secrets-n673956

14

https://posteo.de/en/site/features#featuresprivacy
http://www.wired.com/2014/01/tormail/
http://www.wired.com/2014/01/tormail/
http://www.rfc-editor.org/rfc/rfc5751.txt
https://rtyley.github.io/spongycastle/
https://rtyley.github.io/spongycastle/
https://doi.org/10.1145/2858036.2858400
https://doi.org/10.1145/2984511.2984580
http://arxiv.org/abs/1510.08555
http://arxiv.org/abs/1510.08555
https://autocrypt.org/
https://autocrypt.org/
http://www.washingtontimes.com/news/2008/sep/19/hacker-wanted-to-derail-palin/
http://www.washingtontimes.com/news/2008/sep/19/hacker-wanted-to-derail-palin/
https://tutanota.com/
http://www.zdnet.com/article/email-providers-servers-seized-by-german-police-admin-forced-to-turn-over-encryption-keys/
http://www.zdnet.com/article/email-providers-servers-seized-by-german-police-admin-forced-to-turn-over-encryption-keys/
https://wikileaks.org/sony/emails/
https://en.wikipedia.org/wiki/Gmail#Storage
https://en.wikipedia.org/wiki/Gmail#Storage
http://www.nbcnews.com/storyline/ukraine-crisis/payback-russia-gets-hacked-revealing-putin-aide-s-secrets-n673956
http://www.nbcnews.com/storyline/ukraine-crisis/payback-russia-gets-hacked-revealing-putin-aide-s-secrets-n673956

	Abstract
	1 Introduction
	2 Threat Model
	3 Usage Model
	4 Architecture
	4.1 E3 Modes
	4.2 Keypairs without Web of Trust or PKI
	4.3 IMAP Support and Compatibility
	4.4 Ciphertext Format
	4.5 Search Capability
	4.6 Key Management, Migration, and Recovery

	5 Security Analysis
	6 Implementation
	7 Experimental Results
	7.1 Compatibility and Interoperability
	7.2 Performance
	7.3 Usability

	8 Related Work
	9 Conclusions
	References

