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Abstract—The emergency communication systems are under-
going a transition from the PSTN-based legacy system to an
IP-based next generation system. In the next generation system,
GPS accurately provides a user’s location when the user makes
an emergency call outdoors using a mobile phone. Indoor
positioning, however, presents a challenge because GPS does
not generally work indoors. Moreover, unlike outdoors, vertical
accuracy is critical indoors because an error of few meters will
send emergency responders to a different floor in a building.

This paper presents an indoor positioning system which focuses
on improving the accuracy of vertical location. We aim to
provide floor-level accuracy with minimal infrastructure support.
Our approach is to use multiple sensors available in today’s
smartphones to trace users’ vertical movements inside buildings.

We make three contributions. First, we present the elevator
module for tracking a user’s movement in elevators. The elevator
module addresses three core challenges that make it difficult
to accurately derive displacement from acceleration. Second, we
present the stairway module which determines the number of
floors a user has traveled on foot. Unlike previous systems that
track users’ foot steps, our stairway module uses a novel landing

counting technique. Third, we present a hybrid architecture that
combines the sensor-based components with minimal and prac-
tical infrastructure. The infrastructure provides initial anchor
and periodic corrections of a user’s vertical location indoors.
The architecture strikes the right balance between the accuracy
of location and the feasibility of deployment for the purpose of
emergency communication.

I. INTRODUCTION

The emergency communication systems in the United States

and elsewhere are undergoing a transition from the PSTN-

based legacy system to a new IP-based system. The new

system is referred to as the Next Generation 9-1-1 (NG9-1-1)

system [1] in the US. We have previously built a prototype

NG9-1-1 system [2] based on the Session Initiation Protocol

(SIP) [3].

The most important piece of information in the NG9-1-

1 system is the caller’s location. The location is first used

for routing the call to a proper call center. The emergency

responders then use the caller’s location to pinpoint the caller

on site. Therefore, it is essential to determine the caller’s loca-

tion as precisely as possible to minimize delays in emergency

response. Delays in response may result in loss of lives.

In the NG9-1-1 system, GPS can provide a user’s location

accurately when the user makes an emergency call outdoors

using a mobile phone. Indoor positioning, however, presents

a challenge because GPS does not generally work indoors.

Moreover, unlike outdoors, vertical accuracy is very important

in indoor positioning because an error of few meters will

send emergency responders to a different floor in a building,

which may cause a significant delay in reaching the caller.

The importance of vertical positioning makes GPS not a good

solution even if GPS signals can somehow reach indoors, since

the altitudes reported by GPS are usually inaccurate [4], [5].

Ladetto and Merminod [6] proposed a barometer-based

solution for vertical positioning. Barometers, however, have a

critical limitation when they are used in a vertical positioning

system intended for emergency situations. Firefighters use

a technique called positive pressure ventilation (PPV) [7],

which means blowing air into a burning building in order

to clear out smoke. PPV will result in pressure changes in

the building, which will in turn cause large fluctuations in

barometer readings. In addition, parts of some buildings are

intentionally pressurized for various reasons [8], which will

also affect barometer readings.

This paper presents a proposal to augment our previous

NG9-1-1 prototype system with a new indoor positioning sys-

tem. The indoor positioning system focuses on improving the

accuracy of vertical positioning. We aim to provide floor-level

accuracy with minimal infrastructure support. Our approach is

to use multiple sensors, all available in today’s smartphones,

to trace users’ vertical movements inside buildings.

We make three contributions for improving vertical accuracy

of indoor positioning. First, we present the elevator module for

tracking a user’s movement in an elevator. The elevator module

calculates the elevator’s displacement from linear acceleration

obtained from the accelerometer in the user’s smartphone. Our

solution addresses three core challenges that make it difficult

to accurately derive displacement from acceleration.

Second, we present the stairway module which determines

the number of floors a user has traveled on foot. Unlike

previous systems that track users’ foot steps, our stairway

module uses a novel landing counting technique. Landings are

the level areas either at the top of a staircase or in between

flights of stairs.

Third, we present a hybrid architecture that combines the

sensor-based components with minimal and practical infras-

tructure. The infrastructure, consisting of sparsely deployed

beacons and central building database, provides initial anchor
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Fig. 1. Architecture overview.

and periodic corrections of a user’s indoor vertical location.

We believe that the architecture strikes the right balance

between accurate location information and the ease of deploy-

ment for the purpose of emergency communication.

This paper is organized as follows. Section II presents

our overall architecture. Section III describes the design and

algorithms of the elevator and stairway modules. Section IV

describes implementation details. Section V provides our eval-

uation results. Section VI discusses related work. Lastly, we

conclude and discuss future work in Section VII.

II. ARCHITECTURE OVERVIEW

Figure 1 shows the overall architecture of our vertical

positioning system. We describe each component in detail in

the following subsections.

A. Sensor array

The sensor array includes different kinds of sensors avail-

able in smartphones. The Inertial Measurement Unit (IMU)

integrates a three-axis accelerometer, a three-axis gyroscope,

and a three-axis magnetometer. Thus, the IMU provides mo-

tion sensing with a total of nine degrees of freedom. The

accelerometer measures linear accelerations along the three

spatial axes. The measured accelerations can be used to detect

whether a user is moving, and if so, the user’s velocity or

traveled distance can be derived from them. The gyroscope

measures the angular velocities of rotations around the three

spatial axes. The orientation of the device can be derived from

the gyroscope measurement. The magnetometer is a digital

compass that measures the strength of the Earth’s magnetic

field. The compass provides the heading of the device. Heading

refers to the angle which the device forms with the magnetic

north on a level plane.

GPS provides the device’s location in the geographic coor-

dinates using satellite signals. GPS cannot be used indoors but

it can help detect when a user moves from outdoor to indoor.

B. Analysis modules

The analysis modules collect data from the sensor array and

compute a user’s location. There are three analysis modules

in our architecture: the elevator module, the stairway module,

and the escalator module.

The elevator module calculates the vertical displacement of

an elevator by measuring its linear acceleration. The linear

acceleration is measured using the device’s accelerometer.

Integrating the linear acceleration twice with respect to time

yields the distance that the elevator has traveled.

The stairway module determines the number of floors a user

has traveled by counting the number of landings in stairways.

Our landing detection algorithm is based on an intuitive fact

that there is less vertical movement on landings than on steps.

The stairway module utilizes the accelerometer, the gyroscope,

and the magnetometer. We describe the details in Section III-B.

The escalator module is left for future work. We envision

that the escalator module will incorporate elements of both

elevator and stairway modules.

C. Activity manager

The activity manager coordinates the interactions between

the sensor array and the analysis modules. The activity

manager monitors the sensors to detect changes in a user’s

activity, such as indoor-outdoor transitions, riding an elevator,

or walking on a stairway. Once the user’s activity is identified,

the activity manager will select the proper analysis module to

process the data from the sensor array. The activity manager

can also reduce the sampling rates of the sensors that are not

used for the current activity in order to conserve energy.

While the role of activity manager is important in our

architecture, our work does not focus on it because we can

use existing activity recognition systems [9], [10]. Integrating

an existing activity recognition system into our architecture

remains as future work.

D. Infrastructure

As we will show in Section V, the elevator and stairway

modules perform well within limited ranges, but the modules

cannot reliably capture the user’s movement over longer ver-

tical distances. Moreover, the sensor-based components can

only report relative location, i.e., the number of floors that the

user has traveled. Therefore, the initial anchor location must

be provided in order to obtain the absolute location.

Those problems can be solved by deploying an infrastruc-

ture for indoor positioning. Densely deployed infrastructure,

such as beacons installed every floor and every entrance, can

provide accurate location, but the high cost of such installation

is a hindrance to wide deployment. Ubiquitous deployment

is a requirement for the emergency communication scenario,

which is the motivation for our work. On the contrary, sparsely

deployed infrastructure will not be able to provide the required

level of accuracy.

Our architecture combines the sensor-based components

with minimal and practical infrastructure. First, the infrastruc-

ture includes location beacons deployed at each entrance of a

building. The beacons provide the location of a user’s entry

to the building. The floor of entry becomes the anchor for

all subsequent calculations of the user’s vertical location. In
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addition to the floor of entry, the beacons also provide other

building information which is needed by the analysis modules.

The additional building information includes the floor-to-floor

height and the number of landings between each pair of

floors. User devices include the infrastructure monitor, which

interacts with the location beacons.

Second, for the buildings that are not equipped with these

beacons, we propose that central authorities such as local

governments maintain well-known building database servers.

When a user enters a building not equipped with the beacons,

the infrastructure monitor sends the last known GPS location

to the building database server to retrieve the same building

information that the location beacons would have provided.

The central authorities responsible for the building databases

can reduce the burden of keeping the databases up to date

using crowd sourcing.

Lastly, the limited range of the sensor-based components

can be overcome by sparsely deploying location beacons at

the edge of the range. For example, if the location tracked by

the elevator module is reliable up to 20 floors, beacons can be

placed at elevator entrances every 20 floors.

III. SYSTEM DESIGN AND ALGORITHMS

A. Elevator module

There are three challenges in accurately measuring the

vertical distance that a user has traveled in an elevator. The

three challenges are how to extract the vertical component

in the accelerometer measurement, how to subtract Earth’s

gravitational acceleration, and how to eliminate noise and

errors.

The accelerometer returns linear accelerations along the

three axes. Those three axes are not aligned with the world

coordinate system. Instead, they are aligned with the frame of

the device. Thus, the axes in the device coordinate system keep

changing as the orientation of the device changes. One way to

extract vertical acceleration is to combine the accelerometer

measurement with the gyroscope measurement. In fact, we do

this in the stairway module. In the elevator module, however,

we take advantage of the fact that, in the elevator, the dominant

movement of the device is in the vertical direction. We simply

assume that the measured acceleration is close to vertical, and

approximate the vertical projection with the vector itself. Thus,

the vertical acceleration is calculated as follows:

avertical ≈ |−→a | =
√

x2 + y2 + z2 (1)

where x, y, and z are three-axis accelerometer measurements.

We do not need a gyroscope in this calculation. We justify our

approach by making the following two observations. First, a

user’s sudden movements in the elevator will be filtered out

by the low-pass filter, which we will describe shortly. Second,

users typically stand still in the elevator, and when they move,

the accelerations of the movements are small compared to

the vertical acceleration of the elevator. The consequence

of this approximation is that whenever there is non-vertical

acceleration, we overestimate the vertical acceleration by
1

cos θ
, where θ is the angle that the measured acceleration
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Fig. 2. Comparison of the distance calculations with and without ZUPT.

vector makes with the vertical axis. This overestimation is

small, and we compensate it by applying zero velocity update

(ZUPT), which we describe later. Our measurement shows

that the approximation does not affect the resulting distance

calculation.

The vertical acceleration calculated above includes the

gravitational acceleration (g), which we need to subtract

before computing the traveled distance. In theory, g should

be constant at 9.8 m/s2, but we found slight variations in our

experiments. We measured g by sampling the accelerations

of smartphones sitting still on a desk. The measured values

deviated slightly from g, and moreover, the variations were

different on different devices. Smartphone SDKs provide APIs

returning g-free acceleration, but they exhibited the same

deviation. We eliminate the effect of the deviation in g as

follows. We take advantage of the fact that, if we take g out

of the acceleration, the integral of the acceleration taken over

the duration of the trip must be zero because the elevator is

not moving at the end of the trip. Thus we can deduce that

the value of g measured by the device is the mean of the

acceleration samples taken over the trip.

The accelerometer output contains a significant amount

of noise. We apply two existing techniques to tackle this

problem. First, we apply a low-pass filter to the accelerometer

output. This filters out the user’s sudden movements and the

accelerometer’s inherent noise which we refer to as drift.

Second, we apply a technique called zero velocity update

(ZUPT) [11] to eliminate accumulated errors. Integrating the

acceleration with respect to time produces the velocity of the

elevator. We reset the velocity to zero during the period when

the acceleration is zero and the velocity is within a predefined

threshold. The threshold value we choose is small compared to

the speed of the elevator, so that we do not mistakenly zero out

the velocity of an elevator moving at a constant speed. The

accuracy of the distance calculation is improved in that, at

each stop, ZUPT has an effect of wiping out the accumulated

errors due to the drift and the user’s non-vertical movements.

Figure 2 demonstrates the effectiveness of ZUPT. We com-

pare the computed velocities and distances when an elevator

traveled from the first, to the second, and then to the third floor.

Without ZUPT, the accumulated acceleration errors result in

non-zero velocities when the elevator is at the second and the

third floor. This in turn results in an error of approximately

one meter in the distance calculation at the end.
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Fig. 3. Overview of the stairway module.

B. Stairway module

The stairway module determines the number of floors a user

has traveled using our landing counting algorithm. To the best

of our knowledge, landing detection has not been used for

vertical positioning systems.

Figure 3 illustrates how the stairway module works. First,

the stairway module calculates vertical acceleration from the

accelerometer and gyroscope measurements. Unlike an ele-

vator’s movement, a user’s movement on a stairway is more

complex. A gyroscope is needed to transform the acceleration

in the device coordinate system to the world coordinate

system. We convert the accelerometer measurements in the

device coordinate system to the world coordinate system using

a rotation matrix as shown below:

−→a ′ = R−→a (2)

where −→a ′ is the acceleration in the world coordinate system,
−→a is the acceleration in the device coordinate system, and R

is the rotation matrix. Most smartphone platforms provide an

API to obtain R. We then take the resulting z-axis acceleration

in the world coordinate system and subtract g from it. We

calculate g in the same way as in the elevator module.

The landing counting algorithm compares the amplitude of

vertical acceleration between steps and landings. The algo-

rithm is based on the intuitive fact that the amplitude of the

vertical acceleration is much smaller on landings than on steps

because there are less vertical movements on landings.

Figure 4(a) shows a measurement of a user’s vertical

acceleration when she walks down four floors passing eight

landings. The amplitude difference between steps and landings

is clearly observed. Figure 4(b) is the magnitude spectrogram

|X(t, f)| in dB scale, transformed from Figure 4(a)’s accel-

eration data. The regions of small amplitude in Figure 4(a)

manifest as reduced magnitude in the frequency range between

0.5 to 2 Hz, which corresponds to human walking.

We define pwalk(t) to extract human walking activity from

the magnitude spectrogram:

pwalk(t) =
∑

0.5 Hz<f<2 Hz

10 log
10

|X(t, f)| (3)

where t is time and f is frequency. Figure 4(c) shows pwalk(t),
where we can clearly observe the dips at landings.

Our landing counting algorithm traces the pwalk level shown

in Figure 4(c) to count the number of landings. Figure 5(a)

illustrates this process. Each landing is characterized by a dip
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Fig. 4. (a) Vertical acceleration measurement; (b) Spectrogram of vertical
acceleration; (c) pwalk(t) extracted from (b)

below its mean value. The fall and rise of the level crossing

the mean value indicate the beginning and end of a landing,

respectively. The beginning and end of a landing are shown

as the bumps of the “Landing detection” line in Figure 5(a).

In addition to vertical acceleration, the stairway module uses

heading information from the magnetometer to improve the

accuracy of landing detection. Most of the time, users turn

around 180 degrees on landings. We use such heading changes

to correct errors in landing detection, specifically to remove

incorrectly identified landings. Since we are only interested in

180 degree turns, our magnetometer reading does not require

calibration.

Figure 5(b) shows a case where our algorithm removes two

incorrectly identified landings using the heading information

from the magnetometer. The dotted line labeled “Heading”

shows the heading changes reported by the magnetometer.

The heading largely stays the same from 15 sec to 25 sec, and

changes from 220◦ to 40◦ in the next two seconds. This 180◦

turn, combined with the bumps on the landing detection line

confirms a landing. Note that the seeming discontinuity in the

heading from 20◦ to 330◦ at 37 sec is in fact a steady change

from 20◦ to −30◦, wrapping around. The two rectangles in

the figure highlight two incorrectly identified landings being

removed because the heading did not change during the period.

This heading-based verification of landings makes it un-

likely that our algorithm produces false positives. When the

acceleration-based landing detection misses a landing to begin

with, however, the heading information does not help recover
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Fig. 5. Three landing detection cases.

it. Figure 5(c) shows this case. Therefore, our algorithm

produces a conservative estimate of the number of landings.

Up/down direction of the user’s movement is determined by

comparing the average vertical velocity on steps and landings.

We determine that the user is ascending if the velocity on

steps is higher than the velocity on landings, and vice versa.

In theory, the average vertical velocity should be zero on

landings, positive when the user walking up steps, and negative

when walking down. But in practice, the velocity values can

shift due to the noise and errors that have been introduced

while extracting vertical acceleration and subtracting g.

The stairway module returns a relative location which is the

number of floors the user has traveled from the initial floor.

Like the elevator module, the stairway module relies on the

information from the infrastructure monitor to get the initial

anchor location. The infrastructure monitor also provides the

number of landings between each pair of floors. There are

typically two landings per floor but the number can vary

depending on the design of a building. In some buildings, for

example, there are more landings between the lobby and the

second floor.

IV. IMPLEMENTATION

A. Hardware platform

We used the Apple iPhone 4 and 4S for implementation

and evaluation. The iPhone 4 contains an accelerometer, a

gyroscope, and a magnetometer. The accelerometer in iPhone

4 can measure acceleration from −2 g to +2 g, where 1 g
is 9.8 m/s2 [12]. The sampling rate can be adjusted from

0.5 Hz to 1 kHz. We used 30 Hz for our measurements. The

gyroscope measures angular velocity from -250 degree/sec to

+250 degree/sec [12]. We also read the gyroscope at 30 Hz.

The magnetometer is a three-axis electronic compass manu-

factured by Asahi Kasei [13]. According to the specification

from the manufacturer, the measurement range is ±1,200µT.

B. Data collection from sensor array

In our current prototype, an application running on iPhone

collects data from the sensor array. The measurements from

the accelerometer and gyroscope in iPhone can be accessed

using the Core Motion framework in iOS. The Core Motion

framework provides APIs to retrieve the raw data such as the

timestamp and three-axis accelerations. The framework also

provides processed motion data, such as attitude, which is

derived from both the accelerometer and gyroscope. Attitude

refers to the spatial orientation of the device with respect to

the world coordinates, and can be obtained either as a rotation

matrix or as a quaternion. We use the rotation matrix in our

implementation of the stairway module.

The heading information from the magnetometer can be

accessed using the Core Location framework in iOS. The

framework provides two headings: magnetic heading and true

heading. Magnetic heading points to the magnetic north pole,

and true heading points to the geographic north pole. We use

the magnetic heading in our implementation. Both types of

heading will satisfy our need to detect a user turning around

on landings, but using magnetic heading avoids additional

processing to calculate the true heading from the current

location, which may consume more energy.

We collected GPS traces outdoors. The Core Location

framework provides an API to obtain the device’s location.

Normally the framework determines the locations using vari-

ous sources including GPS, Wi-Fi, and cellular network, but

a flag can be passed to indicate that we are only interested in

GPS locations.

C. Data collection from infrastructure

We chose Bluetooth technology for location beacons be-

cause Bluetooth is available on most smartphones. The infras-

tructure monitor and the beacon communicate using Bluetooth

service discovery protocol (SDP) [14]. SDP allows Bluetooth

devices to discover available services and their characteristics

without initiating a pairing process.
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Currently, iOS does not provide APIs for Bluetooth com-

munication. We implemented the Bluetooth client using BT-

stack [15], an open source Bluetooth stack for iOS. Installing

BTstack requires jailbreaking iPhone. We prototyped location

beacons as a Java application using BlueCove [16], an open

source Java library for Bluetooth.

We used a Mac mini computer wrapped in aluminum foil

to prototype a Bluetooth beacon. The foil wrapper decreases

the Bluetooth signal strength so that it would not reach the

adjacent floors.

The beacon interacts with the infrastructure monitor in the

following sequence. First, the infrastructure monitor scans

for nearby Bluetooth devices by sending periodic inquiry

messages. Second, the infrastructure monitor sends an SDP

request to all the discovered Bluetooth devices. The request

includes a unique identifier defined for location beacon service,

so the request is ignored by all devices that are not location

beacons. Lastly, the infrastructure monitor receives an SDP

response from a location beacon. An SDP response contains

the building’s address, the floor where the beacon is located,

and for each pair of floors, the height and the number of

landings.

The infrastructure monitor falls back on a central building

database server when a building is not equipped with location

beacons. While a user stays outdoors, the infrastructure mon-

itor tracks the user’s location using GPS. When GPS signal

is lost, the infrastructure monitor assumes that the user has

entered a building, and sends the last known GPS coordinates

to the building database server. The building database server

finds the nearest entrance from the user’s last GPS location,

and returns the same information that the location beacon

returns.

D. Analysis modules

The current version of our iPhone application does not

include the analysis modules. The collected sensor data is sent

to a central repository. Using this data, we have tested our

algorithms for the analysis modules prototyped in MATLAB.

We are currently developing the analysis modules running

on iPhone. It is desirable to run all analysis locally on the

user’s device whenever possible, so that the user’s privacy is

preserved as much as possible.

V. EVALUATION

We evaluate the algorithms of our elevator and stairway

modules to show that our positioning system can provide floor-

level accuracy for the user’s vertical location. All evaluation

scenarios assume that the activity manager correctly identifies

the user’s activity and selects the proper analysis module.

A. Elevator module

We evaluated the elevator module in three different research

and classroom buildings at Columbia University: CEPSR,

Mudd, and Pupin. They have 10, 15, and 13 floors, respec-

tively. Table I shows the reference floor-to-floor height of each

building, which we measured using a tape measure, followed

Building Floor height Average Error-to-height
name (by tape measure) error ratio

CEPSR 4.65 m 0.08 m 1.6%
Mudd 3.67 m 0.06 m 1.7%
Pupin 3.48 m 0.09 m 2.7%

TABLE I
ERRORS IN ONE FLOOR DISTANCE CALCULATED BY ELEVATOR MODULE.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 3 5 7 9

E
rr

o
r 

in
 d

is
ta

n
c
e

 [
m

]

Number of floors traveled

(a) Traveling 1, 3, 5, 7, 9 floors.

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4

E
rr

o
r 

in
 d

is
ta

n
c
e

 [
m

]

Number of stops

(b) Traveling 9 floor with 1 - 4 stops.

Fig. 6. Distance errors of elevator module measured in Mudd building.

by the error of the result from the elevator module. The error

is the difference between the reference height and the distance

calculated by the elevator module when a user moves one floor

in an elevator in each building. The error is an average of ten

trials, five moving up and five moving down.

Errors are small in all three buildings, indicating that the

elevator module can provide accurate vertical location up to

a reasonable number of floors. We can extend the range by

strategically deploying location beacons. For example, in the

Pupin case in Table I, the error is under 3%, so the elevator

module will be accurate up to about 15 floors. Thus, location

beacons can be deployed conservatively in every 10 floors to

cover the entire building.

Figure 6(a) shows distance errors from the elevator module

as we increase the number of floors traveled in an elevator

without stopping. The graph shows that the errors accumulate

as the elevator travels farther. The error of 0.82 m when the

user traveled nine floors is about 22% of the floor-to-floor

height, which is well within the margin of error for accurately

determining the destination floor.

Figure 6(b) plots the distance errors of traveling nine floors

in an elevator as we vary the number of stops that the user

has made during the travel. The graph shows that the error

decreases as the user makes more stops. This shows the

effectiveness of applying ZUPT in the distance calculation. At

each stop, ZUPT eliminates accumulated errors by removing

residual velocity. Therefore, if the elevator makes stops during

the trip, the elevator module’s distance estimation becomes

much more accurate, extending the upper bound of the elevator

module’s distance limitation.

B. Stairway module

We evaluated the stairway module in two buildings. One

was an office building and the other was a residential building.

Both buildings have two landings between each pair of floors.

The stairways in the two buildings have different properties:

the office building has 27 steps between a pair of floors and

the residential building has 16.
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Building # of floors # of trials # of trials with
type walked 1-landing error

Office

1 10 3
2 10 1
3 10 1
4 10 0

Residence

1 10 0
2 10 0
3 10 0
4 10 0

TABLE II
THE STAIRWAY MODULE MEASUREMENTS.

Table II shows our results. In each building, we walked

1, 2, 3, and 4 floors. We repeated each travel ten times,

five walking up and five walking down. There were several

recoverable errors in the office building. We consider an error

recoverable when the stairway module missed a single landing.

For example, in one of the trials walking 3 floors in the office

building, the stairway module reported 5 landings (2.5 floors)

instead of 6 landings (3 floors). In these cases, we assume that

the nature of error is an omission of a landing, so we simply

round up the value. Our landing detection algorithm described

in Section III-B makes false positives unlikely. Indeed, we

observed no case of such false positives in this experiment.

Errors of two or more landings are deemed unrecoverable

because they would result in miscalculations of the number of

floors traveled. In this experiment, we have not encountered

any unrecoverable error.

We note that, in all trials in Table II, the user moved at

a normal walking speed. If the user walks very fast or very

slowly, the amplitude difference of the accelerometer reading

between steps and landings is much less pronounced. We can

address this issue by giving more weight to the heading infor-

mation from the magnetometer. In the extreme case, we can

reverse the roles of the accelerometer and the magnetometer,

i.e., instead of using the magnetometer to make adjustments

to the landings identified by the accelerometer, we can use the

magnetometer first to identify landings. The relative weights

of the two sensors can be dynamically determined depending

on how pronounced the amplitude difference is.

The iPhone’s magnetometer readings, however, often

showed large fluctuations in our experiments even when the

user did not change direction. For this reason, we chose

to use the magnetometer conservatively, i.e., only for cor-

recting false positives. In order to see the effectiveness of

the magnetometer-first approach, we conducted the same ex-

periment with the user walking very fast and very slowly,

and selected the measurements that did not contain incorrect

magnetometer readings. We confirmed that the magnetometer-

first approach, when the magnetometer readings are reliable,

can cover wider range of human walking speed.

VI. RELATED WORK

Indoor positioning systems can be put into two cat-

egories: infrastructure-based and self-contained systems.

Infrastructure-based systems rely on infrastructure support

such as sensors or beacons deployed in buildings. Sensors

detect signals that are emitted by user devices, and bea-

cons transmit signals that are received by user devices. Self-

contained systems do not rely on any external entity. Instead,

inertial sensors in user devices are used to keep track of users’

movements indoors. There are hybrid systems that combine

elements from both categories. Our solution is an example of

a hybrid system.

A. Infrastructure-based systems

1) Proximity detection: Proximity detection based systems

locate users by detecting signals emitted by user devices. The

signals usually carry unique IDs for the devices.

Active Badge [17] uses infrared (IR) signals. Since IR

signals cannot penetrate walls, there is no interference among

sensors in different rooms or floors. Active Badge can deter-

mine the room that a user is located with high precision, but

requires the user to wear the badge.

Many systems use Bluetooth technology for location de-

tection [18], [19] because Bluetooth is inexpensive and ubiq-

uitous. Bluetooth’s longer range and its ability to penetrate

walls, however, result in lower accuracy and precision.

Systems relying solely on proximity detection would require

a large number of sensors if they were to provide room-

level indoor location. Floor-level indoor location might require

fewer sensors since only access points such as stairway

entrances and elevators need to be covered, but it still presents

a significant infrastructure challenge.

2) Triangulation: Triangulation measures the distances

from multiple known reference points to determine a user’s

location.

Cricket [20] and WALRUS [21] transmit RF and ultrasonic

signal simultaneously. Because the two signals travel at differ-

ent speeds, a receiver can derive the distance to the transmitter

from the difference in the arrival times. This eliminates the

need to synchronize the clocks of all transmitters and receivers,

as is the case for other systems based on time-of-arrival.

Ubisense [22] provides a commercial solution for indoor

positioning using ultra-wideband (UWB). UWB has an ad-

vantage for indoor positioning in that it does not suffer from

multipath effect. UWB signal has a short pulse timing, thus the

path signal can easily be distinguished from the reflected ones.

Ubisense system provides very accurate indoor locations, with

errors less than 15 cm.

Compared to proximity detection, triangulation requires

fewer sensors, but the number is still high. For example, a

Ubisense system installed for a 1,800 m assembly line consists

of 470 sensors [23]. In addition, multipath and shading effect

make it hard to use triangulation for vertical positioning.

Floors and ceilings of a building degrade accuracy. Installing

sensors on every floor will solve the problem, but such

an installation will lose the triangulation’s advantage over

proximity detection.

3) Fingerprinting: At each location, fingerprinting identi-

fies signals that have long-term stability. During the offline

phase, the signal strengths at different location coordinates

are recorded to build a fingerprinting database. At the online
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phase, the real-time signal measurement is looked up in the

fingerprinting database to find a matching location.

Many kinds of signals have been used for fingerprinting

systems. RADAR [24], Place Lab [25], and Ekahau [26] use

ubiquitous Wi-Fi signals. Otsason et al. [27] developed a

cellular-based fingerprinting system. Patel et al. [28] inject

RF signals on the power line of a building, and construct

a fingerprinting database from the signals emanating from

the power line. There are a number of systems that use

the distortions of Earth’s magnetic field caused by the steel

structure of a building [29]–[31].

The main disadvantage of fingerprinting is the effort re-

quired to conduct offline surveys. To achieve an acceptable

accuracy, signals should be sampled at every meter, and

on top of that, at least toward four different directions at

each location [24], which generates an enormous amount of

data. In addition to the initial deployment, the fingerprinting

database needs to be updated whenever there are changes in

the environment, such as moving furniture or equipment.

B. Self-contained systems

1) Step-based systems: Step-based systems detect steps in

human movements and measure the displacement vector of

each step. The displacement vector is composed of the stride

length and direction. The user’s location is then calculated by

adding all displacement vectors to the initial location.

Yeh et al. [32] and Vildjiounaite et al. [33] use sensors

which are mounted on a user’s shoes or ankles for measure-

ment. On the one hand, foot-mounted sensors can directly

measure human steps, so errors in step detection and stride

estimation can be reduced. On the other hand, those systems

need customized hardware, which can be an obstacle to wide

deployment.

Step detection in these systems is performed by identifying

local extrema of amplitude in vertical acceleration. One step

contains exactly one maximum and one minimum in a short

time interval. Our stairway module similarly monitors the

amplitude of vertical acceleration. The difference is that,

instead of trying to identify each and every step by scrutinizing

vertical acceleration, we detect landings by focusing on large

amplitude changes in acceleration, which are easier to identify.

2) Inertial navigation systems: Inertial navigation systems

measure a user’s acceleration and calculate the distance by

double integration. The main challenge is to eliminate the

effect of drift, which degrades the accuracy of the distance

estimation over time.

NavShoe system [34] uses foot-mounted inertial sensors

and applies ZUPT to achieve a significant reduction of errors.

While a person is walking, one foot is in “stationary stance

phase”, while the other is in “moving stride phase”. At every

stationary stance phase, the velocity of the foot is zero. We

have also used ZUPT in our elevator module. As the foot’s

velocity becomes zero at the stance phase, the elevator’s

velocity becomes zero when it stops on a floor.

Ojeda and Borenstein [35] have successfully traced a user’s

movement on a stairway using a foot-mounted IMU. Their

system provides the elevation changes in meters, while our

stairway module returns the number of floors a user has

traveled. The direct measurement of a vertical displacement

is possible because their IMU is mounted on the user’s foot.

It is hard to measure vertical acceleration accurately with a

smartphone at an arbitrary position.

Xuan et al. [36] and Shanklin et al. [12] use smartphones

to develop indoor positioning systems. Both systems do not

reach the accuracy of the foot-mounted systems because of the

lack of adequate mechanisms to handle the accelerometer drift.

Moreover, inertial sensors in smartphones are more prone to

errors. Our elevator module only considers movements in one

direction, thus we can easily filter out noise in other directions.

Our use of ZUPT in the elevator module also increases the

overall accuracy.

3) Activity classification: Parnandi et al. [10] developed a

smartphone-based system that focused on floor-level vertical

location. From the real-time accelerometer data, the system

classifies a user’s current activity into one of four classes:

elevator up, down, stairs up, and down. The system then

estimates the number of floors that the user has traveled simply

by dividing the total travel time by the time it takes to travel

one floor. This system requires a training period to build a

classifier for each activity and to calculate the average times

needed to travel one floor.

However, this approach cannot take account of the speed

variation of different elevators. Our elevator module can

handle different speeds of elevators because we use real-time

measurements to derive the user’s vertical movement. Parnandi

et al.’s work can be useful for our activity manager. We can

employ their technique to determine whether a user is riding

an elevator or walking on a stairway.

C. Hybrid approach

Infrastructure-based systems require a large number of

sensors, and self-contained systems suffer from accumulated

errors over time. Hybrid approaches are proposed to overcome

the shortcomings of the two approaches. In hybrid systems,

users’ locations are primarily determined using IMU. The

location estimation is then adjusted by information from

infrastructure, such as RFID beacons [32] or Wi-Fi fingerprint-

ing [37], [38]. Beacons in this case can be deployed in much

coarser granularity compared to the systems purely based on

infrastructure.

Our system can be viewed as a hybrid system because we

primarily rely on IMU, but we anchor a user’s location using

the entrance information from Bluetooth beacons. Our system

can be further extended by placing more beacons, one in every

ten floors for example. Wi-Fi fingerprinting at such anchor

points can also improve accuracy.

VII. CONCLUSION AND FUTURE WORK

This paper makes three contributions toward improving

vertical accuracy of indoor positioning. First, we present the

elevator module for tracking a user’s movement in elevators.

Second, we present the stairway module which determines
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the number of floors a user has traveled on foot. Unlike

previous systems that track users’ foot steps, our stairway

module uses a novel landing counting technique. Third, we

present a hybrid architecture that combines the sensor-based

components with minimal and practical infrastructure. The

architecture strikes the right balance between accurate location

information and the ease of deployment for the purpose of

emergency communication.

We recognize that there are many hurdles to overcome

before our system can be deployed in the real world. For

instance, our elevator module assumes that the acceleration

inside an elevator is mostly vertical. This will not be the case if

a user happens to pace back and forth during the ride. Similar

shortcomings also exist in the stairway module. The stairway

module can produce false positives in some unusual cases. For

example, a user can stop in the middle of a stairway, slowly

turn around 180 degrees, and walk the rest of the stairway

backward. This is highly unlikely, but it illustrates the general

limitation of our approach that relies on behavioral norms. As

future work, we plan to study the effects of various unusual

behaviors, and explore possible solutions to address them.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under Grant No. 0751094.

REFERENCES

[1] U.S. Department of Transportation, “Next Generation 9-1-1,” http:
//www.its.dot.gov/ng911/.

[2] J. Kim, W. Song, H. Schulzrinne, A. Zacchi, A. Jain, H. Chenji,
C. Magnussen, C. Norton, W. Magnussen, I. Schworer, and K. Trinh,
“The Next Generation 9-1-1 Proof-Of-Concept System,” in Proc. of
ACM SIGCOMM 2008, Aug. 2008.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261, 2002.

[4] G. Lammel, J. Gutmann, L. Marti, and M. Dobler, “Indoor Navigation
with MEMS sensors,” Procedia Chemistry, vol. 1, no. 1, pp. 532–535,
2009.

[5] J. Parviainen, J. Kantola, and J. Collin, “Differential Barometry in
Personal Navigation,” in Proc. of IEEE/ION Position Location and

Navigation System (PLANS), May 2008.
[6] Q. Ladetto and B. Merminod, “In Step with INS: Navigation for the

Blind, Tracking Emergency Crews,” GPS World, vol. 13, no. 10, pp.
30–38, 2002.

[7] S. Kerber and W. Walton, “Effect of Positive Pressure Ventilation on a
Room Fire,” National Institute of Standards and Technology, Tech. Rep.
NISTIR-7213, Mar. 2005.

[8] “Building Pressure Diagnostics,” http://contractingbusiness.com/
enewsletters/cb imp 9596/.

[9] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer,
“Energy-Efficient Continuous Activity Recognition on Mobile Phones:
An Activity-Adaptive Approach,” in Proc. of the Sixteenth Annual

International Symposium on Wearable Computers (ISWC), Jun. 2012.
[10] A. Parnandi, K. Le, P. Vaghela, A. Kolli, K. Dantu, S. Poduri, and

G. Sukhatme, “Coarse In-building Localization with Smartphones,” in
Proc. of the First Annual International Conference on Mobile Comput-
ing, Applications, and Services (MobiCASE), Oct. 2009.

[11] D. Grejner-Brzezinska, Y. Yi, and C. Toth, “Bridging GPS Gaps in Urban
Canyons: The Benefits of ZUPTs,” Navigation, vol. 48, no. 4, pp. 217–
225, 2001.

[12] T. Shanklin, B. Loulier, and E. Matson, “Embedded Sensors for Indoor
Positioning,” in Proc. of IEEE Sensors Applications Symposium (SAS),
Feb. 2011.

[13] S. Dixon-Warren, “Motion Sensing in the iPhone 4:
Electronic Compass,” http://www.memsjournal.com/2011/02/
motion-sensing-in-the-iphone-4-electronic-compass.html.

[14] P. Bhagwat, “Bluetooth: Technology for Short-Range Wireless-Apps,”
IEEE Internet Computing, vol. 5, no. 3, pp. 96–103, 2001.

[15] “BTstack,” http://code.google.com/p/btstack/.
[16] “BlueCove,” http://bluecove.org/.
[17] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The Active Badge

Location System,” ACM Transactions on Information Systems (TOIS),
vol. 10, no. 1, pp. 91–102, 1992.

[18] “TOPAZ,” http://www.tadlys.co.il/.
[19] R. Agrawal and A. Vasalya, “Bluetooth Navigation System using Wi-Fi

Access Points,” Cornell University Library, Tech. Rep. arXiv:1204.1748,
Apr. 2012.

[20] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket
Location-Support System,” in Proc. of the 6th Annual International

Conference on Mobile Computing and Networking (MobiCom), Aug.
2000.

[21] G. Borriello, A. Liu, T. Offer, C. Palistrant, and R. Sharp, “WALRUS:
Wireless Acoustic Location with Room-Level Resolution using Ultra-
sound,” in Proc. of the 3rd International Conference on Mobile Systems,

Applications, and Services (MobiSys), Jun. 2005.
[22] “Ubisense,” http://www.ubisense.net/.
[23] T. Phebey, “The Ubisense Assembly Control Solution for BMW,”

http://www.rfidjournal.net/masterPresentations/rfid europe2010/np/
chandler phebey nov2 500 rtlsManu.pdf, Nov. 2010.

[24] P. Bahl and V. Padmanabhan, “RADAR: An In-Building RF-based User
Location and Tracking System,” in Proc. of the Nineteenth Annual

Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), Mar. 2000.

[25] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott,
T. Sohn, J. Howard, J. Hughes, F. Potter, J. Tabert, P. Powledge,
G. Borriello, and B. Schilit, “Place Lab: Device Positioning Using Radio
Beacons in the Wild,” Pervasive Computing, LNCS, vol. 3468, pp. 116–
133, 2005.

[26] “Ekahau,” http://www.ekahau.com/.
[27] V. Otsason, A. Varshavsky, A. LaMarca, and E. de Lara, “Accurate GSM

Indoor Localization,” in Proc. of the Seventh International Conference

on Ubiquitous Computing (Ubicomp), Sep. 2005.
[28] S. Patel, K. Truong, and G. Abowd, “PowerLine Positioning: A Practical

Sub-Room-Level Indoor Location System for Domestic Use,” in Proc. of

the 8th International Conference on Ubiquitous Computing (Ubicomp),
Sep. 2006.

[29] J. Chung, M. Donahoe, C. Schmandt, I. Kim, P. Razavai, and M. Wise-
man, “Indoor Location Sensing Using Geo-Magnetism,” in Proc. of

the 9th International Conference on Mobile Systems, Applications, and

Services (MobiSys), Jun. 2011.
[30] B. Gozick, K. Subbu, R. Dantu, and T. Maeshiro, “Magnetic Maps for

Indoor Navigation,” IEEE Transaction on Instrumentation and Measure-

ment, vol. 60, no. 12, pp. 3883–3891, 2011.
[31] “IndoorAtlas,” http://www.indooratlas.com/.
[32] S. Yeh, K. Chang, C. Wu, H. Chu, and J. Hsu, “GETA sandals: a footstep

location tracking system,” Personal and Ubiquitous Computing, vol. 11,
no. 6, pp. 451–463, 2006.

[33] E. Vildjiounaite, E. Malm, J. Kaartinen, and P. Alahuhta, “Location
Estimation Indoors by Means of Small Computing Power Devices,
Accelerometers, Magnetic Sensors, and Map Knowledge,” Pervasive
Computing, LNCS, vol. 2414, pp. 5–12, 2002.

[34] E. Foxlin, “Pedestrian Tracking with Shoe-Mounted Inertial Sensors,”
IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38–46,
2005.

[35] L. Ojeda and J. Borenstein, “Personal Dead-reckoning System for GPS-
denied Environments,” in Proc. of the IEEE International Workshop on

Safety, Security, and Rescue Robotics (SSRR), Sep. 2007.
[36] Y. Xuan, R. Sengupta, and Y. Fallah, “Making Indoor Maps with

Portable Accelerometer and Magnetometer,” in Proc. of the International

Conference on Ubiquitous Positioning, Indoor Navigation and Location-

Based Service (UPINLBS), Oct. 2010.
[37] H. Shin, Y. Chon, K. Park, and H. Cha, “FindingMiMo: Tracing a

Missing Mobile Phone using Daily Observations,” in Proc. of the 9th

International Conference on Mobile Systems, Applications, and Services

(MobiSys), Jun. 2011.
[38] O. Woodman and R. Harle, “Pedestrian Localisation for Indoor Envi-

ronments,” in Proc. of the 10th International Conference on Ubiquitous

Computing (Ubicomp), Sep. 2008.


