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Abstract—Privacy in social computing systems has become a
major concern. End-users of such systems find it increasingly
hard to understand complex privacy settings. As software evolves
over time, this might introduce bugs that breach users’ privacy.
Further, there might be system-wide policy changes that could
change users’ settings to be more or less private than before.

We present a novel technique that can be used by end-users for
detecting changes in privacy, i.e., regression testing for privacy.
Using a social approach for detecting privacy bugs, we present
two prototype tools. Our evaluation shows the feasibility and
utility of our approach for detecting privacy bugs. We highlight
two interesting case studies on the bugs that were discovered
using our tools. To the best of our knowledge, this is the first
technique that leverages regression testing for detecting privacy
bugs from an end-user perspective.

Index Terms—Social Testing; Privacy; Regression Testing;

I. INTRODUCTION

Today’s college students do not remember when websites
dedicated to or containing social networking aspects, such as
Facebook, Twitter, Amazon, Netflix, Last.fm, and Stumble-
Upon, were not commonplace. Privacy in the context of these
social computing systems (henceforth, “social system”) has
become a major concern for the society at large. A search
for the pair of terms “facebook” and “privacy” gives nearly
two billion hits on popular search engines. With many online
systems that range from purchasing products to recommending
movies to watch, as well as media attention (e.g., the AOL
anonymity-breaking incident reported by the New York Times
[1]), both users of the systems and even non-users of the
systems (e.g., friends, family, co-workers, etc. mentioned or
photographed by users) are growing more and more concerned
about their personal privacy [2]. In some of these cases,
figuring out the privacy settings is so complicated that there
exist many third-party “how to” guides [3], [4]. Recent feature
enhancements and policy changes in social networking and
recommender applications – as well as their increasingly
common use – have exacerbated this issue [5]–[8].

End-user Software Engineering (EUSE) is becoming an
increasingly important as “computer programming, almost as
much as computer use, is becoming a widespread, pervasive
practice.” [9]. EUSE ranges from requirements and design
to testing and debugging. End-user testing, in particular, is
important for privacy because the end-users have little or no
say in the functional specifications of or changes to social
computing software, and because its online software they
cannot avoid upgrading after each change or continue to use an
“old version.” Plus well-known social computing systems have
an established history of making changes that breach privacy

with no a priori ability for end-users to opt out [6]. But the
end-users are not, in general, trained software engineers so
any methodology and technology must be simple and easy to
use without training.

Consider the following scenario for Pete – a user of a social
system like Facebook. Pete is comfortable using websites
and computers, but doesn’t have a very strong technical
background in Computer Science or Software Engineering. He
is worried about his privacy when he uses Facebook though.
There has been a lot of media coverage about privacy concerns,
how they keep changing their privacy policy periodically, how
hard it is to figure out all the privacy settings, and so on and
this has caused Pete some concern. Pete likes using the system
to keep in touch with his friends and professional colleagues,
but he doesn’t want strangers to have access to his personal
information, photos, likes, dislikes, etc. He has used some of
the “how to” guides to configure his settings to what he wants
to them (or so he thinks).

A scenario like this raises a number of interesting software
engineering research challenges:

1) R1: Users’ Mental Model of Privacy — How can we
make complex privacy settings easier to understand
and verify for Pete? (e.g., If I think my photos are
shared with only my friends, is that really the case?)
— Requirements Engineering for Privacy.

2) R2: Code/API Bugs — How can we detect if privacy
settings that are in place remain the same as the software
evolves and changes over time? (e.g., If my photos are
currently only shared with my friends, how do I know
that they won’t “automatically” get shared with everyone
due to a software bug?) — Regression Testing for
Privacy.

3) R3: Policy Changes — How can we detect system
wide policy changes that might cause privacy settings
to change? (e.g., If my photos are private right now,
how do we detect if there a policy change that makes
all photos publicly accessible?) — Regression Testing
for Privacy.

Ideally, for users like Pete who do not have access to the
source code of systems like Facebook, we want to do this
from an end-user perspective. In this paper, we present a novel
technique that leverages a social, crowdsourced approach for
detecting bugs from the end-user perspective. To the best
of our knowledge, this is the first technique that leverages
regression testing for detecting privacy bugs.

Continuing the scenario above – consider Roger, a friend of
Pete on the social system. Roger can manually monitor what



part of Pete’s information is visible to him. This monitoring
can be done periodically as often as Pete/Roger deem neces-
sary – say, every day, every hour, once a month, and so on.

Using this monitoring, Roger can inform Pete when the
information he sees changes. For example, he might suddenly
see a whole lot of new information that is now visible. This
might be due to: (1) Pete added more information manually;
(2) Pete changed his privacy settings either deliberately or
accidentally; (3) Pete didn’t do anything – there is a bug in
the code or API, possibly due to code changes; and (4) Pete
didn’t do anything – the social system made a wide policy
change where this information for many or all of its users is
now visible. Pete, now, using this feedback from Roger, can
decide whether it’s ok for the new information to be visible and
take the appropriate actions such as changing the settings back
to what he wants them to do, reviewing the privacy settings
or doing nothing.

This, however, can be very tedious for Roger to have to
do all this manually, particularly, if frequently done, and he
could easily forget to check certain things. Thus, automated
monitoring is essential and can be done if the system provides
an API. A lot of social systems like Facebook [10], Twitter
[11], Last.fm [12], and Google+ [13] do provide an API whose
main purpose is to build an ecosystem of app developers for
the system. We can leverage such APIs where possible and if
an API doesn’t exist, the same goal can be achieved via screen
scraping.

This is our broad approach — using one’s friends for
detecting potential privacy violations. We call this Social
Testing. There are more specific details that need to be dealt
with based on the platform and API and we discuss this in
Sections III and IV. This latter section also contains details
about the feasibility of this approach and the kinds of privacy
bugs it has helped us uncover. The main advantages of this
approach are:

1) We don’t need access to source code for detecting
privacy bugs. Hence, this makes it very suitable to be
employed by end-users (rather than software program-
mers building the system).

2) It leverages the social nature of these systems for de-
tecting these bugs.

3) It can detect privacy bugs due to changes in the code,
i.e., regression testing for privacy.

There has been some recent work on data anonymization
for privacy in software testing [14]–[17]. For example, when
bug reports are submitted by individual users that may au-
tomatically include portions of memory, files, etc. in use by
that user at the time an exception occurred. The user would
like the software vendor to fix the bug, but does not want
to send any identifiable personal information. In contrast, in
social computing, the data is directly identified as belonging
to each user and the issue is which other users can see it, not
whether the software vendor can see it (of course the software
vendor can see all of it!). This recent work on privacy in
software testing focuses of protecting the privacy of the users
by novel techniques to anonymize data; we, on the other hand,

want to detect violations in privacy due to code changes or
system wide policy changes. For more details on the related
work, please see Section VI.

The contributions of this paper are:

• A novel software testing technique, called social testing,
for the social circles of end-users to detect privacy bugs
using regression testing. Social testing could potentially
also be used for applications other than privacy preserva-
tion in social systems, such as in the multi-player gaming
community;

• Two prototype tools that implement our technique for
Facebook and Twitter; and

• A large empirical evaluation of our technique that
demonstrates: (1) the feasibility and utility of our
technique; and (2) the different kinds of bugs it can help
detect.

II. BACKGROUND AND MOTIVATION

Many recent studies on online social networks show that
there is a (typically, large) discrepancy between users’ inten-
tions for what their privacy settings should be versus what they
actually are [18]–[20]. For example, Madejski et al. report
that, in their study on Facebook, 94% of their participants
(n = 65) were sharing something they intended to hide and
85% were hiding something that they intended to share. Liu
et al. [20] found that Facebook’s users’ privacy settings match
their expectations only 37% of the time. This is R1 mentioned
in the previous section.

In addition to the problem of understanding existing privacy
settings, there are two orthogonal problems. First, there might
be software bugs in the implementation of the privacy settings,
which results in over-sharing or under-sharing of information,
and as software evolves over time, this might introduce new
bugs. This is R2 mentioned earlier.

Second, systems like Facebook change their policies on
privacy often and these changes in policy usually end up
confusing users even more. Dan Fletcher [6] writes: “In the
past, when Facebook changed its privacy controls, it tended
to automatically set users’ preferences to maximum exposure
and then put the onus on us to go in and dial them back.
In December, the company set the defaults for a lot of user
information so that everyone — even non-Facebook members
— could see such details as status updates and lists of friends
and interests. Many of us scrambled for cover, restricting who
gets to see what on our profile pages.” This is R3 mentioned
earlier and these are the main research problems that we are
trying to solve with our approach.

III. THE SOCIAL TESTING APPROACH

The broad technique for our social testing approach is to
use one’s friends to help with software engineering problems.
Our approach leverages the inherently social aspect of these
systems, which are used for interacting and communicating
with other users. This approach will apply only to systems



where users are members of possibly overlapping groups and
input information intended to be shared with some of these
groups they are members of but not with other groups they are
members of. This includes the cases of the singleton group –
just me – and the universal group – everyone who uses the
system, or anyone who uses the internet since many social
systems often allow certain access with no login at all.

This technique could apply towards many different func-
tional and non-functional requirements for end-users such as
privacy, performance, and so on. In this paper, we focus on
privacy testing and in particular, on R2 (detecting privacy bugs
in code/API implementations) and R3 (detecting system wide
policy changes for privacy). There are two possible kinds of
privacy violations:

• Over-sharing — From a user’s point of view, this piece
of information should have been private, but it can be
viewed by others.

• Under-sharing — From a user’s point of view, this piece
of information should have been public, but it cannot be
viewed by others.

We deal with both of these types of privacy violations. As
our technique is intended for end-users, we assume that there
is no access to source code. The main crux of our technique
is — a user can choose his/her friends to periodically monitor
what’s visible to them via the social system. When they see a
change in what’s visible, this might be a privacy violation and
they can inform the user. Thus, the aforementioned privacy
violations, from the point of view of the tester, become: (1)
Over-sharing — seeing more than you should; and (2) Under-
sharing — seeing less than you should.

Thus, we use a social approach for detecting privacy bugs.
The algorithm for our technique (from the tester’s point of
view) is outlined below:

1) Implement/Download/Build a wrapper that can “talk” to
the system under test (via an API, screenscraping, etc.).

2) Generate a list of users to monitor.
3) Decide on the policies (how often to monitor, which

things to monitor).
4) Based on the policies, use the wrapper to monitor the

user(s).
5) Generate diffs (i.e., differences) between the information

just received and from the previous run.
6) If there is a diff, inform the user on what changed.
7) Repeat steps 4-6, as needed and update steps 2-3, when

necessary.
We discuss the platform and API specific implementation

issues, examples of privacy bugs that we found, and how this
technique can help address R2 and R3 in the next section.

IV. EMPIRICAL EVALUATION

For our empirical evaluation, we built two prototype tools:
one for Facebook; one for Twitter. Using these tools, we
evaluated how our technique could help addressing R2 and
R3. In particular, we had two specific research questions for
our empirical evaluations:

RQ1: Feasibility — Does using our technique help in
detecting privacy bugs?

RQ2: Utility — What kinds of bugs does it detect? Does it
help with, both, R2 (Code/API Bugs) and R3 (Policy
Changes)?

A. Privacy and Facebook

Facebook is a great example for doing an empirical eval-
uation on privacy as it follows a fine-grained privacy model.
It has many different privacy parameters and options; broadly,
users can choose who gets to see what type of data with a
lot of granularity. It provides an API, called the Graph API,
that represents the Facebook social graph using objects and
connections between objects [21]. Examples of the objects
include User, Events, Groups, and Applications. The User
object contains fields such as name, gender, and birthday and
“connections” such as albums, family, groups, likes, movies,
and videos. A complete list of User Connections is available
on the Facebook User API page [22].

In general, there is a lot of flexibility for the user to choose
the privacy settings for all of these. Users can share the
data with no one, with selected friends, with all friends, with
friends of friends, with certain networks (such as “Columbia
University”), and with everyone. Users can also allow certain
apps to access this information.

1) Prototype Tool: Our tool is a prototype implementation
of the social technique for detecting privacy bugs in Facebook.
It is easily configurable and can fetch any data provided by the
Facebook API. For the purposes of this study, we focused on
getting only the User Connections from [22]. The prototype
tool consists of two separate components: the Data Monitor
and the Diff Visualizer.

The Data Monitor is implemented as a set of Ruby scripts.
It uses the Koala library [23], which is a Facebook library for
Ruby and supports the Graph API. The Data Monitor works as
follows: First, given a list of users, for each user, it uses Koala
to get data for that user. It gets all the data listed in [22] (except
the “picture” connection, which didn’t exist when we started
collecting data). The Facebook API supports a “Batch mode”
for making data requests and we use this mode to reduce the
load of the servers and to get data more efficiently. Once the
Data Monitor has the data, it writes it out to a log file. We
create a separate log file per user. To limit the data that needs
to be stored and also for privacy reasons, we do not store the
entire data; we keep only the count of data items and codify
the data received according to the schema defined below:

• 0, nil — This is used when the API returns an error. This
is typically a permissions error, but can also include other
server side errors.

• 1, 0 — This is used when the API returns an empty data
set. This means that either there is no data in that category
or that the data exists but has been hidden by the user.
Note that with the latter case, it will return a 1, 0 and not
a 0, nil.

• 2, x — This is used when the API returns some data. x is
the count of the number of items received. For example,



F r i Apr 27 1 3 : 1 2 : 3 0 −0400 2012 ,
[ ” someUser ” , [ 2 , 2 5 9 ] , [ 2 , 1 ] , [ 1 , 0 ] ,

[ 1 , 0 ] , [ 2 , 2 5 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 1 ,
0 ] , [ 2 , 1 9 ] , [ 1 , 0 ] , [ 2 , 3 ] , [ 2 , 2 5 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 2 , 2 5 ] , [ 2 ,
2 0 ] , [ 2 , 2 5 ] , [ 2 , 4 ] , [ 1 , 0 ] , [ 2 , 1 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 2 , 1 ] , [ 0 , n i l ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 0 , n i l ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 1 , 0 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] ]

Tue May 01 1 5 : 2 2 : 3 5 −0400 2012 ,
[ ” someUser ” , [ 2 , 2 5 9 ] , [ 2 , 1 ] , [ 1 , 0 ] ,

[ 1 , 0 ] , [ 2 , 2 5 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 1 ,
0 ] , [ 2 , 1 8 ] , [ 1 , 0 ] , [ 2 , 3 ] , [ 2 , 2 5 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 2 , 2 5 ] , [ 2 ,
2 0 ] , [ 2 , 2 5 ] , [ 2 , 4 ] , [ 1 , 0 ] , [ 2 , 1 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 2 , 1 ] , [ 0 , n i l ] , [ 0 , n i l ] , [ 0 , n i l ] ,
[ 0 , n i l ] , [ 1 , 0 ] , [ 0 , n i l ] , [ 1 , 0 ] ,
[ 1 , 0 ] , [ 1 , 0 ] , [ 1 , 0 ] , [ 0 , n i l ] ]

Listing 1: Sample Log File for someUser. Note: We
anonymized the username and replaced it with someUser. The
order of arrays is as follows: friends, accounts, apprequests,
activities, albums, books, checkins, events, feed, interests,
likes, links, movies, music, notes, photos, posts, statuses,
tagged, television, videos, achievements, family, friendlists,
friendrequests, games, groups, home, inbox, locations,
mutualfriends, notifications, outbox, payments, permissions,
pokes, questions, scores, subscribedto, subscribers, updates.

if there were 10 locations that the user had been tagged
at, we would log 2, 10.

The log file, thus, contains multiple lines of data. Each line
contains two things: (1) The current timestamp when the data
was received; and (2) An array containing the username and
the 41 arrays for the connections encoded into the schema
shown above. A sample log file is shown in Listing 1.

The Diff Visualizer, which is also a set of Ruby scripts,
parses each log file and creates a human readable output if
there is a diff (i.e., difference) between any consecutive runs
for a user. If there is a difference, it will print out the pairwise
timestamps and what the old and the new values are. We
divide a difference into two categories: a Major Difference
and a Minor Difference. A Major Difference occurs when, for
a certain connection, the data received changes the codifying
categories. For example, if music was 2, 8 and became 1, 0,
this would be a Major Difference. A Minor Difference, on
the other hand, occurs when the data changes, but does not
change the codifying category. For example, if music was 2,
10 and became 2, 12, this would be a Minor Difference. We,
thus, have two variants of the Diff Visualizer, which will print

======May 25 2012 and May 27 2012======
f r i e n d s − Old : 2 , 783 , New : 2 , 784
e v e n t s − Old : 2 , 1 , New : 1 , 0
f eed − Old : 2 , 15 , New : 2 , 16
l i k e s − Old : 2 , 202 , New : 2 , 200
p o s t s − Old : 2 , 6 , New : 2 , 7
tagged − Old : 2 , 9 , New : 2 , 10
======May 27 2012 and May 28 2012======
f r i e n d s − Old : 2 , 784 , New : 2 , 783
p o s t s − Old : 2 , 7 , New : 2 , 8
tagged − Old : 2 , 10 , New : 2 , 9

Listing 2: Sample Diff Output for a user. events is an example
of a Major Difference; the others are all Minor Differences.

out either Major or Minor Differences as needed. A sample
output containing both Major and Minor Differences is shown
in Listing 2.

2) Feasibility: The first step in our empirical evaluation was
to show the feasibility of our approach and tool. For this step,
we used the tool to access the Facebook data of a research
colleague of the first author. Facebook uses OAuth 2.0 [24],
which is an open standard for authentication. We provided our
tool with the first author’s OAuth 2.0 access token so that the
tool can access the same data that the first author can. This
is the equivalent of the research colleague, using our social
approach, asking the first author to monitor his information on
Facebook. For this step of the evaluation, we did the following:

1) We accessed the Facebook data of the research colleague
(name anonymized, for privacy reasons).

2) After the data was accessed, we asked the colleague to
turn on privacy controls and make the data less visible.
This would enable us to check if our tool could detect
changes in privacy, where data is made less visible. The
colleague did this by adding the first author to one of
his pre-defined friend lists that had very limited access
to his profile. We accessed the data using our tool again.

3) Finally, we asked the colleague to turn off the privacy
controls and make the data more visible. This would
enable us to check if our tool could detect changes in
privacy, where data is made more visible. We accessed
the data again using our tool.

The output from the Diff Visualizer is shown in Figure 1.
As the figure shows, turning on the privacy settings reduces
visibility — things like photos, locations, and feed were visible
earlier and the Facebook API responses contained data; with
the privacy settings on, the Facebook API returns an empty
set. Turning off the privacy settings makes the data visible
again, as seen in the right hand side of the figure.

Our Facebook prototype tool can thus detect changes in
privacy settings. These changes can either be data being made
more private or data being made less private. Thus, if someone
suddenly starts sharing more or less data than before, our tool
would detect this and this could indicate a privacy bug. Next,



======Apr 24 2012 and Apr 25 2012======
f eed − Old : 2 , 19 , New : 1 , 0
photos − Old : 2 , 25 , New : 1 , 0
p o s t s − Old : 2 , 19 , New : 1 , 0
tagged − Old : 2 , 5 , New : 1 , 0
v i d e o s − Old : 2 , 1 , New : 1 , 0
l o c a t i o n s − Old : 2 , 1 , New : 1 , 0

(a) Turning On the Privacy Settings

======Apr 25 2012 and Apr 27 2012======
f eed − Old : 1 , 0 , New : 2 , 19
photos − Old : 1 , 0 , New : 2 , 25
p o s t s − Old : 1 , 0 , New : 2 , 20
tagged − Old : 1 , 0 , New : 2 , 4
v i d e o s − Old : 1 , 0 , New : 2 , 1
l o c a t i o n s − Old : 1 , 0 , New : 2 , 1

(b) Turning Off the Privacy Settings

Fig. 1: Changing Privacy Settings — Output as seen from our tool

we show some examples of bugs our tool can help detect.
3) Facebook Bugs — Family and Friendlists: We ran our

Facebook prototype tool using the first author’s access token
and collected data for all his Facebook friends (n = 516).
The data was collected roughly every day for each user for
approximately eleven weeks (from May 1, 2012 to July 20,
2012). For each user, the number of data points (i.e., the
number of days on which we successfully got data from the
Facebook servers) was, on average, 36.24 (σ = 3.26, median =
36, max = 44, min = 25). (Please see Section V for a discussion
on the number of data points and on the robustness of our
approach.)

Upon running the Diff Visualizer, we found that 63.18%
(326 out of 519) of the users had Major and Minor Differences
during the data monitoring period. Out of these, there were a
total of 5065 Minor Differences (on average, 15.54 per user)
and 780 Major Differences (on average, 2.39 per user). Not all
of these differences necessarily imply privacy bugs; some of
these differences would arise from the “normal” use of these
systems, i.e., users adding new photos from a recent trip and
so on. But even in these cases, the users may not be aware
with whom they are now sharing this new information.

We now highlight, in this and the next subsection, a couple
of interesting case studies on the bugs that were discovered
using our tool. For a certain user, there was one family
member being shown for the first three weeks of the data
monitoring period. On May 23, 2012, our tool found a lot
of Major Differences (there had been other, unrelated, Minor
Differences previously) for that user. The output from our tool
for the entire monitoring period is shown in Listing 3. The last
diff shows a lot less data being visible. Was this a case of a
user turning on privacy settings? Or perhaps did something
change in the Facebook Code or API resulting in a bug? We
tried to find out the cause. We were, of course, limited in our
efforts as we don’t have access to the source code. We decided
to focus on the family connection, which lists a user’s family
members. This is highlighted in red in Listing 3.

The first step of our investigation was to see the actual
page on Facebook. On the page, the family member was still
visible. This is shown in Figure 2a, highlighted in red (user
details have been blurred out to protect privacy). To ensure that
there were no bugs in our tool implementation, we used the
Facebook Graph API Explorer and verified that this returned

======May 04 2012 and May 07 2012======
f eed − Old : 2 , 21 , New : 2 , 20
p o s t s − Old : 2 , 15 , New : 2 , 14
======May 11 2012 and May 14 2012======
f eed − Old : 2 , 20 , New : 2 , 19
tagged − Old : 2 , 11 , New : 2 , 10
======May 18 2012 and May 21 2012======
p o s t s − Old : 2 , 14 , New : 2 , 15
tagged − Old : 2 , 10 , New : 2 , 8
======May 22 2012 and May 23 2012======
albums − Old : 2 , 3 , New : 1 , 0
f eed − Old : 2 , 19 , New : 1 , 0
l i k e s − Old : 2 , 2 , New : 1 , 0
photos − Old : 2 , 25 , New : 1 , 0
p o s t s − Old : 2 , 15 , New : 1 , 0
tagged − Old : 2 , 8 , New : 1 , 0
family – Old: 2, 1, New: 1, 0
groups − Old : 2 , 2 , New : 1 , 0
l o c a t i o n s − Old : 2 , 4 , New : 1 , 0

Listing 3: Facebook Family Bug — Output as seen from our
tool

an empty data set. This is shown in Figure 2b.
Finally, we started looking at Facebook bug reports to see

if anyone else had reported a similar issue. We found two
relevant bug reports. The most relevant bug report was titled
“Can no longer access FriendList members on test users”
[25]. In this bug report, a user had created two test users and
added each user to the other’s family list. When the user tried
accessing the members of one of the test user’s family, the
Graph API returned an empty data set. This is exactly the same
behavior as what we observed here. Facebook have confirmed
that the bug exists and assigned it to a developer with medium
priority. The second bug report, titled “Some of the friendlists
do not show members from Graph API, why??” [26], reported
a similar problem to the previous bug report. In this bug report,
the user had many friend lists, which is a generalization of the
family connection. Upon accessing the data from the Graph
API, some of the friend lists return all the members; some
return only a subset of the members. Facebook has responded
to this bug report by triaging it with low priority.



(a) The Facebook Website — The highlighted red rectangle shows the family
member.

(b) API — Using the API, the list of family members is empty.

Fig. 2: Facebook Family Bug — On the website, you can see the family member; Using the API, you cannot see the family
member.

====== J u l 02 2012 and J u l 06 2012======
f eed − Old : 2 , 14 , New : 2 , 15
links - Old: 1, 0, New: 2, 23
p o s t s − Old : 2 , 3 , New : 2 , 5
tagged − Old : 2 , 14 , New : 2 , 15

Listing 4: Facebook Links Bug — Output as seen from our
tool

These bug reports and our tool output, taken together, lead
us to believe that there is a bug in the Facebook API, that
was recently introduced due to code changes and should not
have passed the regression testing phase. This is an example
of under-sharing — less information is public than it should
be. Our tool was able to detect this privacy bug using end-user
regression testing.

4) Facebook Bugs — Links made public: At the start of
July, our tool discovered another example of a privacy bug —
this time, it was an example of over-sharing. The output from
our tool for one user is shown in Listing 4. There was a lot
of data made public about links posted by a user, which is
highlighted in red. The interesting part was that this was not
data that was recently added by the user; some of these links
were added back in 2009. This was data that had been on
Facebook for a while and not visible to friends of the users;
now, it was visible.

Analyzing the data further, we found that 73 out of 516
users were now sharing a lot more links than before and that
this new data was first visible towards the start of July. Of the
73 users, 57 (i.e., 11.05%) were sharing more than one link,

thus indicating that this was not new information added by the
user recently.

To understand the cause behind this over-sharing, we con-
ducted an informal open-ended interview with one of the users,
Keith (name changed for privacy reasons). Excerpts from the
interview are shown next (reproduced with permission from
Keith). On being told that he is now sharing 23 links, which
weren’t visible earlier, Keith responded: “whoa [. . .] ok......
that is weird.” After looking at the links that were visible,
Keith said: “ok, all of these links are valid, but, am surprised
you can see them [. . .] I, as a developer, opened my account for
developer access. it’s the only way possible and I just thought I
was authorizing that one app. they must have their permissions
f***ed up [. . .] it’s either that, or facebook changed my
settings automatically. ” Keith said that he would change his
settings back so that the links would not visible anymore and
ended the interview with: “good thing your app [sic] was able
to catch it.”

Keith is currently a student at Columbia University pursuing
a Ph.D. in Computer Science. Given that someone with a
technical background didn’t know about his data being public
and wasn’t completely sure what changed, a non-technical
end-user would generally have a much harder time figuring out
changes in privacy settings. This is the main strength of our
tool — giving end-users an easy way for detecting potential
privacy breaches.

Since this particular bug had not affected all the users, it
seems to indicate that this a Policy Change that is being rolled
out gradually by Facebook. Alternatively, this could be another
example of a bug (affecting only some users) in the Facebook
Code or API. Either way, our tool was able to detect this.



Field Description

description The user-defined UTF-8 string describing their
account.

favourites count The number of tweets this user has favorited in
the account’s lifetime.

followers count The number of followers this account currently
has.

friends count The number of users this account is following
(AKA their ”followings”).

geo enabled When true, indicates that the user has enabled
the possibility of geotagging their Tweets.

listed count The number of public lists that this user is a
member of.

protected When true, indicates that this user has chosen to
protect their Tweets.

statuses count The number of tweets (including retweets) is-
sued by the user.

verified When true, indicates that the user has a verified
account.

withheld in countries When present, indicates a textual representation
of the two-letter country codes this user is with-
held from.

withheld scope When present, indicates whether the content
being withheld is the ”status” or a ”user.”

TABLE I: Partial list of Users Fields from the Twitter User
API [28]

B. Privacy and Twitter

Twitter, as opposed to Facebook, has a completely different
model with respect to privacy. While Facebook has a very fine-
grained control model for controlling what’s visible to whom,
Twitter has a very coarse-grained model. Users can choose if
their accounts are “protected” or not, with the account being
not protected as the default setting [27]. If the account is
not protected, all tweets are public and can be viewed by
anyone. If the account is protected, it can only be viewed
by the followers of that person. There is no mechanism for
deciding this on a per-tweet basis, for example. Regardless
of whether the account is protected or not, anyone can still
see the number of tweets, the number of followers, and the
number of following for any user.

Thus, the only setting that matters in terms of privacy is
whether the account if protected or not. Our Twitter tool,
described below, uses the same social approach for detecting
if the privacy settings change. In addition to this, to show
the generalizability of our approach in dealing with different
kinds of social systems, we decided to treat some other user
information as “sensitive” — i.e., if Twitter had more fine-
grained controls for these types of information, our approach
(and tool) would still be able to detect changes in privacy
settings. A partial list of user fields from the Twitter User
API is shown in Table I. For the purposes of our tool and
empirical study, we treated these as sensitive information as
well and inform the user when these change.

1) Prototype Tool: Our prototype tool can detect privacy
bugs for Twitter. Similar to the Facebook prototype tool
described in Section IV-A1, it is easily configurable and can
fetch any data provided by the Twitter API. For the purposes
of this study, we focused on getting only the partial list of

========2012−06−19 and 2012−06−19========
f r i e n d s c o u n t−Old : 2 , 140 , New : 2 , 142
========2012−06−19 and 2012−06−19========
protected-Old: 2, false, New: 2, true
========2012−06−19 and 2012−06−19========
protected-Old: 2, true, New: 2, false
========2012−06−21 and 2012−06−22========
f o l l o w e r s c o u n t−Old : 2 , 138 , New : 2 , 137
s t a t u s e s c o u n t−Old : 2 , 548 , New : 2 , 551

Listing 5: Privacy Monitoring of @swapneel — Output as seen
from our tool

User fields shown in Table I. Similar to the Facebook tool,
the Twitter tool consists of two components: the Data Monitor
and the Diff Visualizer.

The Data Monitor is implemented as a set of Ruby scripts.
It uses the Twitter library [29] to get data from the Twitter
API. The Diff Visualizer, similar the Facebook Diff Visualizer,
is also a set of Ruby scripts that parses each log file and
creates a human readable output if there is a diff between any
consecutive runs for a user. The rest of the workings of the
Data Monitor are similar to the Facebook tool described in
Section IV-A1. We do not repeat the implementation details
of the tools due to space limitations. The main difference is
that this tool focuses on the user fields shown in Table I; the
rest of the implementation is similar. The other difference is
that, for Twitter due to its lack of fine-grained privacy controls,
we do not distinguish between Major and Minor Differences.

2) Feasibility: We ran our Twitter prototype tool and col-
lected data for some of the first author’s research colleagues
(n = 10). The data was collected roughly every day for each
user for approximately four weeks (from May 19, 2012 to July
20, 2012).

We also collected data for the first author (@swapneel)
and changed the account to protected (and back to open) and
verified if the tool can detect changes in privacy settings. The
tool could, indeed, pick up the changes in privacy settings. The
output from the Diff Visualizer (highlighted in red) in shown
in Listing 5.

One of the twitter accounts for which the data was collected
was the official ICSE twitter account (@ICSEconf). If we as-
sume that the fields listed in Table I are sensitive information,
our tool can detect changes in these as well. The partial output
from the Diff Visualizer is shown in Listing 6.

Recently, a bug was found in Twitter where users who
wanted to follow others were “arbitrarily, randomly, and
haphazardly” unfollowed [30]. This “unfollow” bug was ac-
knowledged by the Twitter team and they said that they were
working on a fix. Our tool would have been able to detect this
bug as well as follows: Say I started following two new users
today. If the output from the Diff Visualizer was anything other
than two, we know that there is a bug with following someone.
The user could then check which user got unfollowed and
follow the user again, if needed.



========2012−06−19 and 2012−06−20========
s t a t u s e s c o u n t−Old : 2 , 904 , New : 2 , 906
========2012−06−20 and 2012−06−21========
l i s t e d c o u n t−Old : 2 , 67 , New : 2 , 68
s t a t u s e s c o u n t−Old : 2 , 906 , New : 2 , 910
========2012−06−21 and 2012−06−22========
f o l l o w e r s c o u n t−Old : 2 , 877 , New : 2 , 876
s t a t u s e s c o u n t−Old : 2 , 910 , New : 2 , 912
========2012−06−22 and 2012−06−23========
f o l l o w e r s c o u n t−Old : 2 , 876 , New : 2 , 878
s t a t u s e s c o u n t−Old : 2 , 912 , New : 2 , 913
========2012−06−23 and 2012−06−25========
f o l l o w e r s c o u n t−Old : 2 , 878 , New : 2 , 879
========2012−06−25 and 2012−06−26========
f o l l o w e r s c o u n t−Old : 2 , 879 , New : 2 , 880
========2012−06−26 and 2012−06−27========
f o l l o w e r s c o u n t−Old : 2 , 880 , New : 2 , 882
========2012−06−27 and 2012−06−28========
f o l l o w e r s c o u n t−Old : 2 , 882 , New : 2 , 883
========2012−06−28 and 2012−06−29========
f o l l o w e r s c o u n t−Old : 2 , 883 , New : 2 , 885
f r i e n d s c o u n t−Old : 2 , 1015 , New : 2 , 1016

Listing 6: Privacy Monitoring of @ICSEConf — Output as
seen from our tool

V. DISCUSSION

A. Flexibility

One advantage of this approach for detecting privacy bugs is
the flexibility. A user could choose different sets of friends to
monitor different things, if the social system has a fine-grained
privacy model. For example, he could have a friend check the
privacy settings of his photos and check-in locations. He could
have someone from his network (such as “New York”) check
his music and movies. He could have a friend of a friend
check his feed. He could also create overlapping groups —
his friends should be able to see albums and locations; his
network can only see the albums. Thus, he could use different
sets of friends to verify that the privacy settings indeed are
what he expects them to be and to alert him when they can
see more or less than what they saw before.

A user can also choose how often the data is fetched based
on how active he is on the social system, the API rate limits,
and personal preferences such as the tradeoff between the load
on the social system’s servers and his privacy needs.

Finally, in terms of implementation, our prototype tools
were stand-alone tools that ran off the command line. Social
systems like Facebook and Twitter provide rich ecosystems
for apps. Our approach can be implemented as apps that
run on Facebook, for example. Other alternatives include a
browser plugin that automatically runs the regression testing
when the user logs into one of these systems or on a periodic
basis (every hour, every day, and so on), a “normal” desktop
application with a GUI, and so on. We used Ruby for our

implementations; this was of out choice and is not a constraint.
Any programming language that can access the web can be
used. Having a wrapper library for that programing language
does help as it obviates the need to deal with lower level
protocol details. For example, Twitter has a list of libraries
for 14 programming languages ranging from Java, .NET,
and Python to Erlang, Scala, and Clojure [31]. There are
no inherent implementation or UI limitations as far as our
approach is concerned.

B. Generalizability

Another advantage of this approach for detecting privacy
bugs is the generalizability of the technique. In general, it
can work with any social system regardless of what kinds
of privacy controls and features it has. The previous Section
showed how it could work with systems at two extreme ends of
the privacy spectrum: Facebook, with its fine grained settings
for choosing who sees what and Twitter with its coarse grained
settings, which is essentially an on/off switch.

Having an API to use makes it much easier to implement
a tool for a particular social system. This, however, is not a
limiting factor — if there is no API, the same approach can
be combined with alternatives such as screen or web scraping.

C. Robustness

Our approach is also very robust — it does not need that
the Data Monitor is run every day or that the Data Monitor
successfully fetches data for each user every day (or on every
run). In spite of the Facebook API having slow response times
[32] and timing out occasionally, which resulted in our Data
Monitor fetching data successfully on average 36 times (out of
possibly about 75 times) for each user in an eleven week time
period, our tool still works fine and detects bugs as shown
in the previous Section. The tradeoff with fetching data less
often is that we will not be able to catch transient bugs. For
example, if something is made public only for a few minutes
and then it is private again, if our Data Monitor is not active
then, we will not be able to detect it.

In contrast to the Facebook API, the Twitter API, in our
experience, was much more stable. Regardless of the stability
and reliability of the social system under test, as mentioned
above, our approach can still detect bugs due to its highly
flexible nature.

D. Limitations and Threats to Validity

A limitation of our prototype tools is that we keep track of
the number of items in data fetched, rather than the actual data.
For example, in the Facebook tool, for a user, we log that the
user had ten photos rather than what the photos are. We do this
for two reasons: (1) to reduce the data that needs to be stored;
and (2) for privacy reasons. Due to this, our tools might miss
out on changes in privacy if a user, for example, deletes one
photo and adds one photo, our tool would see this as no change
having occurred. This, however, is a limitation of our prototype
tools, and not of our approach. If an end-user wishes to keep
track of the exact data, rather than the number of data items,



our tools can be modified to do that. An added challenge, in
this case, would be to find the semantic similarities between
data items, which would be easier in some cases (e.g., checkin
locations, groups) than others (e.g., albums, interests, likes).

An inherent limitation of our approach is the possibility of
false negatives, i.e., privacy bugs that exist in the system that
our tool/approach is not able to catch. There might be bugs
that have existed since the first version of the software; if there
is no change in the code, our regression testing approach will
not work. There might be privacy bugs that affect only some
of the users; if the users that are currently using our tool are
not affected by this bug, we won’t be able to detect it. The
main reason for this is that our approach is intended for end-
users and we don’t have access to the source code of the
system under test. From an end-user perspective, it’s hard to
detect bugs using our approach that may not have an external
manifestation or change in behavior for our users.

Finally, coming back to our software engineering research
questions, even though R1 is beyond the scope of this paper,
we make a couple of observations based on our empirical re-
sults. If there are never any changes in the social software, then
R2 and R3 won’t happen, but in a limited indirect way just
trying to use our tool (which will keep saying “no change”)
might make users more aware of privacy settings issues and
thus in a very small way help with R1. Now if there are
changes, so R2 and/or R3 come into play, then the awareness
with respect to R1 would be stronger because users would
then be prompted to go look more closely at the particular
settings that were affected and thus would understand them
better and adjust their mental model accordingly.

Statistical Conclusion — Do we have sufficient data to
make our claims? For our Facebook tool, we fetched data
for 516 users resulting in almost 18,700 data points. For our
Twitter tool, we fetched data for 10 users resulting in almost
350 data points. The goal of the empirical evaluations was
to find examples of privacy bugs to show the feasibility and
utility of our approach, which we did find as described in
Section IV.

External Validity — Do our results generalize to other sys-
tems? Our prototype tools were implemented for two different
systems: Facebook and Twitter. Our approach is broad and can
apply to any social system as discussed in Sections V-A and
V-B above.

VI. RELATED WORK

There have been some recent papers on data privacy and
software testing. Clause and Orso [14] propose techniques
for the automated anonymization of field data for software
testing. They extend the work done by Castro et al. [33] using
novel concepts of path condition relaxation and breakable
input conditions resulting in improving the effectiveness of
input anonymization. Taneja et al. [15] and Grechanik et al.
[16] propose using k-anonymity [34] for privacy by selectively
anonymizing certain attributes of a database for software
testing. These papers propose novel approaches using static
analysis for selecting which attributes to anonymize so that

test coverage remains high. Peters and Menzies [17] propose
an anonymization technique for sensitive data so that it can be
used for cross-company defect prediction. They show that it
is possible to make data less sensitive and still maintain high
utility for data mining applications.

Our work is orthogonal to these papers on data anonymiza-
tion. The problem they address is — how can one anonymize
sensitive information before sharing it with others (e.g., send-
ing it to the teams or companies that build the software,
sharing information for testing purposes, and sharing data
across multiple companies, respectively)? The problem we
address is - how can end-users verify if the software systems
they are using are handling privacy correctly?

Further, all these papers are trying to protect the privacy of
the data. We, on the other hand, are trying to detect privacy
violations and test if the systems have any privacy bugs.

There has been a lot of work in the field of regression testing
mainly towards test case selection and test case prioritization
[35]–[38], including a very detailed, and excellent, recent
survey by Yoo and Harman [39] and the references therein.
Our work builds on, and differs from, all of the above in two
aspects – our regression testing approach is targeted towards
end-users and is targeted towards finding privacy bugs.

There has also been some recent work in using taint analysis
for detecting security and privacy violations [40], [41]. These
approaches require access to source code for taint analysis.
Our approach, on the other hand, is targeted towards end-users
who do not have source code access to the social systems that
they are using.

Our social testing approach is similar in some ways to “do
you see what I see,” a technique proposed in the networking
community to support distributed fault detection and diagnosis
from the client-side [42], although there the actual end-
users are not directly involved, and is also related to the
network security communitys collaborative intrusion detection,
e.g., [43], where the goal is to share data about penetration
attempts against different organizations’ enterprise networks
but without inadvertently sharing any private information.

VII. CONCLUSION

Privacy in social systems is becoming a major concern.
End-users of such systems are finding it increasingly harder
to understand the complex privacy settings. Even if they do
understand the settings, as the software evolves over time,
there might be bugs introduced that breach users’ privacy.
There might also be system wide policy changes that could
change users’ settings to be more or less private than before.

We present a novel technique, called Social Testing, that
can be used by end-users, as opposed to software developers
building the system, for detecting changes in privacy, i.e., re-
gression testing for privacy. This technique can broadly apply
towards functional and non-functional requirements for end-
users such as privacy, performance, and so on. In this paper,
we applied our technique towards detecting privacy bugs from
an end-user perspective. Broadly, a user can use his/her friends
to monitor what information is visible in the social systems



and to automatically detect when more or less information is
visible, thus indicating a potential privacy concern. We also
presented two prototype tools — one for Facebook ; one
for Twitter — that implemented our technique for detecting
privacy bugs. The results of our evaluation show the utility
and feasibility of our approach and tools for detecting privacy
bugs. Our Facebook tool discovered that 63.18% of the users
had differences in privacy where they were sharing either more
or less information than before.

In particular, we focused on two case studies of bugs that
we found and upon interviewing one user affected by the
bug, the user said: ‘[. . .] am surprised you can see them
(new information that was recently made visible, which was
detected by our tool) [. . .] good thing your app was able to
catch it” and that he would change his settings back to what
they should have been. To the best of our knowledge, this is the
first technique that leverages regression testing for detecting
privacy bugs from an end-user perspective.
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