When Does Computational Imaging Improve Performance?

Oliver Cossairt, Mohit Gupta, and Shree K. Nayar

Abstract—A number of computational imaging techniques
have been introduced to improve image quality by increasing
light throughput. These techniques use optical coding to nmasure
a stronger signal level. However, the performance of these 2
techniques is limited by the decoding step, which amplies
noise. While it is well understood that optical coding can
increase performance at low light levels, little is known abut the
guantitative performance advantage of computational imagng
in general settings. In this paper, we derive the performane
bounds for various computational imaging techniques. We tkn
discuss the implications of these bounds for several realarld
scenarios (illumination conditions, scene properties andsensor
noise characteristics). Our results show that computatioal imag-
ing techniques provide a signi cant performance advantagen a
surprisingly small set of real-world settings. These resi$ can be ‘ .
readily used by practitioners to design the most suitable imging 2 1

0 1 2
systems given the application at hand.
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OMPUTATIONAL Imaging (ClI) techniques use optical
coding followed by computational decoding. They can
be Cla_'SS| ed into two .categorles. The 'fSt Cat.egor_y IIﬁ'dﬂdeFig. 1. Performance of computational imaging for naturally occurring
techniques that provide a novel imagirignctionality For lighting conditions. We show that CI techniques (solid curve) give a
example, Iight eld cameras capture 4D Iight elds thategligible performance gain over conventional (impulseaging (dotted line)
b d t ; h i fi if the illumination level is higher than that of a typicaliillg room. This is an
C_an e use 0_ refocus or change persp_ec 'V_e 0 'm_agﬁénple plot for spectral, light eld, and illumination miglexing systems
via post-processing [48], [28], [33]. Catadioptric imagin for the following scene and sensor characteristics: aeesagne re ectivity
systems provide an immersive experience by capturing a-wide:5. exposure time i20ms, aperture setting i&=2:1, pixel size islm ,
le/ idirecti | eld of vi fth 521 [3 quantum ef ciency is.5, and read noise standard deviatiodlés . See Fig. 8
angle/omni - II‘?C 'Or_]a eldo _V'eW of the scene [52], [3R4]. for similar performance plots for defocus and motion defirgy.
Tomographic imaging techniques recover the appearance of a
3D volume from a sequence of 2D projections [47]. Depth
cameras capture scene structure using various approaches, . . .
such as and stereo [29], defocus [37], [45], [30], and dimfpec_tr_ometer) to captur_e multl-spec_tral images direcilpout
sion [54]. These functionalities are impossible to achigsiag "€duiring any computational decoding.
a conventional imaging system. We refer to this class of imaging methods - ones whose

The focus of this paper is on the second category of @frformance we seek to improve by capturing more light - as
techniques, which are designed to imprgwerformancein impulse |mag|ngThe term impulse is meant to convey the
terms of image quality. These techniques use optical codifigtd!l amount of light captured by these methods. Impulse
to increase light throughput and measure a stronger sighHR9INg techniques do not require computational decoding
level. Examples include extended depth-of- eld (EDOF) gna 10 recover the signal. Fig. 1 shows an example plot of
ing [30], [48], [56], motion deblurring [38], [32], [11], 2D p_erformance for Cl techniques relative to impulse imaging.
imaging [44], [7], [4], [5], [46], spectroscopy [21], [20§olor  FI9- 2 gives comparisons between some example ClI tef:hmques
imaging [2], [26], light eld capture [48], [28], [33] and and their impulse imaging counterparts. The goal of t_hlsepap_
illumination multiplexing [41], [42], [39]. For each of tise IS0 analyze the_ performgnce_advantage of Cl techniqués wit
examples, there is a corresponding imaging technique trat ¢ESPect to the|r_ |mpulse imaging counterparts. The papsr ha
measure the desired signditectly without the need for any tWo main contributions:
computational decodind-or example, a shorter exposure caf) Theoretical performance bounds of computational imag-
be used to eliminate motion blur and a stopped down apertumg. Implementing a Cl technique involves an additional, often
can be used to capture an EDOF image. Similarly, a pigigni cant, cost over a conventional imaging system. Inesrd
hole mask can be used to acquire light- elds and narrovte justify the extra cost, a practitioner may ask the questio
band spectral lters can be used (instead of a multiplexélthat is the performance advantage of a CI technique with

: : : _ respect to the corresponding impulse camera? Moreoveg sin
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Fig. 2. Computational versus Impulse Imaging.(Left) All Cl techniques discussed in this paper can be medielsing the linear image formation model
given by Eq. 1. This includes defocus deblurring, motionldeltng, light eld multiplexing, and several techniquessdussed in Section Ill. In order to
recover the desired image, these techniques require atioaadlidecoding step, which ampli es noise. (Right) Impulisaging techniques measure the signal
directly without requiring any decoding. A stopped down rape can be used to avoid defocus blur, a shorter exposuréeaised to avoid motion blur,
and a pin-hole mask can be placed near the sensor to direethgure the light eld. The images in the gure are taken frd8][ [38], [28].

(SNR). However, CI involves a computational decoding stggractitioners to decide whether to use Cl, and if so, to desig
(see Fig. 2) which ampli es noise, thereby lowering the SNRhe imaging system.

We analyze the performance of a variety of ClI techniquéé‘ Scope and Assumptions

(e.g. EDOF imaging, motion deblurring and light- eld cap/APPlicability: The results in this paper apply only to Cl
ture), and derive a bound on their performance in terni&Chniques that have a corresponding impulse imaging tech-
of SNR. We show that CI techniques provide a signi canftidué providing the same functionality. For example, the
performance advantage only if the average signal level R§rformance of EDOF techniques is compared with a stopped-
signi cantly lower than the sensor read noise variance civhi 90Wn aperture, motion deblurring is compared with imaging
happens rarely in real-world scenarios. We also study tree r&'Sing @ small exposure and mask-based light eld capture
of image priors on the decoding (CI) and denoising (impu|§gchnlques are compared with pin-hole masks (see Figure 2).
imaging) steps. Our empirical results show that the use Berformance metrics: We use image quality for evaluating
priors reduces the performance advantage of Cl techniqulee performance of techniques with the same functionality.
even further. The theoretical performance bounds are derived in terms of
the SNR metric. In addition, we provide empirical results fo

2) Practical guidelines for computatpnal |mag|_ng.Based several other perceptually motivated metrics [50], [44B][
on our performance bounds, we provide guidelines for when

to use Cl given an imaging scenario. The scenarios dr@aging and noise model:The analysis in this paper deals

de ned in terms of the application (e.g., motion deblurr,ingW'th techniques which follow a linear imaging model. The

defocus deblurring), real-world lighting (e.g., moonlight noise is assumed to be additive Gaussian (signal independen

or cloudy day, indoor or outdoor), scene properties (albeo%nd dependent), as _discusse_d in Sec_tion Il. We do _not con-
object velocities, depth range) and sensor characteyistie sider te_chmques v_vh|ch require non-linear <_:om|_outat|orrs fo
derive the performance gains for several Cl techniques figicovernng the desired image, e.g. depth estimation for EDO

a variety of scenarios. These results can be readily used'%ﬂging [22].
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B. Related Work signal-dependernthoton nois€. The photon noise can be ap-
Harvit and Sloane analyzed optically coded image vauig_[oximated by_a Gaussian with varian(_:e equal to the meas_ured

tion in the context of spectrometers [21]. They showed that §|gn€2:1I levelJ (in ph_otons).. Let the variance of the read noise

the absence of photon noise, the optimal measurement sch@r‘ﬁer - The total noise variance is:

corresponds to Hadamard matrices, and provides signi cant

performance advantage over impulse imaging. Ratner and 2 = 34 2. )

Schechner [39], [40] extended these results to derive @btim

measurement matrices in the presence of photon noise.ghrkén estimate of the signal can be found as:

al. [26] analyzed the noise performance of different light eld

cameras and color- Iter array imagers. The performance gai _ 1

of multiplexing, as derived in these papers, depends on the f=H"g ®3)

measurement mat_rices. The gengral con_wcl_usion of theseswofk o Mean-Squared Error (MSE) for the estiméteis given

was that Cl techniques do not give a signi cant performaany [21]:

advantage at high light levels. Our contribution is to deriv

theoretical performance bounds for CI, which are indepehde )

of the optics. The bounds give the maximum performance MSE = —Tr(H 'H Y); (4)

for CI techniques as a function only of the signal level and

camera read noise. We apply our results to several Cl systefisereTr() is the matrix trace operator.

including EDOF imaging and motion deblurring, and provide

practical guidelines for designing imaging systems. Performance Gain. In order to compute the performance
Recently, Hasinofét al. [22] show that the performance ofgain of a CI technique, we compare the signal-to-noise-

any EDOF camera (conventional or computational) improvégtio (SNR) of the recovered signal with the signal captured

if multiple shots are taken with different focus settings. lusing impulse imaging (baseline). THBNR is de ned as

a similar vein, Zhanget al. [53] compare the performanceSNR = p=i—.

.. . . . . . MSE
of acquiring multiple images versus a single image, in the penoting 2 as the noise variance for the impulse camera,
context of motion deblurring and HDR imaging. These papefise MSE is just equal to the varianddSE; = 2. Let 2
2.

do not consider single shot impulse imaging. Moreover, bogy, the noise variance for the measurement made with the ClI
these papers require non-linear computations (depth astim technique. The performance ga is the ratio of the SNR

for EDOF and motion estimation for motion deblurring). Iy the CI technique to the SNR of the impulse camera:
contrast, our focus is on linear imaging systems, and our goa

is to analyze the performance gain of a wide range of CI r

techniques with respect to single shot impulse imaging. - MSE; (5)
MSE.

s

Il. IMAGE FORMATION MODEL = L_ﬂ (6)
. . . Tr(H 'H 1)
We consider Cl techniques that can be expressed using a
linear image formation model (see Fig. 2): When the noise is signal independent € ), the matrix
that maximizes the gain for masking-based CI techniquémis t
- + - S-matrix [21]. However, when the noise is signal dependent,
g= Hf ; Q) g p

the optimal measurement matrix, and hence the performance

whereg is the vector of measurements of sike f is the gain, depend on theatrix light throughputC(H), which is
vector of unknown signal values, which may represent shatithe sum of elements in each row of the measurement matrix
spectral, angular, or temporal informatids. is the measure- H, and is a measure of the amount of light capturedH if
ment matrix. For Cl techniques that take coded measuremeigtsised as the measurement matrix. For example, i the
by masking (attenuating) light, the entries léf are between identity matrix, C(H) = 1. On the other hand, iH is the
0 and 1. For CI techniques that measure the signal witho@-matrix, C(H)  %. Consequently, th&-matrix captures
masking light, either by moving the sensor during captu83,[2 signi cantly more light. In the remainder of the paper, we
[34], using additional refractive elements [17] or movitget drop the argument from C(H) for brevity.
camera [32], the entries oH are not bounded. For impulse
imaging,H = |, and the camera measures the sigrditectly. Optimal Measurement Matrices. The problem of identifying

Each element of the noise vector is assumed to be optimal measurement matrices (that result in maximum gain)
independently sampled from a zero mean Gaussian distsibutfor masking-based Cl techniques was explored by Ragher

N (0; 2). We consider an afne noise model where therg|. [39], [40]. They found an analytic expression for the lower
are two sources of noise, signal-independead noise and pound of the trace term:

1These techniques have an added bene t that they result ith deyariant 2We ignore the effect of dark current noise, which is typigalegligible
blur (for defocus deblurring) and motion invariant blurr(footion deblurring), when exposure times remain less than around one second.
which makes the deblurring process signi cantly simpler. 3We consider matrices for which all the rows have the same sum.
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Multiplexing Color and Spectrum. Mask-based Hadamard
N(CN 2C+1) multiplexing is used for point [21] and imaging [20] spectro
(N c)cz - ) eters. HereH is the spectral mixing matrixg is the vector
Suppose the average signal level for the impulse cameta isOf multiplexed spectral samplles ahds thg vector .of narrow-
5o that the total noise? = J + 2. The Cl technique capturesband spectral samples (desired). The impulse imaging coun-
: . ' r .o o  terpart is capturing narrow-band spectral samples [8]oCol
C times more light. Hence, the total noise = CJ + 7. Filter Arrays (CFAs) that multiplex color have been prombse

Subst|tut|ng_ these and Eq. 7 in Eg. _6’ we get an express&%ncapture three color images with more light throughpuhtha
for the maximum SNR gai® for matrices with a given light RGB Bayer lters [2], [26] (impulse imaging)

Tr(H 'H 1)

throughputC:
ap Multiplexed lllumination. Measuring the appearance of a
M N P T 2 scene under varying illumination is useful for scene religh
G(C) ﬁ ( ) rz; (8) and estimating depth. These measurements can be multiplexe
N gC+4 |(£{;_r} by measuring the appearance of a scene when illuminated by
Decoding Term Noise Term linear combinations of light sources [42], [39], [40]. Here

The right hand side of Eq. 8 consists of two competinE is the measurement ensembtejs the vector of acquired
terms. As light throughput is increased, the noise depend _rrrl1ult|plexed) image mtensme_zs arfdis the vector of |nte_n5|-
term decreases while the decoding dependent term increall§S corresponding to only single sources. Here, the ingpuls
There is an optimal light throughp@inax for which the SNR IMaging counterpart is capturing images by turning on only
gain achieves the maximum value Gfyay . one light source at a time.

1. COMPUTATIONAL VERSUSIMPULSE IMAGING: IV. OPTICSINDEPENDENTPERFORMANCEBOUNDS

EXAMPLES In this section, we derive a performance bound for Cl that is

~ There are several Cl techniques that follow the lineaidependent of the signal si2é¢ and the measurement matrix
imaging model of Eq. 1 and which have a corresponding (de ned by the optics). As a result, this bound allows us
impulse camera. The following are a few examples. to analyze a wide range of ClI techniques. In comparison, the

Defocus Blur. Coded aperture masks have been used to debRjevious result (Eq. 8) gives the maximum SNR g@irfor
defocused images [30], [48], [56], [55]. There are also s#ve coding matrlce_s with a light throughp@ and S|gna_1l of size _
techniques that extend depth of eld (DOF) by producin% We rst derive an upper bound on the decoding term in
a depth-independent blur that can be inverted without tiel: 8:

need for depth estimation [10], [17], [35], [23], [34], [14]

[13], [19]. Assuming the blur kernel to be shift invariartiet CN C) _ C2(N C)
measurement matril is a circulant matrix, where each row NC 2C+1 _ NC cC2+cC?z 2C+1

of the matrix encodes the defocus blur kerigeis the captured C3N C)

blurred image and is the EDOF image. The corresponding = C(N C)+(C 17

impulse imaging technique is to capture images with a stdppe N

down apertureH is equal to the identity matrix). M

Motion Blur. Temporal shuttering has been used to remove CC_(N ) ©)

motion blur from images [38]. Methods have also been pro-
posed that create motion-invariant blur that can be remov%xt, we derive an upper bound on the noise term:
without prior knowledge of object speed [32], [11]. Similar
to EDOF imaging, the measurement matkixis a circulant

matrix, where each row of the matrix encodes the motion blur J+ 2 _ 1Ci+C?

kernel.g is the captured blurred image ahds the blur-free Cl+ ? C CJ+ ?

image. In contrast, impulse imaging avoids motion blur by 1 CJ+ 2+C 2

simply capturing images with a short exposuire € ). C CJ+ ?

Multiplexed Light Fields. CI techniques for capturing light 1 Cc 2

elds include placing a transmissive mask either at the lens C 1+ Cl+ 2

aperture [33], or near the sensor [48], [28]. In this case, dle 1 2

measurement matrid is block circulant. Each pixel measures c 1+ T’ (20)

a linear combination of ray intensitieg)(and the light eld

(f) must be recovered by demultiplexing the captured data. InBy substituting the bounds in Egs. 9 and 10 in Eq. 8, we get
contrast, a light eld camera can also be built by placing the upper bound on the performance gain of masking-based
mask consisting of an array of pinholes near the sensor [28], techniques:
or by capturing a sequence of images with a shifting pinhole

in the aperture [33]. These techniques are the impulse imyagi 2

counterparts of multiplexed light eld capture. G< 1+ 75 (11)
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Fig. 3. \Verication of the performance bound using simulations. (a) Performance for several defocus deblurring camerak [88], [56], [23], [34]. (b)
Motion deblurring performance for the utter shutter [3&damotion-invariant cameras [32]. (c) Performance for thm-®f-sinusoids [48] and MURA [28]
light eld multiplexing cameras. All techniques perform at below the performance bound given by Eq. 12. The plots @) &(e similar to those given by
Ihrke et al. [26]. However, our plots are different for higher signaldis/because we reduce camera sensitivity to avoid sataratio

In Appendix A, we derive the performance bound for the ClI V. ROLE OFIMAGE PRIORS
techniques discussed in this paper that do not mask light [10

[17], [35], [23], [34], [14], [13], [(19], [32], [14]: Thus far, we have not considered the role of image priors.

Priors can be used to improve image quality, both for com-
putational and impulse imaging [30], [56]. The improvement
2 depends on the type of priors and image coding used. In
G< 2 1+ Tr : (12)  addition, our analysis thus far used MSE as the quality metri
for images because it makes the derivation of performance
Egs. 11 and 12 are noteworthy because they provide theunds tractable. However, a number of metrics have been
maximum possible SNR gain for all CI techniques mentiondatroduced which measure the perceived image quality [50],
in Section IlI. [43], [49], [18]. In this section we analyze the effect of iears
priors and metrics on performance.

S

Simulations to Verify the Bounds. In Fig. 3, we show the
simulated performance of several of the techniques disdus$mage Priors. We can think of the estimafe given in Section

in Section 1ll. The SNR gain of each technique is calculatdtias the Maximum Likelihood (ML) estimate of the following
using Eq. 6, and the result is plotted against the ratio otquno optimization problem:

to read noise variancé$ ?2). Fig. 3(a) shows performance for

several previously proposed defocus deblurring came@is [3
[48], [56], as well as the focal sweep camera [23], [34].
Fig. 3(b) shows motion deblurring performance for the utte = argmin jif  Hgjj? (14)
shutter [38] and motion-invariant [32] cameras. For focal f

sweep and motion-invariant techniques, the coding was opfjhereP (fjg) is the probability of the unknown imadegiven
mized for different signal levels. Fig. 3(c) shows perfont@ the measuremerg, which is Gaussian due to the properties
for the sum-of-sinusoids [48] and MURA [28] light eld of the measurement noise vector If we have knowledge
multiplexing cameras. The masks for both light eld cameragf the probability distribution of our unknown image(f),

were generated with a period @l 11 pixels. As expected, then we can improve performance by nding the Maximum
all the techniques perform at or below the performance boupdpgsteriori (MAP) estimate:

given by Eq. 12.

fuL =arg m?x P(fjg) (13)

Implication of the Bounds. The bounds in Egs. 11 and 12 fmap =argmax P(gjf)P (f) (15)
!mpl_y t_hat the performance gain for co_mputauona_l imaging =argmin jif Hgj2+ log(P(f); (16)
is signi cant only when the average signal levélis con- f

sid_erably_smaller than the read_ noise varianc. The read \yhere the constant determines how much signi cance to
noise variance for currently available sensors ranges 1681 itach to the prior. The image prior can essentially be thoug
than one grey level (on a scale [ 255) for high quality ot 55 5 way to coerce the optimization problem to produce
DSLR cameras to approximatelygrey levels for low-quality mqre probable estimates of the unknown image. In this sgctio
machine-vision cameras [42]. Only a few real-world imaginge consider three image priors. Firstly, we consider a Ganss

scenarios have signal strengths that are considerablfleSmalyior on the distribution of gradients in the image [30], [22
than these read noise variance values. of the form -
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Simulations. Fig. 4 shows the simulated performance of focal
L Y sweep and utter shutter cameras. Since the performance of
l0g(Peauss (F)) = 1ir  1ii2; (17) " reconstruction algorithms can be image depend, we report
wherer is the rst order nite difference matrix, which the performance averaged over a large dataset of images. For

calculates a discrete approximation to the gradient operaflis Simulation, we use the Caltech 101 image database of

In this case, because the prior is Gaussian, the MAP estimatg'0 different images [27]. For each image, we simulate the
can be calculated directly as: performance under ten different photon to read noise ratios

(J= 2). Moving from left to right columns, performance is
shown for the MSE, SSIM, VIF, and UQI metrics. The top
fuap = (r 'r + H'H) H'g: (18) row shows performance for the focal sweep camera, and the
(19) bottom row shows performance for the utter shutter camera.
For each plot, the performance ga is plotted on a log
We also consider the Total Variation (TV) prior [6], [9]scale. Thus, a value of zero corresponds to a performance
which has the form: gain of G = 1, meaning that both computational and impulse
imaging have the same performance (dotted line). The black
. . line corresponds to the performance bound expressed by Eqn.
log(Prv (f)) = iir  fija: (20) 12, The magenta lines correspond to performance gain using

In this case, there is no direct way to calculate the MABIrect linear inversion (i.e. estimating the image using E3).

estimate, and an iterative algorithm must be used. We u5ge red. green, and blue curves correspond to reconsmsctio

the TWIST algorithm [6] to solve Eqn. 16 and nd a MAPUSING Gaussian, TV, and BM3D priors, respectively.
estimate. There are two interesting observations to be made from
Lastly, we consider a prior that assumes neighboring patciigese plots. First, in most of the cases, image priors boost
of pixels can be written as linear combinations of one anothéhe performance of impulse imaging more than computa-
While it is dif cult to write a single expression for this i, tional imaging. As a result,_ the _performance advantage of
its possible to calculate a MAP estimate numerically. We uéd techniques over impulse imaging is reduced even further,
the BM3D algorithm [15]. especially at low light levels. Thus, the performance bound
Image Quality Metrics. In Section II, we establish MSE expressed by Eqn. 12 is the tightest when no prior is used.

as the metric for eva|uating images_ We now extend th|sThe second observation is that the bound derived USing
formalization to more general metrics. We can de ne a genefilear inversion and the MSE metric (black curve) appears
form for any similarity metricS(f;f ) that measures howto be an upper bound for performance across all metrics
close our estimate is to the actual image. The MSE metric and priors. This is surprising because it is well known that

can then be de ned as MSE does not accurately measure perceived image quality.
Nonetheless, the upper bound expressed by Eqn. 12 does
1 appear to provide a consistent upper bound on performance

SMSE (f:f )= - (21) regardless of the image quality metric used.

it fig
The interpretation here is that the smaller the MSE, the more  VI. WHEN To USE COMPUTATIONAL IMAGING
similar the estlr_natef relatlve_ to the true |magé. The Egs. 11 and 12 provide performance bounds for CI tech-
performance gain for any metric can then be written @ njiqes in terms of the sensor read noiseand the average
signal levelJ of the impulse image. In order to determine
; when CI is advantageous, we have derived an expression for
Se(f; ) ; ,
TN (22) the signal level in terms of the scene and sensor dependent
Si(f;f) : NN
parameters (see Appendix B for a derivation):
where S, is the metric applied to the computational camera,

S
G=

and S; is the metric applied to the corresponding impulse J=10% (F=#) 2tl.. R 2 . 23
camera. For the MSE metric, the de nition remains the same F ) {z 1} fizy (23)
as the expression given in Eq. 6. However, with this general Dg)%enfa%m Desggﬁgém

de nition in place, we are now free to use other metrics to

evaluate performance. Note that because we have de ned SNRereF=# is the ratio of focal length to aperture size of the
gain in terms of a similarity metric instead of an error metri lens.t is the exposure timel,s.c is the incident illuminance
the term for the computational camera appears in the num@en inlux, R is the average re ectivity of the scenq,is
ator instead of the denominator. In addition to MSE, we udB€ quantum ef ciency of the sensor, andis the pixel size
the following image quality metrics to measure performancd meters. In Fig. 5, we give values df corresponding to
Structural Similarity (SSIM)[50], Visual Information Fedity ~Several commonly encountered lighting conditions.

(VIF)[43], and Universal Quality Index (UQI)[49]. We usegth Scene Dependent Parameterd-or defocus deblurring sys-
MeTriX MuX Visual Quality Assessment package to calculattems, theF=# of the camera depends on the depth range
performance using these metrics [18]. of the scene. A larger depth range will require the impulse
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(e) Performance using MSE metric (f) Performance using SSIM metric (g) Performance using VIF metric (h) Performance using UQI metric
Fig. 4. Simulated performance for a focal sweep (top row) and utter shutter (bottom row) cameras using various priors and metrcs. (a)(e)
Performance using the Mean-Squared Error metric. (b)(floReance using the Structural Similarity Metric. (c)(g@rPormance using the Visual Information
Fidelity Metric. (d)(h) Performance using the Universal @ty Index metric. Several reconstruction techniques apelied, including Linear inversion
(magenta), Gaussian prior on derivatives (red), Totala#am prior (green), and BM3D prior (blue). The SNR gain iwa}s less than the bound given by
Eq. 12, regardless of the prior or metric used.

camera to stop down to smaller apertures to reduce defocus

blur to within one p|er_. Similarly, for motion deblurring stary |Quarter | Ful |1 | ndoor | cioudy | sunny
systems, the exposure timedepends on the range of scene night | moon | moon 9" Lighting| Day | Day

velocities. Higher velocities will require _the impulse @ [ oloxi6?] 10 1 10 17 10 1o

to have a small exposure to reduce motion blur to within ofe—— ” ~

pixel. Finally, the signal level is directly proportional the [ J (¢7) |7x10[4x10°| .39 | 3.85 | 38.49 | 384.9 | 3,849

illumination brightnesd ¢ and the object albedB.

Sensor Depender_1t Pgrameteri_)lffere_nt sensors have dlf_fer' Fig. 5. Relating lighting levels to average photon countsThe top row
ent quantum ef ciencies and pixel sizes. Quantum ef ciencyhows typical illuminance values iux [51]. The bottom row shows the
for commercially available sensors is quite high, usuall?Oton Countsfcalculate? using EQ-§3 assuming an Z\;efagm\'gy of Rd:

. . : f 5, quantum ef ciency ofg = :5, and exposure time df = 1 =50 seconds,
greater Fharq >:5. For toda;_/s sensors, the size of pixels aperture setting oF=2:1, and pixel size of =1 m
has a wide range, from 1 micron for small cell phone sensors
to nearly 10 microns for large format sensors.

A. Rule of Thumb . We support thi§ rule Qf thumb with _sevgral gxamplg scenar-
ios. Each scenario consists of an application, lightingdition
When using one of today's commercial grade image sensofs,g., moonlit night or cloudy day, indoor or outdoor) and
computational imaging will only yield signi cant performae scene properties (albedo, speed, range of object velsitie
bene ts when the illuminance is less tha®25lux (typical |n all our examples, we assume an average re ectivity of
living room lighting). R = 0:5, quantum ef ciency ofq = 0:5, and read noise of
For EDOF imaging and motion deblurring, this implies thatr =4e€ , which is typical for today's DSLR sensors [12].
when the illuminance is high (more than typical living roo

lighting), it is better to capture the impulse image withany "Motion Deblurring. For this case, we used a pixel size of

g . : =5 m, aperture setting oF=20 and the impulse camera
blur (using a small aperture and exposure, respectiveig)i-S . — 1
exposure timet = g5 s. For utter shutter camera, we use

larly, for light eld and spectral acquisition, if the illumance - . : .

is high, it is better to capture the light eld and the spek:tra%he 52 digit long sequence given in [38]. We simulated the
) . . . . . effect of photon and read noise, and decoded the captured

samples directly without multiplexing (using pin-hole rkas

and narrow-band lters, respectively) image using Eq. 3. In Fig. 6, we show the simulated images.
' P Y): The utter shutter performance is lower than that of impulse
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Simulated Performance for Flutter Shutter Camera

lsre = 1 lux - lgre =10 lux lsrc = 100 lux lsre = 1,000 lux
(Full Moon) N (Twilight) (Indoor Lighting) (Cloudy Day)
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(4]
[@)]
©
E
) 5
™
> |3
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e|E
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=|E
SNR =0.80 SNR =1.98 SNR =5.99 SNR = 18.76
Increasing Signal Leved o

Fig. 6. Simulated performance for the utter shutter camera. The parameters for the simulation are given in Section VIFAe top row shows an image
blurred by the utter sequence given in [38]. The second rdwves the results after linear deblurring. The third row skdhe results from the impulse
camera (shorter exposure). The fourth row shows the reafitts deblurring the images in the rst row with the BM3D aighm [15]. The last row shows

the results for denoising the images in the third row with BM3D algorithm. Gaussian distributed read noise and Paoishstributed photon noise is added
to each image. The illuminatiohs;c increases from left to right. The utter shutter camera haghér SNR wherl s;c < 100lux .

imaging when the illuminance is greater tha@0lux . sweep camera was set fa=1. In Fig. 7, we show simulated

In Fig. 8(a), we show a contour plot of the SNR gain bofindMages. The gure shows captured (coded), decoded, and
versus the illuminancel {) and the exposure time of thelMpulse images with read noise and varying amounts of photon

impulse camerat). Note that the bound is independent of th@oise added. Images are decoded using Eq. 3. The performance

particular utter sequence and the exposure time of theeutt Of focal sweep is always greater than impulse imaging (i.e.
camera. As the maximum object speed increases, the expoSiPgPIng down the camera), but the increase in performance
time of the impulse camera must be reduced to avoid motibh"€dligible when the illuminance is greater thE®Olux.

blur. We can observe that Cl never gives an SNR gain greatefn Fig. 8(b), we show a contour plot of the SNR gain

than2 when the illuminance is greater th&3lux. bound (independent of the focal sweep aperture settinguser
EDOF Imaging. For this case, we used a pixel size othe illuminance and th&=# of the impulse camera. As the
=5 m ,the camera exposure tine % s and the impulse scene depth increasdés=# of the impulse camera must also
aperture setting oF=20. The aperture setting for the focalincrease to avoid defocus blur. As we can notice, Cl does not
give an SNR gain greater th&when the illumination is more

4Although the SNR bound is derived assuming no priors and MeEiep than 125lux.
we have observed empirically that it bounds the performarfica techniques . . o )
irrespective of the prior and the image quality metric (seetisn V). Spectral and Light Field Acquisition. In this example, we
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Simulated Performance for Focal Sweep Camera

lsre = 10 lux lsre =100 lux lsre = 1,000 lux lsre = 10,000 lux
(Twilight) (Indoor Lighting) (Cloudy Day) (Sunny Day)
Q
()]
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E
— . - - .
9] : : : :
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(@]
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E
-c - - - -
1 b=
g O = - - =
alg
% e SNR = 2.67 SNR =8.51 SNR = 26.86 SNR = 84.18
Elo
5|
3| e
£lo : : : :
= K- : : : :
3
- SNR =0.72 SNR = 4.59 SNR =17.40 SNR = 56.31
Q
(o))
]
E
alzs - - - -
2% : : : :
ol3
5]° SNR =4.18 SNR =12.83 SNR =35.13 SNR = 95.83
o P
() (@]
@
g| £
Els . . . .
cle : : : :
= g
- SNR =2.73 SNR = 6.64 SNR =19.33 SNR =62.62
Increasing Signal Levet T

Fig. 7. Simulated performance for the focal sweep cameraThe parameters for the simulation are given in Section VIFAe top row shows an image
blurred by a focal sweep PSF. The second row shows the restetslinear deblurring. The third row shows the resultsrfrthe impulse camera (stopped
down aperture). The fourth row shows the results after debty the images in the rst row with the BM3D algorithm [15The last row shows the results
for denoising the images in the third row with the BM3D algom. Gaussian distributed read noise and Poisson digdbphoton noise is added to each
image. The illuminationl src increases from left to right. The focal sweep camera alwas & higher SNR than impulse imaging, but the improvement
becomes negligible whehsc > 100lux .

consider the performance of spectral and light eld camerashould be weighed against the cost of improving performance
We use an exposure time bf= 1=50 seconds, pixel size of by simply switching to a high-quality sensor.
=1 m, and an aperture setting &=2:1. In Fig. 1 we E

lot the SNR aain bound st illumi In thi ¢ ffects of Diffraction: Defocus blur is a purely geometrical
plot the gain bound against fiuminance. In tis case IB?lenomenon that depends only on object depth, aperture size
illuminance must be less thatBlux in order for Cl to give

. and the focal length of the lens. However, lenses also exhibi
an SNR gain greater thah some amount of blur due to the diffraction of light from
the aperture. While defocus blur is directly proportional t
VII. DISCUSSION aperture size, diffractive blur is inversely proportionalthe
aperture size. Therefore, any attempt to remove one type of

The Role of Sensor ality. High ality sensors are o
Quality. High quality amur will increase the other.

carefully engineered to have low read noise, albeit with
added cost. In applications where low quality (high read For the impulse camera, when diffraction blur size is larger
noise) sensors are used, Cl can enhance performance dbhan a pixel, the only option for removing blur is to use an
when illuminance is greater thar?5lux. In these situations, EDOF technique. This is a particularly important problem
however, the additional cost required to implement codinghen considering cameras with small pixel sizes. In thigcas
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Maximum SNR gain for motion deblurring Maximum SNR gain for defocus deblurring

SDU”nY 5 Sunny 6
ay 90C Day 4 | 190C
< Cloudy 4f .. . <> Cloudy 5
35 bay 3 (Negllglble SNR gain ) X Dy 4 (N OGSt ]
~ ’ = egligible ain )
8 Indoor oL 70C © Indoor 3F 919 9 1 70C
% Lighting 8 Lighting 2
" i I r
E Twilight 1 50C £ Twight & q 50C
5 ru 0;/,,_1%_/%?/. g
= = Full ok
‘=~ moon 1 =
g Quarter ' /_29/___29/_' 30C 8-, moon 11 30¢
= “moon 2 = oo 12
Starry '3 10c Starry 13t 10C
night 14 L night 14 L
1/100 1/200 1/300 1/400 1/500 1/600 1/700 1/800 1/900 : 4 8 12 16 20 24 28 32
Exposure Time of Impulse Camera (seconds) F/# of Impulse Camera
(a) When to use motion deblurring. (b) When to use defocus deblurring.

Fig. 8. Performance of motion and defocus deblurring.The average signal level is calculated using Eq. 23 with #rampeters outlined in Section VI-A.
(a) Contour plot of the SNR gain bound versus the illuminasad the exposure time of the impulse camera. (b) Contourgbltite SNR gain bound versus
the illuminance and th&=# of the impulse camera. For both motion and defocus debfyrtine SNR gain is always negligible when the illuminance is
greater tharl25lux (typical indoor lighting).

EDOF techniques provide a functionality which cannot bklotion Invariant Blur. Let S, be the maximum speed of
achieved using impulse imaging. objects in the scene measured pixels=sec An impulse
Task-Speci ¢ Imaging: Our aim in this paper is to analyzecamera will remove motion blur_ by _setting the exposure time
the performance of Cl insofar as the nal goal is to capturé SO that the maximum blur size is equal to one pixel and
high quality images. If a further task is to be performed om I = 1. Choet al. [11] derived an upper bound on the
the captured images (e.g., tracking, face recognitionygian €St possible motion-invariant MTF that can be achieved for
detection), reconstruction algorithms can bene t fromkias 2D motion®:

speci ¢ priors (as opposed to priors based on natural image

statistics). Moreover, in this case, the performance shbel KHm (1)K c ) (28)
evaluated in terms of task-speci c metrics. While such task misx 25 T 12412

speci ¢ priors and image quality metrics are beyond the scop " ey

of this paper, we believe they form an interesting direcfam sypstituting Eq. 28 into Eq. 27 gives a lower bound on the

future research. MSE for any motion-invariant camera:
APPENDIX A 2 P35 -
2 + asini{1 2
CODING FOR INVARIANCE MSE m 3 inf(L) %: (29)
For shift-invariant systems, the image formation of Eg. éubstituting Eq. 29 into Eq. 5 results in the bound expressed

can be described in the Fourier domain as by Eq. 12.

Defocus Invariant Blur. In the same way that motion blur
G x;'y)= H( PRt y)+ ( haty)s (24) depends on the spe&q, , defocus blur depends on the defocus
) . _ . parameterSy. Following the notation in Leviret al. [31],
where! ;! are continuous valued spatial frequencies give§ - pdmx dw  \wheredn. anddmn, are the maximum
H 1 —-ni 1 1 i 1 dmax + dmin *
in units of 1=pixels, F is the focused imagé{ is the optical gnq minimum depths of objects in the scene, respectively.
transfer function (OTF) of the camera, is the noise, an®  Ap jmpulse camera will remove defocus blur by reducing the
is the captured image. An estimate of the focused image Serture widthA (measured in pixels) so that the maximum
be found as defocus blur size is equal to one pixel aBgA = 1.
Baek [1] showed that the focal sweep camera is nearly

G('x;!y) . optimal at simultaneously maximizing transfer ef ciencyda

[ = X 2 J7
F(xity) H( x;ty)' (25) minimizing depth-invariance. Thus, the performance ofafoc
and the expected MSE can be written as sweep will clpsely approximate the bes_t pos_S|bIe perfoma_an
of any technique that produces depth-invariant blur. Leatin
al. derived an approximate expression for the focal sweep
MSE = E jiF (l:!y) F(' ! y)ii? (26) MTF [31] °
L1222 12 1
= 2 d! d! vi (27) 5The bound derived by Chet al. assumesHny, (0;0) = T. We assume

122 1220 KH (! «;! y)k2 Hm (0;0) = C. Both conditions give the same SNR gain.
) . 6The derivation by Levinet al. assumesH;s (0;0) = A2Z. We assume
whereE denotes expectation w.r.t. the noise H¢s (0;0) = C. Both conditions give the same SNR gain.
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[7]

Cmax(! £;!'9)
A23?

Substituting Eq. 30 into Eq. 27 gives a lower bound on thé’!

MSE for any depth-invariant camera: [10]

KH¢s (! x;! y)k2 (30)

(8]

) [11]
MSE¢4 %: (31) 12

Substituting Eq. 31 into Eqg. 5 results in the bound expressEg]
by Eqg. 12.
[14]
APPENDIX B
LIGHTING CONDITIONS

[15]
[16]

For a Lambertian scene with average re ectafcehat is
lit by a source with illuminances.. (given in units oflux),
the average illuminance falling on the detector (also irntsunif18]
of lux) is [24]

[17]

[19]

ldet = ~=—> (32) [20]
Given a quantum efciencyg, an exposure time of [21]
tseconds and a pixel size of meters, the average energy

in joules collected by a pixel is [16] [22]

[23]
1 1
E=K Z@ISFC Rg °t; (33) E%g%
where K = 1=680watts=lumen is the conversion factor 28]

between photometric and radiometric units when the detector]
spectral response is matched to the photopic spectralmespo
of the standard human observer. The energyoules of a [5g
single photon is given byc= , where~ is Planck’s constant,
andc is the speed of light. The average number of photm@
collected by a pixel is then

[30]

1 31
—e=lseRa 2t (3a) B

Assuming a mean wavelength of= :55m , the average
number of photons becomes

J=K

[32]
(33]

(34]

2t: (35)

1
J =1015@|srch [35]

[36]
REFERENCES
[37]
[1] J. Baek. Transfer Efciency and Depth Invariance in Cartgiional [38]

Cameras. IMCCP, 2010.

R. Baer, W. Holland, J. Holm, and P. Vora. A comparison dfrary
and complementary color lIters for ccd-based digital plgsephy. In
SPIE Electronic Imaging Conferenc€iteseer, 1999.

S. Baker and S. K. Nayar. A theory of single-viewpoint adibptric
image formation.lJCV, 35, 1999.

M. Ben-Ezra, A. Zomet, and S. Nayar. Jitter camera: highotution
video from a low resolution detector. @BVPR 2004.

M. Ben-Ezra, A. Zomet, and S. Nayar. Video super-resotutusing

[2] [39]

[40]
(3]

(4]
(5]

[41]
[42]

controlled subpixel detector shift®AMI, 2005. [43]
[6] J. Bioucas-Dias and M. Figueiredo. A new twist: two-stibgrative
shrinkage/thresholding algorithms for image restoratidiP, 16(12), [44]

2007.

11

E. Caroli, J. Stephen, G. Cocco, L. Natalucci, and A. Siptzino.
Coded aperture imaging in x-and gamma-ray astronddpace Science
Reviews 45(3), 1987.

A. Chakrabarti and T. Zickler.
images. InCVPR 2011.

A. Chambolle. An algorithm for total variation minimigan and
applications.Journal of Mathematical imaging and visip80(1), 2004.
W. Chi and N. George. Electronic imaging using a logdamiic asphere.
Optics Letters 2001.

T. Cho, A. Levin, F. Durand, and W. Freeman. Motion blemoval
with orthogonal parabolic exposures. IBCP, 2010.

R. N. Clark. Digital camera sensor performance summgutgp://www.
clarkvision.com/articles/digital.sensor.performasacenmary/#model”,
2011.

0. Cossairt and S. K. Nayar. Spectral focal sweep: Eddndepth of
eld from chromatic aberrations. IhWCCP, 2010.

0. Cossairt, C. Zhou, and S. K. Nayar. Diffusion Codingofdgraphy
for Extended Depth of Field. ISIGGRAPH 2010.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Imagenoising by
sparse 3-d transform-domain collaborative lteringlP, 16(8), 2007.
C. DeCusatis.Handbook of applied photometryAmer Inst of Physics,
1997.

J. E. R. Dowski and W. T. Cathey. Extended depth of eldotigh
wave-front coding.Applied Optics 1995.

M. Gaubatz. Metrix mux visual quality assessment pgeka "http:
Iffoulard.ece.cornell.edu/gaubatz/metnimux/’, 2011.

F. Guichard, H. Nguyen, R. Tessieres, M. Pyanet, |.cfiauna, and
F. Cao. Extended depth-of- eld using sharpness transpodsa color
channels. IrDigital Photography V volume 7250. SPIE, 2009.

Q. Hanley, P. Verveer, and T. Jovin. Spectral imaging grogrammable
array microscope by hadamard transform uorescence spsmipy.
Applied Spectroscopyp3(1), 1999.

M. Harwit and N. Sloane. Hadamard transform opticslew York:
Academic Pressl979.

S. Hasinoff, K. Kutulakos, F. Durand, and W. Freeman. mdi
constrained photography. ICCV, 2009.

G. Hausler. A method to increase the depth of focus hy step image
processing.Optics Communicationsl972.

B. Horn. Robot vision The MIT Press, 1986.

R. Horstmeyer, G. W. Euliss, R. A. Athale, and M. Levoylexble
multimodal camera using a light eld architecture. I@CP, 2009.

I. Ihrke, G. Wetzstein, and W. Heidrich. A Theory of Pdgic
Multiplexing. In CVPR 2010.

R. F. L. Fei-Fei and P. Perona. Learning generativealisuodels from
few training examples: an incremental bayesian approasthdeon 101
object categories. ICVPR 2004.

D. Lanman, R. Raskar, A. Agrawal, and G. Taubin.
modeling and capturing 3d occluders. ShGGRAPH 2008.

Statistics of real-world/perspectral

Shiekelds:

] D.H.Lee, . S. Kweon, and R. Cipolla. Single lens stengih a biprism.

In IAPR International Workshop on Machine Vision and Applimas,

1998.

A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image d@epth
from a conventional camera with a coded aperturéSIBGRAPH2007.

A. Levin, S. Hasinoff, P. Green, F. Durand, and W. T. fFnee. 4d
frequency analysis of computational cameras for depth lof extension.
In SIGGRAPH 2009.

A. Levin, P. Sand, T. Cho, F. Durand, and W. Freeman. dotnvariant
photography. I'SIGGRAPH 2008.

C. Liang, T. Lin, B. Wong, C. Liu, and H. Chen. Programreaaperture
photography: multiplexed light eld acquisition. IBIGGRAPH 2008.

H. Nagahara, S. Kuthirummal, C. Zhou, and S. Nayar. iBlexDepth
of Field Photography. IiEECCV, 2008.

J. Ojeda-Castaneda, J. E. A. Landgrave, and H. M. Edleardinnular

phase-only mask for high focal deptptics Letters 2005.

S. Peleg, M. Ben-Ezra, and Y. Pritch. Omnistereo: Pamic stereo
imaging. PAMI, 23, 2001.

A. Pentland. A new sense for depth of eltPAMI, 1987.

R. Raskar, A. Agrawal, and J. Tumblin. Coded exposuretqggraphy:
motion deblurring using uttered shutter. IBIGGRAPH 2006.

N. Ratner and Y. Schechner. lllumination multipleximgthin funda-
mental limits. INnCVPR 2007.

N. Ratner, Y. Schechner, and F. Goldberg. Optimal rpléked sensing:
bounds, conditions and a graph theory lir@ptics Express15, 2007.

Y. Schechner, S. Nayar, and P. Belhumeur. A theory oftipiaked

illumination. InICCV, 2003.

Y. Schechner, S. Nayar, and P. Belhumeur.
lighting. PAMI, 2007.

Multiplexfog optimal

H. Sheikh and A. Bovik. Image information and visual fiya TIP,
15(2), 2006.
G. Skinner. X-ray imaging with coded masksScientic Ameri-

can;(USA) 259(2), 1988.



COLUMBIA UNIVERSITY TECHNICAL REPORT

[45]
[46]

[47]
(48]

[49]
[50]
[51]
[52]
(53]
[54]
[55]
[56]

M. Subbarao and N. Gurumoorthy. Depth recovery fronrield edges.
In CVPR 1988.

J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. IshiiaMorimoto,
N. Kondou, D. Miyazaki, and Y. Ichioka. Thin observation naéel by
bound optics (tombo): concept and experimental veri qaticApplied
Optics 40(11), 2001.

B. Trifonov, D. Bradley, and W. Heidrich. Tomographieconstruction
of transparent objects. IBGSR 2006.

A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, andumblin.
Dappled photography: mask enhanced cameras for hetemdigta
elds and coded aperture refocusing. iGGRAPH 2007.

Z. Wang and A. Bovik. A universal image quality indexSignal
Processing Letters9(3), 2002.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image atjty
assessment: From error visibility to structural similaritTIP, 13(4),
2004.

Wikipedia. lux. "http://fen.wikipedia.org/wiki/Lu¥ 2011.

K. Yamazawa, Y. Yagi, and M. Yachida. Omnidirectionaiaging with
hyperboloidal projection. Irinternational Conference on Robots and
Systems1993.

L. Zhang, A. Deshpande, and X. Chen. Denoising versuslupeng:
HDR techniques using moving cameras. GWPR 2010.

C. Zhou, O. Cossairt, and S. K. Nayar. Depth from diffursiIn CVPR
2010.

C. Zhou, S. Lin, and S. Nayar. Coded Aperture Pairs foptbdrom
Defocus and Defocus DeblurringdCV, 2011.

C. Zhou and S. Nayar. What are Good Apertures for Defdaeblur-
ring? InICCP, 2009.

12



