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Abstract—A number of computational imaging techniques
have been introduced to improve image quality by increasing
light throughput. These techniques use optical coding to measure
a stronger signal level. However, the performance of these
techniques is limited by the decoding step, which ampli�es
noise. While it is well understood that optical coding can
increase performance at low light levels, little is known about the
quantitative performance advantage of computational imaging
in general settings. In this paper, we derive the performance
bounds for various computational imaging techniques. We then
discuss the implications of these bounds for several real-world
scenarios (illumination conditions, scene properties andsensor
noise characteristics). Our results show that computational imag-
ing techniques provide a signi�cant performance advantagein a
surprisingly small set of real-world settings. These results can be
readily used by practitioners to design the most suitable imaging
systems given the application at hand.

I. I NTRODUCTION

COMPUTATIONAL Imaging (CI) techniques use optical
coding followed by computational decoding. They can

be classi�ed into two categories. The �rst category includes
techniques that provide a novel imagingfunctionality. For
example, light �eld cameras capture 4D light �elds that
can be used to refocus or change perspective of images
via post-processing [48], [28], [33]. Catadioptric imaging
systems provide an immersive experience by capturing a wide-
angle/omnidirectional �eld of view of the scene [52], [3], [36].
Tomographic imaging techniques recover the appearance of a
3D volume from a sequence of 2D projections [47]. Depth
cameras capture scene structure using various approaches,
such as and stereo [29], defocus [37], [45], [30], and diffu-
sion [54]. These functionalities are impossible to achieveusing
a conventional imaging system.

The focus of this paper is on the second category of CI
techniques, which are designed to improveperformancein
terms of image quality. These techniques use optical coding
to increase light throughput and measure a stronger signal
level. Examples include extended depth-of-�eld (EDOF) imag-
ing [30], [48], [56], motion deblurring [38], [32], [11], 2D
imaging [44], [7], [4], [5], [46], spectroscopy [21], [20],color
imaging [2], [26], light �eld capture [48], [28], [33] and
illumination multiplexing [41], [42], [39]. For each of these
examples, there is a corresponding imaging technique that can
measure the desired signaldirectly without the need for any
computational decoding. For example, a shorter exposure can
be used to eliminate motion blur and a stopped down aperture
can be used to capture an EDOF image. Similarly, a pin-
hole mask can be used to acquire light-�elds and narrow-
band spectral �lters can be used (instead of a multiplexed
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Fig. 1. Performance of computational imaging for naturally occurring
lighting conditions. We show that CI techniques (solid curve) give a
negligible performance gain over conventional (impulse) imaging (dotted line)
if the illumination level is higher than that of a typical living room. This is an
example plot for spectral, light �eld, and illumination multiplexing systems
for the following scene and sensor characteristics: average scene re�ectivity
is :5, exposure time is20 ms, aperture setting isF=2:1, pixel size is1�m ,
quantum ef�ciency is:5, and read noise standard deviation is4e� . See Fig. 8
for similar performance plots for defocus and motion deblurring.

spectrometer) to capture multi-spectral images directly without
requiring any computational decoding.

We refer to this class of imaging methods - ones whose
performance we seek to improve by capturing more light - as
impulse imaging. The term impulse is meant to convey the
small amount of light captured by these methods. Impulse
imaging techniques do not require computational decoding
to recover the signal. Fig. 1 shows an example plot of
performance for CI techniques relative to impulse imaging.
Fig. 2 gives comparisons between some example CI techniques
and their impulse imaging counterparts. The goal of this paper
is to analyze the performance advantage of CI techniques with
respect to their impulse imaging counterparts. The paper has
two main contributions:

1) Theoretical performance bounds of computational imag-
ing. Implementing a CI technique involves an additional, often
signi�cant, cost over a conventional imaging system. In order
to justify the extra cost, a practitioner may ask the question:
What is the performance advantage of a CI technique with
respect to the corresponding impulse camera? Moreover, since
CI techniques capture more light than impulse imaging, it may
appear that they must result in a higher signal-to-noise-ratio
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Fig. 2. Computational versus Impulse Imaging.(Left) All CI techniques discussed in this paper can be modeled using the linear image formation model
given by Eq. 1. This includes defocus deblurring, motion deblurring, light �eld multiplexing, and several techniques discussed in Section III. In order to
recover the desired image, these techniques require an additional decoding step, which ampli�es noise. (Right) Impulse imaging techniques measure the signal
directly without requiring any decoding. A stopped down aperture can be used to avoid defocus blur, a shorter exposure can be used to avoid motion blur,
and a pin-hole mask can be placed near the sensor to directly measure the light �eld. The images in the �gure are taken from [56], [38], [28].

(SNR). However, CI involves a computational decoding step
(see Fig. 2) which ampli�es noise, thereby lowering the SNR.

We analyze the performance of a variety of CI techniques
(e.g. EDOF imaging, motion deblurring and light-�eld cap-
ture), and derive a bound on their performance in terms
of SNR. We show that CI techniques provide a signi�cant
performance advantage only if the average signal level is
signi�cantly lower than the sensor read noise variance, which
happens rarely in real-world scenarios. We also study the role
of image priors on the decoding (CI) and denoising (impulse
imaging) steps. Our empirical results show that the use of
priors reduces the performance advantage of CI techniques
even further.

2) Practical guidelines for computational imaging.Based
on our performance bounds, we provide guidelines for when
to use CI given an imaging scenario. The scenarios are
de�ned in terms of the application (e.g., motion deblurring,
defocus deblurring), real-world lighting (e.g., moonlit night
or cloudy day, indoor or outdoor), scene properties (albedo,
object velocities, depth range) and sensor characteristics. We
derive the performance gains for several CI techniques for
a variety of scenarios. These results can be readily used by

practitioners to decide whether to use CI, and if so, to design
the imaging system.

A. Scope and Assumptions

Applicability: The results in this paper apply only to CI
techniques that have a corresponding impulse imaging tech-
nique providing the same functionality. For example, the
performance of EDOF techniques is compared with a stopped-
down aperture, motion deblurring is compared with imaging
using a small exposure and mask-based light �eld capture
techniques are compared with pin-hole masks (see Figure 2).
Performance metrics: We use image quality for evaluating
the performance of techniques with the same functionality.
The theoretical performance bounds are derived in terms of
the SNR metric. In addition, we provide empirical results for
several other perceptually motivated metrics [50], [49], [43].
Imaging and noise model:The analysis in this paper deals
with techniques which follow a linear imaging model. The
noise is assumed to be additive Gaussian (signal independent
and dependent), as discussed in Section II. We do not con-
sider techniques which require non-linear computations for
recovering the desired image, e.g. depth estimation for EDOF
imaging [22].
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B. Related Work

Harvit and Sloane analyzed optically coded image acquisi-
tion in the context of spectrometers [21]. They showed that in
the absence of photon noise, the optimal measurement scheme
corresponds to Hadamard matrices, and provides signi�cant
performance advantage over impulse imaging. Ratner and
Schechner [39], [40] extended these results to derive optimal
measurement matrices in the presence of photon noise. Ihrkeet
al. [26] analyzed the noise performance of different light �eld
cameras and color-�lter array imagers. The performance gain
of multiplexing, as derived in these papers, depends on the
measurement matrices. The general conclusion of these works
was that CI techniques do not give a signi�cant performance
advantage at high light levels. Our contribution is to derive
theoretical performance bounds for CI, which are independent
of the optics. The bounds give the maximum performance
for CI techniques as a function only of the signal level and
camera read noise. We apply our results to several CI systems
including EDOF imaging and motion deblurring, and provide
practical guidelines for designing imaging systems.

Recently, Hasinoffet al. [22] show that the performance of
any EDOF camera (conventional or computational) improves
if multiple shots are taken with different focus settings. In
a similar vein, Zhanget al. [53] compare the performance
of acquiring multiple images versus a single image, in the
context of motion deblurring and HDR imaging. These papers
do not consider single shot impulse imaging. Moreover, both
these papers require non-linear computations (depth estimation
for EDOF and motion estimation for motion deblurring). In
contrast, our focus is on linear imaging systems, and our goal
is to analyze the performance gain of a wide range of CI
techniques with respect to single shot impulse imaging.

II. I MAGE FORMATION MODEL

We consider CI techniques that can be expressed using a
linear image formation model (see Fig. 2):

g = H f + � ; (1)

where g is the vector of measurements of sizeN . f is the
vector of unknown signal values, which may represent spatial,
spectral, angular, or temporal information.H is the measure-
ment matrix. For CI techniques that take coded measurements
by masking (attenuating) light, the entries ofH are between
0 and 1. For CI techniques that measure the signal without
masking light, either by moving the sensor during capture [23],
[34], using additional refractive elements [17] or moving the
camera [32]1, the entries ofH are not bounded. For impulse
imaging,H = I , and the camera measures the signalf directly.

Each element of the noise vector� is assumed to be
independently sampled from a zero mean Gaussian distribution
N (0; � 2). We consider an af�ne noise model where there
are two sources of noise, signal-independentread noise, and

1These techniques have an added bene�t that they result in depth invariant
blur (for defocus deblurring) and motion invariant blur (for motion deblurring),
which makes the deblurring process signi�cantly simpler.

signal-dependentphoton noise2. The photon noise can be ap-
proximated by a Gaussian with variance equal to the measured
signal levelJ (in photons). Let the variance of the read noise
be � 2

r . The total noise variance is:

� 2 = J + � 2
r ; (2)

An estimate of the signal can be found as:

f � = H � 1g (3)

The Mean-Squared Error (MSE) for the estimatef � is given
by [21]:

MSE =
� 2

N
T r(H � t H � 1) ; (4)

whereT r() is the matrix trace operator.

Performance Gain. In order to compute the performance
gain of a CI technique, we compare the signal-to-noise-
ratio (SNR) of the recovered signal with the signal captured
using impulse imaging (baseline). TheSNR is de�ned as
SNR = Jp

MSE
.

Denoting� 2
i as the noise variance for the impulse camera,

the MSE is just equal to the varianceMSE i = � 2
i . Let � 2

c
be the noise variance for the measurement made with the CI
technique. The performance gainG is the ratio of the SNR
for the CI technique to the SNR of the impulse camera:

G =

r
MSE i

MSE c
(5)

=

s
N

T r(H � t H � 1)
� i

� c
: (6)

When the noise is signal independent (� i = � c), the matrix
that maximizes the gain for masking-based CI techniques is the
S-matrix [21]. However, when the noise is signal dependent,
the optimal measurement matrix, and hence the performance
gain, depend on thematrix light throughputC(H ), which is
the sum of elements in each row of the measurement matrix3

H , and is a measure of the amount of light captured ifH
is used as the measurement matrix. For example, ifH is the
identity matrix, C(H ) = 1 . On the other hand, ifH is the
S-matrix, C(H ) � N

2 . Consequently, theS-matrix captures
signi�cantly more light. In the remainder of the paper, we
drop the argumentH from C(H ) for brevity.

Optimal Measurement Matrices.The problem of identifying
optimal measurement matrices (that result in maximum gain)
for masking-based CI techniques was explored by Ratneret
al. [39], [40]. They found an analytic expression for the lower
bound of the trace term:

2We ignore the effect of dark current noise, which is typically negligible
when exposure times remain less than around one second.

3We consider matrices for which all the rows have the same sum.
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T r(H � t H � 1) �
N (CN � 2C + 1)

(N � C)C2 : (7)

Suppose the average signal level for the impulse camera isJ ,
so that the total noise� 2

i = J + � 2
r . The CI technique captures

C times more light. Hence, the total noise is� 2
c = C J + � 2

r .
Substituting these and Eq. 7 in Eq. 6, we get an expression
for the maximum SNR gainG for matrices with a given light
throughputC:

G(C) �

vu
u
u
t

(N � C)C2

CN � 2C + 1| {z }
Decoding Term

J + � 2
r

C J + � 2
r| {z }

Noise Term

: (8)

The right hand side of Eq. 8 consists of two competing
terms. As light throughput is increased, the noise dependent
term decreases while the decoding dependent term increases.
There is an optimal light throughputCmax for which the SNR
gain achieves the maximum value ofGmax .

III. C OMPUTATIONAL VERSUS IMPULSE IMAGING :
EXAMPLES

There are several CI techniques that follow the linear
imaging model of Eq. 1 and which have a corresponding
impulse camera. The following are a few examples.

Defocus Blur.Coded aperture masks have been used to deblur
defocused images [30], [48], [56], [55]. There are also several
techniques that extend depth of �eld (DOF) by producing
a depth-independent blur that can be inverted without the
need for depth estimation [10], [17], [35], [23], [34], [14],
[13], [19]. Assuming the blur kernel to be shift invariant, the
measurement matrixH is a circulant matrix, where each row
of the matrix encodes the defocus blur kernel.g is the captured
blurred image andf is the EDOF image. The corresponding
impulse imaging technique is to capture images with a stopped
down aperture (H is equal to the identity matrixI ).

Motion Blur. Temporal shuttering has been used to remove
motion blur from images [38]. Methods have also been pro-
posed that create motion-invariant blur that can be removed
without prior knowledge of object speed [32], [11]. Similar
to EDOF imaging, the measurement matrixH is a circulant
matrix, where each row of the matrix encodes the motion blur
kernel.g is the captured blurred image andf is the blur-free
image. In contrast, impulse imaging avoids motion blur by
simply capturing images with a short exposure (H = I ).

Multiplexed Light Fields. CI techniques for capturing light
�elds include placing a transmissive mask either at the lens
aperture [33], or near the sensor [48], [28]. In this case also, the
measurement matrixH is block circulant. Each pixel measures
a linear combination of ray intensities (g) and the light �eld
(f ) must be recovered by demultiplexing the captured data. In
contrast, a light �eld camera can also be built by placing a
mask consisting of an array of pinholes near the sensor [25],
or by capturing a sequence of images with a shifting pinhole
in the aperture [33]. These techniques are the impulse imaging
counterparts of multiplexed light �eld capture.

Multiplexing Color and Spectrum. Mask-based Hadamard
multiplexing is used for point [21] and imaging [20] spectrom-
eters. Here,H is the spectral mixing matrix,g is the vector
of multiplexed spectral samples andf is the vector of narrow-
band spectral samples (desired). The impulse imaging coun-
terpart is capturing narrow-band spectral samples [8]. Color
Filter Arrays (CFAs) that multiplex color have been proposed
to capture three color images with more light throughput than
RGB Bayer �lters [2], [26] (impulse imaging).

Multiplexed Illumination. Measuring the appearance of a
scene under varying illumination is useful for scene relighting
and estimating depth. These measurements can be multiplexed
by measuring the appearance of a scene when illuminated by
linear combinations of light sources [42], [39], [40]. Here,
H is the measurement ensemble,g is the vector of acquired
(multiplexed) image intensities andf is the vector of intensi-
ties corresponding to only single sources. Here, the impulse
imaging counterpart is capturing images by turning on only
one light source at a time.

IV. OPTICS INDEPENDENTPERFORMANCEBOUNDS

In this section, we derive a performance bound for CI that is
independent of the signal sizeN and the measurement matrix
H (de�ned by the optics). As a result, this bound allows us
to analyze a wide range of CI techniques. In comparison, the
previous result (Eq. 8) gives the maximum SNR gainG for
coding matrices with a light throughputC and signal of size
N . We �rst derive an upper bound on the decoding term in
Eq. 8:

C2(N � C)
NC � 2C + 1

=
C2(N � C)

NC � C2 + C2 � 2C + 1

=
C2(N � C)

C(N � C) + ( C � 1)2

�
C2(N � C)
C(N � C)

� C: (9)

Next, we derive an upper bound on the noise term:

J + � 2
r

C J + � 2
r

=
1
C

C J + C � 2
r

C J + � 2
r

�
1
C

C J + � 2
r + C � 2

r

C J + � 2
r

�
1
C

�
1 +

C � 2
r

C J + � 2
r

�

�
1
C

�
1 +

� 2
r

J

�
(10)

By substituting the bounds in Eqs. 9 and 10 in Eq. 8, we get
the upper bound on the performance gain of masking-based
CI techniques:

G <

r

1 +
� 2

r

J
: (11)
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Fig. 3. Veri�cation of the performance bound using simulations. (a) Performance for several defocus deblurring cameras [30], [48], [56], [23], [34]. (b)
Motion deblurring performance for the �utter shutter [38] and motion-invariant cameras [32]. (c) Performance for the sum-of-sinusoids [48] and MURA [28]
light �eld multiplexing cameras. All techniques perform ator below the performance bound given by Eq. 12. The plots in 3(c) are similar to those given by
Ihrke et al. [26]. However, our plots are different for higher signal levels because we reduce camera sensitivity to avoid saturation.

In Appendix A, we derive the performance bound for the CI
techniques discussed in this paper that do not mask light [10],
[17], [35], [23], [34], [14], [13], [19], [32], [11]:

G <

s

2
�

1 +
� 2

r

J

�
: (12)

Eqs. 11 and 12 are noteworthy because they provide the
maximum possible SNR gain for all CI techniques mentioned
in Section III.

Simulations to Verify the Bounds. In Fig. 3, we show the
simulated performance of several of the techniques discussed
in Section III. The SNR gain of each technique is calculated
using Eq. 6, and the result is plotted against the ratio of photon
to read noise variance (J=� 2

r ). Fig. 3(a) shows performance for
several previously proposed defocus deblurring cameras [30],
[48], [56], as well as the focal sweep camera [23], [34].
Fig. 3(b) shows motion deblurring performance for the �utter
shutter [38] and motion-invariant [32] cameras. For focal
sweep and motion-invariant techniques, the coding was opti-
mized for different signal levels. Fig. 3(c) shows performance
for the sum-of-sinusoids [48] and MURA [28] light �eld
multiplexing cameras. The masks for both light �eld cameras
were generated with a period of11� 11 pixels. As expected,
all the techniques perform at or below the performance bound
given by Eq. 12.

Implication of the Bounds. The bounds in Eqs. 11 and 12
imply that theperformance gain for computational imaging
is signi�cant only when the average signal levelJ is con-
siderably smaller than the read noise variance� 2

r . The read
noise variance for currently available sensors ranges fromless
than one grey level (on a scale of[0 � 255]) for high quality
DSLR cameras to approximately5 grey levels for low-quality
machine-vision cameras [42]. Only a few real-world imaging
scenarios have signal strengths that are considerably smaller
than these read noise variance values.

V. ROLE OF IMAGE PRIORS

Thus far, we have not considered the role of image priors.
Priors can be used to improve image quality, both for com-
putational and impulse imaging [30], [56]. The improvement
depends on the type of priors and image coding used. In
addition, our analysis thus far used MSE as the quality metric
for images because it makes the derivation of performance
bounds tractable. However, a number of metrics have been
introduced which measure the perceived image quality [50],
[43], [49], [18]. In this section we analyze the effect of various
priors and metrics on performance.

Image Priors. We can think of the estimatef � given in Section
II as the Maximum Likelihood (ML) estimate of the following
optimization problem:

f �
ML = arg max

f
P(f jg) (13)

= arg min
f

jj f � H gjj2; (14)

whereP(f jg) is the probability of the unknown imagef given
the measurementg, which is Gaussian due to the properties
of the measurement noise vector� . If we have knowledge
of the probability distribution of our unknown imageP(f ),
then we can improve performance by �nding the Maximum
A Posteriori (MAP) estimate:

f �
MAP = arg max

f
P(gjf )P(f ) (15)

= arg min
f

jj f � H gjj2 + � log(P(f )) ; (16)

where the constant� determines how much signi�cance to
attach to the prior. The image prior can essentially be thought
of as a way to coerce the optimization problem to produce
more probable estimates of the unknown image. In this section,
we consider three image priors. Firstly, we consider a Gaussian
prior on the distribution of gradients in the image [30], [22]
of the form :
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log(PGauss (f )) = �jjr f jj2
2; (17)

where r is the �rst order �nite difference matrix, which
calculates a discrete approximation to the gradient operator.
In this case, because the prior is Gaussian, the MAP estimate
can be calculated directly as:

f �
MAP = ( r t r + H t H )� 1H t g: (18)

(19)

We also consider the Total Variation (TV) prior [6], [9]
which has the form:

log(PT V (f )) = �jjr f jj1: (20)

In this case, there is no direct way to calculate the MAP
estimate, and an iterative algorithm must be used. We use
the TwIST algorithm [6] to solve Eqn. 16 and �nd a MAP
estimate.

Lastly, we consider a prior that assumes neighboring patches
of pixels can be written as linear combinations of one another.
While it is dif�cult to write a single expression for this prior,
its possible to calculate a MAP estimate numerically. We use
the BM3D algorithm [15].

Image Quality Metrics. In Section II, we establish MSE
as the metric for evaluating images. We now extend this
formalization to more general metrics. We can de�ne a general
form for any similarity metricS(f ; f � ) that measures how
close our estimatef � is to the actual imagef . The MSE metric
can then be de�ned as

SMSE (f ; f � ) =
1

jj f � f � jj2
2

: (21)

The interpretation here is that the smaller the MSE, the more
similar the estimatef � relative to the true imagef . The
performance gain for any metric can then be written as

G =

s
Sc(f ; f � )
Si (f ; f � )

; (22)

whereSc is the metric applied to the computational camera,
and Si is the metric applied to the corresponding impulse
camera. For the MSE metric, the de�nition remains the same
as the expression given in Eq. 6. However, with this general
de�nition in place, we are now free to use other metrics to
evaluate performance. Note that because we have de�ned SNR
gain in terms of a similarity metric instead of an error metric,
the term for the computational camera appears in the numer-
ator instead of the denominator. In addition to MSE, we use
the following image quality metrics to measure performance:
Structural Similarity (SSIM)[50], Visual Information Fidelity
(VIF)[43], and Universal Quality Index (UQI)[49]. We use the
MeTriX MuX Visual Quality Assessment package to calculate
performance using these metrics [18].

Simulations. Fig. 4 shows the simulated performance of focal
sweep and �utter shutter cameras. Since the performance of
reconstruction algorithms can be image depend, we report
the performance averaged over a large dataset of images. For
this simulation, we use the Caltech 101 image database of
9140 different images [27]. For each image, we simulate the
performance under ten different photon to read noise ratios
(J=� 2

r ). Moving from left to right columns, performance is
shown for the MSE, SSIM, VIF, and UQI metrics. The top
row shows performance for the focal sweep camera, and the
bottom row shows performance for the �utter shutter camera.
For each plot, the performance gainG is plotted on a log
scale. Thus, a value of zero corresponds to a performance
gain of G = 1 , meaning that both computational and impulse
imaging have the same performance (dotted line). The black
line corresponds to the performance bound expressed by Eqn.
12. The magenta lines correspond to performance gain using
direct linear inversion (i.e. estimating the image using Eqn. 3).
The red, green, and blue curves correspond to reconstructions
using Gaussian, TV, and BM3D priors, respectively.

There are two interesting observations to be made from
these plots. First, in most of the cases, image priors boost
the performance of impulse imaging more than computa-
tional imaging. As a result, the performance advantage of
CI techniques over impulse imaging is reduced even further,
especially at low light levels. Thus, the performance bound
expressed by Eqn. 12 is the tightest when no prior is used.

The second observation is that the bound derived using
linear inversion and the MSE metric (black curve) appears
to be an upper bound for performance across all metrics
and priors. This is surprising because it is well known that
MSE does not accurately measure perceived image quality.
Nonetheless, the upper bound expressed by Eqn. 12 does
appear to provide a consistent upper bound on performance
regardless of the image quality metric used.

VI. W HEN TO USE COMPUTATIONAL IMAGING

Eqs. 11 and 12 provide performance bounds for CI tech-
niques in terms of the sensor read noise� r and the average
signal levelJ of the impulse image. In order to determine
when CI is advantageous, we have derived an expression for
the signal levelJ in terms of the scene and sensor dependent
parameters (see Appendix B for a derivation):

J = 1015 (F=#) � 2 t I src R
| {z }

Scene
Dependent

q� 2

| {z }
Sensor

Dependent

; (23)

whereF=# is the ratio of focal length to aperture size of the
lens, t is the exposure time,I src is the incident illuminance
given in lux , R is the average re�ectivity of the scene,q is
the quantum ef�ciency of the sensor, and� is the pixel size
in meters. In Fig. 5, we give values ofJ corresponding to
several commonly encountered lighting conditions.

Scene Dependent Parameters.For defocus deblurring sys-
tems, theF=# of the camera depends on the depth range
of the scene. A larger depth range will require the impulse
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(d) Performance using UQI metric
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Fig. 4. Simulated performance for a focal sweep (top row) and �utter shutter (bottom row) cameras using various priors and metrics. (a)(e)
Performance using the Mean-Squared Error metric. (b)(f) Performance using the Structural Similarity Metric. (c)(g) Performance using the Visual Information
Fidelity Metric. (d)(h) Performance using the Universal Quality Index metric. Several reconstruction techniques areapplied, including Linear inversion
(magenta), Gaussian prior on derivatives (red), Total Variation prior (green), and BM3D prior (blue). The SNR gain is always less than the bound given by
Eq. 12, regardless of the prior or metric used.

camera to stop down to smaller apertures to reduce defocus
blur to within one pixel. Similarly, for motion deblurring
systems, the exposure timet depends on the range of scene
velocities. Higher velocities will require the impulse camera
to have a small exposure to reduce motion blur to within one
pixel. Finally, the signal level is directly proportional to the
illumination brightnessI src and the object albedoR.

Sensor Dependent Parameters.Different sensors have differ-
ent quantum ef�ciencies and pixel sizes. Quantum ef�ciency
for commercially available sensors is quite high, usually
greater thanq > :5. For today's sensors, the size of pixels�
has a wide range, from 1 micron for small cell phone sensors
to nearly 10 microns for large format sensors.

A. Rule of Thumb

When using one of today's commercial grade image sensors,
computational imaging will only yield signi�cant performance
bene�ts when the illuminance is less than125lux (typical
living room lighting).

For EDOF imaging and motion deblurring, this implies that
when the illuminance is high (more than typical living room
lighting), it is better to capture the impulse image withoutany
blur (using a small aperture and exposure, respectively). Simi-
larly, for light �eld and spectral acquisition, if the illuminance
is high, it is better to capture the light �eld and the spectral
samples directly without multiplexing (using pin-hole masks
and narrow-band �lters, respectively).

(lux)Isrc

3,849

4
10

Sunny
Day

384.9

3
10

Cloudy
Day

1

Full
moon Twilight

3.85

10

Indoor
Lighting
Indoor

38.49

2
10

.39

Quarter
moon

Starry 
night

-4
7 x 10

-3
4 x 10

10
-2-3

2 x 10

J -(e  )

Fig. 5. Relating lighting levels to average photon counts.The top row
shows typical illuminance values inlux [51]. The bottom row shows the
photon counts calculated using Eq. 23 assuming an average re�ectivity of R =
:5, quantum ef�ciency ofq = :5, and exposure time oft = 1 =50 seconds,
aperture setting ofF=2:1, and pixel size of� = 1 �m .

We support this rule of thumb with several example scenar-
ios. Each scenario consists of an application, lighting condition
(e.g., moonlit night or cloudy day, indoor or outdoor) and
scene properties (albedo, speed, range of object velocities).
In all our examples, we assume an average re�ectivity of
R = 0 :5, quantum ef�ciency ofq = 0 :5, and read noise of
� r = 4 e� , which is typical for today's DSLR sensors [12].

Motion Deblurring. For this case, we used a pixel size of
� = 5 �m , aperture setting ofF=20 and the impulse camera
exposure timet = 1

50 s. For �utter shutter camera, we use
the 52 digit long sequence given in [38]. We simulated the
effect of photon and read noise, and decoded the captured
image using Eq. 3. In Fig. 6, we show the simulated images.
The �utter shutter performance is lower than that of impulse
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Fig. 6. Simulated performance for the �utter shutter camera. The parameters for the simulation are given in Section VI-A.The top row shows an image
blurred by the �utter sequence given in [38]. The second row shows the results after linear deblurring. The third row shows the results from the impulse
camera (shorter exposure). The fourth row shows the resultsafter deblurring the images in the �rst row with the BM3D algorithm [15]. The last row shows
the results for denoising the images in the third row with theBM3D algorithm. Gaussian distributed read noise and Poisson distributed photon noise is added
to each image. The illuminationI src increases from left to right. The �utter shutter camera has higher SNR whenI src < 100lux .

imaging when the illuminance is greater than100lux .

In Fig. 8(a), we show a contour plot of the SNR gain bound4

versus the illuminance (I src ) and the exposure time of the
impulse camera (t). Note that the bound is independent of the
particular �utter sequence and the exposure time of the �utter
camera. As the maximum object speed increases, the exposure
time of the impulse camera must be reduced to avoid motion
blur. We can observe that CI never gives an SNR gain greater
than2 when the illuminance is greater than83lux .

EDOF Imaging. For this case, we used a pixel size of
� = 5 �m , the camera exposure timet = 1

50 s and the impulse
aperture setting ofF=20. The aperture setting for the focal

4Although the SNR bound is derived assuming no priors and MSE metric,
we have observed empirically that it bounds the performanceof CI techniques
irrespective of the prior and the image quality metric (see Section V).

sweep camera was set toF=1. In Fig. 7, we show simulated
images. The �gure shows captured (coded), decoded, and
impulse images with read noise and varying amounts of photon
noise added. Images are decoded using Eq. 3. The performance
of focal sweep is always greater than impulse imaging (i.e.
stopping down the camera), but the increase in performance
is negligible when the illuminance is greater than100lux .

In Fig. 8(b), we show a contour plot of the SNR gain
bound (independent of the focal sweep aperture setting) versus
the illuminance and theF=# of the impulse camera. As the
scene depth increases,F=# of the impulse camera must also
increase to avoid defocus blur. As we can notice, CI does not
give an SNR gain greater than2 when the illumination is more
than125lux .

Spectral and Light Field Acquisition. In this example, we
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consider the performance of spectral and light �eld cameras.
We use an exposure time oft = 1 =50 seconds, pixel size of
� = 1 �m , and an aperture setting ofF=2:1. In Fig. 1 we
plot the SNR gain bound against illuminance. In this case the
illuminance must be less than18lux in order for CI to give
an SNR gain greater than2.

VII. D ISCUSSION

The Role of Sensor Quality. High quality sensors are
carefully engineered to have low read noise, albeit with an
added cost. In applications where low quality (high read
noise) sensors are used, CI can enhance performance even
when illuminance is greater than125lux . In these situations,
however, the additional cost required to implement coding

should be weighed against the cost of improving performance
by simply switching to a high-quality sensor.

Effects of Diffraction: Defocus blur is a purely geometrical
phenomenon that depends only on object depth, aperture size,
and the focal length of the lens. However, lenses also exhibit
some amount of blur due to the diffraction of light from
the aperture. While defocus blur is directly proportional to
aperture size, diffractive blur is inversely proportionalto the
aperture size. Therefore, any attempt to remove one type of
blur will increase the other.

For the impulse camera, when diffraction blur size is larger
than a pixel, the only option for removing blur is to use an
EDOF technique. This is a particularly important problem
when considering cameras with small pixel sizes. In this case,
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Fig. 8. Performance of motion and defocus deblurring.The average signal level is calculated using Eq. 23 with the parameters outlined in Section VI-A.
(a) Contour plot of the SNR gain bound versus the illuminanceand the exposure time of the impulse camera. (b) Contour plotof the SNR gain bound versus
the illuminance and theF=# of the impulse camera. For both motion and defocus deblurring, the SNR gain is always negligible when the illuminance is
greater than125 lux (typical indoor lighting).

EDOF techniques provide a functionality which cannot be
achieved using impulse imaging.

Task-Speci�c Imaging: Our aim in this paper is to analyze
the performance of CI insofar as the �nal goal is to capture
high quality images. If a further task is to be performed on
the captured images (e.g., tracking, face recognition, intrusion
detection), reconstruction algorithms can bene�t from task-
speci�c priors (as opposed to priors based on natural image
statistics). Moreover, in this case, the performance should be
evaluated in terms of task-speci�c metrics. While such task-
speci�c priors and image quality metrics are beyond the scope
of this paper, we believe they form an interesting directionfor
future research.

APPENDIX A
CODING FOR INVARIANCE

For shift-invariant systems, the image formation of Eq. 1
can be described in the Fourier domain as

G(! x ; ! y ) = H (! x ; ! y )F (! x ; ! y ) + 	( ! x ; ! y ); (24)

where! x ; ! y are continuous valued spatial frequencies given
in units of1=pixels, F is the focused image,H is the optical
transfer function (OTF) of the camera,	 is the noise, andG
is the captured image. An estimate of the focused image can
be found as

F � (! x ; ! y ) =
G(! x ; ! y )
H (! x ; ! y )

; (25)

and the expected MSE can be written as

MSE = E
�
jjF � (! x ; ! y ) � F (! x ; ! y )jj2�

(26)

= � 2
Z 1=2

� 1=2

Z 1=2

� 1=2

1
kH (! x ; ! y )k2 d! x d! y ; (27)

whereE denotes expectation w.r.t. the noise	 .

Motion Invariant Blur. Let Sm be the maximum speed of
objects in the scene measured inpixels=sec. An impulse
camera will remove motion blur by setting the exposure time
T so that the maximum blur size is equal to one pixel and
Sm T = 1 . Cho et al. [11] derived an upper bound on the
best possible motion-invariant MTF that can be achieved for
2D motion 5:

kHm (! x )k2 �
C

2Sm T
q

! 2
x + ! 2

y

: (28)

Substituting Eq. 28 into Eq. 27 gives a lower bound on the
MSE for any motion-invariant camera:

MSE m �
� 2

m

� p
2 + asinh(1)

�

3C
�

� 2
m

2C
: (29)

Substituting Eq. 29 into Eq. 5 results in the bound expressed
by Eq. 12.
Defocus Invariant Blur. In the same way that motion blur
depends on the speedSm , defocus blur depends on the defocus
parameterSd. Following the notation in Levinet al. [31],
Sd = 2 dmax � dmin

dmax + dmin
, wheredmax and dmin are the maximum

and minimum depths of objects in the scene, respectively.
An impulse camera will remove defocus blur by reducing the
aperture widthA (measured in pixels) so that the maximum
defocus blur size is equal to one pixel andSdA = 1 .

Baek [1] showed that the focal sweep camera is nearly
optimal at simultaneously maximizing transfer ef�ciency and
minimizing depth-invariance. Thus, the performance of focal
sweep will closely approximate the best possible performance
of any technique that produces depth-invariant blur. Levinet
al. derived an approximate expression for the focal sweep
MTF [31] 6

5The bound derived by Choet al. assumesH m (0; 0) = T . We assume
H m (0; 0) = C. Both conditions give the same SNR gain.

6The derivation by Levinet al. assumesH f s (0; 0) = A 2 . We assume
H f s (0; 0) = C. Both conditions give the same SNR gain.
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kH fs (! x ; ! y )k2 �
C max(! 2

x ; ! 2
y )

A2S2
d

(30)

Substituting Eq. 30 into Eq. 27 gives a lower bound on the
MSE for any depth-invariant camera:

MSE d �
� 2

m

2C
: (31)

Substituting Eq. 31 into Eq. 5 results in the bound expressed
by Eq. 12.

APPENDIX B
L IGHTING CONDITIONS

For a Lambertian scene with average re�ectanceR that is
lit by a source with illuminanceI src (given in units oflux ),
the average illuminance falling on the detector (also in units
of lux ) is [24]

I det =
1
4

1
F=# 2 Esrc R: (32)

Given a quantum ef�ciencyq, an exposure time of
t seconds, and a pixel size of� meters, the average energy
in joules collected by a pixel is [16]

E = K
1
4

1
F=# 2 I src Rq� 2t; (33)

where K = 1 =680watts=lumen is the conversion factor
between photometric and radiometric units when the detector
spectral response is matched to the photopic spectral response
of the standard human observer. The energy injoules of a
single photon is given by~c=� , where~ is Planck's constant,
and c is the speed of light. The average number of photons
collected by a pixel is then

J = K
�

4~c
1

F=# 2 I src R q� 2 t: (34)

Assuming a mean wavelength of� = :55�m , the average
number of photons becomes

J = 1015 1
F=# 2 I src R q� 2 t: (35)
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