
Privacy Enhanced Access Control for
Outsourced Data Sharing

Mariana Raykova, Hang Zhao, and Steven M. Bellovin

Columbia University, Department of Computer Science,
New York, NY 10027-7003, USA,

{mariana,zhao,smb}@cs.columbia.edu

Abstract. Traditional access control models often assume that the en-
tity enforcing access control policies is also the owner of data and re-
sources. This assumption no longer holds when data is outsourced to a
third-party storage provider, such as the cloud. Existing access control
solutions mainly focus on preserving confidentiality of stored data from
unauthorized access and the storage provider. However, in this setting,
access control policies as well as users’ access patterns also become pri-
vacy sensitive information that should be protected from the cloud. We
propose a two-level access control scheme that combines coarse-grained
access control enforced at the cloud, which allows to get acceptable com-
munication overhead and at the same time limits the information that
the cloud learns from his partial view of the access rules and the ac-
cess patterns, and fine-grained cryptographic access control enforced at
the user’s side, which provides the desired expressiveness of the access
control policies. Our solution handles both read and write access control.

1 Introduction

The emerging trend of outsourcing of data storage at third parties, such as the
cloud, has recently attracted tremendous amount of attention from both research
and industry communities. Outsourced storage make shared data and resources
much more accessible as users can retrieve them anywhere from personal com-
puters to smart phones. This alleviates data owner from the burden of data
management and leaves this task to service providers with dedicated resources
and more advanced techniques. By embracing the cloud computing solution,
government agencies will drastically save budget and increase productivity by
utilizing low-cost and maintenance-free services available on the Internet rather
than purchasing, designing and installing new IT infrastructure themselves. Sim-
ilar benefits could be realized in financial services, health care, education, etc.

Security remains the critical issue that concerns potential clients, especially
for the banks and government sectors. A major challenge for any comprehensive
access control solution for outsourced data is the ability to handle requests for re-
sources according to the specified security policies to achieve confidentiality, and
at the same time protect the users’ privacy. Several solutions have been proposed
in the past [5, 6, 9, 10, 12], but none of them considers privacy of the policies and



2

users’ access patterns as an essential goal. In this paper we propose a solution
that addresses these privacy requirements and provides a mechanism to achieve
a flexible level of privacy guarantees for the client. We introduces a two-level
access control model that combines fine-grained access control, which supports
the precise granularity for access rules, and coarse-grained access control, which
allows the storage provider to manage access requests while learning only limited
information from its inputs. This is achieved by arranging outsourced resources
into units called access blocks and enforcing access control at the cloud only at
the granularity of blocks. The fine-grained access control within each access block
is enforced at the user’s side and remains oblivious to the cloud. The mapping
between files and access blocks is transparent to the users in the sense that they
can submit file requests without knowing in what blocks the files are contained.

Moreover, existing solutions focus on read requests only and exploit the idea
that data encryption implicitly enables read access control through the appropri-
ate distribution of decryption keys. However, extending this idea to write access
control is nontrivial since we cannot guarantee that a user given a specific access
block will modify only the files to which he has write access. In this work, we
also present a write access control solution, where the storage provider is able
to verify that a user has write access to some file in the access block, without
learning which file, and only then he would accept updates from the user.

2 Motivation

Traditional access control models often make an implicit assumption that the
entity enforcing access control policies is also the owner of data. However, in
many cases of distributed computing, this assumption no longer holds, and access
control policies are enforced at points which should not have direct access to the
data content itself, such as data outsourced to an untrusted third party. Hence
we need to store data in encrypted form and enforce access control over the
encrypted data. The setting of cloud computing falls into this category. The cloud
servers are considered to be honest but curious. They will follow our proposed
protocol in general, but try to find out as much information as possible based
on their inputs. Therefore data confidentiality is not the only security concern.

First of all, access control policies defined by the data owner that govern who
can have access to what data become private information with respect to the
storage provider. For example, the fact that certain users share some of their
data with other users or they stop the sharing can be suggestive about their
business relationships. This problem is mitigated by the use of cryptography as
an enforcement mechanism, which translates the access control problem into the
question of key management for the decryption keys.

A more challenging task, that cannot be solved by data encryption alone, is
to protect data access patterns from careful observations on the inputs of the
storage provider. Even data is stored and transferred in an encrypted format,
traffic analysis techniques can reveal sensitive information about the underlying
data and the activities of users. For example, analysis on the length of encrypted
traffic could reveal certain properties of the underlying data; access history to



3

multiple data objects could disclose access habits and privileges of a particular
user; access to the same data object from multiple users could suggest a common
interest or collaborative relationship; a ranking of data objects popularity can
also be built upon access requests that the cloud receives. A trivial solution is
to return all encrypted data upon any data request. While this solution may not
cause any confidentiality problem, if the cryptographic mechanism guarantees
that a user can decrypt only data that he has access to, it brings prohibitive
costs in several directions: data stored at a cloud provider most likely exceeds the
storage capacity of any single user, transferring the data would incur enormous
network usage as drastically increased latency; additionally, a user would need
to spend time on cryptographic computations to find the appropriate piece of
the data he needs. All these concerns rule out this obvious solution.

The question of hiding access pattern is challenging while avoiding work
proportional to the total size of all stored files. There have been several crypto-
graphic solutions that realize the notion of oblivious RAM and manage to achieve
improved amortized complexity for queries while hiding access patterns [3, 8, 1,
4]. However, such solutions are highly interactive and still require communication
polylogarithmic in the size of the database, which in the setting of large storage
cloud providers, weak client devices and expensive network communication will
not be practical (e.g., wireless network communication with limited bandwidth).
Furthermore, they assume that the user submitting the query is the owner of
all data, which does not fit into our scenario where access control is enforced on
data shared by multiple users, not limited to the data owner.

An equally important, but often overlooked, aspect of access control for out-
sourced data is to enforce the write access. Existing solutions often made an
implicit assumption that access to shard data always refer to read requests.
However, an inevitable requirement of data sharing is to allow authorized write
access, such as in a collaborative working environment, where co-workers are
allowed to contribute to the same project. While data encryption naturally pre-
serves authorization of the read access through key management, the procession
of a decryption key implies authorized read access but not necessarily the write.
Therefore, different cryptographic schemes are mandatory to manage read and
write accesses separately. Moreover, access patterns on write operations should
be hidden from the cloud provider to achieve better privacy. In addition, adding
write operation into the current access control scheme complicates our problem
as we do not assume any implications between read and write access rules. Thus
a user may have both types of access (read and write) to a protected object or
only one of them (read or write).

Therefore we summarize that a privacy enhanced access control solution for
data sharing in outsourced storage needs to meet the following requirements:
1. it enables data confidentiality by implementing a fine-grained cryptographic

access control mechanism;
2. it provides a practical and flexible data sharing scheme by supporting both

read and write operations in the access control model;
3. it enhances data and user privacy by protecting access control rules and

more importantly access patterns of users from the storage provider.



4

2.1 Two-level Access Control Model

We consider a scenario with a set of users that selectively perform data sharing
among themselves on a set of resources using remote storage provided by the
cloud. Three different roles are distinguished in the access control model: the
data owner who creates data to be stored at the remote storage in an encrypted
format and regulates who has what access to each data; the data user who may
have read and write access to the protected data; the cloud provider that stores
the encrypted data and responds to access requests. To provide confidential-
ity through data encryption while preserving privacy, we propose a two-leveled
access control model, where data resources (files) are divided into units called
access blocks.1 These access blocks constitute the coarse-grained level view of the
stored data. The cloud provider is presented with this view and enforce access
control at this granularity. He is able to match an authorized request to an ac-
cess block that contains the requested file. Upon a read request the cloud would
provide the content of the entire matching block to the user. Upon a write re-
quest he shall accept only authorized updates for some content of that block and
also obliviously match them to the corresponding files. At the fine-grained level,
each access block consists of files owned by a single owner. Each data owner is
responsible for distributing his files into blocks, and defines fine-grained access
control policies that specify users’ access rights to individual files.

To facilitate our discussion, consider a system with five users U = {A,B,C,D,
E}. Let Ro denote the set of resources owner by user o ∈ U , and we have
RA = {r1, r2, r3, r4}, RB = {r5, r6, r7} and RC = RD = RE = ∅. An authoriza-
tion policy Po defined by data owner o at the fine-grained level is a set of tuples
of form 〈u, r, p〉 (p ∈ {r, w}), which states a data user u ∈ U is allowed to read
(r) or write (w) to resource r ∈ R. In our example, we have:

1. PA = {〈A, r1, r〉, 〈B, r1, r〉, 〈C, r1, r〉, 〈A, r2, r〉, 〈B, r2, r〉, 〈C, r2, r〉, 〈A, r3, r〉,
〈E, r3, r〉, 〈A, r4, r〉, 〈B, r4, r〉, 〈C, r4, r〉, 〈E, r4, r〉, 〈A, r1, w〉, 〈B, r1, w〉,
〈C, r1, w〉, 〈A, r2, w〉, 〈B, r2, w〉, 〈C, r2, w〉, 〈A, r3, w〉, 〈A, r4, w〉, 〈D, r4, w〉};

2. PB = {〈A, r5, r〉, 〈B, r5, r〉, 〈B, r6, r〉, 〈C, r6, r〉, 〈D, r6, r〉, 〈A, r5, w〉, 〈B, r5, w〉,
〈A, r7, r〉, 〈B, r7, r〉, 〈C, r7, r〉, 〈D, r7, r〉, 〈E, r7, r〉, 〈C, r5, w〉, 〈B, r6, w〉,
〈D, r6, w〉, 〈E, r6, w〉, 〈A, r7, w〉, 〈B, r7, w〉, 〈C, r7, w〉, 〈D, r7, w〉, 〈E, r7, w〉}.

Therefore, we can build the following set of access control lists (ACLs):

1. acl read(r1) = {A,B,C}, acl write(r1) = {A,B,C};
2. acl read(r2) = {A,B,C}, acl write(r2) = {A,B,C};
3. acl read(r3) = {A,E}, acl write(r3) = {A};
4. acl read(r4) = {A,B,C,E}, acl write(r4) = {A,D};
5. acl read(r5) = {A,B}, acl write(r5) = {A,B,C};
6. acl read(r6) = {B,C,D}, acl write(r6) = {B,D,E};
7. acl read(r7) = {A,B,C,D,E}, acl write(r7) = {A,B,C,D,E}.

Note that for each resource r owned by user o, we have acl read(r)∩acl write(r) ⊇
{o}. That is the owner of a resource automatically entails both read and write
access privilege. At the coarse-grained level, user A maintains two blocks b1 =
{r1, r2} and b2 = {r3, r4}, and user B maintains a single block b3 = {r5, r6, r7}.
1 They are by no means related to file disk blocks.



5

3 Read Access Control

In this section, we present in detail the two-level access control scheme for read
access only after describing the following techniques applied in our protocol.

3.1 Techniques
Fine-Grained Access Control Fine-grained access control is applied to files
inside each access block to explicitly enforce access control rules. While the
cloud provider is able to determine whether a user submits a legitimate request
for some file within a block, he should remain oblivious to the access control rules
defined for that file. To guarantee this property the access control view presented
to the cloud treats blocks as entities, and the cloud grants a read access by
providing the content of an entire block. Fine-grained access control is enforced
by encrypting files per block under different keys, and the access control problem
is mitigated to appropriate key distribution. Even a user receives the encrypted
content of a block, he is able to decrypt only the files that he has access to. Access
revocation requires re-encryption of the resource and re-distribution of the new
key to the remaining authorized users. Our goal is to minimize the amount of
work and interaction between users and the system upon policy updates.

The work of [10] proposes an encryption-based access control solution for
outsourced data. Their key distribution is facilitated by the construction of a
public tree structure that allows each user to derive file decryption keys using
a secret, which he establishes once in the beginning. The leaf nodes in the tree
represent initial secrets distributed to users when they join the system, and the
internal nodes denote the file decryption keys derivable from leaf nodes using
public tokens along a directed path. Any update of the access control rules entails
a change in the tree. Access revocation requires re-encryption of affected files.

In our scheme, each user generates a public-private key pair, and the public
key is used by data owners as initial secret to construct trees. Hence each user
only needs to maintain one key in the system and the distribution of leaf nodes is
implicit through the asymmetric key scheme. If some resources are only accessible
by a single user, instead of encrypting files using a leaf node (i.e., the public key),
we generate a symmetric key for file encryption, which is further encrypted under
that public key to avoid expensive computation of asymmetric scheme. In that
case, the initial secret needs to be explicitly distributed to an authorized user.
Unlike in [10], key derivation tokens have to be protected. First a user’s initial
secret is generally available to anyone in the system. More importantly, the tree
structure itself can reveal certain sensitive information to the cloud. For example,
a user having access to one file will have access to all the files along a directed
path. So the ontent of each node, a pointer to next node and the token to derive
next key are all protected under the current encryption key. Thus we can achieve
efficient key distribution without requiring any direct interaction between data
owners and users beyond some initial set-up assuming only the cloud will be
online all the time. A list of algorithms for key distribution and management are
summarized in Figure 1.

Coarse-Grained Access Control The main goal to achieve at the level of
coarse-grained access control is to enable the cloud provider to obliviously match



6

– Publish(r, o, eo, acl): adds a resource r owned by o with a secret eo and
an access control list acl = acl read(r) for read access.

– Access Read(u, r, o): returns the encryption key for a resource r owned
by o, if u is an authorized user.

– Find Chain(u, r): finds the shortest chain of tokens from the secret key
of user u to derive the decryption key for resource r.

– Compute Key(u, chain): derives the secret key for a user u given a chain
of transition tokens.

– Find Resources(u, r): finds the set of nodes that lie on any path from
the user u to the node corresponding to resource r.

– Update(r, acl): if there is another resource with the same access control
list acl, i.e., there is a node in the tree accessable exactly by a subset of
users in acl, then encrypt r with the key contained in that node. Otherwise,
encrypt r with a new key, add a new node containing this key to the tree
and add appropriate edges to connect the new node to the users who
have access to r. (Note that certain subgroups of the users in acl might
already have a shared key through another node in tree, and in that case
we connect to that node rather than all the users’ nodes separately.)

Fig. 1: Algorithms for key distribution and management for fine-grained AC.

a user’s request to an access block without learning which part of the block the
user is authorized to access. In addition we provide unlinkability among multiple
requests for the same resource even if coming from the same user, which further
protects users’ access patterns from the cloud provider. In order to achieve these
goals we apply the predicate encryption scheme of [7]. Observing that in this
scheme ciphertext can be re-randomized even without knowledge of the secret
key, we define a re-randomization algorithm in Definition 1.

Definition 1. A re-randomizable predicate encryption scheme consists of the
following algorithms:

– Setup(1n): produces a master secret key SK and public parameters;
– EncSK(x): encrypts an attribute x using key SK;
– GenKeySK(f): generate a decryption key SKf associated with a function f ;
– DecSKf

(c): outputs 1 if the attribute encrypted in c = EncSK(x) satisfies f ,
i.e. f(x) = 1, and output a random value, otherwise;

– Rand(c): computes a new encryption c′ of the value encrypted in c but with
different randomness without the secret key.

We present the predicate encryption scheme of [7] and the instantiation of the
function Rand(c) for that scheme in Appendix A. This scheme handles a class of
functions f , which includes polynomials of bounded degree. We use polynomial
functions of the type f(x) = (x− id1) · · · (x− idn), to implement coarse-grained
access control. Figure 2 present a list of algorithms to enforce access control
on the block level granularity without revealing the exact files that are being
accessed insider a block. The algorithm File Access Check grants access if the
submitted access token matches any of the files in the block without revealing
the file identity. The request token produced by File Access Request is an
encryption that does not leak information about the file id it contains.



7

– Block Access Setup: data owner runs Setup(1n), publishes the public
parameters and keeps the master secret key SK. For files id1, . . . , idn in
each block, he computes SKf = GenKeySK(f) for f(x) = (x−id1) · · · (x−
idn) and sends SKf to the cloud provider.

– File Access Authorization: data owner provides access to a file id by
sending cid = EncSK(id) to an authorized user.

– File Access Request: user generates a token tid = Rand(cid) for file id.
– File Access Check: upon receiving a request token t, the cloud computes

DecSKf (t) for each block, and returns those blocks that compute to 1.

Fig. 2: Algorithms for enforcing coarse-grained AC at the access block level.

3.2 Read Access Control Alone

We now present a complete access control solution, for read access only, that
consists of the following algorithms:2

– System Setup: At the fine-grained level, files are distributed into access
blocks. For each block, generate a tree graph by running Publish(r, o, eo, acl)
for each resource r owned by o with an initial set of ACLs. Encrypt resources
using keys from internal nodes in the tree. At the coarse-grained level, compute
parameters for a predicate encryption scheme. Each owner construct a separate
tree graph over all resources he owns to distribute authorization tokens SKf =
GenKeySK(f) based on the initial ACLs.
– Access Authorization: At the fine-grained level, add a leaf node contain-
ing the new user’s public key to the corresponding tree graph with encryption
keys. Update the graph by adding new internal nodes and appropriate edges if
necessary. Update file encryptions if new internal nodes were added previously.
At the coarse-grained level, perform similar operations with respect to the tree
graph containing read access tokens.
– Access Request: At the fine-grained level, an authorized user u derives
the decryption key from tree graph for resource r by calling Find Chain(u, r),
Find Resources (u, r) and Compute Key(u, chain). At the coarse-grained
level, he calls the same set of functions but to query the tree graph with access
tokens and find token cid = EncSK(id) for the requested file id, and then submit
a randomized token tid = Rand(cid) to the cloud.
– Access Check: At the fine-grained level, only authorized users can derive
the correct decryption key for each file using the public tree structure. At the
coarse-grained level, the cloud provider executes File Access Check to identify
the block that contains the requested file.
– Access Rule Update: At the fine-grained level, changes are applied im-
mediately upon policy updates. If the policy update involves access revocation,
the data owner changes the encryption of corresponding files. The data owner
identifies the blocks affected by those files and updates their tree graphs with
decryption keys. The changes at the coarse-grained level happen at longer in-
tervals of time, the length of which would depend on the resources of the data
owner. They involve updating of the tree graph with access tokens.

2 Unless explicitly stated, all the actions are performed by individual data owners.



8

A	
   B	
   C	
   D	
   E	
  

V1
11	
  [A]	
  

b1	
  =	
  {r1,	
  r2}	
   A	
   B	
   C	
   D	
   E	
  

V2
11	
  [A]	
  

b2	
  =	
  {r3,	
  r4}	
  

(a)	
  Encryp;on	
  policy	
  graph	
  for	
  block	
  b1	
  owned	
  by	
  A	
  

V2
31	
  [ABCE]	
  

(b)	
  Encryp;on	
  policy	
  graph	
  for	
  block	
  b2	
  owned	
  by	
  A	
  

V1
21	
  [ABC]	
  

r	
  	
   node	
   key	
  
r1	
   v121	
   k121	
  
r2	
   v121	
   k121	
  

r	
  	
   node	
   key	
  
r3	
   v221	
   k221	
  
r4	
   v231	
   k231	
  

V1
12	
  [B]	
   V1

13	
  [C]	
  
V2

12	
  [E]	
   V2
13	
  [B]	
   V2

14	
  [C]	
  

V2
21	
  [AE]	
  

Given the example in Section 2, we

A	
   B	
   C	
   D	
   E	
  

V3
11	
  [A]	
   V3

13	
  [C]	
  

b3	
  =	
  {r5,	
  r6,	
  r7}	
  

V3
12	
  [B]	
  

V3
22	
  [BCD]	
  

(c)	
  Encryp<on	
  policy	
  graph	
  for	
  block	
  b3	
  owned	
  by	
  B	
  

V3
15	
  [E]	
  

V3
31	
  [ABCDE]	
  

r	
  	
   node	
   key	
  
r5	
   v321	
   k321	
  
r6	
   v322	
   k322	
  
r7	
   v331	
   k331	
  

V3
14	
  [D]	
  

V3
21	
  [AB]	
  

Fig. 3: Tree graphs of encryption pol-
icy for fine-grained AC on read access.

construct one tree graph per block for
file encryption keys at the fine-grained
level in Figure 3. Each block stores files
owned by a single user (shaded), and
each file r is encrypted under a sym-
metric key. Leaf nodes, indexed as vj1n
with block id j, store users’ initial pub-
lic keys. Key derivation paths are de-

noted using thick links connecting leaf nodes to internal ones. Each row in the ta-
ble states resource ri in block bj encrypted under key kjmn at vertex vjmn. The tree
structure significantly reduces the number keys that each user has to maintain,
and enables encryption of different files with the same ACL under the same key.
For example, key k331 for encrypting r7 can be derived by all users, since there is a
directed path from each user’s initial secret to vertex v331; resources r1 and r2 are
encrypted under the same key k121 since acl read(r1) = acl read(r2) = {A,B}.

r	
   	
  node	
   	
  token	
  
r5	
   	
  vB21	
   	
  EncSK(r5)	
  
r6	
   	
  vB22	
   	
  EncSK(r6)	
  
r7	
   	
  vB31	
   	
  EncSK(r7)	
  

A	
   B	
   C	
   D	
   E	
  

VB
11	
  [A]	
   VB

13	
  [C]	
  VB
12	
  [B]	
  

VB
22	
  [BCD]	
  

VB
15	
  [E]	
  

VB
31	
  [ABCDE]	
  

VB
14	
  [D]	
  

VB
21	
  [AB]	
  

A	
   B	
   C	
   D	
   E	
  

VA
11	
  [A]	
  

VA
21	
  [ABC]	
  

VA
12	
  [B]	
   VA

13	
  [C]	
   VA
14	
  [E]	
  

VA
22	
  [AE]	
  

VA
31	
  [ABCE]	
  

(a)	
  Read	
  access	
  token	
  graph	
  for	
  owner	
  A	
   (a)	
  Read	
  access	
  token	
  graph	
  for	
  owner	
  B	
  

r	
   	
  node	
   	
  token	
  
r1	
   	
  vA21	
   	
  EncSK(r1)	
  
r2	
   	
  vA21	
   	
  EncSK(r2)	
  
r3	
   	
  vA22	
   	
  EncSK(r3)	
  
r4	
   	
  vA31	
   	
  EncSK(r4)	
  

Fig. 4: Distribution of read access tokens EncSK(ri) for coarse-grained AC.

Figure 4 depicts a tree graph per data owner to distribute read access tokens
at the coarse-grained level. Each row in the table states resource ri is associated
with access token EncSK(ri) stored at vertex vmn. Unlike in Figure 3, each ri is
associated with an unique read access token encrypted on its id. For example, r1
and r2 are now given different access tokens at vertexes v21 and v22 respectively.

4 Write Access Control

Enforcing write access control presents more challenges, mainly for the fact that
access control through data encryption does not apply to cases when data can be
modified. Without revealing fine-grained access control policies, it is not guar-
anteed that a user will modify only files that he is granted write access to. An
unauthorized user can overwrite and destroy data without being detected by the
cloud, regardless of whether he has the read privilege. A trivial solution is to rely
on the cloud provider to restrict the memory regions to which users may submit
changes, which however reveals to the cloud access rules and access patterns.



9

The approach that we adopt is to record modifications of files in new regions
of memory without overwriting previous content. The coarse-grained access con-
trol enforced by the cloud allows users to submit changes for files only if they can
demonstrate write permission for some resource in that block, without revealing
the exact content to be changed. At the fine-grained level, a public encryption
scheme is used to separate read and write privileges by providing a key pair for
each file. The only information that the cloud tags to each file change obliviously
contains implicit information on file identifier. However, using a submitted write
authorization token directly as an update identifier will enable users with only
read access to copy and reuse it later to obtain write privilege. To prevent this
undesired situation, we take advantage of the predicate encryption ciphertexts
constituting access tokens, which allows us to use part of the token as identifier.
We generate predicate that allows users with read access to identify relevant
updates, but this identifier on its own is not sufficient to grant write access.

4.1 Techniques

File Encryption We apply an asymmetric encryption scheme to handle all
possible combinations of read and write access to a file. Since such scheme is
computationally expensive for large size of data, file content is still encrypted
using a symmetric key (e.g., AES), which is further encrypted under the public
key. Two trees are constructed for key distribution per block – one for the public
(encryption) keys and the other for the private (decryption) keys. These two
trees share the same set of internal nodes for an one to one correspondence
between public and private key pair. Only files readable and writable by the
same set of users can share the same public key pair.

Access Authorization Tokens Two trees are constructed by each data owner
for the distribution of read and write access tokens respectively.

File Identifiers for Write Updates We observe that the write authorization
token is a valid encryption for a predicate encryption that provides polynomials
evaluation, and the structure of the encrypted plaintext for access to file id is a
vector of the form (1, id, id2, . . . , idn), where n is the number of files placed in
a block. The structure of the ciphertext allows it to be split into parts where
one part is an encryption of the vector (1, id, id2, . . . , idk) (k < n, n > 2),
which is no longer a valid write access token for that file, but can still be used
identify file updates for users with read privilege. This can be achieved using a
decryption predicate for a polynomial of degree k that has id as a zero point.
(See Appendix A for details.)

4.2 Integrated Read and Write Access Control

We realize the above proposal for the write access control enforcement and de-
scribe an integrated solution for both read and write access:

– Setup: At the fine-grained level, construct a key distribution tree per block
based on read access rules. For each node in the tree, generate a public-private
key pair (skn, pkn), but only store the secret key skn. Construct another tree
with the same set of nodes to store the public key pkn, with edges determined
by write access rule. For each file id generate a AES key skaesid for encryption,



10

and append to the ciphertext Encpkn(skaesid ). At the coarse-grained level, each
data owner generates a tree graph, where each node contains read access token
Encpk′ra(id) and SKx−id = GenKeysk′′−ra(f) where f(x) = x−id using predicate
encryption with different keys. Similarly, construct another tree to distribute
write access tokens Encpkwa

(id).

– Access Authorization: At the coarse-grained level, extend the trees with
read and write access tokens with new leaves for the new user and update the
edges according to his read and write permissions. This may involve splitting of
nodes and re-encrypting files with new keys if the user has read access only to a
subset of files that have been encrypted with the same key.

– Write Access Request: At the fine-grained level, obtain the encryption key
pkn for the file to be updated from the write tree. Encrypt the new content
for that file with key pkn. At the coarse-grained level, submit to the cloud a
re-randomized copy of the write authorization token for that file.

– Write Access Check: At the fine-grained level, a user can modify a file
only if he has the encryption key and the write authorization token. Upon read
he will check at the end of a block a list of updates with valid write access
tokens. At the coarse-grained level, the cloud finds if there is a block for which
the authorization token grants write access. The write access token is of the form
(C0, {C1,i, C2,i}ni=1), and the cloud uses the first components (C0, {C1,i, C2,i}2i=1)
as an identifier for updates appended to a block.

– Write Access Rule Update: Update per-block trees for encryption keys
and the tree for distributing write access tokens accordingly.

b1	
  =	
  {r1,	
  r2}	
  

b2	
  =	
  {r3,	
  r4}	
  

(a)	
  Encryp4on	
  policy	
  graph	
  of	
  read-­‐and-­‐write	
  access	
  for	
  block	
  b1	
  

b3	
  =	
  {r5,	
  r6,	
  r7}	
  

r	
  	
   node	
   key	
  
r1	
   vR121	
   sk(1,2)	
  
r2	
   vR121	
   sk(1,2)	
  

b1	
  =	
  {r1,	
  r2}	
  

r	
  	
   node	
   key	
  
r1	
   vW1

21	
  pk(1,2)	
  
r2	
   vW1

21	
  pk(1,2)	
  

r	
  	
   node	
   key	
  
r3	
   vR211	
   sk3	
  
r4	
   vR231	
   sk4	
  

A	
   B	
   C	
   D	
   E	
  

VW2
11	
  [A]	
  

b2	
  =	
  {r3,	
  r4}	
  

VW2
12	
  [D]	
  

VW2
21	
  [AD]	
  

r	
  	
   node	
   key	
  
r3	
   vW2

11	
   pk3	
  
r4	
   vW2

21	
   pk4	
  

(b)	
  Encryp4on	
  policy	
  graph	
  of	
  read-­‐and-­‐write	
  access	
  for	
  block	
  b2	
  

r	
  	
   node	
   key	
  
r5	
   vR321	
   sk5	
  
r6	
   vR322	
   sk6	
  
r7	
   vR331	
   sk7	
  

b3	
  =	
  {r5,	
  r6,	
  r7}	
  

r	
  	
   node	
   key	
  
r5	
   vW3

21	
   pk5	
  
r6	
   vW3

22	
   pk6	
  
r7	
   vW3

31	
   pk7	
  

(c)	
  Encryp4on	
  policy	
  graph	
  of	
  read-­‐and-­‐write	
  access	
  for	
  block	
  b3	
  

A	
   B	
   C	
   D	
   E	
  

VR1
11	
  [A]	
  

VR1
21	
  [ABC]	
  

VR1
12	
  [B]	
   VR1

13	
  [C]	
  

A	
   B	
   C	
   D	
   E	
  

VW1
11	
  [A]	
  

VW1
21	
  [ABC]	
  

VW1
12	
  [B]	
   VW1

13	
  [C]	
  

A	
   B	
   C	
   D	
   E	
  

VR2
11	
  [A]	
   VR2

12	
  [E]	
   VR2
13	
  [B]	
   VR2

14	
  [C]	
  

VR2
21	
  [AE]	
  

VR2
31	
  [ABCE]	
  

A	
   B	
   C	
   D	
   E	
  

VR3
11	
  [A]	
   VR3

13	
  [C]	
  VR3
12	
  [B]	
  

VR3
22	
  [BCD]	
  

VR3
15	
  [E]	
  VR3

14	
  [D]	
  
VR3

21	
  [AB]	
  

VR3
31	
  [ABCDE]	
  

A	
   B	
   C	
   D	
   E	
  

VW3
11	
  [A]	
   VW3

13	
  [C]	
  VW3
12	
  [B]	
  

VW3
22	
  [BDE]	
  

VW3
15	
  [E]	
  VW3

14	
  [D]	
  

VW3
31	
  [ABCDE]	
  

VW3
21	
  [ABC]	
  

Fig. 5: Tree graphs of encryption policy for read and write access at the fine-
grained level for each access block.

Following our example, we draw two trees per block for read and write access
respectively at the fine-grained level in Figure 5. A public key pair is generated
for each resource ri, where pkri is stored in the read tree (vRjmn) and skri is stored



11

r	
   	
  node	
   	
  token	
  
r1	
   	
  v21	
   	
  Encpkwa(r1)	
  
r2	
   	
  v21	
   	
  Encpkwa(r2)	
  
r3	
   	
  v11	
   	
  Encpkwa	
  (r3)	
  
r4	
   	
  v22	
   	
  Encpkwa	
  (r4)	
  

A	
   B	
   C	
   D	
   E	
  

VA
11	
  [A]	
   VA

12	
  [B]	
   VA
13	
  [C]	
   VA

14	
  [D]	
  

VA
21	
  [ABC]	
   VA

22	
  [AD]	
  

A	
   B	
   C	
   D	
   E	
  

VB
11	
  [A]	
   VB

13	
  [C]	
  

VB
12	
  [B]	
  

VB
22	
  [BDE]	
  

VB
15	
  [E]	
  

VB
14	
  [D]	
  

VB
31	
  [ABCDE]	
  

VB
21	
  [ABC]	
  

r	
   	
  node	
   	
  token	
  
r5	
   	
  v21	
   	
  Encpkwa	
  (r5)	
  
r6	
   	
  v22	
   	
  Encpkwa	
  (r6)	
  
r7	
   	
  v31	
   	
  Encpkwa	
  (r7)	
  

(a)	
  Write	
  access	
  token	
  graph	
  for	
  owner	
  A	
   (a)	
  Write	
  access	
  token	
  graph	
  for	
  owner	
  B	
  
Fig. 6: Distribution of write access tokens Encpkwa

(ri) in coarse-grained AC.
in the write tree (vWj

mn). Different ACLs on read and write for the same re-
source entail different labels of user list, e.g., vR2

21 is labeled as [ABCE] since
acl read(r4) = {A,B,C,E}; whereas vW2

21 is labeled as [AD] given acl write(r4) =
{A,D}. In Figure 5(a), both trees share the same set of vertexes and edges, as
acl read(r1) = acl read(r2) = acl write(r1) = acl write(r2) = {A,B,C}. Fig-
ure 6 depicts one tree graph per data owner for distributing the write autho-
rization tokens Encpkwa

(ri) at the coarse-grained level. Each authorized write
operation requires an additional update token SKx−ri , distributed the same way
as read access tokens in Figure 4.

5 Analysis

5.1 Security Guarantees

Our two-leveled access control scheme provides the following privacy guarantees
for data owners and users in the system:

Read Access For the privacy of the data owners, the cloud provider does
not learn any of the content of the files that he stores. The cloud learns the
frequency of access to particular blocks but not the exact files that have been
accessed within a block. For users’ privacy, the cloud provider cannot relate
access requests to particular users’, neither can he infer which requests were
submitted from the same user. However, he can observe the block access pattern
from the requests of all users. The data owner does not learn anything about
the access requests for the data.

Write Access For privacy of the data owners, the cloud provider learns
how often update requests are submitted for each block but without finding
out which files have been written. Similarly to the read requests, write requests
coming from the users are anonymous and unlinkable. Thus the cloud provider
cannot learn anything about the access behavior of a particular user, but only
a cumulative view over the requests from all users.

5.2 Performance Analysis

Read Access During setup, data owners compute of the authorization trees
with decryption keys and access tokens. The work is proportional to the number
of files in the database and the number of users. To authorize file access to a user,
data owner updates the tree with decryption keys and the tree with access tokens:
in the worst case proportional to the depth of the trees. To revoke file access of
a user, data owner updates the tree with decryption tokens: in the worst case
proportional to the depth of the tree. The updates for the tree with the access



12

tokens can be executed at larger intervals of time to achieve better amortized
efficiency for updates. For regular users, retrieving access tokens requires reading
the coarse-level tree with access tokens for the data of a particular provide.
Decryption keys retrieval can be proportional to the number of files that the
user is authorized to access. However, once retrieved the access credentials for
all files can be stored locally and used directly for subsequent requests. New
credentials will have to be retrieved only when there has been an update of the
access trees that has involved change of the credentials relevant for the particular
user. For the cloud provider, in order to map an access request to a particular
block the cloud provider will have to execute the File Access Check function
for the submitted token and each block. This cost can be reduced if after the
first retrieval of a file the user remembers the block id that contained the file,
and the next time he need to access the same file he also submits this id. In
this case the cloud provider would need to run a single check and verify that
the block pointed in the access request does really contain the file of interest.
Applying this optimization for efficiency reveals some additional information to
the cloud, namely allows him distinguish first time access requests from repeated
request, however, still without him being able to link requests to the same file.
Further the user can choose whether to submit the block identifier that he has
in repeated requests to weaken the additional leakage to the cloud.

Write Access From the perspective of a data owner, the enforcement of
write access control requires duplication of the tree structures that were neces-
sary for the read access control but this time with credentials necessary for the
write access. This comes as an overhead in the setup phase when these structures
are computed by the data owner and also each update of the access rules will
necessitate update of both types of trees since the encryption and decryption
(relevant for write and read access) need to be synchronized. Also periodically
the data owner would need to process the blocks and compact the updates for
each file back in its initial memory location. For a user, the size of the blocks
that he receives will increase depending on the frequency of the updates for a
block as well as the time period at which the data owner processes the blocks and
brings the updates back in place. At read access the user would need to locate
both the initial place of the file he is looking for as well as all updates that have
been submitted for that file, and then reconstruct the most recent version of the
file. The cloud provider would need to transfer larger blocks including both the
original files as well as the updates. He would need to compute the identification
tag for each authorized write update, which requires constant time.
Optimizations. Some optimizations that help improve the performance of the
scheme are as follows. If the user has enough memory, he can cache both autho-
rization tokens and decryption keys for multiple accesses of the same files. This
optimization applies to the read and the write access tokens as well as the de-
cryption key for read. The only exception is the encryption key for write access
— the user should always derive the current public encryption key for the file,
which he wants to update since if the key has been changed, he will not be able
to detect it and will submit an invalid update. Similarly the user can cache the
identifier of the block in which a file is located and use it in repeated requests,



13

which will save the search time at the cloud avoiding checks of all blocks. Further
the user can trade-off the privacy guarantee for his request within its block for
smaller communication overhead by revealing the exact memory address of the
file after proving that he is authorized to access the block.

5.3 Discussion

Choosing the granularity for the access blocks in the read and write access control
schemes affects the privacy guarantees for the scheme as well as its efficiency
performance. The right granularity for each specific usage scenario will depend
on the privacy and efficiency requirements for it, the expected patterns of access
to the files and the expected frequency of access control rules’ updates. The
following points should be taken into consideration when choosing how to divide
the files into access blocks: the size of a block should depend on the expected
bandwidth of the clients and the acceptable delays for the system. Files that
contain “complementary” information, i.e., a user is likely to access only one of
a these files (e.g. a file to sell stocks, a file to buy stocks) should be located in the
same block since their access pattern is highly sensitive. Data that requires often
update should be split into smaller blocks since the size of those blocks will grow
faster. Accessing files with frequently changing access rules will require derivation
of the corresponding decryption keys, which is proportional to the number of files
in the block, such files should be located in blocks with fewer items (that can
still be of big size). Since the view of the cloud provider of the access requests
amounts to the frequency at which each access block is matched, files that are
expected to have high access rates should be distributed across different blocks.

6 Related Work

Existing access control solution in outsourced storage usually apply crypto-
graphic methods by disclosing data decryption keys only to authorized users.
[6] proposed a cryptographic storage system, called Plutus, which arranges files
with similar attributes into filegroups, applying two-level file encryption and dis-
tinguishes read and write access. [5] designed a secure file system to be layered
over insecure network and P2P file system, like NFS. Each file is attached a meta
data containing the file’s access control list. [12] defines and enforces fine-grained
access control policies based on data attributes, and delegates most of computa-
tion tasks to untrusted cloud server without disclosing data content. [9] proposed
a cloud storage system, called CloudProof, that enables meaningful security Ser-
vice Level Agreements (SLAs) by providing a solution to detect violations of se-
curity properties, namely confidentiality, integrity, write-serializability, and read
freshness. The problem presented in this paper shares some similarity with the
proposals in [11, 2]. [11] introduced a practical oblivious data access protocol
using pyramid-shaped database layout and an enhanced reordering techniques
to ensure access pattern confidentiality. [2] proposed a shuffle index structure,
adapting traditional B-tree, to achieve content, access and pattern confidential-
ity in the scenario of outsourced data. All those proposals focus on one or more
aspects, such as scalability, efficiency, minimizing key distribution, etc., but none
of them consider privacy issues as well as write access control.



14

7 Conclusion
We presented a two-level access control scheme enabling data sharing in out-
sourced storage, like the cloud environment. The fine-grained and the coarse-
grained access control schemes complement each other to achieve both data
confidentiality and privacy protection on access patterns. To the best of our
knowledge, we are the first to handle both read and write access rights entailing
a more practical data sharing solution. As the following work, we will conduct
experiments on a full implementation of our scheme. As a more ambitious goal,
we would like to further extend our scheme for a complete solution that guar-
antees both security and privacy protection for a remote file storage system.

References

1. Ivan Damg̊ard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly secure obliv-
ious ram without random oracles. In TCC, 2011.

2. S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and P. Samarati.
Efficient and private access to outsourced data. In Proc. of the 31st International
Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis, Min-
nesota, USA, June 2011.

3. O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
RAMs. Journal of the ACM (JACM), 43(3):473, 1996.

4. Michael T. Goodrich and Michael Mitzenmacher. Privacy-preserving access of
outsourced data via oblivious ram simulation. In in Proc. International Colloquium
on Automata, Languages and Programming, ICALP’11, 2011.

5. Eu jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh. Sirius: Se-
curing remote untrusted storage. In in Proc. Network and Distributed Systems
Security (NDSS) Symposium 2003, pages 131–145, 2003.

6. Mahesh Kallahalla, Erik Riedel, Ram Swaminathan, Qian Wang, and Kevin Fu.
Plutus: Scalable secure file sharing on untrusted storage. In USENIX Conference
on File and Storage Technologies, 2003.

7. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption support-
ing disjunctions, polynomial equations, and inner products. In Proceedings of the
theory and applications of cryptographic techniques 27th annual international con-
ference on Advances in cryptology, EUROCRYPT’08, 2008.

8. B. Pinkas and T. Reinman. Oblivious RAM Revisited. Advances in Cryptology–
CRYPTO 2010, pages 502–519, 2010.

9. Raluca Ada Popa, Jacob R. Lorch, David Molnar, Helen J. Wang, and Li Zhuang.
Enabling security in cloud storage slas with cloudproof. In in Proc. USENIX
Annual Technical Conference ATC’11, 2011.

10. S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and
P. Samarati. Encryption-based policy enforcement for cloud storage. In Proceedings
of the 2010 IEEE 30th International Conference on Distributed Computing Systems
Workshops, ICDCSW ’10, pages 42–51, 2010.

11. Peter Williams, Radu Sion, and Bogdan Carbunar. Building castles out of mud:
practical access pattern privacy and correctness on untrusted storage. In Proceed-
ings of the 15th ACM conference on Computer and communications security, CCS
’08, pages 139–148, New York, NY, USA, 2008. ACM.

12. Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Achieving secure, scalable,
and fine-grained data access control in cloud computing. In Proceedings of the 29th
conference on Information communications, INFOCOM’10, 2010.



15

A Predicate Encryption and Extensions

We present the construction of predicate encryption of [7] as follows:
– Setup(1n): Choose primes p, q and r and groups Gp, Gq and Gr with genera-

tor gp, gq and gr respectively. Let G = Gp×Gq×Gr. Choose R1,i, R2,i ∈ Gr,
h1,i, h2,i ∈ Gp uniformly at random for 1 ≤ i ≤ n and R0 ∈ Gr. The public
parameters for the scheme are (N = pqr,G,GT , e). The public key PK and
master secret key SK are defined as follows:

PK = (gp, gr, Q = gq ·R0, {H1,i = h1,i ·R1,i, H2,i = h2,i ·R2,i}ni=1),
SK = (p, q, r, gq, {h1,i, h2,i}ni=1).

– EncSK(x1, . . . , xn): Choose randoms s, α, β ∈ ZN , R3,i, R4,i ∈ Gr for 1 ≤
i ≤ n, then output the following ciphertext:
C =

(
C0 = gsp, {C1,i = Hs

1,i ·Qα·xi ·R3,i, C2,i = Hs
2,i ·Qβ·xi ·R4,i}ni=1

)
.

– GenKeySK(v1, . . . , vn): Choose randoms r1,i, r2,i ∈ Zp for 1 ≤ i ≤ n, R5 ∈
Gr, f1, f2 ∈ Zq and Q6 ∈ Gq, then output SKv that consists of(
K = R5 ·Q6 ·

n∏
i=1

h
−r1,i
1,i · h−r2,i2,i , {K1,i = gr1,ip · gf1·viq ,K2,i = gr2,ip · gf2·viq }ni=1

)
– DecSKf

(c): The decryption algorithm outputs 1 if and only if

e(C0,K)

n∏
i=1

e(C1,i,K1,i) · e(C2,i,K2,i) = 1.

We define an algorithm called Rand(C) that re-randomizes any ciphertext
produced by the predicate encryption. Given a ciphertext of form (C0, {C1,i, C2,i}ni=1),

choose a random s′ ∈ ZN and output C ′ = C0 · gs
′

p , {C1,i·Hs′

1,i, C2,i·Hs′

2,i}ni=1. The
resulting ciphertext is the same as freshly generated ciphertext for the encrypted
value using random value s+ s′, if s was the value used in C.

Now we look closely at the instantiation of the predicate encryption scheme
that handles polynomial evaluation as its predicate. In this case the predicate
(v1, . . . , vn) consists of the coefficients of the polynomial that is being evalu-
ated and the attribute vector that is used for an evaluation point x is of the
form (1, x, x2, . . . , xn−1). The ciphertext for the encryption of (1, x, x2, . . . , xn−1)
has components (C0, {C1,i, C2,i}ni=1), where C1,i, C2,i correspond to the vec-
tor point xi−1. Thus we can view the first view components of the ciphertext
(C0, {C1,i, C2,i}2i=1) as an encryption of the vector (1, x) that can be used for
evaluation of predicates that are linear functions.

We use the above observation in the instantiation of the tags that the cloud
derives for each of the accepted write updates. He uses the token that the client
has used to prove his write access to a particular block, which a predicate encryp-
tion ciphertext (C0, {C1,i, C2,i}ni=1), to derive identifier for the files with which
the submitted update will be associated by taking the first part of the ciphertext
(C0, {C1,i, C2,i}2i=1). This identifier cannot be used as a write access token since
it is missing substantial part of the ciphertext, and no party without the master
secret key can extend an identifier to a valid write token. Also any party that
has read access to the file associated with the update will be given a key that
would allow it to recognize the updates for that file. This key is the predicate
corresponding to the linear function that evaluates to zero at the file id.


