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ABSTRACT
Eyeball ISPs today are under-utilizing an important asset:
edge routers. We present NetServ, a programmable node ar-
chitecture aimed at turning edge routers into distributed ser-
vice hosting platforms. This allows ISPs to allocate router
resources to content publishers and application service pro-
viders motivated to deploy content and services at the net-
work edge. This model provides important benefits over
currently available solutions like CDN. Content and services
can be brought closer to end users by dynamically installing
and removing custom modules as needed throughout the net-
work.

Unlike previous programmable router proposals which fo-
cused on customizing features of a router, NetServ focuses
on deploying content and services. All our design deci-
sions reflect this change in focus. We set three main de-
sign goals: a wide-area deployment, a multi-user execution
environment, and a clear economic benefit. We built a proto-
type using Linux, NSIS signaling, and the Java OSGi frame-
work. We also implemented four prototype applications:
ActiveCDN provides publisher-specific content distribution
and processing; KeepAlive Responder and Media Relay re-
duce the infrastructure needs of telephony providers; and
Overload Control makes it possible to deploy more flexible
algorithms to handle excessive traffic.

1. INTRODUCTION
There are two types of Internet Service Providers

(ISPs): content and eyeball [20]. Content ISPs provide
hosting and connectivity for content publishers, and
eyeball ISPs provide last-mile connectivity to a large
number of end users. It has been noted that eyeball
ISPs wield increased bargaining power in peering agree-
ments because they own the eyeballs [20]. Eyeball ISPs
have another unique asset, edge routers, which they are

currently under-utilizing. This missed opportunity mo-
tivates our work.
Content publishers1 are motivated to operate at the

network edge, close to end users, as evidenced by the
success of Content Distribution Network (CDN) opera-
tors like Akamai [1] and Limelight [7]. The edge routers
of eyeball ISPs, due to their proximity to end users, oc-
cupy an excellent location to host content and services.
Placing content and services on edge routers would pro-
vide an alternate hosting platform for publishers, and
a new revenue opportunity for eyeball ISPs (which we
simply refer to as ISPs for the remainder of the paper).
Programmable routers [19,27,30,32], traditionally soft-

ware routers based on commodity operating systems or
more recently commercial routers with an SDK [31],
have been used to implement new network functions.
Many of the following functions have become ubiqui-
tous: QoS, firewall, VPN, IPsec, NAT, web cache, rate
limiting, and enhanced congestion control algorithms.
This model, however, is inadequate for hosting publish-
ers’ custom functionality in edge routers. If a publisher
wishes to deploy a specifically tailored function, it must
go through a very slow, highly coordinated development
cycle involving the developers at the publisher, the net-
work administrators at the ISP, and in some cases even
the router vendor.2 This presents a barrier to many
publishers, particularly if they want to deploy functions

1We use the term content publishers in a broad sense, re-
ferring not only to CNN and YouTube who provide content,
but also to Amazon and Skype who provide services like
e-commerce and telephony. “Content, application, and ser-
vice provider”, sometimes referred to as CASP, might be a
more descriptive term, but we chose “publishers” to clearly
distinguish them from Internet Service Providers.
2Developing a Juniper SDK application requires a partner-
ship agreement, for instance.
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on edge routers across different ISPs. The deployment
process is equally cumbersome. Deployment has been
a secondary concern for previous programmable router
platforms. Thus, adding functionality to a router usu-
ally means an administrator installing and configuring
a software module. This may be acceptable for a lim-
ited set of functions that are largely static, but it is
clearly inadequate if a publisher wants to dynamically
reconfigure a function quickly and frequently.
We propose NetServ, a programmable node architec-

ture with the primary focus of facilitating the inter-
action between ISPs and content publishers. From a
technical standpoint, NetServ is similar to existing pro-
grammable router proposals. We start with a general
purpose open-source operating system as the forward-
ing engine, and layer a dynamic module system on top
of it so that new functions can be added and removed.
However, the design decisions we have made reflect a
significant rethinking of the role that we envision an
edge router will play in the future. An edge router
is recast as a hosting platform for publishers’ content
and services. The primary users of NetServ routers are
not the network operators of the ISPs that own them,
but the content publishers who deploy their services on
them.
The shift of focus led us to the following goals in our

design:

Wide-area deployment A content publisher should
be able to deploy its functions at any edge router
on the Internet, subject to policy restrictions. The
publisher may not even know the precise target,
as is the case when it wants to deploy a web cache
near a certain group of end users, for example.

Multi-user execution environment The node archi-
tecture must support concurrent executions of func-
tions from multiple publishers. Each publisher’s
execution environment must be isolated from one
another and the resource usage of each must be
controlled.

Economic incentive The current dynamic between co-
ntent publishers and ISPs is clearly driven by eco-
nomic concerns. Our proposal must provide clear
economic incentives. Specifically, we must find
compelling use cases that demonstrate economic
benefits to both.

In this paper, we describe our current prototype and
how it reflects the design goals. The prototype is being
actively developed, and does not yet fully implement
the envisioned NetServ architecture. Nevertheless, we
believe that describing the prototype is the best way to
communicate our design. Therefore, in Section 2, we
will interleave the descriptions of the prototype and the
architectural design. We will make it clear, however,
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Figure 1: Deploying modules on a NetServ node.

which part is in running code and which part is design
only.
The rest of the paper is organized as follows. In Sec-

tion 3, we discuss security issues. We describe four ap-
plications in Section 4: ActiveCDN, KeepAlive Respon-
der, Media Relay, and Overload Control. In Section 5,
we show our evaluation results. Sections 6 and 7 discuss
related work and future work, respectively. Lastly, we
conclude in Section 8.

2. NETSERV ARCHITECTURE
Figure 1 gives an overview of how content publish-

ers can deploy application modules to a NetServ router.
End user requests received by a content publisher’s server
will trigger signaling from the server. As a signaling
message travels towards an end user, it passes through
routers between the publisher and the user. When the
signaling message passes through a NetServ router, it
causes the NetServ router to download and install a
module from the content publisher. The exact condi-
tion to trigger signaling and what the module does once
installed will depend on the application. For example,
a content publisher might send a signal to install a web
caching module when it detects web requests above a
predefined threshold. The module can then act as a
transparent web proxy for downstream users. We will
see specific application examples in Section 4.
Figure 2 describes the architecture of our current pro-

totype which is based on Linux. The arrow at the bot-
tom labeled“signaling packets” indicates the path a sig-
naling packet takes through this router. It is intercepted
by the signaling daemons, which unpack the signaling
packet and pass the contained NetServ Control Mes-
sage to the NetServ controller. The controller acts on
the message by issuing commands to the appropriate
service containers, to install or remove a module, for
example.
Service containers are user space processes with em-

bedded Java Virtual Machines (JVMs). Each container
holds one or more application modules created by a sin-
gle publisher. The JVMs run the OSGi module frame-
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Figure 2: NetServ node prototype.

work [12]. Thus, the application modules installed in
service containers are OSGi-compliant JAR files known
as bundles. The OSGi framework allows bundles to be
loaded and unloaded while the JVM is running. This
enables a NetServ container to install and remove ap-
plication modules at runtime. There are a number of
implementations of the OSGi framework; we use Eclipse
Equinox [2].
Our choice of Java for publisher-created applications

reflects our design goals. Java’s binary-level portability,
extensive libraries, and popularity support our goal of
wide-area deployment. The resource control and isola-
tion features of Java 2 Security and the OSGi framework
support our goal of a multi-user execution environment.
Placing Java in a router is unconventional and may raise
concerns about performance. However, our evaluation
results in Section 5 mitigate this concern.
There are two types of application modules shown

in Figure 2. Server application modules, shown as two
circles on the upper-right service container, act as stan-
dard network servers, communicating with the outside
world through the Linux TCP/IP stack. Packet pro-
cessing application modules, shown as two circles on the
lower-left container, are placed in the packet path of
the router. The arrow labeled “forwarded data packets”
shows how an incoming packet is routed from the ker-
nel to a service container process running in user space.
The packet then visits two modules in turn before being
pushed back to the kernel.
The distinction between server module and packet

processing module is a logical one. A single application
module can be both. This is an important feature of a
NetServ node: it eliminates the traditional distinction
between a router and a server. As we will see in Sec-
tion 4, the applications deployed by content publishers
typically include both functionalities.
We provide a detailed description of each part of Fig-

ure 2 in the following subsections.
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Figure 3: NetServ signaling flow.

In order to satisfy our goal of wide-area deployment
we use on-path signaling as the deployment mechanism.
Signaling messages carry commands to install and re-
move modules, and to retrieve information–like router
IP address and capabilities–about NetServ routers on-
path. We use the Next Steps in Signaling (NSIS) pro-
tocol suite [25], an IETF standard for signaling. NSIS
consists of two layers:

“a ‘signaling transport’ layer, responsible for
moving signaling messages around, which should
be independent of any particular signaling
application; and

a ‘signaling application’ layer, which contains
functionality such as message formats and se-
quences, specific to a particular signaling ap-
plication.” (RFC4080 [25])

The two boxes in Figure 2, labeled “GIST” and “Net-
Serv NSLP,” represent the two signaling layers used in
a NetServ node. GIST, the General Internet Signalling
Transport protocol [40], is a widely used implementa-
tion of NTLP, the transport layer of NSIS. NetServ
NSLP is the NetServ-specific implementation of NSLP,
the application layer of NSIS. The NetServ NSLP dae-
mon receives signaling messages from the GIST dae-
mon through a UNIX domain socket. The NetServ
NSLP daemon then passes the NetServ Control Mes-
sage (NCM) contained in the signal to the NetServ con-
troller. The current implementation of the NetServ sig-
naling daemons is based on NSIS-ka [11], whereas the
previous version of our prototype used FreeNSIS [4].
GIST is a soft state protocol that discovers peers and

maintains associations in the background, transparently
providing this service to the NSLP layer. GIST peer dis-
covery depends on the ability to intercept certain UDP
packets. GIST’s standard method of intercepting pack-
ets is through the use of the IP Router Alert Option
(RAO) [29]. However, the RAO is not well-defined in
IPv4 networks and different devices tend to behave in-
congruously. As an alternative, packet filtering can be
used to intercept packets destined for port 270, the port
assigned by IANA for GIST. NSIS-ka uses this method.
Specifically, it uses the Netfilter packet filtering system
in Linux.
Figure 3 shows a possible NetServ signaling scenario.

3



SETUP NetServ.apps.NetMonitor_1.0.0 NETSERV/0.1

dependencies:
filter-port:5060

filter-proto:udp
notification:
properties:visualizer_ip=1.2.3.4,visualizer_port=5678

ttl:3600
user:janedoe

url:http://content-publisher.com/modules/netmonitor.jar
signature:4Z+HvDEm2WhHJrg9UKovwmMutxGibsA71FTMFykVa0Y\xGclG8o=

<blank line>

Figure 4: A SETUP message.

A signaling message is sent from an application, through
several routers, to the receiver. The receiver and the
generic IP Router are unaware of NSIS signaling. Thus,
the IP router performs only IP layer forwarding. The
sender and the two NetServ routers are NSIS enabled;
once GIST associations between the nodes are set up,
NSIS signaling messages can flow in both directions.
Publishers want to place content and services as close

to end users as possible. Therefore, while setting up
GIST associations, discovering the last NetServ node
on-path becomes especially important. The GIST layer
determines that its host is the last NSIS node on-path
when it fails to discover a peer further along the path. It
retransmits discovery packets with exponential back-off
up to a predefined threshold. Depending on the thresh-
old this can take a long time. To shorten last node dis-
covery time, we modified NSIS-ka to detect an ICMP
port unreachable message. Although this is not always
reliable, it shortens the discovery time in many cases.
An NCM, in binary format, is included in the payload

of an NSIS signaling message. An NCM is converted
into an HTTP-like text format when it is delivered from
the NetServ NSLP daemon to the NetServ controller.
This decouples the rest of the NetServ node from the
signaling daemons which allows debugging and testing
of the NetServ core without signaling. We use the text-
based format to describe NCMs.
There are two kinds of NetServ signaling messages:

requests and responses. Typically, a publisher’s server
sends a request, an on-path signaling message contain-
ing an NCM, toward an end user. The last on-path
NetServ node generates a response to the server.
There are three types of NetServ requests: SETUP, RE-

MOVE, and PROBE. The SETUP message is used to install
a module on the NetServ nodes on-path. The REMOVE

message is used to uninstall it. The PROBE message is
used to obtain the NetServ nodes’ statuses, capabilities,
and policies. Figure 4 shows an example of a SETUPmes-
sage. REMOVE and PROBE messages are similar. Table 1
describes available header fields used in request mes-
sages and in which type of request they may appear.
Figure 5 shows how response messages are generated

at the last node and are returned along the signaling
path back to the requester. The responses to SETUP
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Figure 5: NetServ request and response ex-
change.

and REMOVE requests simply acknowledge the receipt of
the messages. A response to a PROBE request carries
the probed information in the response message. As
the message transits NetServ nodes alone the return
path, each node adds its own information to the re-
sponse stack in the message. The full response stack is
then delivered back to the PROBE requester. Figure 5
shows a response to a module status probe being col-
lected in a response stack. Our current prototype im-
plements the module status probe. We are planning to
add additional probes for more detailed status informa-
tion, available system resources, and node’s capabilities
and policies.

2.2 NetServ Controller
The NetServ controller coordinates three components

within a NetServ node: NSIS daemons, service contain-
ers, and the forwarding plane. It receives control com-
mands from the NSIS daemons, which may trigger the
installation or removal of application modules within
service containers, and in some cases filtering rules in
the forwarding plane. The controller is also responsible
for setting up and tearing down service containers.
In our current prototype the controller receives con-

trol commands in the HTTP-like text format seen in
Figure 4. The controller authenticates the message by
verifying the signature using the user’s public key as
described in Section 3. The packet filters are installed
in the forwarding plane using iptables. The controller
maintains a persistent TCP connection to the Java layer
of each container, through which it tells the container
to install or remove application modules.
Our current prototype pre-forks a fixed number of

containers. Each container is associated with a specific
user account. It uses an XML configuration file which
specifies user name, public key, container IP address,
ports authorized for listening, destination IP prefixes
authorized for filtering, and the sandbox directory of
the container. We plan to implement the dynamic start-
ing and stopping of containers, possibly preserving the
running state using checkpoint mechanisms [33].

2.3 Forwarding Plane
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Table 1: List of headers included in NetServ requests. (S: SETUP, R: REMOVE, P: PROBE, *: mandatory)
Headers Where Description

dependencies† S Lists the modules necessary to run the application module being installed
filter-port S Destination port of packets that should be intercepted & delivered to the module
filter-proto S Protocol of packets that should be intercepted & delivered to the module
notification† SR XML-RPC URL that should be called after the module has been successfully installed
node-id SRP Identifies a specific NetServ node
probe P* Identifies the information being probed
properties S Additional parameters for the module being installed
ttl S* The number of seconds after which the module is automatically uninstalled
signature S*R*P* The signature of the message authenticating the request
user S*R*P The owner of the NetServ service container
†Not fully implemented in the current prototype.

The forwarding plane is the packet transport layer in
a NetServ node, which is typically an OS kernel in an
end host or forwarding plane in a router. The archi-
tecture requires only certain minimal abstractions from
the forwarding plane. Packet processing modules re-
quire a hook in user space and a method to filter and
direct packets to the appropriate hook. Server modules
require a TCP/IP stack, or its future Internet equiva-
lent. The forwarding plane must also provide a method
to intercept signaling messages and pass them to the
GIST daemon in user space.
Currently we use Netfilter, the packet filtering frame-

work in the Linux kernel, as the packet processing hook.
When the controller receives a SETUP message contain-
ing filter-* headers, it first verifies that the destina-
tion is within the allowed range specified in the con-
figuration file. It then invokes an iptables command
to install a filtering rule to deliver matching packets to
the appropriate service container using Netfilter queues.
The user space service container retrieves the packets
from the queue using libnetfilter_queue. The Linux
TCP/IP stack allows server modules to listen on a port.
The allowable ports are specified in the configuration
file.
We implemented an alternate forwarding plane using

a Click router [32]. Click is a modular software router
platform where a directed graph of elements represents
the packet path. We implemented a packet processing
hook using the IPClassifier, FromUserDevice, and ToU-
serDevice elements. A user space container retrieves
packets from /dev/fromclickN which is backed by the
ToUserDevice element, and similarly sends packets to
/dev/toclickN which is backed by the FromUserDe-
vice element. The IPClassifier element provides filter-
ing functionality and can be controlled using a proc-like
pseudo-file system.
We plan to run NetServ on two other forwarding plat-

forms: Juniper routers and OpenFlow switches. Ju-
niper provides the JUNOS SDK [31], an API for devel-
oping third-party plug-ins. JUNOS SDK has two parts.
RE SDK is intended for developing daemons running on

the control plane of a Juniper router, called the Rout-
ing Engine. The Routing Engine can host the NSIS
daemons and the NetServ controller. Services SDK
provides APIs for developing packet processing appli-
cations running on a hardware board attached to the
forwarding plane through a 10Gb/s internal link. The
board contains a multi-core network processor to per-
form packet processing at line rate. We plan to ex-
plore the possibility of running NetServ container on
the board.
OpenFlow [35] is a programmable switch architecture

which exposes its flow table through a standard network
protocol called the OpenFlow Protocol. OpenFlow pro-
vides an interesting possibility for NetServ: a physically
separate forwarding plane. When a NetServ node is
connected to an OpenFlow switch via a local 10Gb/s
link, the NetServ node acts as an outboard packet pro-
cessing engine, which is dynamically configurable. In
addition, the NetServ controller can control the Open-
Flow switch using the OpenFlow Protocol. This side-
car approach has the performance advantage over the
single-box approach, since multiple NetServ nodes can
be attached to a forwarding plane.

2.4 Service Container and Modules
Service containers are user space processes that run

modules written in Java. Figure 6 shows our implemen-
tation of the container in the current prototype. The
service container process can optionally be run within
lxc [8], the operating system-level virtualization tech-
nology included in the Linux kernel. We defer the dis-
cussion of lxc to Section 3.
When the container process starts, the container cre-

ates a Java Virtual Machine (JVM) using the invoca-
tion API, which is a part of the Java Native Interface
(JNI) [6], and calls an entry point Java function that
launches the OSGi framework.
The service container starts with a number of prein-

stalled modules which provide essential services to the
application modules. We refer to the collection of prein-
stalled modules as the building block layer. The build-
ing block layer typically includes system modules, li-
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brary modules, and wrappers for native functions. Sys-
tem modules provide essential system-level services like
packet dispatching. Library modules are commonly used
libraries like Servlet engine or XML-RPC. The building
block layer can also provide wrappers for native code
when no pure Java alternative is available. For example,
our ActiveCDN application described in Section 4.1 re-
quires Xuggler [16], a Java wrapper for the FFmpeg [3]
video processing library.
The set of modules that make up the building block

layer is determined by the node operator. An appli-
cation module with a specific set of dependencies can
discover the presence of the required modules on path
using PROBE signaling messages, and then include a de-
pendency header in the SETUPmessage to ensure the ap-
plication is only installed where the modules are avail-
able. We plan to develop a recommendation for the
composition of the building block layer.
Server application modules, depicted as the rightmost

application module in Figure 6 use the TCP/IP stack
and the building block layer to provide network ser-
vices. An OSGi bundle is event driven. The framework
calls start() and stop() methods of the Activator

class of the bundle. Server modules typically spawn
a thread in the start method. Packet processing ap-
plication modules, the two application modules on the
left, implement the PktProcessor interface, and regis-
ter themselves with the packet dispatcher in order to
receive transiting data packets.
The container process uses libnetfilter_queue to

retrieve a packet. In order to pass the packet from C
code to Java code running inside the OSGi framework,
the C code invokes PktConduit.injectPkt() through
a pointer that was saved when the container started.
PktConduit is glue code running outside of the OSGi
framework, visible from both the C code and the Java
code running inside OSGi. This is necessary because

an OSGi bundle is loaded using a custom class loader,
making it invisible to other bundles or any other code
outside the framework. The packet is then passed to
the packet dispatcher which maintains a list of packet
processing modules through which the packet flows in
turn. The path is depicted by the arrow labeled for-
warded data packets in Figure 6.
We avoid copying a packet when it is passed from C

to Java. We construct a direct byte buffer object that
points to the memory address containing the packet us-
ing the NewDirectByteBuffer() JNI call. The refer-
ence to this object is then passed to the Java code.

3. SECURITY

3.1 Resource Control and Isolation
We have multiple layers of resource control and iso-

lation in the service container. First, because the con-
tainer is a user space process, the standard Linux re-
source control and isolation mechanisms apply: the sche-
duling priority, the nice value, can be lowered; the usage
of system resources like memory and file descriptors can
be limited using setrlimit(); disk quota can be set;
and file system access can be restricted using chroot.
We control the application modules further using Java

2 Security [22]. Java 2 Security provides fine-grained
controls on file system and network access. We use
them to confine the modules’ file system access to a
directory, and limit the ports on which the modules can
listen. The directory and ports are specified in the con-
figuration file. Java 2 Security also allows us to prevent
the modules from loading native libraries and executing
external commands.
In addition, the container can optionally be placed

within lxc3, the operating system-level virtualization
technology in Linux. Lxc provides further resource con-
trol beyond that which is available with standard oper-
ating system mechanisms. We can limit the percentage
of CPU cycles available to the container relative to other
processes in the host system. Lxc provides resource iso-
lation using separate namespaces for system resources.
The network namespace is particularly useful for Net-
Serv containers. A container running in lxc can be as-
signed its own network device and IP address. This
allows, for example, two application modules running
in separate containers to listen on “*:80” without con-
flict. At at the time of this writing, a service container
running inside lxc does not support packet processing
modules.
OSGi provides namespace isolation between bundles

using a custom class loader. The only method of inter-

3lxc is also referred to as “Linux containers” which should
not be confused with NetServ service containers. References
to containers throughout this paper should be taken to mean
NetServ service containers.
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bundle communication is for a bundle to explicitly ex-
port a service by listing a package containing the inter-
faces in the manifest file of its JAR file, and for another
bundle to explicitly import the service, also by using a
manifest file. However, this isolation mechanism is of
limited use to us because a container contains modules
from a single publisher.
NetServ modules also benefit from Java’s language

level security. For example, the memory buffer con-
taining a packet is wrapped with a DirectByteBuffer

object and passed to a module. The DirectByteBuffer
is backed by memory allocated in C. However, it is not
possible to corrupt the memory by going out-of-bounds
since such access is not possible in Java.

3.2 Authentication
SETUP request messages are authenticated using the

signature header included in each message. Currently,
the NetServ node is preconfigured with the public key
of each publisher. When a publisher sends a SETUPmes-
sage, it signs the message with a private key, this signa-
ture is verified by the controller prior to module instal-
lation. The current prototype signs only the signaling
message–which includes the URL of the module to be
downloaded. The next prototype will implement sign-
ing of the module itself. As future work, we plan to
develop a third party authentication scheme which will
eliminate the need to preconfigure a publisher’s public
key. A clearinghouse will manage user credentials and
settle payments between publishers and ISPs.
Authorization is required if the SETUP message for an

application module includes a request to install a packet
filter in the forwarding plane. If the module wants to
filter packets destined for a specific IP address, it must
be proved that the module has a right to do so. The
current prototype preconfigures the node with a list of
IP prefixes that the publisher is authorized to filter.
We realize that our requirement to verify the owner-

ship of a network prefix is similar to the problem be-
ing solved in the IETF Secure Inter-Domain Routing
working group [14]. The working group proposes a so-
lution based on Public Key Infrastructure (PKI), called
RPKI. RPKI can be used to verify whether a certain
autonomous system is allowed to advertise a given net-
work prefix. We plan on using that infrastructure, once
available, in NetServ. By mapping publishers to au-
tonomous systems we can use the RPKI infrastructure
to verify the right of a module to receive traffic to an
IP prefix.
We also plan to support a less secure, but simpler

verification mechanism that does not rely on PKI. It is
based on a reverse routability check. To prove the own-
ership of an IP address, the publisher generates a one-
time password and stores the password on the server
with that IP address. The password is then sent in

the SETUP message. Before installing the module, the
NetServ controller connects to the server at the IP ad-
dress, and compares the password included in the SETUP
message with the one stored on the server. A match
shows that the publisher of the module has access to
the server. The NetServ node accepts this as proof of
IP ownership.
Security checks used by a NetServ router are a matter

of local configuration policy and will be determined by
the administrator of the router.

4. NETSERV APPLICATIONS
We advocate NetServ as a platform that enables pub-

lishers and ISPs to enter into a new economic alliance.
In this section, we present four example applications–
ActiveCDN, KeepAlive Responder, Media Relay, and
Overload Control–which demonstrate a clear economic
benefit for both parties.
ActiveCDN provides publisher-specific content distri-

bution and processing. The other three applications
illustrate how NetServ can be used to develop more
efficient and flexible systems for real-time multimedia
communication. In particular, we show how Internet
Telephony Service Providers (ITSPs) can deploy Net-
Serv applications that help overcome the most common
problems caused by the presence of Network Address
Translators (NATs) in the Internet, and how NetServ
helps to make ITSPs’ server systems more resilient to
traffic overload.
We ran our applications on a topology of four sites

across the United States. The testbed was provided by
the GENI [5] project. We demonstrated our work at
the 9th GENI Engineering Conference (GEC9).

4.1 ActiveCDN
Content publishers currently use CDNs to offload mul-

timedia content. CDNs run on a largely preconfigured
topology, which may make it difficult for publishers to
place content dynamically according to changing traffic
patterns, for example, flash crowds.
We developed ActiveCDN, an application module that

implements CDN functionality on NetServ-enabled edge
routers. ActiveCDN brings content and services closer
to end users than traditional CDNs. An ActiveCDN
module is created by a content publisher. Thus, the
publisher has control of what the module does and where
it resides. The module’s functionality can be updated
freely and the module can be redeployed to different
parts of the Internet as needed.
Figure 7 offers an example of how ActiveCDN works.

When an end user requests video content from a pub-
lisher’s server, the server checks its database to deter-
mine if there is a NetServ node running ActiveCDN in
the vicinity of the user. We use the MaxMind GeoIP [9]
library to determine the geographic distance between
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Figure 7: How ActiveCDN works.

the user and each ActiveCDN node currently deployed.
If there is no ActiveCDN node in the vicinity, the server
serves the video to the user, and at the same time, sends
a SETUPmessage to deploy an ActiveCDN module on an
edge router close to that user. This triggers each Net-
Serv node on-path, generally at the network edge, to
download and install the module. Following the SETUP

message the server sends a PROBE message to retrieve
the IP addresses of the NetServ nodes that have success-
fully installed ActiveCDN. This information is used to
update the database of deployed ActiveCDN locations.
When a subsequent request comes from the same region
as the first, the publisher’s server redirects the request
to the closest ActiveCDN node, most likely one of the
nodes previously installed. The module responds to the
request by downloading the video, simultaneously serv-
ing and caching it. The publisher’s server can explicitly
send a REMOVE message to uninstall the module, oth-
erwise the module will be removed automatically after
the number of seconds specified in the ttl field of the
SETUPmessage. The process repeats when new requests
are made from the same region.
The module can also perform custom processing on

the video. We demonstrated this capability at our GEC9
demonstration. We wrote a custom ActiveCDN mod-
ule that watermarks a video with local weather infor-
mation. We used Xuggler, which we mentioned as a
building block module in Section 2.4, to process the
video. The local weather information was dynamically
obtained from a web service provided by the National
Weather Service [10].

4.2 KeepAlive Responder
Network Address Translators (NATs) are an essential

part of the Internet fabric today and nothing indicates
that they might go away any time soon. The ubiquitous

presence of NATs poses a challenge for all services oper-
ating in the public Internet, but some types of services
are more affected than others. In particular, service
providers who need to be able to reach their clients be-
hind NATs asynchronously are most affected. Such ser-
vice providers need to take special precautions to ensure
that clients behind NATs remain reachable for extended
periods of time. Session Initiation Protocol (SIP) [37]
based services are among those that are affected most.
Making sure that SIP User Agents (UAs) behind NATs
remain reachable requires the servers and user agents
to cooperate.
NAT boxes maintain an ephemeral state between in-

ternal and external IP addresses and ports, referred to
as a binding. After a SIP UA behind a NAT box reg-
isters its IP address with the SIP server, the UA needs
to make sure that the state in the NAT remains ac-
tive for the duration of the registration. Failure to keep
the state active would render the UA unreachable. The
most common mechanism used by UAs to keep NAT
bindings open is the sending of periodic keep-alive mes-
sages to the SIP server.
Because the timeout interval for expiring NAT bind-

ings has not been standardized, different implementa-
tions use different timeouts. The timeout for UDP bind-
ings appears to be rather short in most implementa-
tions. As a result, SIP UAs need to send keep-alive
messages every 15 seconds [18] to remain reachable from
the SIP server.
While the size of a keep-alive message is relatively

small (about 300 bytes when SIP messages are used for
this purpose, which is often the case), large deployments
with hundreds of thousand or even millions of UAs are
nothing unusual. Millions of UAs sending a keep-alive
every 15 seconds represents a significant consumption of
network and server resources. This traffic wastes energy,
adds to the operating cost of ITSPs, and serves no useful
purpose–other than to fix a problem that should not
exist in the first place. A surprising fact is that the
keep-alive traffic can be a bottleneck in scaling a SIP
server to a large number of users [18].
Figure 8 shows how NetServ could help to offload

NAT keep-alive traffic from the ITSP’s infrastructure.
Without the NetServ KeepAlive Responder, the SIP UA
behind a NAT sends a keep-alive request to the SIP
server every 15 seconds and the SIP server sends a re-
sponse back. The NAT keep-alive packets can be either
short 4-byte packets or full SIP messages. For our im-
plementation, we are using full SIP messages because,
to the best of our knowledge, this is what most ITSPs
use for reliability reasons.
When an NSIS-enabled SIP server starts receiving

NAT keep-alive traffic from a SIP UA, it initiates NSIS
signaling in order to find a NetServ router along the net-
work path to the SIP UA. If a NetServ router is found,
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Figure 8: Operation of NetServ KeepAlive Respon-

der.

the router downloads and installs the KeepAlive mod-
ule. Such a module would typically be provided by the
ITSP running the SIP server.
After the module has been successfully installed, it

starts inspecting SIP signaling traffic going through the
router towards the SIP server. If the module finds a
NAT keep-alive request, it generates a reply on behalf
of the SIP server, sends it to the SIP UA and discards
the original request. Thus, if there is a NetServ router
close to the SIP UA, the NAT keep-alive traffic never
reaches the network or the servers of the ITSP; the keep-
alive traffic remains local in the network close to the SIP
UA.
The KeepAlive Responder spoofs the IP address of

the SIP server in response packets sent to the UA. IP
address spoofing is not an issue in this case because the
NetServ router is on the path between the spoofed IP
address and the UA.

4.3 Media Relay
NAT boxes may also prevent SIP UAs from directly

exchanging media packets, such as voice or video. This
means that ITSPs must deploy media relay servers to fa-
cilitate the packet exchange between NATed UAs. How-
ever, this approach has several drawbacks, such as in-
creased packet delay, additional hardware and network
costs, and management overhead. One way to address
these drawbacks is to deploy the media relay function-
ality at the edge of the network, on routers and hosts
that are closer to UAs.
Figure 9 shows how NetServ helps to offload the me-

dia relay functionality from an ITSP’s infrastructure.
The direct exchange of media packets between the two
UAs in the picture is not possible. Without NetServ
the ITSP would need to provide a managed media relay
server. When a NetServ router is available close to one
of the UAs, the SIP server can deploy the Media Relay
module at the NetServ node.
When a UA registers its network address with the SIP

server, the SIP server sends an NSIS signaling message
towards the UA, instructing the NetServ routers along
the path to download and install the Media Relay mod-
ule. The SIP server then selects a NetServ node close
to the UA, instead of a managed server, to relay calls
to and from that UA.
NetServ media relay servers that can be deployed at

Figure 9: Operation of NetServ Media Relay.

the network edge, close to one of the communicating
parties, nicely fit into the Internet Connectivity Estab-
lishment (ICE) [36] framework and can be use as TURN
servers [34] within the framework. ICE-capable user
agents (not necessarily SIP-based) can use the frame-
work to discover whether a TURN server is required to
establish a communication session. The algorithm to
select an optimal server from publicly available TURN
servers across the Internet is left unspecified in the frame-
work. NetServ-capable nodes can facilitate deployment
of TURN servers across the Internet. The capability
of NSIS signaling to select a TURN server close to one
of the communicating UAs, helps select TURN servers
that add no (or very low) additional delay to media
packets.
The use of TURN-based media relay servers is not

limited to SIP-enabled user agents. A large number of
globally distributed media relay servers is required in
many other communication scenarios, such as peer-to-
peer file sharing, high definition multimedia communi-
cation, video streaming, etc. NetServ nodes distributed
across the Internet make it easy to deploy a network of
such distributed media relay (TURN) servers.

4.4 Overload Control
Considerable amount of work has been done on over-

load of SIP servers [26]. Due to the fact that SIP pri-
marily uses UDP as transport protocol, SIP servers are
vulnerable to overload due to lack of congestion control
in UDP. The IETF has developed a framework for over-
load control in SIP servers that can be used to mitigate
the problem [23]. The framework proposes to imple-
ment the missing control loop (otherwise implemented
in TCP) in SIP. Figure 10 illustrates the scenario. The
SIP server under load, referred to as the Receiving En-
tity (RE), periodically monitors its load (generated by
the incoming SIP traffic). The information about the
load is then communicated to Sending Entities (SE),
i.e., SIP servers upstream (along the path of incoming
SIP traffic). Based on the feedback from the RE, the
SE then either rejects or drops a portion of incoming
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Figure 10: NetServ as SIP overload protection.

SIP traffic.
Without NetServ, ITSP’s choices of implementing over-

load control are limited. The ITSP can put both the
SE and the RE next to each other in the same net-
work. Such configuration only allows hop-by-hop over-
load control with the drawback that all excessive traffic
enters the ITSP’s network (where it will be dropped by
the SE). Because all incoming traffic usually arrives over
the same network connection, using a different control
algorithm or configuration for different sources of traffic
becomes difficult.
The ability of NetServ to run custom code at the edge

of the network, far away from the network of the SIP
server, makes it an attractive platform for experiment-
ing with various SIP overload algorithms and types of
control loops. We implemented a simple prototype of
the SIP overload control framework on top of NetServ.
Our Receiving Entity (RE) is a common SIP server

based on the SIP-Router [15] project. We extended
the SIP server implementation with functions needed
to initiate NSIS signaling and monitor the load of the
server. For the sake of simplicity we used a statically
configured load threshold in our prototype implementa-
tion. In real-world scenarios the load of the SIP server
would be calculated as a function of CPU load, mem-
ory utilization, database utilization, and other factors
that limit the total volume of traffic the server can han-
dle. When the load on the SIP server exceeds a precon-
figured threshold, the SIP server starts sending NSIS
signals towards the UAs in an attempt to discover a
NetServ node along the path and install the Sending
Entity (SE) NetServ module on the node.
The module installs a packet filter to intercept all SIP

messages sent from UAs towards the SIP server. Based
on the periodic feedback about the current volume of
traffic seen by the SIP server (RE), the module adjusts
the amount of traffic it lets through in real time. The
excess portion of incoming traffic is rejected with “503
Service Unavailable” SIP responses.
The ability to run the SE implementation on NetServ

nodes at the edge of the network, close to UAs, makes
it possible to experiment with end-to-end control loops
[26], where one end of the loop is close to the source of
the traffic. Having the possibility to install the NetServ
SE module on demand, and only when a certain traffic

threshold is exceeded, makes it easy for the ITSP to
adapt the traffic control algorithm easily. New versions
of the control algorithm can be easily deployed across
a large number of NetServ nodes. Finally, the ability
of NetServ to push the Sending Entity closer to the
source of the traffic, outside of ITSP’s network, allows
the ITSP to reject excess traffic before it enters the
network. That way the ITSP can protect not only the
SIP server, but also the network connection from SIP
traffic overload.

4.5 Reverse Data Path
The previous descriptions of the applications assumed

that the reverse data path is the same as the forward
path. On the Internet today, however, this is often not
the case due to policy routing.
For ActiveCDN and Media Relay, this is not an issue.

The modules only need to be deployed closer to the
users, not necessarily on the forward data path. The
module will still be effective if the network path from
the user to the NetServ node has a lower cost than the
path from the user to the server.
For KeepAlive Responder and Overload Control, the

module must be on-path to carry out its function. How-
ever, this is not a serious problem in general. First,
NetServ routers are located at the network edge. It is
unlikely that the reverse path will go through a different
edge router. Even in the unlikely case that a module
is installed on a NetServ router which is not on the re-
verse path, if we assume a dense population of users, it
is likely that the module will serve some users, albeit
not the ones who triggered the installation in the first
place. If a module is installed at a place where there is
no user to serve, it will time-out quickly.
If a reverse on-path installation is indeed required,

there are two ways to handle the situation. First, the
client-side software can initiate the signaling instead of
the server. But this requires modification of the client-
side software. Second, the server can use round-trip
signaling. We implemented TRIGGER signaling message
in NetServ NSLP. The server encapsulates a SETUP or
PROBE in a TRIGGER, and sends it towards the end user.
The last NetServ router on-path creates a new upstream
signaling flow back to the server. This approach, how-
ever, assumes that the last NetServ node is on both
forward and reverse path, and increases the signaling
latency.

5. EVALUATION
For NetServ signaling, we refer to previous work on

the performance measurement of the NSIS signaling
suite. Fu et al. [21], analyzed an implementation of
the GIST protocol. Using a minimal hardware setup
they measured the maximum concurrent signaling ses-
sions, finding that the GIST node was able to maintain

10



over 50,000 concurrent sessions. The main focus of our
measurement results is not signaling but rather packet
processing.
We provide results on what may be the most contro-

versial part of our system: using Java for packet pro-
cessing. Our results suggest that while there is certainly
significant overhead, it is not prohibitive. We measured
the Maximum Loss Free Forwarding Rate (MLFFR) of
a NetServ router, and compared it with that of a plain
Linux host used as a router. This comparison demon-
strates the performance overhead introduced by the ser-
vice layer of NetServ. Our evaluation results are shown
without the use of lxc which does not support packet
processing yet.

5.1 Setup
Our setup consists of three nodes connected in se-

quence: sender, router, and receiver. The sender gener-
ates UDP packets addressed to the receiver and sends
them to the router, which forwards them to the receiver.
The hardware of all three machines is identical. Each

is a Dell PowerEdge R300, with a 3.0GHz Intel Dual
Core Xeon CPU and 4 x 4GB DDR2 RAM. Each has
an Intel Pro/1000 Quad Port Gigabit Ethernet adapter
connected on PCIe x 4 bus which provides 8Gb/s max-
imum bandwidth. All links run at 1Gb/s. We turned
off Ethernet flow control which allowed us to saturate
the connection.
For the sender and receiver, we used a kernel mode

Click router version 1.7.9 running on a patched 2.6.24.7
Linux kernel. The Ethernet driver was Intel’s igb ver-
sion 1.2.44.3 with Click’s polling patch applied. For the
router, we used the following setup as the base config-
uration, and for each test added more layers. We used
Ubuntu Linux 10.04 LTS Server Edition 64bit version,
with kernel version 2.6.32-27-server, and the igb Ether-
net driver upgraded to 2.4.12 which supports the New
API (NAPI) [38] in the Linux kernel.

5.2 Results
First, we measured the sender and receiver’s capacity

by connecting them directly. The sender was able to
generate 64B packets and send them to the receiver
at the rate of 1,400 kpps, which was well beyond the
measured MLFFRs of each of our tests.
After verifying that the capacity of the testbed was

sufficient, we measured the MLFFRs of six different con-
figurations of the router. Figure 11 shows the different
configurations of the router that were tested. Each con-
figuration adds a layer to the previous one, adding more
system components through which a packet must travel.
Configuration 1 is the plain Linux router we described

above. This represents the maximum attainable rate of
our hardware using a Linux kernel as a router.
Configuration 2 adds Netfilter packet filtering kernel
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Figure 11: Test configurations 1 to 6.

modules to configuration 1. This represents a more re-
alistic router setting than configuration 1 since a typi-
cal router is likely to have a packet filtering capability.
This is the base line that we compare with the rest of
the configurations that run NetServ.
Configuration 3 adds the NetServ container, but with

its Java layer removed. The packet path includes the
kernel mode to user mode switch, but does not include
a Java execution environment.
The packet path for configuration 4 includes the full

NetServ container, which includes a Java execution en-
vironment. However, no application module is added to
the NetServ container.
Configuration 5 adds NetMonitor, a simple NetServ

application module with minimal functionality. It main-
tains a count of received packets keyed by a 3-tuple:
source IP address, destination IP address, and TTL.
NetMonitor sends the counts to a preconfigured server
every half-second using a separate thread. This module
was part of the network traffic visualization system that
we used in the GEC9 demonstration.
Configuration 6 replaces NetMonitor with the Keep-

Alive module described in Section 4.2. KeepAlive exam-
ines incoming packets for SIP NOTIFY requests with the
keep-alive Event header and swaps the source and desti-
nation IP addresses. For the measurement, we disabled
the address swapping so that packets can be forward
to the receiver. This test represents a NetServ router
running a real-world application module.
Figure 12(a) shows the MLFFRs of five different router

configurations. The MLFFR of configuration 1 was
786 kpps, configuration 2 was 641 kpps, configuration
3 was 365 kpps, configuration 4 was 188 kpps, and con-
figuration 5 was 188 kpps.
The large performance drop between configurations

2 and 3 can be explained by the overhead added by a
kernel-user transition. The difference between configu-
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Figure 12: Forwarding rates of the router with different configurations.

rations 3 and 4 shows the overhead of Java execution.
There is almost no difference between configurations 4
and 5 because the overhead of the NetMonitor module
is negligible.
In configurations 3 through 5, we observed that there

were some dips in the forwarding performance before it
reached the peak rate. For example, in configuration 3,
the forwarding rate of the router was 250 kpps when the
input rate was between 200 kpps and 500 kpps, but it in-
creased to 364 kpps at 500 kpps. This increase can be
explained as a result of switching between the interrupt
and polling modes of the NAPI network driver. Un-
der heavy load, the network driver switched to polling
mode. Thus, the NetServ process could use more CPU
cycles without hardware interrupts. We verified this by
comparing the number of interrupts per interface. The
total number of interrupts on the receiving interface was
11,137 per second at 400 kpps, but there were only 1.4
interrupts per second at 500 kpps.
Figure 12(b) shows the repeated measurement but with

340B packets, in order to compare them with configu-
ration 6. For configuration 6, we created a custom Click
element to send SIP NOTIFY requests, which are UDP
packets. The size of the packet was 340B, and we used
the same SIP packets for configurations 1 through 5.
The MLFFR of configuration 1 was 343 kpps, configur-

ation 2 was 343 kpps, configuration 3 was 213 kpps, con-
figuration 4 was 117 kpps, configuration 5 was 111 kpps,
and configuration 6 was 71 kpps.
There was no difference between the performance of

configurations 1 and 2. The difference between config-
urations 2 and 3 is due to the kernel-user transition.
The difference seen between configurations 3 and 4 is
due to Java execution overhead. Both of these were
previously seen above. The difference between configu-
rations 4 and 5 is explained as the minimal overhead cre-
ated by the NetMonitor module. Finally, the difference

between configurations 5 and 6 shows the overhead of
KeepAlive beyond NetMonitor. There is a meaningful
difference between the modules because the KeepAlive
module must do deep packet inspection to find SIP NO-

TIFY messages, and further, we made no effort to opti-
mize the matching algorithm.
As the size of packets increases from 64B to 340B,

the number of packets our setup can generate decreases
due to the bandwidth limitation. As a consequence,
the forwarding rate of the router in configuration 1 and
2 reached the theoretical MLFFR of 343 kpps for the
1Gb/s link.
The MLFFR of the KeepAlive test shows that a Net-

Serv router performs reasonably when compared to the
typical traffic volume seen by an edge router today.
Real-time router traffic statistics from Princeton Uni-
versity [17] show that the average traffic over the course
of a year on an edge router is approximately 32.8 kpps
inbound and 31.2 kpps outbound. The NetServ router
running KeepAlive was able to achieve 71 kpps in a sin-
gle direction. We also note that our tests were per-
formed on modest hardware, and more importantly, the
packet processing module would only be expected to
handle a fraction of the total traffic.

6. RELATED WORK
Many earlier programmable routers focused on pro-

viding modularity without sacrificing forwarding perfor-
mance, which meant installing modules in kernel space.
Router Plugins [19], Click [32], PromethOS [30], and
Pronto [27] followed this approach. In a NetServ router,
modules run in user space, as multi-user execution en-
vironment takes priority over raw forwarding perfor-
mance.
These kernel-level programmable routers, in fact, can

be used as NetServ’s forwarding plane. We described
our Click-based implementation in Section 2.3. Other
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candidates for NetServ forwarding plane include Super-
charged PlanetLab [42], a system based on network pro-
cessor, and Juniper router and OpenFlow switch that
we mentioned previously.
LARA++ [39] is similar to NetServ in that the mod-

ules run in user space. However, LARA++ focuses
more on providing a flexible programming environment
by supporting multiple languages, XML-based filter spec-
ification, and service composition. It does not employ
a signaling protocol for wide-area deployment.
Active networks [41] proposed two approaches to in-

network functionality. In the integrated approach, every
packet carries code which gets executed in the network
nodes. Many researchers attribute the ultimate demise
of active networks to the security risk associated with
the approach–or at least to the perception of that risk.
In the more conservative discrete approach, code is in-
stalled as modules in the network nodes, and packet
headers trigger the execution of the code. All pro-
grammable routers, including NetServ, can be viewed
as a discrete active network element. Indeed, NetServ
can be viewed as the first fully integrated active network
system that provides all the necessary functionality to
be deployable, addressing the core problems that pre-
vented the practical success of earlier approaches.
GENI is a federation of many existing network testbeds

under a common management framework. GENI is
important to NetServ for two reasons. First, GENI
provides a large-scale infrastructure on which to test
NetServ’s wide-area deployment mechanisms. Second,
GENI is comprised of a diverse set of platform resources,
which are shared among many experimenters. Net-
Serv provides a hardware-independent multi-user exe-
cution environment where experimenters can run net-
work servers and packet processors written in Java. This
can provide an easier development platform for certain
experiments and for educational use. We are working
on making NetServ a resident feature of the GENI in-
frastructure.
The Million Node GENI project [13], which is a part

of GENI, provides a peer-to-peer hosting platform where
an end user can contribute resources from his own com-
puter in exchange for the use of the overlay network. We
are particularly interested in its use of Python sandbox,
which can offer an alternative to our Java execution en-
vironment.
Google Global Cache (GGC) [24] refers to a set of

caching nodes located in ISPs’ networks, providing CDN-
like functionality for Google’s content. NetServ can pro-
vide the same functionality to other publishers, as we
have demonstrated with ActiveCDN module.
One of the goals of Content Centric Networking (CCN)

[28] is to make the local storage capacity of nodes across
the Internet available to content publishers. CCN pro-
poses a replacement of IP by a new communication pro-

tocol, which addresses data rather than hosts. NetServ
aims to realize the same goal using the existing IP in-
frastructure. In addition, NetServ enables content pro-
cessing in network nodes.

7. FUTURE WORK
We plan to extend our framework to support a net-

work monitoring module. Network monitoring modules
work similarly to packet processing modules, with the
exception that packets are not modified; they simply
gather statistics. The current packet processing frame-
work in NetServ is inadequate for this purpose. Clearly
it is inefficient and unnecessary to push every packet
to user space simply to gather statistics. The forward-
ing plane needs to provide an interface through which a
monitoring module can request to sample packets at a
certain rate. JUNOS SDK, in fact, provides this func-
tionality.
We are exploring the possibility of using NetServ to

implement wide-area multicast as a hybrid between IP
multicast and application-layer multicast. The NetServ
nodes in the network can also utilize storage to provide
delayed streaming to save further bandwidth. We are
also interested in investigating if NetServ’s publisher-
specific nature can provide proper economic incentive,
which IP multicast failed to provide.

8. CONCLUSION
We present a programmable router architecture in-

tended for edge routers. Unlike previous programmable
router proposals which focused on customizing features
of a router, NetServ focuses on deploying content and
services. All our design decisions reflect this change in
focus.
We set three main design goals: a wide-area deploy-

ment, a multi-user execution environment, and a clear
economic benefit. We address these goals by building a
prototype using NSIS signaling and Java OSGi frame-
work, and presenting compelling use cases using exam-
ple applications.
Our choice of Java and user space module execution

has a performance penalty. Our evaluation of the most
worrisome case, packet processing in Java, shows that
the penalty is significant, but not prohibitive.
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