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ABSTRACT

Ef cient, Deterministic and Deadlock-free
Concurrency

Nalini Vasudevan

Concurrent programming languages are growing in importance with thetdve
of multicore systems. Two major concerns in any concurrent prograndatee
races and deadlocks. Each are potentially subtle bugs that can bd tgusen-
deterministic scheduling choices in most concurrent formalisms. Unforiynate
traditional race and deadlock detection techniques fail on both largegnsgand
small programs with complex behaviors.

We believe the solution is model-based design, where the programmer is pre-
sented with a constrained higher-level language that prevents certaented
behavior. We present the SHIM model that guarantees the absenataobdes by
eschewing shared memory.

This dissertation provides SHIM based techniques that aid determinism - mod-
els that guarantee determinism, compilers that generate deterministic code and
libraries that provide deterministic constructs. Additionally, we avoid de&d|oc
a consequence of improper synchronization. A SHIM program maylagad it
violates a communication protocol. We provide ef cient techniques for dietgc
and deterministically breaking deadlocks in programs that use the SHIM model.

We evaluate the ef ciency of our techniques with a set of benchmarks. We
have also extended our ideas to other languages. The ultimate goal is ideprov
deterministic deadlock-free concurrency along with ef ciency. Ouréhipthat
these ideas will be used in the future while designing complex concurrsietrssy.
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Chapter 1

The Problem

Multicore shared-memory multiprocessors now rule the server market. Wiale s
architectures provide better performance per watt, they present maligrges.

Scheduling—instruction ordering—is the biggestissue in programmingdhare
memory multiprocessors. While uniprocessors go to extremes to provide a se-
guential execution model despite caches, pipelines, and out-of-orgatatisunits,
multiprocessors typically only provide such a guarantee for each corelaticn;
instructions are at best partially ordered across core boundaries.

Controlling the scheduling on multiprocessors is crucial not only for perfo
mance, but because data races can cause scheduling choices ®apangram's
function. Worse, the operating system schedules nondeterministically.

We say that a program produces nondeterministic output if it is capable of
producing different outputs during reruns of the program with the same.ifThe
program in Figur€ll is nondeterministic. It uses C++-like semantics with[Cgk
like constructs for concurrency. It creates two tagkandg in parallel using the
spawnconstruct. Both functions takeby reference. Clearly, x is getting modi ed
concurrently by both the tasks, so the value printed by this program is Sitbier
5 depending on the schedule. One way to avoid races is to protacta lock
and thereby ensure atomic updateg,tbut this still gives nondeterministic output.
This is because operations within atomic blocks are not commutative.

Such nondeterministic functional behavior arising from timing variability—a
data race—is among the nastiest things a programmer may confront. It neakes d
bugging all but impossible because unwanted behavior is rarely repibbel [L1].
Rerunning a nondeterministic program on the same input usually doesouiigar
the same behavior. Inserting assert or print statements or running tipeupran
a debugger usually changes timing enough to make the bug disappeaggiepu
such programs is like trying to catch a butter y that is only visible from the eorn
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void f(int &) {

a=3

}

void g(int &b) {
b = 5;

}

main() {
int x = 1,
spawn €x)
spawn ¢ x);
sync / Waitfor fand gto nish /
print x;

}

Figure 1.1: A nondeterministic parallel program

of your eye.

We believe a programming environment should always provide functianal d
terminism because it is highly desirable and is very dif cult to check for on a
per-program basis. Virtually all sequential programming languages (& @re
deterministic: they produce the same output given the same input. Inputs include
usual things such as les and command-line arguments, but for reptblityand
portability, things such as the processor architecture, the compiler, andties
operating system are not considered inputs. This helps programmerskitygma
it simpler to reason about a program and it also simpli es veri cation beealus
a program produces the desired result for an input during testing, itdwiko
reliably.

By contrast, concurrent software languages based on the traditioagdds
memory, locks, and condition variables model (e.g., pthreads or Java)oare
deterministic by this de nition because the output of a program may depend on
such things as the operating system's scheduling policy, the relative texecu
rates of parallel processors, and other things outside the applicatiorapnogr's
control. Not only does this demand a programmer consider the effects s# the
things when designing the program, it also means testing can only say amrogr
maybehave correctly on certain inputs, not that it will.

A few concurrent programming languages provide determinism through se
mantics. SHIM[47;[114 is one such instance. It is an asynchronous concurrent
language that is scheduling independent: its input/output behavior isfeoteaf
by any nondeterministic scheduling choices taken by its runtime environment du
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to processor speed, the operating system, scheduling policy, etc. A Sigdviam
is composed of sequential tasks that synchronize whenever they weortau-
nicate. The language is a subset of Kahn netw@rk} (to ensure determinism)
that employs the rendezvous of Hoare's BF] for communication to keep its
behavior tractable.

Kahn's unbounded buffers would make the language Turing compleés, ev
with only nite-state processes, so the restriction to rendezvous makesithigge
easy to analyze. Furthermore, since SHIM is a strict subset of Kahroretw
it inherits Kahn's scheduling independence: the sequence of datasvahissed
across each communication channel is guaranteed to be the same foredt cor
executions of the program (and potentially input dependent).

The central hypothesis of SHIM is that deterministic concurrent language
are desirable and practical. That they relieve the programmer from eoimgd
different execution orders is clear; whether they impose too many coristomn
the algorithms they can express is also something we attempt to answer here.

Although SHIM is deterministic, it is not deadlock free; a programmer may
use language constructs incorrectly to cause the program to deadleale™Mbn-
strate that deadlocks can be easily detected statically because of the detarmin
property of SHIM.

Our ultimate goal is to have both determinism as well as deadlock freedom. In
the next section, we discuss the terms used in this thesis followed by therproble
we are addressing. Then, we discuss some of things to remember whileidgsig
deterministic, deadlock free systems. Finally, we give an outline of this thesis.

1.1 Terminology

This section de nes the terms used in this thesis.

A multi-core processois a system that consists of two or more cores. Mul-
ticores are used for reduced power consumption and simultaneoussiracef
multiple tasks, therefore resulting in enhanced performandaskor aprocesss
a sequential unit of computation. gequential progranmas a single task. By con-
trast, aparallel programconsists of multiple tasks that may execute concurrently.

A programming modeis an abstraction or a template to express algorithms.
Programming languageare more concrete and are based on programming models.
They have speci ¢ forms of syntax and semantics.

An applicationis an instance of a sequential or parallel program that imple-
ments an algorithm in a programming languagebelichmarks a set of standard
applications used to assess the performance of something, usually hggnn
number of standard tests.
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1.2 Problem Statement

This thesis wishes to provide programming language support for the fotjowin

Determinism: By determinism, we mean that the output of a program de-
pends only on the input of the program and not on the running enviranmen
Inputs include things such as les and command-line arguments. We do not
deal with reactive systems. Programming environment includes things such
as the processor architecture, compiler, and even the operating sysiem a
these are not considered inputs.

Deadlock-freedom A deadlock is a situation in which two or more tasks
wait for each other to make progress, but neither ever does causindedn

inite wait. A deadlock usually arises because of improper synchronization.
We require techniques to detect and avoid these situations. We do not wish
to solve the termination problem.

1.3 Design Considerations

While we design a deterministic and a deadlock-free system, our goal isiewach
three things: performance, scalability and programmer exibility.

1.3.1 Performance

A general hypothesis is that determinism introduces performance deigrate-
cause of synchronization. There are two types of synchronizationtratized
and distributed. A centralized synchronization forces all tasks in a sygiem
synchronize while a distributed synchronization forces only a subsets&t to
synchronize. Distributed methods perform better because the tasksohanadt
less, but they are more susceptible to deadlocks. An out-of-ordehsymization
between subsets of tasks may lead to a deadlock. On the other hand, alizedtr
systems, deadlocks are avoided because all tasks are forced tocsyretat the
same point.

In some cases, the programming environments are nondeterministic, but there
are techniques and tools to check for determinism and deadlocks duntigeu
The problem with these tools is that they add a considerable amount ofeaekerh
that reduces performance drastically.
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Part Chapter  Question to answer Published
How can we achieve determinism ? SES 2(H()
[m 21} Is determinism ef cient? DATE 200851]
(Determinism) 5 Is determinism practical? SAC 2(3ag4
Determinism: Language vs. Library ? IPDPS 20[18d
[ How do we solve the deadlock problem? MEMOCODE 2(@087
(Deadlock-freedom) [18 How can we ef ciently detect deadlocks? EMBQ009[109
How can we deterministically break deadlocks? HOTPAR ZJ020]
10 How can we enforce deadlock freedom? HIPC-SRS #02¢
Vi o1 Can we reduce memory in deterministic MEMOCODE 2§23
(Ef ciency) programs? TCAD 2014124
W Can we optimize deterministic constructs? CC 2i1H]
13 Can we optimize locks? PACT 20029
[\ 14 What are the limitations? IPDPS Forum 2dag4
(Conclusions) What next? PLDI-FIT 200124

Table 1.1: Thesis outline

1.3.2 Scalability

A number of programming environments provide determinism at compile time.
Static veri ers and type systems are examples of such environments. fubse
niques do not explicitly introduce deadlocks but they do not scale at cotipide
because they have to consider all possible interleavings of tasks in th@pro

Among the systems that provide determinism at runtime, distributed systems
are known to scale better than centralized systems in both performancasanofe
implementation.

1.3.3 Programmer Flexibility and Ease of Use

Most deterministic programming models provide determinism by imposing a num-
ber of restrictions. Most type systems require programmers to explicitlytareno
the program. Static veri ers do not force any restrictions on the progitarh,
they simply do not scale with exible programs and give false positives aidtse

Our goal is to achieve a balance between performance, scalability agrpnmer
exibility.

1.4 Thesis Outline

Table[1.1 gives the overview of this thesis. We rst provide a backgiostndy
in Chaptef 2. We then begin by describing the SHIM model in[Part Il. Wriata
our model by generating code for different architectures. We illustrai@ckend
in Chaptef## for SHIM that generates C code that made calls tedsex thread
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(pthread) library to ask for parallelism. Each communication action acquiees th
lock on a channel and checks whether every process connected Iso ihad
blocked (i.e., whether the rendezvous could occur).

We also illustrate a backend f@M's CELL processor in Chaptér 5. A direct
offshoot of the pthread backend, it allows the user to assign computtioran-
sive tasks to the&ELL's synergistic processing units#us); remaining tasks run
on theCELL's powerrC core PPU).

Next, we illustrate the feasibility of SHIM as a library. We provide a determin-
istic concurrent communication library in Chapiér 6 for an existing multithreaded
language. We implemented the SHIM in the Haskell functional language, which
supports transactional memory.

SHIM is interesting because it is deterministic but it is not deadlock free. We
provide simple techniques to detect deadlocks in SHIM in[Part Ill. SHIksdwot
need to be analyzed under an interleaved model of concurrency sirstgrp-
erties, including deadlock, are preserved across schedules. piefiiiawe use a
synchronous model checker NuSM¥4] to detect deadlocks in SHIM—a surpris-
ing choice since SHIM's concurrency model is fundamentally asynchusnWe
later take a compositional approach in Chapter 8 in which we build an automaton
for a complete system piece by piece. The result: our explicit model checke
outperforms the implicit NuSMV on these problems. Our evaluations led to other
directions. We wanted a more robust concurrent programming model thathis
deterministic and deadlock free — we discussR€ model in Chapter 10.

We then provide a few optimization techniques to improve the ef ciency of
SHIM and other related languages like Xi29 in Part(IM. To improve the
ef ciency of the SHIM model, we applied model checking to search for sitna
where buffer memory can be shard®3;[128. In general, each communication
channel needs its own space to store any data being communicated ovewrit. Ho
ever, in certain cases, it is possible to prove that two channels canbeaetive
simultaneously and thus share buffer memory.

In Chaptel 1R, we describe a tool that mitigates the overhead of genepaise
clocks in IBM's X10 language by analyzing how programs use the clocks a
then by choosing optimized implementations when available. These clocks are
deterministic barriers and are similar to SHIM's communication constructs.

The major bottleneck of deterministic programs is due to synchronization.
Synchronization constructs are implemented using low level locks. In GiiERte
we describe ef cient locking algorithms for specialized locking behavior.

Finally, we discuss the limitations of SHIM in Chapfer] 14. We report our
conclusions and open new directions for future work.
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Chapter 2

Background

Concurrent programming languages suffer from a number of problechgling
nondeterminism and deadlocks. This chapter surveys the various ingaksd
while designing concurrent systems and particularly focuses on teamitat
deal with nondeterminism and deadlocks. We provide a survey of theugario
programming models, tools and techniques that are in use today to build cemtcur
systems, and speci cally how they address deadlock and nondetermirosteims

at various levels — compiler, programming language, operating systemseshd h
ware.

2.1 Problems with concurrent programming
Concurrency comes with an abundant number of problems. We list a few.be

Paradigm shift: Sequential computers were ruling the world but not any-
more. Most programmers nd concurrency hard because they aredr&in
think sequentially.

Lack of a good model: There is no widely accepted concurrent program-
ming or memory model. The next section surveys the programming models
that are in use today and discusses their pros and cons.

Concurrency bugs: Bugs like nondeterminism and deadlocks that are vir-
tually absent in sequential programming are exposed in concurrerrepneg
ming. We list some of the concurrency bugs here:

— NondeterminismA condition when some possible interleaving of tasks
results in undesired program output.
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— Deadlock:A state in which two or more tasks inde nitely wait for each
other.

— No Fairness:A condition when some task does not get a fair turn to
make progress.

— Starvation:A state when atask is deprived of a shared resource forever.

Portability: Programmers are generally required to have knowledge about
the underlying layers(no. of cores, operating system scheduling poéickie

size and policy, memory layout and other hardware features) to preduce
cient concurrent programs. Therefore, a program written for origtacture

may not be suitable for another architecture resulting in poor portability.
Also, with emerging and changing architectures, programs may have to be
rewritten to suit different architectures.

This thesis mainly addresses nondeterminism and deadlocks, although we be
lieve that all the issues listed are equally important. We also try not to neglset the
issues while designing deterministic and deadlock-free systems.

2.2 Concurrent programming models

Concurrent programming models are becoming more prominent with the advent
of multicore systems. They provide a layer of abstraction between the appiica
and the underlying architecture including the operating system. A programming
model may choose to hide or expose aspects of the operating systenrawdrea
Speci cally, a concurrent programming model controls the concurrdeatures
provided by the operating system or hardware.

Generally, the more the model exposes, the more ef cient code can eapreg
mer write. As a consequence of more exposure, the programmer hadititlgxp
work with the lower layers and therefore, productivity is reduced. Helds a
exposed to a number of bugs like nondeterminism and deadlocks, sincshe h
access to lower layers.

Alternatively, a programming model may choose to expose very little of the
underlying layers and hence release the programmers the burdenliafdeith
low level details that include the operating system and hardware. Such & mod
may also hide low level bugs, thereby allowing programmers to deal with teeg-f
code. The SHIM model is an instance of this kind of programming model. It
abstracts away nondeterminism from the programmer.

The SHIM model forces synchronization of tasks while accessing dluata
to provide determinism. The model eliminates data races by design and also simpli-
es the deadlock detection process. Tasks in SHIM can be createdatigdaising
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thepar statement. It uses message-passing-like semantics for communication. We
discuss the model in detail in the next chapter.

Message passing is a well known approach used by parallel tasks to com-
municate with each other and works well for distributed systems. The Messag
Passing Interface (MPI) is a popular standard library for creatingcamanunicat-
ing between concurrent threads. The communication pattern is exiblekibigc
unblocking, variable buffer size) and easily programmable. MPI wadesigned
to deal with issues such as nondeterminism and deadlocks; the prograasrier h
deal with these issues explicitly.

CSP (Communicating Sequential Proced&d})is another parallel program-
ming model that uses message passing. The communication is blocking — both the
sender and the receiver have to rendezvous for the communicationuodessful.

A task may choose to wait on two or more channels at the same time, and resume
execution as soon as data is available on one of the channels. This maketptite
dependent on time, making the model nondeterministic.

By contrast, a Kahn network is a deterministic concurrent programming model
that uses message passing for communication. A Kahn Neti#6lks composed
of a set of communication processes that may send and receive orethdbach
communication channel connects a single sending process with a singléngce
process. The communication structure of a system is therefore a diraeeld g
whose nodes are processes and whose arcs are channels. Tiesh#sed data,;
processes communicate only through channels. The receiver pimbéssking: it
waits until the sender writes the data. The receiver cannot choose tbagaidl on
whether the data is available or not. This property makes the model deterministic.
The sender is nonblocking; it writes to one end of the channel and tie¢/eec
reads from the other end. The channel is implemented as an unbounékd buf

Figure[2.1 is an example of a Kahn processes and its correspondingketwo
is shown in Figuré 2]2.f, g andh are three parallel tasks created by f{her
construct inmain(). The two producer tasks andg send values 1 (on chanrel
and 0 (on channdd) respectively. Task receives the values from channaland
b into variablej. j sees an alternating stream of 1's and O's.

In Figure[2.1, supposé runs faster thamy or h, then the channed lls in
quickly. However,h will not be able to receive the data as quickly asends.
Therefore, there will be an accumulation of data on the channel. This ia not
problem in Kahn's model, because the channel acts as an in nite quéwedie
the producer and the consumer.

In practice, this in nite bound is impossible to implement. The SHIM model
provides functional determinism by adopting Kahn networks, and alsesdohe
unbounded buffer problem by using CSP-style rendezvous for coication.

The sender and the receiver have to wait for each other to communi¢ate da
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void f( out a)

for(;;) {

senda = 1; / sends1onchannel &

}
}
void g(out b)
{
for(;;) {
sendb = 0; / sends O onchannel i
}
}
void h(in a, in b) {
int j;
for (int i = 0; i++ ) {
if (i%2)
j = recv a |/ receives 1/
else
j = recv b; / receivesO/
}
}
main)) {

chan int a, b;
f(a) par g(b) par h(a, b); / Runsthe three tasks in parallél

Figure 2.1: Example of Kahn Processes

N

h

Figure 2.2: Kahn network of Figufe 2.1
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Concurrent programming models also control the mode of parallelism and it
can be broadly classi ed into two types: data level parallelism and task pavrel
allelism. Data level parallelism forces parts of data to be distributed overetiffe
processors and computed concurrently. A classic example is allowingediffe
elements of an array to be processed concurrently. By contrast, taskpbmal-
lelism is allowing code to run concurrently. For instance, SHIM supporks¢as|
parallelism.

Programming models also restrict the class of applications that can be imple-
mented. MIT's StreamliZ19 model, for example, is primarily suitable for stream
processing applications. Stream computing has various applications incloding
age and single processing. It is based on synchronous datéi7@vihat operates
on streams of data known as tokens. These tokens pass through a mfmber
computation units known as lters. Filters communicate with each other through
channels. Channels are implemented as buffers and pass tokens. Stregnaims
have single input and single output Iters. Filters ymesh popandpeepfunctions
to operate on input and output streams. Streams can be pipelined. Thalscan
be split and joined for data level parallelism.

Streamlt is completely deterministic. It has simple static veri cation tech-
niques for deadlock and buffer over ow. However, Streamlt is a sgubset of
SHIM and Streamlt's design limits it to a smaller class of applications.

By contrast, Cilk[19] is a an interesting programming language that it covers
a larger class of applications. It is C based and the programmer must explicitly
ask for parallelism using thepawnand thesyncconstructs. Cilk is de nitely
more expressive than SHIM and Streamlt. However, Cilk allows data.r&igs
ure[d, for example, is a nondeterministic concurrent program in Cilk. EBkplic
techniqued430] are required for checking data races in Cilk programs.

X10 [29;[104 is another language that adopts the Cilk model. It @EBsC
and nish instead okspawnandsync It is a parallel and distributed object-oriented
language. To a Java-like sequential core it adds constructs for mency and
distribution through the concepts attivitiesandplaces An activity is a unit of
work, like athread in Java, and is created byaapncstatement; a place is a logical
entity that contains both activities and data objects.

Just like Cilk, the X10 language allows races and does not impose h#id-res
tions on how activities should be created. We describe the language inidetail
ChaptefIP.

Synchronous programming languages like Estir@ are deterministic. An
Esterel program executes in clock steps and the outputs are synahnaith its
inputs. Although an Esterel program is susceptible to causality problems, this
form of deadlock can be detected at compile time. Unfortunately, synchson
models require constant, global synchronization and force designesplicitly
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schedule virtually every operation. Although standard in hardware migsigobal
synchronization is costly in software. Furthermore, the presence ofjke gjfobal
clock effectively forces entire systems to operate at the same rate.dfiarstrith
this restriction was one of the original motivations for SHIM.

2.3 Determinizing tools

A number of tools provide determinism. For example, Kendo is a softwarensyste
that deterministically multithreads concurrent applications. K@@ ensures a
deterministic order of all lock acquisitions for a given program input. @tars
two threads;T; and T, in Figure[2.8. Supposeis initialized to 0, then the nal
value ofx is either 1 or 2, depending on which thread acquires the lock rst.
Kendo removes this nondeterministic behavior by deterministically ordering the
acquisition of locks. An example of deterministic ordering is lowest threadstl r

In this case, Kendo waits for all threads to contend for the lock, them$drcto
acquire the lock befor&,, thereby always giving the nal value ofas 2.

ThreadT;  ThreadT,
lock( m); lock( m);

X++: Xx=2;
unlock m);  unlock m);

Figure 2.3: Two thread§; andT, running in parallel

Kendo comes with three shortcomings. It operates completely at runtime, and
there is a considerable performance penalty. Secondly, if we have dhersms
lock(A); lock (B)in one thread antbck(B); lock(A)in another thread, a determin-
istic ordering of locks may still deadlock. Thirdly, the tool operates only whe
shared data is protected by locks.

Software Transactional Memory (STM11d is an alternative to locks: a
thread completes modi cations to shared memory without regard for what othe
threads might be doing. At the end of the transaction, it checks for cofree-
dom and commits if the validation was successful, otherwise it rolls back and
re-executes the transaction. STM mechanisms avoid races but do nettilselv
nondeterminism problem.

Berger's GrackLf] is a runtime tool that is based on STM. If there is a con ict
during commit, the threads are committed in a particular sequential order (deter-
mined by the order in which they appear in the source code), ensurimgneiam.

For instance, for the code in Figure fl,commits beforey, therefore resulting in
output value 5. Grace works on Cilk programs. The tool ensures thatutipert



CHAPTER 2. BACKGROUND 14

of the concurrent code is same as its sequential equivalent, and thisniatju
equivalent is obtained by removisgawnandsyncstatements from the concurrent
program.

The problem with Grace is that it incurs a lot of runtime overhead. This dis-
sertation partially solves this overhead problem by addressing the issompile
time and thereby reducing a considerable amount of runtime overhead.

Like Grace, Determinatf®] is another tool that allows parallel processes to
execute as long as they do not share resources. If they do shanecesand the
accesses are unsafe, then the operating throws an exception (apige f

Cored-Det[15], based on DMH4Z] uses a deterministic token that is passed
among all threads. A thread to modify a shared variable must rst wait fotdken
and for all threads to block on that token. DMP is hardware based. Agthou
deadlocks may be avoided, we believe this setting is nondistributed because it
forces all threads to synchronize and therefore leads to a condielpeaformance
penalty. In the SHIM setting, only threads that share a particular chanust
synchronize on that channel; other threads can run independently.

Deterministic replay systen[81;[4 facilitate debugging of concurrent pro-
grams to produce repeatable behavior. They are based on rectaylsgptems.

The system replays a speci ¢ behavior (such as thread interleavingjarfairrent
program based on records. The primary purpose of replay systerabugging;
they do not guarantee determinism. They incur a high runtime overhead@nd a
input dependent. For every new input, a new set of records is dgnmantained.

Like replay systems, Burmin and S&@ provide a framework for checking
determinism for multithreaded programs. Their tool does not introducdatsacd
but their tool does not guarantee determinism because it is merely a testing too
that checks the execution trace with previously executed traces to se/dlties
match. Our goal is to guarantee determinism at compile time — given a program, it
will generate the same output for a given input.

2.4 Model checkers and veri ers

There are a number of model checkers that verify concurrent @nogr SPIN
[63], for instance, supports modeling of asynchronous processes.eriespto
be veri ed are given as Linear Temporal Logic (LTL). SPIN expaatigossible
interleavings to verify a concurrent program. It is a general purposkand
can be used to verify concurrent programs for properties includingrdigtism
and deadlocks. The problem with model checkers is that they do not tecale
large programs. Also, they cannot express programs with complex sgsand
behaviors.
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Martin Vechev's tool[13Z] nds determinacy bugs in loops that run parallel
bodies. It analyzes array references and indices to ensure thatateeno read-
write and write-write con icts.

Type and effect systems like DE20] have been designed for deterministic
parallel programming. These systems do not themselves introduce deadiatk
type systems generally require programmer annotations. SHIM doesquitere
annotations; it provides restrictions through its constructs. One may aggiest
learning a new programming paradigm or language like SHIM, but SHIMbean
implemented as a library (Chapfér 6) and the deadlock detector (Rarahipe
incorporated into it. The second problem with annotation based systemstisehat
programmer has to ensure correct annotation; otherwise it results imanteffect
propagations.
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Outline

This part illustrates techniques to guarantee input-output determinism. We use
combination of compile-time and runtime techniques to obtain scheduling-indepiend
behavior. Our approach is a deterministic programming model and language —
SHIM. We start by explaining SHIM and its semantics. We then provide ways to
generate ef cient runtime code from SHIM programs for differenthitectures.

We nally provide a deterministic concurrent library in Haskell that adopts th
SHIM model for race-free behavior.
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Chapter 3

The SHIM Model

Because of the popularity of multicore chips, there is a growing need égram-
ming techniques, models, and languages that help exploit parallel ha.dwainis
chapter, we describe the concurrency model underlying a programnriggdge
called SHIM—"software/hardware integration mediufd’1d for its initial bias
toward embedded system applications—to ease the transition from singiddtre
software to robust multicore-aware implementations.

One of the key features of SHIM is that the output behavior of a program
is deterministic: the output of a program just depends on its input; it does not
depend on the environment such as compiler, runtime, OS, or hardwéiepla
Concurrent tasks in SHIM run asynchronously and do not sharedatay The
environment may schedule the tasks in any way (i.e., different schedwlésqe
different interleavings of the tasks), but still the program will produedninistic
output. If the tasks have to share data, they have to synchronize usitegi®us
communication, and the SHIM's runtime system takes care of this. By rendezv
we mean that all tasks sharing a particular variable have to meet — in a way similar
to a barrier.

The deterministic property of SHIM simpli es validation. Most programs are
still validated by simply running them. It is hard enough to validate a deterministic,
sequential program with such an approach: the user must create rap@aie set
of test cases and check the results of running the program on thesse dhthe
model is nondeterministic, as with most concurrent formalisms, even running a
program on a test case only tells us what the result of running the pnogiight
be. It does not guarantee that the result is correct. A different testivigonment
may cause the program to behave differently for the same input. This isaot th
case with SHIM because it guarantees scheduling independence.

The SHIM model and languag@7; [1159 prevent data races by providing
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scheduling independence: given the same input, a program will pradecame
output regardless of what scheduling choices its runtime environmentsmdtke
provides certain program correctness guarantees and makes abgit® €heck
by adopting CSP's rendezvo(2] in a Kahn networl70] setting. In particular,
SHIM's scheduling independence makes other properties easier tk bbeause
they do not have to be tested across all schedules; one is enoughlodkeiad
one such property: for a particular input, a program will either alwaysever
deadlock; scheduling choices (i.e., different interleaving of tasks)atacause or
prevent a deadlock.

SHIM [11d is a C-like language with additional constructs for communica-
tion and concurrency. Speci callyp par qruns statementp andq in parallel,
waiting for both to terminate before proceedirsend candrecv care blocking
communication operators that synchronize on a variable (or a channgg an
alternative tosendand recy, next cis a blocking communication operator that
synchronizes on channeland either sends or receives data depending on which
side of an assignment (=) tikextappears.

SHIM tasks communicate exclusively through this multiway rendezvous; there
are no global variables or pointers. Any variable that is shared shewdhannel
and be declared ahan We illustrate SHIM with examples taken from Tardieu's
paperl117.
void f(chan int a) { //aisacopyofc

a =3
recv a; // synchronize with g; a gets c's value
lla=5

void g(chan int &) { //bisan alias forc
b =5
send b; // synchronize with f
llb=5

}

void main() {
chan int ¢ = 0O;
f(c); par g(c);

Here, the program runs two taskandg concurrentlya andb are incarnations
of channelc. In f, ais a copy ofc that is rst modi ed by a=3 before being
updated byrecv. By contrast,b is an alias forc in g, so the assignmeri=5
actually modi esc. Because they are associated with the same variablsgti
andrecvoperations must synchronize to execute. When they doetivstatement
copies the master value ef—c, which was set to 5 ig—to the local copy off.
Thusais 5 just beforef terminates.

Thenextoperation can also used for communication. For instance, in the piece
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of code we just sawecv acan be replaced byext g andb = 5; send b; can be
replaced bynext b = 5 In other wordsnextbehaves like aendif it appears on the
left side of an assignment, and likecv otherwise.

Only the procedure that takes a channel by reference may send chémate!.

A channel may be passed by reference to at most one of the proseéuge
int f(chan int &, chan inty) { x++; y-; }
int g(chan int 2 { z-; }
void main)) {
chan int a; a=0; chan int b; b=1;
f(a, b); par f(b, a); par g(a); //OK:a=1,b=2

In the above piece of code, executds;b) in parallel with f(b;a), and both run

in parallel withg(a); The rst f takesa by reference and is incremented once,
while the second takesb by reference and incrementsby 1. g does not take
any variable by reference. Therefore, it does not affect the salfia andb. So,

the values of andb become 1 and 2 respectively after the execution of the second
line in main

The following line would be illegal in main.

f(a, a); par f(a, b); //incorrect: ais passed twice by referenceompiler reject
Due to this restriction (enforced at compile time), concurrently runningguhoes
never share memory - every task maintains its own local copy. The serstter ta
alone references the actual copy, and there can be only one sesidenta chan-
nel.

In general, if there are two sender tasks on a particular channel in the co
section of the program, then the compiler rejects the program to guarantee de
terminism. Summarily, the asynchronous parts in SHIM are totally independent
because they never share memory. Sharing is only through explicitreyrizétion
using rendezvous communication. This makes SHIM deterministic.

It is not necessary for the statements in pfag statement to be procedure calls.

For instance:
void main()

chan int a, b;

{ Il Task 1
a = 5;
send a; // Send 5 on a (wait for task 2)
/Inowa=5
recv b; // Receive b (wait for task 2)
/'now b =10

} par { //Task 2
recv a; // Receive a (wait for task 1)
/Inowa=5
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b =10
send b; // Send 10 on b (wait for task 1)
/I now b =10

}

}

The SHIM compiler dismantles the above code as:
/ Task1 /
void mainl(int &, int b) {

a = b5;

send a; // Send 5 on a (wait for task 2)

llnowa=5

recv b; // Receive b (wait for task 2)

/Inow b =10

}

| Task2 /

void mainZ int a, int &b) {
recv a; // Receive a (wait for task 1)
/Inowa=5
b =10
send b; // Send 10 on b (wait for task 1)
/I now b =10

}
void main()

chan int a, b;

mainl( a, b); par mainZ a, b);
/ a=5,b=10/
}

Task 1 (represented biyainl), being the sender am takesa by reference. Simi-

larly, main2 takesb by reference. The two peer tasks communicate on chaanels

andb. Tasks 1 and 2 are executed in parallel. $kad ain task 1 waits for task 2
to receive the value. The tasks therefore rendezvous, then continue adter the
communication takes place. Next, the two tasks rendezvadusTdtis time, task 2
sends and task 1 receives.

Here is another example that illustrates how fesmdand recv instructions
enable communication between concurrently running procedures.
void f(chan int &) { / referencetoal

X = 3; / modiesa,ais3/

send x; / sends 3/

X =4; | modiesa,ais4/

}

void g(chan int y, chan int &) {
y = 5; / modies local copy /
recv y; / receives 3,yis 3/
z=y, | modiesb /

}
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void main)) {
chan int a; a=0; chan int b; b=1;
f(a), par g(a, b), //a=4,b=3

Here,send xn f andrecv yin g synchronize and the value wfn f is copied intoy
in g. Variablesx andy are paired in this communication because bothrss®nces
of variablea from main that is,x is a reference ta andy is a “by-value” reference
to a. We say that procedurdsandg sharevariablea from maineven if only f has
access to the value of variakdghroughx.

When two or more concurrent procedures share the same vaadbl¢his
sense, all of them must participate in each communicatiom.omience, each
procedure reaching send xor recv yinstruction (wherex resp.y is the name
of the local instance o) blocks, that is, stops executing until every procedure
involved is blocked om. Then, a communication takes place atomically.

In other words, the primitive communication mechanism in SHIM is the mul-
tiway rendezvous that requires all participants in a communication to symzBro
— there can be multiple receivers but only one sender on a channel. ugfego
other traditional communication mechanisms can be built using this multiway ren-
dezvous. Forinstance, the fo procedure described later in this sdotiglements
buffered channels.

In SHIM, there are rules for the (static) disambiguation of multiple-sender-
multiple-receiver communications. In particular, a procedure can ontysgoes
on a pass-by-reference parameter channel. For instance,
void snd chan int &) { send x; }
void rcv(chan int y) { recvy; }
void main) { chan int a; a=0; snda); } //OK
void main) { chan int a; a=0; snd a); par rcv(a); par rev(a); }  //OK
void main)) { chan int a; a=0; snd a); par snd a); } //incorrect
void main)) { chan int a; a=0; rcv(a); } //OK receives O (the last value on the channel)
void main) { chan int a; a=0; rcv(a); par rcv(a); } //OK bothreceive 0
In the absence of a sender, the rendezvous deadlocks. Competatga@yiration
barriers may also cause deadlocks. For example,
void f(chan int &, chan int &) { send x; sendy; }
void g(chan int x, chan inty) { recvx recvy, }
void main)) { chan int a; a=0; chan int b; b=0; f(a, b); par g(b, a); }

/I deadlocks
Procedured andg sharea andb from main f is waiting to synchronize oa
whereagy is blocked orb. Therefore, neither synchronization attempt completes.

This means coding in SHIM involves tracking down deadlocks, but weepref
reproducible fatal errors to hard-to-detect, hard-to-reprodutzerdaes. Deadlock
detection techniques are discussed in the later chapters.

A terminated procedure is no longer compelled to rendezvous. E.g.,
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void f(chan int &, chan int &) { sendx; sendy; sendx; }
void g(chan int x) { recv x; }
void main)) {
chan int a; a=0; chan int b; b=0;
f(a, b); par g(b); //nodeadlock:ais only shared by f
f(a, b); par g(a); // nodeadlock:ais only shared by f once g returns

}

This is one of the two reasons multiway rendezvous is fundamental to SHIM.
Because procedures may terminate, a multiway channel may dynamically;shrink
because concurrent procedures may further divide into more aemtysroce-
dures, a multiway channel may dynamically extend. A procedure (or a ttaak)
takes a channel by value, may pass the channel to its subprocedusebi@sks)
only by value.

Summarily, asend or arecv xwaits for all tasks that access chanxeb either
communicate om or terminate. Once this condition is satis ed, the value is copied
from sender to all receivers. If there is no sender at the rendseztoel last value
written on the channel is copied to the receivers. After this, the tasks centin
execution independently. When a task executes a statemem, it writes a to
its local copy ofx if the task is a receiver. The sender alone writes to the actual
location ofx.

To perform 1/O in SHIM, we declarein andcout as channels. All tasks that
takecin by value, can read the input. The task that tagest by reference, can
write to the output. To do this, we allow theain function to take parameters.
maintakescin by value andcout by reference. A "hello world" program in SHIM

will look like this:
void main( chan char cin chan char &coud {

cout << ' HY
cout << ' €}
cout << ' I
cout << ' [}
cout << ' d

}

The SHIM scheduler is a part of the runtime environment of the SHIM target
program. It runs the asynchronous (communication-free) parts of ritgram
independently — allowing the environment (operating system, hardwarg,tetc
schedule these asynchronous sections of tasks with arbitrary integeavow-
ever, the SHIM scheduler will not violate the interthread communication rules
forcing communication actions to synchronize.

All'legal SHIM programs must be provably scheduling independent. ¥amne
ple, thecell function below implements a one-place buffer with an in nite loop that
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alternatively reads from its input channel and writes to its output chamheh, by
combining recursion and parallel composition, theefunction chaing one-place

buffers to build a fo of sizen.
void cell( chan int i, chan int &0) {
while (true) { recvi; o =i; sendo; }

void fo(chan int i, chan int &, int n) {

chan int ¢; chan intm; m=n - 1;

if (m>0) { «cell(i, ¢); par fo(c, o, m); }

else { cell(i, 0); }
}
The distribution of data tokens in the fo is under the control of the schedEter
instance, one scheduling policy may chose to move data tokens toward tl outp
of the fo eagerly; another may move data tokens lazily. Neverthelesgusec
this is a legal SHIM program, we know that the output of the fo will alwayes b
the same for a particular input sequence.

SHIM also has an exception mechanism that is layered on top of its communi-

cation mechanism to preserve determinism.
void sourcg chan int &) throws T {
while (a > 0) {
a=a-1,
send a;

}
throw T;

void sinl{ chan int b) {
while (1)
recv b;

}
void main)) {
chan int x = 5;

try {
sourcd x); par sink X);

} catch (T) {}
}

The sourceprocedure in the above piece of code sends 4, 3, 2, 1, and 0 $mthe
The sink procedure callsecv ve times to synchronize with thesourcés sends.
Then,sourcethrows an exceptioii. Whensinktries to receive the sixth time, it is
poisoned by theourceand terminated. It should be noted that sirekreceives the
poison only when it tries to communicate withurce As described, exceptions are
propagated to other tasks only during communication, making the exceptioh mode
of SHIM deterministic. We discuss a few more examples of SHIM programs with
exceptions in the following chapters.

The central hypothesis of SHIM is that its simple, deterministic semantics
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helps both programming and automated program analysis. That we have bee
able to devise truly effective mechanisms for clever code generationreatgses
(e.g., deadlock detection) that can gain deep insight into the behavicogrigons,
vindicates this view. The bottom line: if a programming language does not have
simple semantics, it is really hard to analyze its programs quickly or precisely.

In the following chapters, we describe a series of code generationidgeesn
suitable for parallel processors. Each actually works on a slightly diftetialect
of the SHIM language, although all use the Kahn-with-rendezvous corcation
scheme. The reason for this diversity is historical; we added features g®HHM
model as we discovered the need for them. Our benchmarks are all bagchips;
we do not yet deal with reactive systems.
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Chapter 4

Compiling SHIM to a Shared
Memory Architecture

We have described the SHIM programming language in the previous chdpter
prove that the language can be practical, we describe a compiler thattgEn€
code and calls thBthreadlibrary for parallelism.

As discussed in the previous chapter, #hem languagd47;114 only allows
deterministic message-passing communication to guarantee race freedom. The
programming model allowsHIM compilers to use a simple syntactic check to
verify that runtime scheduling choices cannot change a program's havim.
While this model does restrict how concurrent tasks may interact, therbfode
the programmer and the performance penalty are a small price for cassctn

In this chapter, we demonstrate h@nim facilitates writing interesting, time
ef cient parallel programs for shared-memory multiprocessors. Tladlage is
minimizing overhead - implementirgHiIM's multiway rendezvous communication
with exceptions ef ciently is the main code generation challenge. Each commu-
nication action acquires the lock on a channel, checks whether evengcied
process had also blocked (whether the rendezvous could occdthemchecks if
the channel is connected to a poisoned process (an exception haithtoeem).

We implement a parallelPEGdecoder and arFT to show howsHIM helps
with coding and testing different schedules during design exploratiarti(®ed.2).
We present a compiler that generates C code that callabexthread (“Pthread”)
library for shared-memory multiprocessors (Secfion 4.3). FoutmwsandFFT
examples, our compiler's output achieves 3.05 and 3Beedups on a four-core
processor (Sectidn 4.4).
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void h(chan int &A) {

A = 4; sendA, void g(chan int A) {
A = 2; sendA recv A
} recv A;
}
void j(chan int A) throws Done{
recv A, void main() {
throw Done try {
} chan int A;
f(A);  par g(A);
void f(chan int &A) throws Done{ } catch (Doné {}
h(A);  par j(A); }

Figure 4.1: A concurrent SHIM program with communication and exceptions

4.1 Reviewing SHIM

SHiM [114 is a concurrent programming language designed to guarantee schedul-
ing independence. The input-output function afr@am program does not depend

on scheduling choices; that is, if two concurrent tasks are ready tchawosing
which to run rst does not affect the program’s function.

It adopts an asynchronous concurrency model, a la Kahn net{icgkéSHIm
tasks can only block on a single channel), that ussslike rendezvoud61].

The language does not expose shared memory to the programmer, besit do
provide single-sender multiple-receiver synchronous communicatiometsaand
asynchronous exceptions. Both mechanisms were designed to prelredtibng
decisions from affecting function.

SHIM's syntax is a C subset augmented with constructs for concurrency, com-
munication, and exceptions. It has functions with by-value and byaeéerargu-
ments, but no global variables, pointers, or recursive types.

The par construct starts concurrent taskspar gstarts statemengsandq in
parallel, waits for both to complete, then runs the next statement in sequence.

To prevent data racesHIm forbids a variable to be passed by reference to two
concurrent tasks. For example,

void f(int &< {} void g(int x) {}

void main() {
int x, v,
f(x); par g(x); par f(y); /1 OK
f(x); par f(X); I rejected because x is passed by reference twice

Internally, our compiler only supports parallel function calls.plin p par qis
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not a function callp is transformed into a function whose interface—the formal
arguments and whether they are by-reference or by-value—is idfrié].

SHIM's channels enable concurrent tasks to synchronize and communicate with
out races. Thenainfunction in Figuré 4.11 declares the integer chaahd passes
it to f andg, thenf passes it td andj. Tasksf andh send data witlsend A Tasks
g andj receive it withrecv A

A channel resembles a local variable. Passing a channel by valuesdtspie
value, which can be modi ed independently. A channel must be passeeiféry
ence to senders.

Communication is blocking: a task that attempts to communicate must wait for
all other connected tasks to engage in the communication. If the synchioniza
completes, the sender's value is broadcast to the receivers. In HEdlird is
broadcast fronh to g andj. Taskg blocks on the seconslend Abecause task
does not run a matchimgcv A

Like most formalisms with blocking communicatiosriM programs may dead-
lock. But deadlocks are easier to x BHIM because they are deterministic: on the
same input, &HIM program will either always or never deadlock.

~{Huffmanf—{Process Macroblodgk—{ Write|

[Huffmanf—{Process Macroblodk— Write|

i i
[Huffmanf—{Process Macroblodk—{Write |~

Figure 4.2: Dependencies in JPEG decoding

critical path

Figure 4.3: Seven-task schedule for JPEG

SHIM's exceptions enable a task to gracefully interrupt its concurrently rgnnin
siblings. A sibling is “poisoned” by an exception when it attempts to communicate
with a task that raised an exception or with a poisoned task. For exampla,jwhe
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in Figure[4.1 throw®one it interruptsh's blockedsend Aandg's blockedrecv A
An exception handler runs after all the tasks in its scope have terminatesktor b
poisoned.

4.2 Design exploration with SHIM

SHIM facilitates the coding and testing of different schedules—a key aspect of
design exploration for parallel systems. To illustrate, we describe implementing
two parallel algorithms isHIM: a JPEGdecoder and aRFT.

4.2.1 Porting and parallelizing a JPEG decoder

We started by porting intgHIM a sequentialPEGdecoder written in C by Pierre
Guerrier. $11M is not a C subset, so some issues arose. The C code held Huffman
tables in global variables, whickHimM does not support, so we passed the tables
explicitly. The C code allocated buffers withallog we used xed-size arrays.

We discarded a pointer-based Huffman decoder, preferring insteathat used
arrays.

After some preprocessing, the main loop of the original program unpagke
macroblock—six Huffman-encoded 8 data blocks (standard 4:2:0 downsampling)—
performed anbcT on each data block, converted fronvv to RGB, and blitted
the resulting 16 16 pixel block to a framebuffer. It then wrote the framebuffer
to a le. Although macroblocks can be processed independently, uingaekd
writing are sequential (Figute4.2).

We rst ran four IDCT transformers in parallel. Unfortunately, this ran slowly
because of synchronization overhead.

To reduce overhead, our next version divided the image into four stepd
processed each independently. Fearing the cost of communicationyisedithe
seven-task schedule in Figurel4.3, which greatly reduced the numbgnaifrs-
nizations at the cost of buffer memory.

The Figurd_4.B schedule only gave a 1.8peedup because the seventh task
waits for all the other stripes to be unpacked and then everything waits dor th
seventh task. The arrow in Figure 4.3 shows the critical path, which inglte
total cost of Huffman decoding and 14 of thecTs.

To strike a balance between the two approaches, we nally settled on the more
ned-grained schedule in Figufe 4.5. Each task processes a row abhiacks at
a time (e.g., 64 macroblocks for a 1024-pixel-wide image). This schedutelspe
less time waiting than the stripe-based approach and synchronizes lesthafte
the block-based approach.
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void unpacK unpacker_state&state stripe &stripe) { ... }
void proces§const stripe &stripe pixels &pixelg { ... }
void write( writer_state &wstate const pixels &pixely { ... }

unpacker_state ustgtewriter_state wstate
stripe stripel stripe2 stripe3 stripe4
pixels pixelsl chan pixels pixels2 pixels3 pixels4

unpack ustate stripel);
{ proces§stripel, pixels); write( wstate pixels);
recv pixels2 write( wstate pixels?);
recv pixels3 write( wstate pixels3;
recv pixels4 write( wstate pixels);
} par {
unpack ustate stripe2);
{ proces$§stripe2 pixelsd; send pixels2
}opar {
unpack ustate stripe3;
{ proces§stripe3 pixels3; send pixels3
} par {
unpack ustate striped);
proces§ striped pixelsd; send pixels4

P}
Figure 4.4: SHIM code for the schedule in Fighrel 4.3

[Huf b~| Huf

Huf”|—-|Huf|-—>|Hufh—»|Huf}|:{:|ufh—>|Huf|-—>|Huf”|»-|Huf|-—>E
[ Process k fProcess| [ Proc
[ | Process] | | Process| }

—|__Process k '—| Progess  —| Progess k '—
G — G

Process

Figure 4.5: A pipelined schedule for JPEG
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void unpack unpacker_state&state row &ow) { ... }
void proces$in row row, out pixels &pixelg

{ for (;;) { recv row; / IDCT etc. / send pixels } }
void write( writer_state wstate const pixels &pixelg { ... }

unpacker_state ustgtewriter_state wstate int rows
chan row rowl, row2, row3;
chan pixels pixelsl pixels2 pixels3

try {
{ for () {
unpack ustate rowl); sendrowl; if (-- rows == 0) break
unpack ustate row2); sendrow2;, if (-- rows == 0) break
unpack ustate row3); sendrow3; if (-- rows == 0) break
} throw Done } par
proces§rowl, pixels); par
proces§ row2, pixelsd; par
proces§ row3, pixels3; par
{ for (i) {
recv pixelsl write( wstate pixels);
recv pixels2 write( wstate pixels?;
recv pixels3 write( wstate pixels3; } }
} catch (Doné {}

Figure 4.6: SHIM code for the JPEG schedule in Figuré 4.5
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4.2.2 Parallelizing an FFT

We also coded isHIM a pipelinedrrT to test the effects of numerical roundoff. Its
core is therFT from Numerical RecipelL01], which we rewrote to use signed 4.28
xed-point arithmetic. We added code that parses a .wav le, runs blotk924
16-bit samples through theeT, through an inverserT, then writes the samples to
another .wav le.

OurFFTuses a schedule similar to that of the more compiscdecoder: one
task reads 1024-sample blocks and feeds them todeutasks in a round-robin
manner. Each reads its sample block, performsrténverserFT operation, and
sends its block to a writer task, which receives sample blocks in order gtesw
them sequentially.

Synchronization costs limited this to a 2.3peedup on four processors, so we
made it process 16 1024-sample blocks, improving performance ta 3.3

4.2.3 Race freedom

Both thesPEGandFrFT examples illustrate that dividing and scheduling computa-
tion tasks is critical in achieving performance on parallel hardware. Aghalata
dependencies inPEGwere straightforward, nding the right schedule took some
effort. With traditional concurrent formalisms, it is easy to introduce datasa
during design exploration.

SHIM's channels and exceptions cannot introduce races. E.g., in Eiglited.6,

rst task throws an exception after reading all the rowsd11% semantics ensure
that the three row-processing tasks and the writing task terminate just after th
have completed processing all the rows.

SHIM also guarantees data dependencies are respected. For instasegMhe
compiler rejects attempts to run unpackers in parallel because of the gtza®d
by-reference state (mostly, position in the le):
void unpack unpacker_state&state stripe &stripe) { ... }

unpack ustate stripel); par unpacK ustate stripe2); Il rejected

4.3 Generating Pthreads code for SHIM

In this section, we describe our main technical contributionsHam compiler

that generates parallel C code that uses the Pthread library's thieddpdndent
program counters and stacks that share program and data memoryesnimnel-
tual exclusion objects for synchronizing access to shared memory}caaition

variables (can block and resume execution of other threads).
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4.3.1 Mutexes and condition variables

Any Pthreads program must decide how many threads it will use, the nushber
mutexes, the partition of shared state, and the number and meaning of condition
variables. These are partly engineering questions: coarse-grainddelads to
fewer locking operations but more potential for contention; ner lockiag more
overhead. Locking is fairly cheap, typically consisting of a (user-spamction
call containing an atomic test-and-set instruction, but is not free. On onkinga
locking and unlocking a mutex took 74as long as a oating point multiply-
accumulate.

We generate code that uses one mutex-condition variable pair for ek@nths
for each channel. Figufe 4.7 shows the data structures we use. Teetmse
classes:” the type of each task and channel includes additional eldhadtcithe
formal arguments passed to the task and, for each function to which aethan
is passed by value, a pointer to the local copy of the channel's valueedice
locking, we track exception “poisoning” in both tasks and channels.

#de ne lock m) pthread_mutex_lo¢& m)

#de ne unlock m) pthread_mutex_unlo¢g m)
#de ne wai c, m) pthread_cond_wai&c, & m)
#de ne broadcagtc) pthread_cond_broadcgs c)

enum state{ STOR RUN, POISON };

struct task { struct channel{
pthread t thread pthread _mutex_t mutgx
pthread_mutex_t mutgx pthread_cond_t cond
pthread _cond_t cond unsigned int connected
enum state state unsigned int blocked
unsigned int attached_children unsigned int poisoned
/= Formal arguments. */ /= Local copy pointers. =/
h h

Figure 4.7: Shared data structures for tasks and channels

4.3.2 The static approach

For ef ciency, our compiler assumes the communication and call graph of the
program is static. We reject programs with recursive calls, allowing usrsftysem
the call graph into a call tree. This duplicates code to improve performéaweer
channel aspects are managed at run time.

We encode in a bit vector the subtree of functions connected to a ch&imez.
we know at compile time which functions can connect to each channel, igmass
a unique bit to each function on a channel. We check these bits at run time with
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logical mask operations. In the code, something Bkéd is a constant that holds
the bit our compiler assigns to functiérconnected to channg\, such as 0x4.

4.3.3 Implementing rendezvous communication

ImplementingsHiM's multiway rendezvous communication with exceptions is the
main code generation challenge.

The code at a send or receive is straightforward: it locks the chamaeks
the function and its ancestors as blocked, callseentfunction for the channel
to attempt the communication, and blocks until communication has occurred. If it
was poisoned, it branches to a handler. Fidguré 4.8 is the codeefat Ain h in
Figure4.1.

lock( A. mutey; [ * acquire lock for channel Ax/
A. blocked |= ( A_H A ff A _main; / * block h and ancestors on Ax/
event_A); [/ = alert channelof the changex/
while (A. blocked & A h { / * while h remains blocked:/
if (A. poisoned& A_h { [/ * were we poisonéd x/
unlock A. mutey; goto _poisoned
wait( A. cond A. mutey; [ * wait on channel Ax/
unlock A. mutey; [ * release lock for channel A/

Figure 4.8: C code fasend Ain functionh()

For each channel, our compiler generatesantfunction that manages com-
munication. Our code calls aventfunction when the state of a channel changes,
such as when a task blocks or connects to a channel.

Figure[4.9 shows theventfunction our compiler generates for chanmel
in Figure[41. While complex, the common case is quick: when the channel
is not ready (one connected task is not blocked on the channel) andkdsta
poisonedA.connected= A.blockedandA.poisoned== 0 so the bodies of the two
if statements are skipped.

If the channel is ready to communicafeblocked== A.connectedo the body
of the rst if runs. This clears the channdllgcked= 0) andmains value for A
(passed by reference taandh and passed by value to others) is copied tw j if
connected.

If at least one task connected to the channel has been poigapeiioned= 0
so the body of the secorifl runs. This code comes from unrolling a recursive
procedure at compile time, which is possible because we know the strutthes o
channel (i.e., which tasks connect to it). The speed of such code isalkaptage
over a library.
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void event g {

unsigned int can_die= 0, kill = O;
if (A. connected== A. blocked { | * communicatex/
A. blocked = 0;

if (A. connected& A g *A. g = *A main
if (A. connected& A_j) *A. j = A main
broadcast A. cond);

} else if (A poisonedl { | * propagate exceptions/
can_die = blocked & (A d A H A )); [ * compute can_die set/
if (can_die& (A_H A_j) == A.connected& (A_H A_))

can_die |= blocked & A f;

if (A. poisoned& (A_flA_Q) { |+ compute Kkill setx/
kil |= A_g if (can_die& A f) kill |= ( A_fA A ));
if (A poisoned& (A HA ) { kil = Ah kil |= Aj }
if (kill &= can_die & ~A. poisoned { / * poison some tasRs*/
unlock A. mutey;
if (kill & A 9 { [ = poison gif in Kkill set =/
lock( g. mutey;

g. state = POISON
unlock g. mutey; }
/* also poison f h, and j if in kill set.. =*/
lock( A. mutey;
A. poisoned |= kill; broadcastA. cond;
1}

Figure 4.9: C code for theventfunction for channeA

lock( main mutey; main state = POISON unlock main mutey;
lock( f. mutey; f. state = POISON unlocK f. mutey;

lock( j. mutey; j. state = POISON unlock j. mutey;

goto _poisoned

Figure 4.10: C code fahrow Donein functionj()
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This exception-propagation code attempts to determine which tasks, if any,
connected to the channel should be poisoned. It does this by manipulatng tw
bit vectors. A taskcan_dieiff it is blocked on the channel and all its children
connected to the channel (if any) alsain_die A poisonedask maykill its sibling
tasks and their descendants. Finally, the code kills each task ikiltheet that
can_dieand was nopoisonedbefore by setting itstateto POISONand updating
the channel accordinglyA(poisoned=Kkill).

Code for throwing an exception (Figure 4.10) mark$&ISONall its ances-
tors up to where it will be handled. Because the compiler knows the callitree,
knows how far to “unroll the stack,” i.e., how many ancestors to poison.

4.3.4 Starting and terminating tasks

It is costly to create and destroy rDSIX thread because it usually requires a
system call, each has a separate stack, and doing so interacts with tagngper
system's scheduler. To minimize this overhead, because we know the &jahl gr
of the program at compile time, our compiler generates code that creates at th
beginning as many threads as g@m program will ever need. These threads are
only destroyed when theHIM program terminates; if aHIM task terminates, its
posixthread blocks until it is reawakened.

lock( A. mutey; / * connectx*/ lock( f. mutey; [ * run () =/
A. connected|= ( A A O; f. state = RUN broadcastf. cond;
event_A); unlocK f. mutey;
unlock A. mutey;
lock( g. mutey; [ * run g() =*/
lock( main mutey; g. state = RUN broadcast g. cond;
main attached_children= 2 unlockK g. mutey;

unlock main mutey;
lock( main mutey; / = wait for children =/

lock( f. mutey; / * pass args*/ while (main attached_children
f.A = &A wait( main cond main mutey;
unlocK f. mutey; if (main state == POISON ({
unlock main mutey;
/* A is dead on entry for g goto _poisoned }
so do not pass A to g/ unlock main mutey;

Figure 4.11: C code for callinff) andg() in main()

Figure[4.11 shows the codemainthat runsf andg in parallel. It connect$
andg to channel;, sets its number of live children to 2, passes function parameters,
then start§ andg. The address for the pass-by-reference argurésnipassed to
f. Normally, a value foA would be passed tg, but our compiler found this value
is not used so the copy is avoided (discussed below). After stdrtamglg, main
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waits for both children to return. Thanainchecks whether it was poisoned, and

if so, branches to a handler.

int *A; / * value of channel Ax*/

_restart
lock( f. mutey;
while (f. state I= RUN)
wait( f. cond f. mutey;
A=fA | = copy arg */
unlocK f. mutey;

/= body of the f task=/

_terminated

lock( A. mutey; / =* disconnect fx/
A. connected&= ~A f;
event_A);

unlock A. mutey;

lock( f. mutey; / * stop =/
f. state = STOR

unlock f. mutey;

goto _detach

37

_poisoned
lock( A. mutey; / * poison A=*/
A. poisoned |= A_f;
A. blocked &= ~A_f event A);
unlock A. mutey;

lock( f. mutey; / * wait for children =/
while (f. attached_children
wait( f. cond f. mutey;
unlocK f. mutey;

lock( A. mutey; / * disconnect j h */
A. connected&= ~(A_H A_j);
A. poisoned &= ~(A_H A_j);
event_A);

unlock A. mutey;

_detach / » detach from parentt/
lock( main mutey;
main.attached_children;
broadcast main cond;
unlock main mutey;
goto _restart

Figure 4.12: C code in functioif) controlling its execution

Reciprocally, Figuré_4.12 shows the codef ithat controls its execution: an

in nite loop that waits formain, its parent, to set itstate eld to running, at which
point it copies its formal arguments into local variables and runs its body.

If a task terminates normally, it cleans up after itself. In Fidurel4.12, task

disconnects from channel A, sets gsteto STOP and informsmainit has one

less running child.

By contrast, if a task is poisoned, it may still have children running and it may

also have to poison sibling tasks so it cannot entirely disappear yet. IreFdIR,
taskf, if poisoned, does not disconnect fréxbut updates itpoisonedeld. Then,

taskf waits for its children to return. At this timé,can disconnect its (potentially

poisoned) children from channels, since they can no longer poisongsbkinally,
f informsmainit has one less running child.
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4.3.5 Optimizations

SHIM draws no distinction between sequential C-like functions and concurrent
tasks; our compiler treats them differently for ef ciency. Our compiler distin
guishes tasks from functions, which must not take any channel argsncentain
local channels, throw or handle exceptions, have parallel calls, galbaks, or be
called in parallel. Tasks are implemented as described above—each isddgtign
own thread. Functions follow C's calling conventions.

Unlike JavasHiM passes scalars, structures, and arrays by value unless marked
as by-reference. This is convenient at parallel call sites to avoid émear€e among
concurrent tasks. However, if tasks only read some data, the dateecstmaled
among them for ef ciency. Similarly, a channel can be shared among thaks
never update the channel's value betwesgvinstructions. We introduced a C++-
like constspeci er that prohibits assignments to a variable, channel, or function
parameter. The compiler allows multiple concurremstby-reference parameters
and allocates a shared copy fmmstparameters passed by value.

We implemented another optimization to reduce super uous copies of large
data structures. Normally, the current value of a channel is copied thbehannel
is passed by value, but copying is unnecessary if the value is newctbafme the
next value igecvd. The overhead can be substantial for arrays. We perform live
variable analysis to determine which arguments are dead on entry. E.g., in
void myfung chan int inpuf65536]) { recv input ... }

theinput channel value is dead on entry and will not be copied at any callsite for
myfung eliminating a 256K copy.

4.4 Experimental results

We implemented ousHIM compiler inocAML. Code speci ¢ to the Pthreads
backend is only about 2000 lines.

To test the performance of our generated code, we ran it on a 1.6 Gaiz-Qu
Core Intel Xeon (E5310) server running Linux kernel 2.6.20 véithe (Fedora
Core 6). The processor “chip” actually consists of two dice, each tontga pair
of processor cores. Each core has a 32 KB L1 instruction and a 32 Ké&ata
cache, and each die has a 4 MB of shared L2 cache shared betwéwn tores.

We compiled the generated C with gcc 4.1.1 wil7 and -pthreadoptions.
We timed it using théime command and rasyncto ush the disk cache.

The JPEGprogram uses much more stack space than typical C programs be-
cause it stores all data on the stack instead of the heap. We raised thsistgitk
16 MB with ulimit -s.
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Table 4.1: Experimental Results for the JPEG decoder
Cores Tasks Time Total TotalTime Speedup

1 T 25s 20s ® 1.0 (def)
1 1+3+1 24 24 0] 1.04

2 1+3+1 13 24 B 1.9

3 1+3+1 11 24 2 23

4 1+3+1 87 25 29 29

4 1+1+1 16 24 b 1.6

4 1+2+1 a3 25 27 27

4 1+3+1 87 25 29 29

4 1+4+1 82 25 305 305

4 1+5+1 86 25 29 29

T Reference single-threaded C implementation.

Run on a 20 MB 21600 10800 image that expands to 668 MB. Tasks is the number of parallel
threads (read and unpack + process row + write), Time is wallclock] Foteger + system time,
TotalTime is the parallelization factor, speedup is with respect to the refeisplementation.

Table[4.1 shows results for tweG decoder. We ran it on a 20 MB earth
image from nasAd and varied both the number of available processors and the
number of row-processing tasks in our program. The speedup duesitepaation
plateaued at 3.05, which we attribute to the sequential nature of the Huffman
decoding process.

Table[4.2 shows statistics for osFT. We compared handwritten C with
sequentiasHIM and two parallesHIM versions, one with six tasks that work on
single 1024-sample blocks and one that works on sixteen such blocks.rsth
parallel implementation has overhead from synchronization and communication
The “Parallel 16” version communicates less to reduce this overheadchieva
a 33 speedup: 82% of an ideal 4speedup on four cores.

4.5 Related work

Like sHIM, the Streamlt languagd2d is deterministic, but its data ow model
is a strict subset o$HIM's and there is no Streamlt compiler for shared memory
machines.

Other concurrent languages use different models. The most commopojis=lo
over-arrays,” embodied, e.g., in compilers for OpenfAR1]. This would be

Iworld.200409.3x21600x10800.jpg from earthobservatory.gasa
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Table 4.2: Experimental Results for the FFT
Code Cores Time Total TotalTime Speedup

Handwritten C 1 Ds 20s 10 1.0 (def)
Sequential SHIM 1 2 21 10 0:95
Parallel SHIM 1 21 21 10 095
Parallel SHIM 2 13 2.0 1.5 1.5
Parallel SHIM 3 002 21 2:2 22
Parallel SHIM 4 086 21 24 23
Parallel 16 1 9 1.9 1.0 11
Parallel 16 2 0 1.9 1.9 20
Parallel 16 3 B8 19 21 2.2
Parallel 16 4 ® 1.9 32 33

Run on a 40 MB audio le—20 000 1024-point FFTs.

awkward for a schedule such as Figlrel 4.5. The Cilk langl&gespeculates
to parallelize sequential code. The Gué®hJava dialect prevents unsynchronized
access to shared objects by enforcing monitor use with a type systemstiike

it aims for race freedom, but uses a very different model.

4.6 Conclusions

A good parallel algorithm reliably computes the result quickly. Unlike most par
allel languagessHiM guarantees reliability by preventing data races. Correctness
remains a challenge, but at least runningt&iM program on a test case gives
consistent results for any scheduling policy.

SHIMm is helpful during design exploration when testing different schedules; its
determinacy makes it easy to obey data dependencies. Its C-like syntaatés
porting existing code. We demonstrated this arraGdecoder.

Our sHIM compiler generated code for parallel programs that runs on a four-
core processor over three times faster than sequential C. Seqenkiatode runs
no slower. We therefore believe that SHIM can be practical. We stremdttie
argument by generating code for a heterogeneous architecture inthehapter.
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Chapter 5

Compiling SHIM to a
Heterogeneous Architecture

In the previous chapter, we demonstrated that the SHIM model can keptéor
a shared memory architecture. In this chapter, we evaluate the model ftaramif
parallel architecture: the Cell Broadband Engine.

The Cell architecture is interesting but is notoriously dif cult to program. In
addition to the low-level constructs (e.g., locksyA), it allows most parallel
programming environments to admit data races: the environment may make non-
deterministic scheduling choices that can change the function of a program.

In this chapter, we describe a compiler for thieim scheduling-independent
concurrent language that generates code for the Cell Broadbaeddgeneous
multicore processor. The complexity of the code our compiler generat¢isedia
the source illustrates how dif cult it is to manually write code for the Cell.

Our backend124] is a direct offshoot of the pthreads backend but allows the
user to assign certain (computationally intensive) tasks directly toghe's eight
synergistic processing units#es); the rest of the tasks run on theLL's standard
PowerPC corerPB. Our technique replaces the of oaded functions with wrap-
pers that communicate across theeSPE boundary. Cross-boundary function
calls are technically challenging because of data alignment restrictionscticio
arguments, which we would have preferred to be stack resident. Thignany
other fussy aspects of coding for tbeLL, convinced us that such heterogeneous
multicore processors demand languages at a higher level than seqsefttialre.

We demonstrate the ef cacy of our compiler on two examples. Whilesthe
language is (by design) not ideal for every algorithm, it works well fertain
applications and simpli es the parallel programming process, especially on the
Cell architecture.
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We review the Cell processor, and describe the inner workings ofaupiter.
In Section[5.B, we describe how we instrumented our generated code tot colle
performance data, and present experimental results in Séctlon 5.4.

5.1 The Cell Processor

Coherent shared memory multiprocessors, such as the Intel Core @laoy &
conservative evolutionary path. Unfortunately, maintaining cohereosts time,
energy, and silicon because the system must determine when data is lsied), sh
and relaxed memory ordering modgl} make reasoning about coherence dif cult.

The Cell processof98;[69;73, the target of our compiler, instead uses a
heterogeneous architecture consisting of a traditional 64-bit poweesgsor el-
ement fPE with its own 32K L1 and 512K L2 caches coupled to eight synergistic
processor elementsges).

EachsPEis an 128-hbit processor whoseu can perform up to 16 byte opera-
tions in parallel. Each has 128 128-bit general-purpose (vectoreegjis 256K
local store, but no cache. EadirE provides high, predictable performance on
vector operations.

Our compiler uses multiple cores to provide task-level parallelism. Most cell
compilers address the Cell's vector-style data paralle]sgh

Cell programs use direct-memory accepsif) operations to transfer data
among theePEand sPes' memories. While addresses are global (i.e., addresses
for the PPES and eaclsPES memories are distinct), this is not a shared memory
model. That our compiler relieves the programmer from having to program the
Cell's memory ow controllers DMA units) is a key bene t.

5.1.1 DMA and Alignment

The centerpiece of the Cell's communication system—and a major concern of our
compiler—is the element interconnect bu=g): two pairs of counter-rotating
rings[72;[4], each 128 bits (16 bytes—a quadword) wide.

The width of theeiB leads thebMA units to operate on 128-bit-wide memory.
Memory remains byte-addressed, but the 128-bit model puts substamisitaints
on transfers because of the lack of byte-shifting circUié4;, p. 61.

A DMA unit most naturally transfers quadwords. It can copy between 1 & 10
quadwords (16K) per operation; source and destination addresstbequad-
word aligned.

A DMA unit can also transfer 1, 2, 4, or 8 bytes. The source and destination
addresses must be aligned on the transfer width and have the same aligitment
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guadwords. For example, a 7-byte transfer requires tbree operations, and
transferring a byte from address 3 to address 5 requipassato a buffer followed
by a memory-to-memory move. To perfommA operations, our compiler gen-
erates code that calls complex C macros that usually distill down to only a few
machine instructions.

Our compiler produces C code suitable for the portot to thespeE We take
advantage of &cc extension that can place additional alignment constraints on
types and variables. For examplesteucttype or array variable can be constrained

to start on a 16-byte boundary (e.g., to make it work withoihve facility):
struct foo { int x, y; } _ attribute_ (( aligned (16)));
int Z10] __ attribute__ (( aligned (16)));

5.1.2 Mailboxes and Synchronization

For synchronization, our compiler generates code that uses the Cell'soxestb
32-bit FIFO queues for communication between #treeand ansPE Eachspehas
two one-entry mailboxes for sending messages t@tteand one four-entry queue
for messages from there[64, p. 101.

We use mailboxes for synchronization messages between the main program
running on theePEand tasks running on trePEs. ThesPEwriting to an outbound
mailbox causes an interrupt on theg, prompting it to read and empty the mailbox.

In the other direction, thepewrites to thespes inbound mailbox and can signal
an interrupt on thePEg but we just do a blocking read on the inbowsrEmailbox
to wait for the next message.

All our communication is done using handshaking through the mailboxes; our
protocol ensures the mailboxes do not over ow.

The Cell also provides signals: 32-bit registers whose bits can be detad
for synchronization; our code does not use them.

5.2 Our Compiler

We generate asymmetric code because of asymmetries in the Cell architecture a
runtime environment. For example, theesupports pthreads but we do not know
of a similar library for thespes. Also, mailboxes, the more exible of the Cell's
two synchronization mechanisms, work best betweerpthieand anspe They
can be used betweePEs, but are more awkward.

These considerations, along with our experience in implemergting on
shared-memory systerfisl], led us to adopt a “computational acceleration” mdag)
in which thesPgs run more time-critical processes and Hreis responsible for
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the rest, including coordination among thees. Communication in the code we
generate takes place between prEand ansPE

Figure[5.1 shows the structure of the code we generate, here for the small
example from Figuré4l1 in the previous chapter. In Fiduré 4.1, the value 4 is
broadcast fronh to g andj. Taskg blocks on the seconsendA because task
does not run a matchingcvA.

We instructed our compiler to assign taskandj to two spPes; all the others
run on thePPE

ForppPEresident tasks, our compiler generates almost the same pthreads-based
code we presented in the previous chapter. For sagresident task, we generate
SPEspeci ¢ code that communicates through mailboxes amd to a proxy func-
tion running on therPE (e.g.,_func_jin Figure[5.1). Thespefunctions, shown
at the bottom of Figuré 5.1, translate communication fromghe code to the
pPPETresident pthreads environment.

5.2.1 Code for the PPE

The C code we generate for theEuses the pthreads library to emulate concur-
rency much like we did for our shared-memory compill]. Each task and each
channel has its own shared data structure that includes a lock usedrémigea
access to it is atomic and a condition variable for notifying other threads tef sta
changes (Figure 8.2). Each of these channels resides in prihriemory and
are manipulated mostly by tlrPECOde.

For eachsHiIM function, our compiler generates a C function that runs in its
own thread. For each channel, we generatee@entfunction responsible for
managing synchronization and communication on the channel (egent_Aat
the top of Figuré 5]1). For speed, our compiler “hardwires” the logic oheaent
function because aHIM program's structure is known at compile time. A generic
function controlled by channel-speci ¢ data would be more compact buteslo

5.2.2 Code for the SPEs

For eachsHiM function that will execute on asPE we generate a C function
and compile it with the standard port aficc to thespes. Again, most ofsHIM
is translated directly into C; code for communication and synchronization is the
challenge.

Our strategy is to place most of the control burden orrtheand use thspPEs
to of oad performance-critical tasks. This simpli es code generationdmaoving
the need for intesPESynchronization; we only need a®EPPEmMechanism.
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struct { ... } _chan_A
void event § { ... } /I
struct { ... } _task_main
void _func_maif) { ... } //
struct { ... } _task_f
void _func @) { ... } //
struct { ... } _task g
void _func_¢) { ... } //
struct { ... } _task_h

void _func i) { ... } //

struct { ... int A;
void _func §) { //
mailbox_senfiISTARY;

_task j

for (i) {
switch ( maijbox)) {
case BLOCK_A

PPE
Synchronizeand communicate on A
Code for task main
Code for task f
Code for task g

Communication proxy for task h

mmunication proxy for task j

h; _event A);
ked & h) wait(_chan_A_cong;

DMA _receiv¢ _task j A);
mailbox_senPOISON;

SPE1
struct { int A; } _task_h

void main() { // Code for task h

}

[}

Figure 5.1: The structure of the code
our compiler generates for the pro-
gram in Figure[4]1. Each task be-
comes a function on therg tasks
that run on arsPECOmmunicate with
a pperesident proxy function using
mailboxes anMA.
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int foo(int a, int &, chan uint8 cin, chan uint8 &coud {
next cout = a, next cout = b; next cout = next cin;
return \ n

struct {
pthread t _thread
pthread _mutex t _mutex
pthread cond t _cond
enum _state{ _STOPPED _RUNNING _POISONED} _state
unsigned int _attached_children
unsigned int _dying_children
int *b;
int *__ return_var
struct {
struct {
unsigned char cout
int b;
int __return_var
} _byref
unsigned char cin
int a;
} _args __ attribute_(( aligned ( 16)));
} _fog

struct {
pthread mutex t _mutex
pthread_cond_t _cond
unsigned int _connected
unsigned int _blocked
unsigned int _poisoned
unsigned int _dying
unsigned charx*fog;
unsigned charmain_2
unsigned char* main

} _cin;

Figure 5.2: Shared data for tifieo task andcin channel.

46
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Using command-line arguments, the user speci es one or more “leaf” furgctio
to run on thespPes, such as taskk andj in Figure[5.1. Such functions may
communicate on channels, but may not start other functions in parallelllor ca
functions that communicate. However, a leaf function may call other furstion
that do not communicate or invoke functions in parallel, i.e., those that behave
like standard C functions. This restriction saves us from creating a misam&or
starting tasks from asPE

The pthreads synchronization mechanisms (mutexes, condition variables) o
code uses do not work across thedSPE boundar)@ Instead, for each function
destined for arsPE we synthesize a proxy function on theethat acts as a proxy
for the function on thespe that does the actual work func_jand _func_hin
Figurel5.1). Each proxy translates between pthreads events prela@d mailbox
events from thesPE

Passing arguments to @®Etask turns out to be awkward becausepofa-
imposed alignment constraints. Our solution requires two copiesiatransfer
from theppPEfollowed by word-by-word copying into local variables, which allows
the compiler to optimize their access. This is one of the few cases where compiling
into C is a disadvantage over generating assembly.

Channel communication is done through mailbox messages for synchroniza-
tion andbmA for data transfer (Figure 5.1). It starts when #re task sends a
BLOCK message to therpefor a particular channel. This prompts theeproxy to
signal it is blocked on that channel. When #eentfunction on therPEreleases
the channel (i.e., when all connected tasks have rendezvoused@pglsends an
ACK message to thePE which prompts it to start @MA transfer to copy the
data for the channel from the argumestitict on thePPEto a matchingstructon
thespE There is no danger of this data being overwritten because onigvrat
function on therPEwWrites into thestruct, and that will only happen after the task
is again blocked on the channel, which will not happen untilghetask requests
it, which will only happen after thema is complete.

A task may become “poisoned” when it attempts a rendezvous and another
task in the same scope has thrown an exception. eMeatfunction in theppPE
code handles the logic for propagating exception poison;pteproxy code is
responsible for informing thepEetask it has been poisoned.

The sPEcode may send two other messagesRM is the simpler: thespe
sends this when it has terminated, and rireE proxy jumps to its own terminate
handler, which informs its parent that it has terminated. The other message is
pPoISON which thespPE code sends when it throws an exception. After this, it

1IBM's “Example” library [65] does provide cross-processor mutexes, but blocking operations
never yield to the thread scheduler.
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sends another word that indicates the speci c exception. Based on thiks the
proxy marks itself and all its callers in the scope of the exception as poistiresd
jumps to the poisonedabel, which also handles the case where the task has been
poisoned by a channel.

5.3 Collecting Performance Data

While tuning our compiler and applications, we found we needed picturesof th
temporal behavior of our programs. While speeding up any part ofueeséial pro-
gram is bene cial, improving a parallel program's performance requpeeding
computation along a critical path—any other improvement is hidden.

To collect the data we wanted, we added a facility to our compiler that collects
the times at which communication events begin and end. For this, we use the
sPEs “decrementer’—a high-speed (about 80 MHz) 32-bit softwanetitmiled
countdown timer. Our compiler can add code that reads this timer and stores the
starting and stopping times of each communication action, i.e., periods when the
sPEis blocked waiting for synchronization. We Il a small buffer in tlePES
local store, then dump the event timestamps into a text le when the program
terminates. Our goal is to be as unintrusive; each sample event condisssiidg
whether the buffer is full, reading the timer, writing into an array, and increimg
a destination pointer.

To understand the interaction amosges, we wanted global time stamps,
so we include code to synchronize the decrementers. AlthoughrEe decre-
menters run off a common clock, their absolute values are set by softwanmreoa
generally synchronized.

Our synchronization code measures round-trip communication time and uses
it to synchronize the clocks on tle®Es. We assign onsPEto be the master, then
synchronize all the othesPEs' clocks to it. The master rst establishes communi-
cation with the slave (i.e., waits for the slave to start), then sends a message to the
slave through its mailbox, which immediately sends it back. The master measures
the time this took—the round-trip time. Finally, the master sends the current value
of its clock plus half the round-trip time to the slave, which sets its clock to that
value.

Figured 5.B anff 514 shows data we obtained with this mechanism. Time runs
from left to right, and each line segment denotes the time thatsemas either
blocked or communicating; empty spaces between horizontal lines indicate time
an spEeis doing useful work. The vertical position of each line indicatesghe
number.
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5.4 Experimental Results

To evaluate our compiler, we used it to compile a pair of applications and ran the
on a Sony Playstation 3 running Fedora Core 7 with Linux kernel 2.6.23rend
IBM SDK version 3.0.

The Sony Playstation 3 is a Cell-based machine with 256 MB of memory, a
single Cell with onespedisabled to improve yield, and peripherals including an
Ethernet interface and a hard drive. While the PS3 platform is opergértouoot
an operating system such as Linux, it does not allow full access to thevags.
Instead, guest operating systems run under a hypervisor that limitssaoctdse
hardware such as the disk, only part of which is visible to Linux. The yper
on the PS3 also reserves one of #mas for security tasks, leaving six available to
our programs.

We compiled the generated C code withc4.1.2 for theePEand 4.1.1 for the
SPEcode, both optimized withO.

) . _ g Observed X
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§ .- K.
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PPU only 1 2 ° * 5 6

Number of SPE tasks

Figure 5.5: Running time for therT on varyingspes
(Run on a 20 MB audio le, 1024-poirrFTs)

Figure[5.5 shows execution times for aRT that takes an audio le, divides
it into 1024-sample blocks, performs a xed-point (4.28)T on each block, fol-
lows it by an inverserFT, and writes it out to a le. ApPPebased reader tasks
distributes 8 1024-sample blocks to theetasks in a round-robin order; a writer
task collects them in order and writes them out to a le. We communicate 8 blocks
instead of the 16 we used earli&r1] to accommodate therPes' local store. We
ran this on a 20 MB stereo audio le with 16-bit samples. TheEonly” code is
from our earlier compilef51].

Figure[5.3B illustrates why we observe a near-ideal speedup forFrnen
six SPEs. Roughly half the time all six are doing useful work; otherwise one is
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blocked communicating, giving a speed-up of about2l4 5:5, close to the 3
we observed (Figuie 3.5).

Each horizontal line in Figure 3.3 represents two eventsrrantask on an
SPEreads a block, processes it, sends it, and then repeats the processadhe
immediately follow the write. The gure also shows that the processes spend
more time blocking waiting to write than they do to read, suggesting the task that
reassembles data from tReT tasks is slower than the one that parcels it out.

We also compiled and ran @ EG decoder, similar to our earlier wofl&1].
Figure[5.6 shows the execution times we observed, which do not exhibiamhe s
speedup as therT and are much more varied. Figurel5.4 explains why: for these
runs, thespes are spending most of their time waiting for data. For this sample,
only at one point the 3PEcase is more than orsPEactive at any time.

Figure[5.4 tells us thepes are usually waiting for data to arrive. Each line seg-
ment is actually two parts: sending processed data (left), and receivimgaessed
data. This is not surprising; whileeEGdata is composed of independent blocks,
the data itself is Huffman encoded, meaning it requires the data to be uncs®gpre
before block boundaries can be identi ed.

The performance gures we report are for carefully chosen probdizes.
Start-up overhead is larger for smaller problems sizes, leading to pestéts; the
data for larger problem sizes does not t into the PS3's 256 MB of main mgmor
necessitating disk access that quickly becomes the bottleneck. For laagseta
our performance degrades to just disk I/O bandwidth, suggesting the P88 is
ideally suited to large scienti c computing tasks.
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Figure 5.6: Running time for thee,EGdecoder on varyingpPes
(Run on a 1.7 MB image that expands to a 29 MB raster le)
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5.5 Related Work

Other groups that have produced compilers for the Cell start from moédejs
different fromsHiM and address different problems.

Eichenberger et al's compildb3;54 takes a traditional approach by start-
ing with C code with OpenMP annotatioff85] and generates code for the Cell.
They consider low-level aspects of code generation: vectorizingrsaalay-based
code; hiding branch latency; and ensuring needed data alignment. Thieyriend
the OpenMP model: programmers provide hints about parallelizable loops, the
the compiler breaks these into separate tasks and distributes them seehe
It presents a shared memory model, which their runtime system emulates with
explicit bMA transfers.

OpenMP is a much different programming model tisanm: it assumes shared
memory and focuses on parallelizing loops with array accessv Sy contrast,
is a stream-based language with explicit communication. Adding OpenMP-like
constructs to improveHiIM's array performance would be a nice complement.

Adopting a moresHIM-like message passing approach, Ohara et[@kpre-
processor takes C programs written using the standard message patsiagen
(MP1) API [85], determines a static task graph, clusters and schedules this graph,
and nally regenerates the program to use Cell-speeira calls for communica-
tion.

Semantically, thempi model is similar tasHIM but does not guarantee schedul-
ing independence. The big difference is that the preprocessor alaCitaal.
does not enforce the programming style; it would be easy to write a misbghavin
program. ThesHIM compiler catches a host of bugs including deadIiic¥] .

Fatahalian et al.'s Sequo[&5] is most closely related to our work. Like us,
they compile a high-level concurrent language to the Cell processdrdter
architectures) with the goal of simplifying the development process.

Their underlying computational model differs substantially fremm's, how-
ever. While also explicitly parallel, it is based on stateless proceduresrhat o
receive data when they start and only transmit it when they terminate. Thislmod
similar to the one in Cil{19], is designed for divide-and-conquer algorithms that
partition large datasets (typically arrays) into pieces, work on each pidepémn-
dently, then merge the results. While our example applications also behave this
way, othersHim programs do not.

While the low-level compilation challenges of the Cell are fairly conventional,
higher-level issues are less obvious. Because the processor ig gondridiosyn-
cratic, there is still work to be done in choosing strategies for structurimg lar
programs. For example, Petrini et 87] observe a high performance implemen-
tation of a three-dimensional neutron transport algorithm requires tuthatance
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among vector parallelism in thePEs, the effect of their pipelines, balancing and
schedulingpmA operations, and coordinating multipdess. Saidani et all105
changebMA transfer sizes to improve the performance of an image processing
algorithm. Gedik et al[56] optimize distributed sorting algorithms on the Cell
by careful vectorization and communication. They note main memory bandwidth
becomes the bottleneck on large datasets since thesr&sandwidth is so high.

Our compiler only provides higher-level data communication and synclatioiz
facilities.

Chow et al[37] discuss coding a largerT on the Cell. They suggest putting
the control of the application on tePE then of oading computationally intensive
code to thespes and adapting it to work with thepPes' vector capabilities. We
adopt a similar philosophy in the code generated by our compiler.

They target their application at a 128 MB dataset—too large to t in on-chip
memory, so much of their design concentrates on orchestrating data movement
among off-chip memory, theres cache, and thepPEs' local stores. They di-
vide theFFT into three stages and synchronize #res using mailboxes on stage
boundaries.

5.6 Conclusions

We described a compiler for the1imM concurrent language that generates code for
the Cell processor. While not an aggressive optimizing compiler, it remmaves

of the drudgery in programming the Cell in C, which requires extensiveriibra
calls for starting threads, careful memory alignment of data if it is to be tearesf
between processors, and many other nuisances.

The sHIM language presents a scheduling-independent model to the program-
mer, i.e., relative task execution rates never affects the function compuytie b
program. This, too, greatly simpli es the programming task because there is no
danger of introducing races or other nondeterministic behavior.

Unfortunately, our compiler does not solve a main challenge of parallel pro
gramming: creating well-balanced parallel algorithms. For example, thesigjue
portion of ourrFT was able to keep sigPEs fed, leading to near-ideal speedups; the
sequential portion of thePEGdecoder was substantial and became the bottleneck.

Our compiler does help to identify bottlenecks: it provides a mechanism for
capturing precise timing traces using the Cell's precision timers. This gives a
precise summary of when and how long eas#E is blocked waiting for com-
munication, which can illustrate poorly balanced computational loads.

The Cell processor is an intriguing architecture that is representatisecbf
tectures we expect to nd in many future embedded systems. While it has many
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idiosyncrasies, our work shows that it is possible to map a higher-levellga
programming model onto it and obtain reasonable performance.
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Chapter 6

SHIM as a Library

5 In the previous chapters, we described the SHIM language and itgjeadeation
techniques for different architectures. In this chapter, we wish to atalthe
SHIM model as a library rather than a new programming language. Wenprase
deterministic concurrent communication library for an existing multithreaded lan-
guage. We implemented the SHIM communication model in the Haskell functional
language, which supports asynchronous communication and transaeiemary.

The SHIM model uses multiway rendezvous to guarantee determinism.

Haskell actually supports several concurrency mechanisms, buhdbgsar-
antee functional determinism. We chose Haskell because it has a fairlyematur
STM implementation, carefully controlled side effects, and lightweight usetemo
scheduled threads. We were also curious about whether our SHIMI,wddeh
we proposed previously for an imperative setting, would translate well tme: f
tional language.

We implemented two versions of our library: one that uses mailboxes for
interthread communication and one that uses software transactional megsery.
perimentally, we found that mailboxes are more ef cient for implementing the
multiway rendezvous mechanism, especially for large numbers of precedse
also found our library easier to code using mailboxes.

After reviewing some related work, and Haskell's concurrency modekieve
scribe our library and its implementation in Sectlon] 6.4 and present a series of
experiments with our library on an eight-processor machine in Sdction 6.5.

6.1 SHIM as a Library Versus a Language

The SHIM model provides functional determinacy irrespective of beingdamp
mented as a language or a library, so an obvious question is which isrpoefer
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We present the library approach in this thesis. A library can leveragéirexis
language facilities (editors, compilers, etc.) but does not provide giegsabout

its misuse. A program that uses our library is functionally deterministic if it only
uses our library for interthread communication, but there is nothing to preveer
mechanisms from being used.

The SHIM language does not provide any other interthread communication
mechanism, guaranteeing determinism. However, the SHIM language and com-
piler are not as mature or feature rich as Haskell, the implementation vehicle for
our library.

6.2 Related Work

The advent of mainstream multicore processes has emphasized the awldéng
concurrent programming. Techniques ranging ranging from newuwroemtt lan-
guages to new concurrent libraries for existing languages are beiaegtigated.

Cw [19 is an example of a new research language, which provides join patterns
in the form of chords that synchronize the arrival of data on multiple célsn

to atomically capture and bind values that are used by a handler function (su
chords are also easy to implement in an STM setting). This pattern can capture
many kinds of concurrency mechanisms, including rendezvous and gotiiit is
nondeterministic and suffers from all the debugging challenges the SHId¥mo
avoids.

Cilk [19] is another C-based language designed for multithreaded parallel pro-
gramming that exploits asynchronous parallelism. It provides deterministic con
structs to the programmer, but it is the programmer's responsibility to use them
properly; the compiler does not guarantee determinism. This is one of the major
differences between SHIM and Cilk. Cilk focuses on the runtime systemhwhic
estimates the complexities of program parts.

We built our library in Haskell, a functional language with support foraon
rency[6g]. Its concurrency mechanisms are not deterministic; our library provides
a deterministic layer over them. Experimentally, we nd such layering does not
impose a signi cant performance penalty.

Our library resembles that of Schdz07], which also provides an existing
concurrency model in Haskell. Unlike Scholz, however, we implement oehme
anisms atop the existing concurrency facilities in Haslgl and insist on func-
tional determinism.
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6.3 Concurrency in Haskell

We built our deterministic communication library atop Haskell's concurrenicypr
itives. The most basic f®rklO, which creates an explicit thread and does not wait
for its evaluation to complete before proceeding.

We implemented two versions of our library: one using mailbd®&h for in-
terthread communication, the other using software transactional mdb@ingd.
On a mailbox,takeMVarandreadMVar perform destructive and non-destructive
readsputMVar performs a blocking write. Similarly, within the scope of aiom-
ically statementreadTVarandwriteTVar read and write transactional variables.
Other threads always perceive the actions withimtmicallyblock as executing
atomically.

sampleMailbox

= do

m <- newEmptyMVar Create a new mailbox
n <- newEmptyMVar

forklO (putMVar m (5:: Int)) thread writes 5 to m
forklO (do
c <- takeMVar m thread reads m
putMVar n ( c+1)) write to n

result <- takeMVar n block for result
return result

Figure 6.1: Using mailboxes in Haskell. One thread writes to maithox second
readsm, adds one, and writes to mailbox The outer thread blocks anto read
the result.

The Haskell code in Figufe 8.1 creates a mailbwand forks two threads. The
rst thread puts the value 5 inttmand the second thread takes the value from the
mailboxm adds one to it, and puts it in mailbox

Haskell's software transactional memory mechaniss 46 are another way
to manage communication among concurrent threads. In STM, threadsman c
municate or manipulate shared variables by reading or writing transactianal v
ables. Statements within @tomicallyblock are guaranteed to run atomically with
respect to all other concurrent threads. A transaction can blockedryatatement.
The transaction is rerun when one of the transaction variables changes.

The code in Figuré 612 readsand updates it if its value is notl. The
atomicallyguarantees the read and write appear atomic to other threads. The thread
blocks whilecis 1, meaning no other thread has written to it.
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sampleSTM ¢
= atomically (do
value <- readTVar c
if value == -1 then
retry not written yet
else writeTVar c (value + 1))

Figure 6.2: A Haskell program using STM. This updates the sharedh§dia
tional”) variablec when it is not 1, otherwise blocks oo.

6.4 Our Concurrency Library

In this section, we present our SHIM-like concurrency library and its impgleta-

tion. Our goal is to provide an ef cient high-level abstraction for codpagallel
algorithms that guarantees functional determinism. As described aboskelHa
already has a variety of concurrency primitives (mailboxes and STM)nboe
guarantee determinism. Our hypothesis is that determinism can be provided in a
ef cient, easy-to-code way.

produce [ c]
= do
val <- produceData
dSend c val
if val == -1 then End of data
return ()
else
produce [ c]

consume| c]
= do
val <- dRecv c
if val == -1 then End of data
return ()
else
do consumeData val
consume| ]

producerConsumer
= do
¢ <- newChannel
(_, ) <- dPar produce] c]
consume| c]
return ()

Figure 6.3: A simple producer-consumer system using our library
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6.4.1 Our Library's API

Our library provides channels with multi-way rendezvous and a facility jamns-
ing concurrent threads that communicate among themselves through ishanne

Figurel6.38 illustrates the use of our API. Th®ducerConsumeiunction uses
newChanneto create a new channeland passes it to theroduceand consume
functions, whichdPar runs in parallel. The producer sends data to the consumer,
which consumes it while the producer is computing the next iteration. For commu-
nication costs not to dominate, evaluatimgpduceDataandconsumeDatahould
be relatively costly. Depending on which runs rst, either & ndof the producer
waits fordRecwof the consumer or vice-versa, after which point both proceed with
their execution to the next iteration.

Such a mechanismis also convenient for pipelines, such as Figure @& fourh
functions run in parallel. The rst feeds data pipelineStagelwhich receives it
asvall, processes it and sends the processedwddgao pipelineStagezhrough
channet2. PipelineStageacts similarly, sending its output tmtputFromPipeline
throughc3.

Figurel6.5 shows the formal interface to our libramgwChannetreates a new
rendezvous channedlPar takes four arguments: the rst two are the rst function
to run and the list of channels passed to it; the last two are the second fuantio
its channel connectionglSendakes two parameters: the channel and the value to
be communicateddRecwvtakes the channel as argument and returns the value in
the channel.

6.4.2 Deadlocks and Other Problems

While our library guarantees functional determinism, it does not pre\eauidcks.
For example, our library deadlocks when multiple threadsd®#ndon the same
channel (a channel may only have one writer). While this could be deteuttest
deadlocks are more dif cult to detect. If no sender ever rendezvibasteaders
will block inde nitely.

Two threads that attempt to communicate on shared channels in differens ord
will deadlock. For example,

dSend cl1 value dSend c2 value
dRecv c2 dRecv cl

will deadlock because the left thread is waiting for the right to rendezoouwd,
while the right is waiting for the left to rendezvous 62 Such a deadlock is
deterministic: the scheduler cannot make it disappear.
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inputToPipeline[ c1]

= do
vall <- getVval
dSend cl1 vall
inputToPipeline[ c1]

pipelineStagel| cl, c2]

= do
vall <- dRecv cl
val2 <- processl vall
dSend c2 val2
pipelineStagel] c1, c2

pipelineStage?[ c2, c3

= do
val2 <- dRecv c2
val3 <- process2 val2
dSend c¢3 val3
pipelineStage?[ c2, cJ]

outputFromPipeline[ c3]

= do
val3 <- dRecv c3
putStrLn ( show val3)
outputFromPipeline[ c3]

pipelineMain
= do
¢l <- newChannel
c2 <- newChannel
c3 <- newChannel
let dPar2 funl clistl fun2 clist2 clist
= dPar funl clistl fun2 clist2
let forkFuncl = dPar2 inputToPipeling[ c1]
pipelineStagel[ c1, c2
let forkFunc2 = dPar2 pipelineStaged c2, c3]
outputFromPipeline[ c3]
dPar forkFuncl[cl, c2
forkFunc2 [ c2, c3]
return ()

Figure 6.4: A two-stage pipeline in our library
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newChannel:: 10 (Channel a
dPar :: ([ Channel & -> 10 b) ->
[ Channel & ->
([ Channel & -> 10 ¢ ->
[ Channel & -> 10 (b, )
dSend:: Channel a-> a -> 10 ()
dRecv: Channel a-> 10 a

Figure 6.5: The interface to our concurrency libranewChannetreates a new
channeldParforks two threads and waits for them to terminat8gndendezvous
on a channel and sends a value; diécwendezvous and receives a value.

6.4.3 An STM Implementation

One implementation of our library uses Haskell's facilities for Software Frans
actional Memory (STM)Y59. Our goal was to see how dif cult it would be to
code and how ef cient it would be for multi-way rendezvous. We desctiie
implementation below and defer experimental results to Selction 6.5.

data Channel a= Channel {
connections:: TVar Int,
waitingReaders:: TVar Int,
written ::  TVar Bool,
allReadsDone:: TVar Bool,
val ::  TVar ( Maybe a)

Figure 6.6: The channel type (STM)

newChannel
= do

connectionsT<- atomically $ newTVar 1

waitingReadersT<- atomically $ newTVar 0

writtenT <- atomically $ newTVarFalse

allReadsDoneT<- atomically $ newTVarFalse

valT <- atomically $ newTVarNothing

return ( Channel connectionsT waitingReadersT
writtenT allReadsDoneT va)T

Figure 6.7: Creating a new channel (STM)

Figure[6.6 shows the collection of transactional variables used to represe
a channel. The type variabke makes it polymorphicconnectionstracks the
number of threads that must rendezvous to perform the communication ¢ is a
justed by threads starting and terminatingl,holds the data being communicated,
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waitingReaderdracks the number of threads that have blocked trying to read
from the channelwritten indicates whether the writer has written the data, and
allReadsDonéndicates when the last blocked reader has unblocked itself.

6.4.4 Forking parallel threads

dPar funcl vl func2 v2= do
done <- newEmptyMVar
let common=
intersectBy
W xy->(val x == (valy) vlv2
atomically (do
apply A\ ¢ -> do
nt <- readTVar ( connections t
writeTVar ( connections t ( nt + 1)

) common
forklO (do
res <- funcl vl Run funclin child
putMVar done res Save result

res2 <- func2 v2 Run func2 in parent
resl <- takeMVar done Get funcl result
atomically ( do
apply \ ¢ -> do
nt <- readTVar ( connections
writeTVar ( connections  ( nt - 1)
) common
return (resl, res?d

apply func[] = return ()
apply func (hd: tl) = do func hd; apply func tl

Figure 6.8: Our implementation of dPar

Figure[6.8 shows our implementationdfar for STM. It creates a new MVar
to hold the result from the child thread, then determines which channelbaexs
(vlandv2holds their names) and atomically increases tbeimections

To evaluate the two functions, the parent forks a thread. The child thread
evaluatesunc2and then writes the result into the mailbox. Meanwhile, the parent
evaluatesuncl, waits for the child to report its result, atomically decreases the
connection count on shared channels, and nally returns the resoittdffincland
func2

Figure[6.9 illustrates howonnectionsevolves as threads fork and terminate.
In Figure[6.9(a), FO has spawned F1 and F2, increasimgectiongo 2. In (b),
F2 has spawned F3 and F4, increasingnectiongo 3. Finally, in (c), F3 and F4
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connections=1

[F1| [F3| [F4] |F3| |F4] connections=3

connections=2
(@) (b) (©

Figure 6.9: The effects ooconnectionsvhen (a) main function FO calldPar F1
[c] F2 [c] , then (b) F2 callslPar F3 [c] F4 [c], and (c) when F3 and F4 terminate.

have terminated, reducir@pnnectiongo 2.

Note that this only happens when FO, .. ., F4 are all connected to dhanha
thread was not connected, spawning it would not require the numbennéctions
to change. This is what the computationcoimmorin Figure 6.8 accomplishes by
looking for channels passed to both threads being started.

6.4.5 Deterministic send and receive

Multi-way rendezvous is a three-phase process: wait for all peeenttezvous,
transfer data, and wait for all peers to complete the communication. Ounylibrar
supports single-writer, multiple-reader channels, sg i the number of threads
connected to channel a writer waits forn, 1 readers; a reader waits for one
writer andn. 2 other readers. We describe how to maintaim the next section.

Figure[6.10 illustrates a scenario with two readers and a writer. Threads T1
and T3, call dRecv and dSend respectively. T1 and T3 wait for thieatb
communicate. Once T2 calls dRecv, the three threads rendezvous drahg&c
data and continue with their individual execution.

Figure[6.11 shows our implementationd$endusing STM. It rst waits for
n. 1 readers to rendezvous, invokiragry to delay. Once they have, it atomically
writes the value to send wal and resets the number of waiting readers vihigen
ag, and theallReadsDoneag. Finally, it waits for all the last receiver to set
allReadsDone

Figure[6.12 is the complementary process. It rst incremevagingReaders
then waits for thevritten ag to be set bydSend Once it has, it readgal—the data
being communicated, increaseaitingReadersand sees if it was the last one. If
it was, it resetwvaitingReadersallReadsDongandwritten, thereby releasing alll
the readers (including itself) and the writer. Otherwise, it waits for anatrester
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T3
T1 dSerE1d cv
dRecv ¢ T2 :
Time : © Wait
Wait : :
S dRecvc......
Rendezvous

Figure 6.10: A rendezvous among two readers and one writer

dSend c¢ value= do
atomically ( do
wr <- readTVar (waitingReaders
connections<- readTVar ( connections
if wr < connections- 1 then retry else (do
writeTVar (val ¢) ( Just valug
writeTVar ( waitingReaders 0
writeTVar (written ¢ True
writeTVar ( allReadsDone  False))
atomically (do
ard <- readTVar (allReadsDone &
if ard == False then retry else return ())

Figure 6.11: dSend (STM)

64
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dRecv c= do
atomically ( do
wr <- readTVar (waitingReaders
writeTVar (waitingReaders  ( wr + 1)
return ()
v <- atomically (do
w <- readTVar (written ©
if w == False then retry else (do
Just v <- readTVar (val ¢
wr <- readTVar (waitingReaders
writeTVar ( waitingReaders  ( wr + 1)
nc <- readTVar ( connections
If last reader to read
when (wr + 1 == nc - 1) ( do
writeTVar ( waitingReaders t 0
writeTVar ( allReadsDone x True
writeTVar (written ¢ False)
return v))
atomically ( do
ard <- readTVar (allReadsDone &
if ard == False then retry else return () )
return v

Figure 6.12: dRecv (STM)

to setallReadsDone

6.4.6 A Mailbox Implementation

For comparison, we also implemented our multiway rendezvous library usingHas
mailboxed6§].

data Channel a= Channel {
mVal ;' MVar a,
mVarCount:: MVar Int,
mVarBegin:: MVar (),
mVarend :: MVar ()
}

Figure 6.13: The channel type (Mailboxes)

Figure[6.1B shows th€hannelstructure used to represent the channel. Field
mVal holds the datanVarCountholds the number of connections to this channel,
andmVarBeginandmVarEndare synchronization variables.

Figure[6.16 shows th@Recwrocedure. A receiver sends a signal to the sender
indicating it has arrived, then the receiver waits for the value from thdexe Once
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newChannel
= do

mVal <- newEmptyMVar

mVarCount<- newMVar 1

mVarBegin <- newEmptyMVar

mVarEnd <- newEmptyMVar

return ( Channel mVal mVarCount
mVarBegin mVarEnd

Figure 6.14: newChannel (Mailboxes)

dSend ( Channel mVar mVarCount
mVarBegin mVarEnd val = do
waitForRecvrsToArrive mVarCount mVarBegin 1
Wait for every receiver to send a sync.
n <- readMVar mVarCount
sendValueToRecvrs mVar véin- 1)
putMVar mvar val
takeMVar mVar
signalRecvrs mVarEnd n- 1)

sendValueToRecvrs mVar value countdo
if (count == 0) then
return ()
else doputMVar mVar value
sendValueToRecvrs mVar
value (count - 1)
return ()

waitForRecvrsToArrive mVarCount mVarBegin i
= do
count <- readMVar mVarCount
if (count == i) then return ()
else do
takeMVar mVarBegin
waitForRecvrsToArrive mVarCount
mVarBegin (i+1)

signalRecvrs mVarEnd count
= do if (count == Q)
then return ()
else do putMVar mVarEnd()
signalRecvrs mVarEnd count 1)

Figure 6.15: dSend (Mailboxes)
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all receivers have read the value, the sender signals an end, aftdr diRecv
returns with the value.

The dSendprocedure (Figur€ 6.15) waits for all receivers, then performs a
putMVar on the value once per receiver. To ensure the last receiver hésitrea
does a redundamutMVarandtakeMVar Finally, once all receivers have read the
value, it signals the receivers to continue executlMaitForRecvrsToArrivevaits
for every receiver to send a sync indicating it has arri&idnalRecvrsignals the
end by informing each receiver the rendezvous is complete.

dRecv ( Channel mVar mVarCount
mVarBegin mVarEnd
= do
putMVar mVarBegin() Inform sender
value <- takeMVar mVar Wait for sender
takeMVar mVarEnd Wait for sender end
return value

Figure 6.16: dRecv (Mailboxes)

6.5 Experimental Results

To test the practicality and ef ciency of our library, we created a varidtpro-
grams that used it and timed them.

6.5.1 STM Versus Mailbox Rendezvous

As a basic test of ef ciency, we had our library rendezvous 100 000stiameong
various numbers of threads on a two-processor machine (a 500 MBHz 6l
Core 2 Duo running Windows XP) and measured the time. Table 6.1 lists the
results.

Mailboxes appear to be more ef cient for our application, especially when
large numbers of threads rendezvous. We believe this may be fundanuetital
STM approach, in which threads continue to execute even if there is @aton
Only at the end of the transaction is con ict checked and rolled back iflegeln
the case of a multiway rendezvous, many threads will con ict and have tolleel
back. Mailboxes are more ef cient here because they check forictmearlier.

The STM method also requires more memory to hold the information for a
roll back. Again, mailboxes have less overhead because they do edtthis
information.
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Threads Time to Rendezvous Speedup
STM Mailbox (STMMailbox)
2 011 ms 007 ms 16
3 0:14 008 18
4 0:17 014 12
5 021 016 13
6 0:28 017 16
7 031 021 15
8 0:37 023 16
9 0:42 027 16
10 047 028 17
100 64 1.8 35
200 35 67 5.2
400 110 14 D
800 300 34 D

Table 6.1: Time to rendezvous for STM and Mailbox implementations

The STM method is more complicated. Unlike mailboxes, which only require
a mutual exclusion object, a ag, and the data to be transferred, STMresqu
managing information to identify con icts and roll back transactions.

However, the ratio of communication to computation is the most critical aspect
of application performance. For a computationally intensive application% 50
increase in communication time hardly matters.

6.5.2 Examples Without Rendezvous

These examples only calPar and do not useSendor dRecv Our goal here is to
compare our library with Haskell's existing par-seq facility, which we feekgnts
an awkward programming interfa¢€03.

bn| n<=1=1
| otherwise =
par resl (pseq res2(resl + res2 + 1))
whereresl= b (n - 1)
res2= b (n- 2

Figure 6.17: Calculating Fibonacci numbers with Haskell's par-seq

Haskell's par-seq constructs can be used to emulatelBar. The following
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are semantically equivalent
dpar M[] N $ (par M (pseq N(M, N)))

but thepar does not guaranted andN are executed in parallel because Haskell
uses lazy evaluation. Nevertheless, we nd the par-seq method caastan than
ourdPar.

Using par-seq is subtle, illustrated by Figlre 6.17. While hmthand pseq
only return the value of their second argument, the meanimglopar m2s “start
the calculation ofm1 for speculative evaluation and then go onto evaluaf®
This is useful whemlis a subexpression ofi2somlmay be evaluated in parallel
with the body ofm2 Converselypsegmakes sure its rst argument is evaluated
before evaluating its second. In this example, pseqguarantees thab (n-2)
is evaluated beford (n-1), which canuseb (n-2).

We nd this mechanism subtle and dif cult to control. It provides weak con-
trol over the scheduling of computation—a complex issue for a lazy language
like Haskell made all the more tricky by parallelism. We believe providing users
with easy-to-use mechanisms to control scheduling is necessary foviaghiggh
performance; expecting the compiler or runtime system to make the bestshoice
seems unrealistic.

We ran these and all later experiments on an 8-processor Intel machine co
taining two 5300-series 1.6 GHz quad processors, 2 GB of RAM, andirrgn
Windows NT Server.

6.5.3 Maximum element in a list

5 - .
Sequential

4 - Par-Seq
DPar (STM ——

ideal — — —

J!Hiﬂ}h!@!ﬂ!ﬂ

Number of processors

Execution time (s)

Figure 6.18: Maximum Element in a List
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Split List

Sublistl Sublist2

Find Max Find Max
Time in in
Sublistl Sublist2

Max1 Max2
| Find Max of Max1 and Max?

Figure 6.19: Structure of Maximum Finder

Figure[6.18 shows the execution times for a program that uses a lineah sear
to nd the maximum element in a 400 000-element list. The program, whose
behavior is shown in Figurie 6.119, splits a list into pieces, one per threat, n
the maximum of each piece, and nally nds the maximum of the pieces. We
compared a sequential implementation, one that uses Haskell's par-stucts)
and one that uses odPar to the ideal speedup of the sequential implementation.

Figure[6.18 shows the par-seq implementation is slightly more ef cient, al-
though both implementations fall short of the ideahBlpeedup on more than two
processors.

6.5.4 Boolean Satis ability

Figure[6.20 shows the execution times of a simple Boolean SAT solver imple-
mented sequentially, using par-seq, and withdRar. We ran it on an unsatis able
problem with 600 variables and 2500 clauses. Figurel6.21 shows theustrot
our approach: we pick an unassigned variable and spawn two threstdshttk
whether the expression can be satis ed if the variable is true or falseauBeof
our demand for determinism, we do not asynchronously terminate all thalthrea
when one nds the expression has been satis ed. Our algorithm is algttipe
in the sense that it does not do any online learning.

Again, we nd ourdPar has more overhead than Haskell's par-seq. Also, this
algorithm does not appear to bene t from more than four processdrigh we
attribute in part to Haskell's single-threaded garbage collector.



CHAPTER 6. SHIM AS A LIBRARY

. 25 - Sequential
% 20 — Par-Seq
= DPar (STM)—
= 15- ideal — — —
§e]
?) : \|\|:| i ‘ ‘
(]
x
B 14 I g 518 9 IR
0 -
1 2 3 4 5 6 7 8
Number of processors
Figure 6.20: Boolean Satis ability
Partial CNF CNF Partial CNF
| Pick an Unassigned Variab|le—
Assign / \ Assign
True False
to the to the
Variable Variable
Find Find
Z | Inferences Inferenceg Z
o o
Py Pyl
] ]
wn 0
= =
Evaluate Evaluate

CNF

Resultl

Result]l
OR
Result?)

CNF

Result2

Figure 6.21: Structure of the SAT Solver
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6.5.5 Examples With Rendezvous

Here we consider algorithms that use rendezvous communication amondsthrea
The comparisons are to purely sequential implementations of the same algorithm.

— 100 - Sequential
L2 DPar (STM)
g 80- ideal — — —
_5 60
=
o 40N
X ~
w20 -
O Fu —_
1 2 4 5 6 7 8

3
Number of processors

Figure 6.22: Times for Linear Search

Split List

Sublistl Sublist2

Search|” Search
Time |Sublistl]<----- oo >| Sublist2

Foundl Found2
| Found1 OR Foundp

Figure 6.23: Linear Search Structure

6.5.6 Linear Search

Figure[6.22 shows the execution times of a linear search program thatemses
dezvous communication to nd a key in a 420 000-element list (we put it in the



CHAPTER 6. SHIM AS A LIBRARY 73

390 000th position). Unlike the maximum element problem, linear search dignera
does not need to scan the list completely, so the algorithm should have afway o
terminating early.

Requiring determinism precludes the obvious solution of scanmirgg frag-
ments in parallel and terminating immediately when the key is found. This consti-
tutes a race if the key appears more than once, since the relative exaatgi®of
the threads affect which copy was reported.

Our implementation takes the approach shown in Figurel 6.23: the list is bro-
ken inton fragments and passed to parallel threads. However, rather than asyn-
chronously terminating all the threads when the key is found, instead allréeeih
rendezvous at a prearranged interval to check whether any hawe the key. All
threads proceed if the key is not found or terminate and negotiate whighi€op
reported if one has been found.

This technique trades off communication frequency and the amount of extra
work likely to be done. Infrequent communication means less overhetid abso
makes it more likely the threads will waste time after the key is found. Frequent
communication exchanges overhead for punctuality. We did not have time to
explore this trade-off.

16 - Sequential
14 - DPar (STM)
12 - ideal — — —

I

Number of processors

Execution time (s)
© o oo
oD O P
|l —I
N —

Figure 6.24: Systolic Filter

6.5.7 Systolic Filter and Histogram

Figure[6.2# shows the execution times of a Systolic 1-D Iter running on 50 000
samples. Each thread run by the Iter can independently process a dfiuhk&

input in parallel with other threads following the structure in Figure16.26 aBse

of determinism, jobs are distributed and collected from the worker threads in a
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Figure 6.25: RGB Histogram

round-robin order.
Figure[6.25 shows the execution time of a similar algorithm: a histogram of
RGB values in an image. We ran it on a 565 KB raster le.

6.6 Conclusions

While we found it was reasonable and fairly ef cient to implement a deterministic
concurrency library based on multi-way rendezvous, our efforts aligera few
issues.

We found that the performance of our library was slightly lower than that of
Haskell's built-in par-seq mechanism. We suspect this is from additionaidafe
abstraction between our library calls and the par-seq mechanism. Despiteehis
believe our library provides a nicer abstraction because it makes comrtionica
and synchronization explicit and therefore makes an easier optimizatian, thog
this is dif cult to quantify.

While we were successful at implementing the library using both Mailboxes
and software transactional memory (STM), we are happier with the mailasaeb
implementation because it is both faster and easier to program and understan
While it is clearly possible to wait to synchronize with peers in STM, coding it
seems needlessly awkward. We also observed STM increased syizeltionm
overhead by at least 50%, although this is not prohibitive.

Our experiences do provide insight for the library vs. language deldbie
the library approach has the advantage of leveraging features ofshiahguage,
we encountered a number of problems that made the library dif cult to implement
and use.



CHAPTER 6. SHIM AS A LIBRARY 75

Input Stream

Inputl Send
Server 1 nput2 DTaota

rver
Serve InputB Servers

Server

Time Wait
For
Results
Outputl
Combine
Output2 the

Output3 | results

Output Stream

Figure 6.26: Server Programming Style used by Histogram and Systolic Filter
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Unlike C, Haskell does not allow its type system to be circumvented. This
avoids more runtime errors but makes building really polymorphic things harde
We would like adPar that spawns an arbitrary number of threads, each of which is
connected to an arbitrary number and type of channels. Such exibility isuttif
to express in a library. We settled on spawning only two threads at a time (
way forks can be recovered by nesting) and not checking the nurhicbannels,
thus deferring certain errors to runtime. Haskell probably allows a moxible
interface, but the code can become very obscure.

The type system in C is easy to circumvent and C allows functions with a
variable number of parameters, so a C implementation of our library might have
a cleaner API. However, going around the type system opens the doanttme
type errors, e.g., trying to pass a string through a channel intendeddiéng-point
numbers.

We believe our library presents an easier, less error-prone progranmnaidel
than either mailboxes or STM, but this is hard to prove. Anecdotally, wedoun
it easier to debug, especially deadlocks, which were reproduciblehd¥arore,
it seems easier to reason about explicit synchronization instead of explisitly
retry in the STM setting.
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Outline

Although we achieved determinism in Pait I, we still suffer from the dezdlo
problem. SHIM is not immune to deadlocks, but they are simpler to manage
because of SHIM's scheduling independence. Deadlocks in SHIMatasccur
because of race conditions. For example, because SHIM does motdta®s, there

are no race-induced deadlocks, such as the “grab locks in oppadée deadlock
race present in many other languages. A key hypothesis of the SHIMIrnhasle
been that scheduling independence should be a property of any praoticurrent
language because it greatly simpli es reasoning about a program, botheby
programmer and by automated tools. This part on deadlock detection peigfor
this key point.
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Chapter 7

Deadlock Detection for SHIM

using a Synchronous Model
Checker

As discussed in Chaptel 3, the SHIM concurrent language guardghteabsence
of data races by eschewing shared memory, but a SHIM program mayesiillatk
if a program violates the communication protocol.

void main() {
chan int a, b;

/l Task 1
next a = 5; // Deadlocks here
next b = 10;

} par {

/l Task 2
next b; // Deadlocks here
next a;

}
}

Figure 7.1: A SHIM program that deadlocks

In Figure 7.1, the two tasks also attempt to communicate, but task 1 attempts to
synchronize ora rst, then b, while task 2 expects to synchronize brrst. This
is a deadlock—each task will wait inde nitely for the other.

In this chapter, we present a model-checking based static deadlockiatetec
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technique for the SHIM language. Although SHIM is asynchronous, iteasécs
allow us to model it synchronously without losing precision, greatly redutie
state space that must be explored. This plus the obvious division betwetnlc
and data in SHIM programs makes it easy to construct concise abstractions

A central goal of our work was to con rm that a careful choice of coment
semantics simpli es the veri cation problem. In particular, while SHIM's seman-
tics are asynchronous, they are constructed so that checking a (nmgclker
synchronous abstraction remains sound. In particular, we do notine@dwer of
a model checker such as Holtzmann's SE&S], which is designed to analyze an
interleaving concurrency model.

The synchronous abstraction we use to check for deadlock is sooadgmeof
SHIM's scheduling independence: the choice of scheduling policy ataafifect
the function of the program. In particular, a program either always wemgead-
locks for a particular input—a scheduling choice cannot affect this. f@ans
we are free to choose a particular scheduling policy without fear of migsing
introducing deadlocks. Here, we choose a scheduling policy that amtuats
synchronous execution of a SHIM program. This greatly reduces thauof
distinct states our model checker must consider, simplifying its job.

In this chapter, we propose a technique that builds a synchronouscthsir
of a SHIM program and uses the NuSMV symbolic model checker to determine
whether the model can deadlock. Because of SHIM's semantics, if thelmode
does not deadlock, the program is guaranteed not to deadlock, tatdee we
abstract the data values in the program, the converse is not true: amrogay
not deadlock when we report it does.

By design, SHIM is a nite-state language provided it has no unbounded r
cursion (Edwards and Zerfs2] show how to remove bounded recursion), which
makes the deadlock problem decidable. Unfortunately, exact analySislidda
programs can be impossible in practice because of state space explasiouijav
sound abstractions instead.

Our main contribution is an illustration of how ef cient, synchronous model-
checking technigues can be used to analyze an asynchronous sykterasiilt is
a practical static deadlock detector for a particular asynchronousdgegWhile
the theoretical equivalence of synchronous and asynchronous nhaddtsng been
known, we know of few other tools that exploit it.

This work con rms that having designed SHIM's semantics to be scheduling
independent makes the language much easier to analyze with automated tools
(elsewhere, we have argued that scheduling independence heigsedssinder-
stand programf47]). Few other concurrent languages were designed with formal
veri cation in mind.

After reviewing related work, we show how we abstract SHIM programs to
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make their deadlock properties easy to analyze. After that, we detail tieeagiem

of a NuSMV model and present experimental results that show our method is
practical enough to run as part of a normal compilation ow. Overall, thifgests

that careful language design can simplify the challenge of concurmregtagamming

by making it easy to automatically check for certain problems.

7.1 Related Work

Avoiding deadlocks and data races in concurrent programs has heseadsin-
tensively; both static and dynamic techniques have been proposed. tibgtec
deadlocks in a running system is easy if global information is available. Distdb
algorithms, such as Lee and Kinfg5], are more complicated, but computationally
inexpensive. In this chapter, we focus on the harder, more interestiem of
detecting potential deadlocks before a system runs since this is whennteéova
correct them.

As we propose in this chapter, model checking is often used for statitodéad
Corbett[4Q] reviews a variety of static deadlock detection methods for concurrent
Ada programs. He observes the main challenge is dealing with the state explo-
sion from Ada's interleaved concurrency model. SHIM's schedulirdgprendent
semantics sidesteps this problem. Taking a very different approaclpBtyand
Rinard[21] propose a static type system for an extended Java language based on
programmer-declared ownership of each object. Their system guesamigects
are only accessed in a synchronized manner. SHIM guarantees unigeeship
by simply prohibiting shared objects.

The interleaved concurrency model in most concurrent softwarecemagnts
is a challenge for model checkers. Many, such as B8N Improvsio[77], and
Java PathFinde[133 use partial order reduction to reduce the number of states
they much consider. While SHIM is asynchronous, its communication semantics
do not require all possible interleavings to be considered, making the rloeiek-
ing problem much easier because we can check a synchronous modeiniatiudr
states.

SHIM does not provide locks (although some of its implementations employ
them) so it presents no danger of deadlock from bad locking policiescéHenk-
focused analysis, such as Bensalem e{Hl], which examines a single (non-
deadlocking) trace for potential deadlock situations, is not applicable IMSH
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7.2 Abstracting SHIM Programs

A sound abstraction is the central idea behind our deadlock detectoHfit. &

SHIM task alternates between computation and communication. Because tasks
only interact when they communicate and never deadlock when they are com-
puting, we abstract away the computation and assume a task always eitiier co
municates again or terminates, i.e., will never enter an in nite loop that never
communicates. This is tantamount to assuming a schedule that perfectly lsalance
the computation time of each process.

This assumption is optimistic in the sense that our tool may report a program
is deadlock-free even if one of its tasks enters an in nite loop where it coesp
forever. However, checking for process termination can be doneémdently and
can likely consider tasks in isolation. Answering the task termination question is
outside the scope of this chapter.

We also abstract away the details of data manipulation and assume all lsanche
of any conditional statement can always be taken at any time. This is arcatige
assumption that may increase the number of states we must consider. Avysua
ignoring data, we leave open the possibility that two tasks may appear to deadlo
but in fact stay synchronized because of the data they exchangee lhdieve this
abstraction is a reasonable one and furthermore believe that systerapkaticon
such behavior are probably needlessly dif cult for the programmer tietstand.

In Sectior 7.6, we show an example of working code for which our toantsm
deadlock and how to restructure it to avoid the deadlock report.

void main)) {
int i;
chan int a, b;

for (i = 0 ; i <100 ; i++) {
if (i % 10)
next a = 1;
else
next a = 0O;
next b = 10;

}

} opar {
next a;
next b;

}
}

Figure 7.2: A deadlock-free SHIM program with a loop, conditionals, anask
that terminates
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main_X chan int32 &, chan int32 &b)
local int32 i

local int32 tmpO

local int32 tmpl

i =0

goto continue !entr ‘\—
while; ]

tmpl =i % 10

ifnot tmp1l goto else |Wa'ta6| [wait a 10]

a=1
send a // 6 m
goto endif
else -
a = 0 exit
send a // 10

endif
b =10
send b // 13
=i+ 1
continue
tmp0 = i < 100
if tmpO goto while

main_Z chan int32 a, : :
chan int32 b) | entry}—{ wait a 0]

recva /l0 : .
recv b // 1 [ exit]— wait b 1]

main()

channel int32 a par O

channel int32 b _
main_Xa, b) : main_da, b);

Figure 7.3: The IR and automata for the example in Figure 7.2. The compila bro
themainfunction into three tasks.
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1

entry
parent at oupar

wait c p
channek is ready to synchronize

all children atexit

v
exit
all siblings atexit

Figure 7.4: The four types of automaton states. Each hagomgandexit, but
may have manwait andpar states.

7.2.1 An Example

Consider the SHIM program in Figure ¥.2. Timainfunction starts two tasks that
communicate through channeandb. The rsttask communicates on channals
andb 100 times; the second task synchronizes on chamraisb, then terminates.
This program does not deadlock because the communication patternstafothe
tasks mesh properly. Note that SHIM semantics say that once a task terminates
is no longer compelled to synchronize on the channels to which it is conn&xed
here, after the second task synchronizeband terminates, the rst task talks to
itself.

To abstract this program, our compiler begins by dismantling the SHIM pro-
gram into a traditional, three-address-code-style IR (Figude 7.3). Thedifter-
ence is thapar constructs are dismantled into separate functions,iaie_land
main_2 to ensure each function is sequential.

We assume the overall SHIM program is not recursive and remove $iiatica
bounded recursion using Edwards and Z¢5g]. We do not attempt to analyze
recursive programs where the recursion cannot be bounded.

Next, we duplicate code to force each function to have a unique call sitéde Wh
this has the potential for an exponential increase in code size, we didbseive
it.

We remove trivial functions—those that do not attempt to synchronize. A
function is trivial if it does not contain aextand all its children are trivial. Pro-
vided they terminate (an assumption we make), the behavior of such functions
does not affect whether a SHIM program deadlocks. Fortunatelppiéas that
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functions called in many places rarely contain communication (I/O functions are
an exception), so the potential expansion from copying functions torersach
has a unique call site rarely occurs in practice.

This preprocessing turns the call structure of the program into a trewjrdjo
us to statically enumerate all the tasks, the channels and their connectidns, an
identify a unique parent and call site for each task (aside from the root).

Next, our tool creates an automaton that models the control and communication
behavior for each dismantled function. Figlrel 7.3 shows automata anddke co
they model.

Each automaton consists of four kinds of states, shown in Figuie 7.4. An
automaton in itentry state waits for its parent to reach tpar state at the au-
tomaton's call state. An automaton in &git state waits for all its siblings to also
be in theirexit states. Each automaton (except the topmost one) startsantris
State.

When an automaton entersar state, it starts its children and waits for each
of them to reachexit states. This is not a race because each child will advance
from its entry state a cycle after the parent reachesgéie An automaton has one
par state for each of its call sites. We label each with an integer that encodes the
program counter.

Finally, wait states handle blocking communication. For an automaton to leave
a wait state, all the running tasks that are connected to the channel \igath
corresponds to a unique channel) must also bewaaiafor the channel. Note
that an automaton may have more than wat for the same channel; we label
each with both the name of the channel and the program counter value at the
correspondingnext The numbers 0, 1, 6, 10, and 13 in Figlrel 7.3 correspond
to program counter values.

When we abstract a SHIM program, we ignore sequences of arithmetia-ope
tions; only conditionals, communication, and parallel function calls are prede
Conditional branches, such as the testroplin main_J1, are modeled as nonde-
terministic choices.

We treat our automata as running synchronously, which amounts to imposing
a particular
scheduling policy on the program. SHIM's scheduling independenceagtees
that we do not affect the functional behavior of the program by doiigy tAnd
in particular, the program can deadlock under any schedule if and ortlgah
deadlock under this schedule. This is what makes our abstraction ofdgeapr
sound.

We do not explicitly model the environment in which the program is running;
instead, we assume it is part of the program being tested. A sensor ataactould
be modeled as an independent SHIM process that is always willing to communi-
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cate: a source or a sink. More complicated restrictions on environme hiavioe
would have to be modeled by more SHIM processes.

While we could build an explicit synchronous product automaton from the
automata we build for each function, doing so would subject us to the state spa
explosion problem. Instead, we use a symbolic model checker that asdhee
product of these automata more ef ciently.

MODULE main
DEFINE ready a:=
(main in {entry, exif |
main in {par_ G & ( main_1!= exit & main_1!= entry |
main_2 != exit & main_2 != entny)) &
main_1in {entry, exit wait a 10 wait a § &
main_2 in {entry, exit wait a G;

DEFINE ready b :=
(main in {entry, exit |
main in {par & & ( main_1!= exit & main_1!= entry |
main_2 !'= exit & main_2 != entry)) &
main_1 in {entry, exit, wait b 13 &
main_2 in {entry, exit wait b T

VAR maint { entry, exit, par_G;
ASSIGN init( main) := par_O

next main) := case
main = par_0 & main_2 = exit & main_1 = exit exit
1: main

esac

VAR changed_main boolean
ASSIGN init( changed_main := 1;

next( changed_main := case
main = par_0 & main_2 = exit & main_1 = exit 1,
1: O;

esac

VAR main_2 { entry, exit wait a Q wait b_1;
ASSIGN init( main_2 := entry,
next{ main_29 := case
main_2 = entry & main = par_ 0@ wait_a_Q
main_2 = wait a 0 & ready_a wait b 1
main_2 = wait_ b 1 & ready b exit
main_1 = exit & main_2 = exit entry,
1. main_2
esag
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VAR changed_main_:2 boolean

ASSIGN init( changed_main )2:= 1,

next( changed_main_)2:= case
main_2 = entry & main = par_Q0 1;
main_2 = wait_ a 0 & ready_a 1;
main_2 = wait b 1 & ready b 1;
main_1 = exit & main_2 = exit 1;
1: O

esag

VAR main_1 { entry, exit wait a 1Q wait a § wait b_13;
ASSIGN init( main_J) := entry,
next( main_J) := case
main_1 = entry & main = par_Q { wait_a_1Q wait_a § exit};
main_1 = wait a 6 & ready_a wait b 13
main_1 = wait_a 10& ready a wait_ b 13
main_1 = wait b 13 & ready b { wait_ a 10 wait_a 6§ exit};
main_1 = exit & main_2 = exit entry,
1. main_ 1
esac

VAR changed_main_:1 boolean

ASSIGN init( changed_main )1:= 1,

next( changed_main )l:= case
main_1 = entry & main = par_Q 1;
main_1 = wait_ a 6 & ready_a 1;
main_1 = wait_a 10 & ready a 1;
main_1 = wait_ b 13 & ready b 1;
main_1 = exit & main_2 = exit 1;
1. no;

esac

SPEC A main != exit ->

changed_main| changed_main_2 changed_main )1
SPEC EQ main != exit ->

changed_main| changed_main_2 changed_main)1

Figure 7.5: NuSMV code for the program in Figlrel7.2

87
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7.3 Modeling Our Automata in NuSMV

To check whether our abstracted program (concurrently-runnitagreata) dead-
locks, we use the NuSMV34] BDD- and SAT-based symbolic model checker.
While it can analyze both synchronous and asynchronous nite-staterag, we
only consider synchronous systems. The speci cations to check cardoessed
in Computation Tree Logic (CTL) and Linear Temporal Logic (LTL).

Using NuSMYV involves supplying it with a model and a property of the model
to be checked. We model each of our automata with two variables: one that
represents the control state of the automaton and one that helps us detehmime
a deadlock has occurred. Figurel7.5 shows the code we generate fomrde
automata in Figure 7.3.

Translating a nondeterministic automaton into NuSMV is straightforward. We

use the following template:
VAR state: { s1, s2 .. }

ASSIGN
init( stat§ = sI;
next stat§ := case
state= s1 & ... : { s2 s3 ..}
state= s2 & ... : { sl s3 ..}
éfatez sn& ... { sl s2 ..}
1 . state
esag
For this automatorstateis a variable that can take on the symbolic valggs
s2 .... Each rule in theasestatement is of the formredicatevalues and the

predicates are prioritized by the order in which they appear.

Predicates are Boolean expressions over the state variables; vaisetsaof
new values among which the model checker chooses nondeterministically. We
model conditional branches in a SHIM program with nondeterministic choiee. W
generate one predicate/value pair for each state and start each fgredthaa test
for whether the machine is in that state. The nal predicate/value pair isaulief
that holds the machine in its current state if it was not able to advance.

The NuSMYV language has a rich expression syntax, but we only uske@oo
connectives& and| ), comparison#£), and set inclusionir).

For an automaton to leave imtry state, its parent must be in tpar state for
the automaton. By construction, both the parent automaton arghtistate for a
task is unique. For example, in Figlrel7.5, the parembain_2is main andmain
callsmain_2in thepar_0Ostate, so the rule fanain_2to leave itsentrystate is

main_2 = entry & main = par_0 wait_a Q
since inmain_2 the successor to thentry state iswait_a_Q
For an automaton to leavepar state, all the children at the call site must be
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in their exit states. In Figure_7l5nain_landmain_2are invoked bymainin the
par_Ostate, so the complete rule forainto leave itspar_0Ostate is

main = par_0 & main_2 = exit & main_1 = exit exit
since the successor par_0in mainis exit

A state labeledvait_c_prepresents a task waiting to synchronize on channel
c. Since a task may wait on the same channel in many places, we also label it with
a program counter valuyg An automaton transitions fromaait state when all
other automata that are compelled to rendezvous have also reached matihing
states.

The rules for when rendezvous can occur on a channel are comglmatause
tasks do not always run. When a task connected to chaniselunning children
(i.e., the task is blocked gmar and its children are running), it passes its connection
to its children. However, if all its children connectedctterminate (i.e., reach their
exit states) the parent resumes responsibility for synchronization andiedfgc
blocks communication oo until it reaches avait on c.

For each channel we de ne a variableeady_cthat is true when a rendezvous
is possible on the channel. We form it by taking the logaad of the rendezvous
condition for each task that can connect to the channel (we know statidaidy
tasks may connect to a particular channel).

For each task on a channelthe rendezvous condition is true if the task is
in the entry state (when it has not been started), in ¢éxé state (when it ran and
terminated, but its siblings have not terminated), iwait state for the channel,
or in apar state when at least one of its children connected i® still running
(i.e., when the parent has not recovered its responsibility for the chaifioen its
children).

Figure[Z.6 illustrates the rendezvous condition for a fairly complex setkd tas
Tasks 1, 2, 4, 5, 6, and 7 are leaves—they do not call other taskseakbr the
condition is that it be terminated or atnait state for the channel.

Task 3 both synchronizes directly arand invokes tasks 1 and 2. Its condition
is that it be terminated, at itgait state fora, or that it be at itpar state and at least
one of task 1 or 2 be running.

Task 8 is the most complex. It synchronizesaoim two states\ait_a_Oand
wait_a 2 and has twqar calls. At either of thepar calls, at least one of its four
children (tasks 3, 4, 6, and 7) must be running.

Note that since task 5 is not connected to chaanis state is not considered.
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{ /ltask 8
next a;
{ Iltask3
next a;
next a; //task1
par
next a; //task 2
} par { //task4
next a;
next b;
} par { //task5
next b;
}
next a;
next a; //task 6
par
next a; //task7
}
(t.8 in {enter exit wait_a_2 wait a G |
t8in {par 3 par I} & (t 7 != exit &t 7 != enter|
t 6!= exit & t 6 != enter|
t4!= exit & t 4 != enter|

(t.3 in {enter

t3in {par } & (t 2 !=

in { enter,
in {enter,
in { enter,
in { enter,
in { enter,

t 31= exit & t 3 != ente)) &
exit, wait_a G |
exit & t 2 != enter |

t1!= exit &t 1!= ente)) &

exit,
exit,
exit,
exit,
exit,

wait a ¢ &
wait a ¢ &
wait a ¢ &
wait a ¢ &
wait_a ¢

Figure 7.6: A SHIM code fragment and the conditions for rendezvouthea

channel

Example Lines Channels Tasks Result Runtime  Memory States
Source-Sink 35 2 11 No Deadlock 205 39 MB 97
Pipeline 30 7 13 No Deadlock :D 2.0 95
Prime Number Sieve 35 51 45 No Deadlock  :71 254 32 10°
Berkeley 40 3 11 No Deadlock D 7.2 139
FIR Filter 100 28 28 No Deadlock i 134 4134
Bitonic Sort 130 65 167 No Deadlock B 638 25
Framebuffer 220 11 12 No Deadlock 71 116 9593
JPEG Decoder 1020 7 15 May Deadlock :90 856 571
JPEG Decoder Modied 1025 7 15 No Deadlock :90 856 303

Table 7.1: Experimental results with NuSMV
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7.4 Finding Deadlocks

We de ne a deadlock as a state in which at least one task is running yetsko ta
can advance because they are all waiting on other tasks. In particelao wot
consider it a deadlock when a small group of tasks continue to communicate with
each other but not the rest of the system, which remains blocked.

For each automaton, we generate an additional statel@nged that tracks
whether it will proceed in this cycle or is blocked waiting for communication.
Using additional state bits is unnecessary; in our rst attempt we perfoimed
check combinationally (i.e., in each state checked whether there was abheast
task that could advance). However, introducing additional state bits iragrihne
running time, so we adopted that style.

The rules we use for setting tlvhangedbit for each automaton are similar to
those for the automaton. The predicates are exactly the same, but inssedithof
the state, the values set tbiegangedbit to 1.

Once we have anhangedbit for each automaton, the test for the absence of
deadlock is simple: either at least one task was able to advance or the taaskost
has terminated. This is easy to express in temporal logic for NUSMV:

AG(root != exit -> changed_t1| changed_t2]| ...)

whereroot is the state of the topmost task aadvanced_tindicates that task
was able to make progress. In words, this says that in each state if the tdpskos
has not terminated then at least one task was able to make progress.

We also check whether a program will inevitably deadlock: if all possibillegpa
lead to a deadlock state irrespective of the conditional predicates, thprotdram
absolutely will deadlock. The temporal logic expression for its absenca MY
is
EG(root != exit -> changed_t1| changed t2| ...)

l.e., in each state, if the topmost task is running, there is some path wheretat lea
one task was able to advance.

7.5 Results

We ran our deadlock detector on various SHIM programs on a 3 GHz PRe#dtiu
machine with 1 GB RAM. Tablé 7|1 lists our results. The Lines column shows
for each example the number of lines of code including comments. The Channels
and Tasks columns list the number of channels and concurrently runsieye

nd after expanding the tasks into a tree and removing nontrivial taskatiiRes
include the time taken for compilation, abstraction, generating the NuSMV model,
and running the NuSMV model checker. We check for both the possibilidy an
inevitability of a deadlock. As expected, the model checking time dominates on
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the larger examples. The Memory column reports the total resident setssde u
by the veri er. The States column reports the number of reachable statelsIMu
found.

Source-Sink is a simple example centered around a pair of processpadhat
data through a channel and print the results through an output charrelarge
number of tasks arise from I/O functions used to print the output of thistes.
Most of the examples here include many extra tasks for this reason.

Pipeline and the Prime Number Sieve are examples from Edwards an¢&Zng
that use bounded recursion. As mentioned earlier, we use their techaicumeove
the recursion before running NuSMV. The Sieve has many states leecanss of
its tasks perform data-dependent communication and our model endssig-co
ering all apparent possibilities, even though the system enters far &ates in
practice. Nevertheless, this illustrates the power of symbolic simulation: anglyzin
these three billion states takes NuSMV less than two seconds.

The Berkeley example contains a pair of tasks that communicate packetgtthrou
a channel using a data-based protocol. After ignoring data, howehestasks
behave like simple sources and sinks, making it easy to prove the absence o
deadlock.

The FIR lIter is a parallel ve-tap lIter with twenty-eight tasks and channels
(the core consists of seventeen tasks). Each task's automaton cohsismgle
loop (the lter is actually a synchronous data ow mod&ig]) so the analysis is
fairly easy.

Bitonic Sort is one of our most parallel examples: it uses twenty-four com-
parison tasks to order eight integers. All the additional tasks are sBiTiKsS,
and (repeated calls to I/O routines). The communication behavior of theitasks
straightforward, but the tool has many tasks to consider.

Framebuffer is a 640 480 video framebuffer driven by a line-drawing task.
Its communication is complicated.

The JPEG decoder is one of our largest applications to date, and illustrates
some of the challenges in coding SHIM to avoid deadlocks. Our tool reptiree
possibility of a deadlock on the initial version (which actually works corrgctly
because of the code in Figurel7.7.

This code attempts to run three IDCT processors in parallel on an armay of
macroblocks. For all but the last iteration of the loop, the dispatcher comatesic
on channeldl, 12, andI3, then receives data frol®1, O2, andO3. However,
sincen may not be a multiple of three, this code is careful not to overrun the array
bounds and may only perform one or two IDCT operations in the last iteration

While this program works (provided the predicates on ithstatements are
written properly), our tool does not understand, say, the seconébanith condi-
tionals are correlated and reports a potential deadlock.
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Figure[Z.8 illustrates how to avoid this problem by duplicating code and factor-
ing it differently. Although our tool still treats the conditional branches asde-
terministic, it does not perceive a deadlock because, e.g., the syigdtions on
I3 and O3 remain matched.

Figure[Z.T, however, will not report an unavoidable deadlock beciums a
non-deadlocking path.

Overall, our tool is able to quickly check these programs (in seconds) while
using a reasonable amount of memory. While larger programs will be herder
verify, our technique is clearly practical for modestly sized programs.

...
for (int j =0; j<n; j+=23){
next 11 = iblocl j];
if (j+1 < n) {
next 12 = iblock j+1];
if (j+2 < n)
next 13 = iblocK j+2];

}
obloc j] = next O1;

it (j+1 < n) {
obloc j+1] = next O2
if (j+2 < n)
oblocK j+2] = next O3,
}
...
} opar {
for (;;)
next O1 = IDCT( next I1);
} opar {
for (;;)
next O2 = IDCT( next 12);
} opar {
for (;;)
next O3 = IDCT( next I3);
}

Figure 7.7. Fragment of the JPEG Decoder that causes our tool tot r@por
deadlock; it ignores the correlation amahgtatements

7.6 Conclusions

We presented a static deadlock detection technique for the SHIM contiare
guage. SHIM programs behave identically regardless of scheduliny palcause
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for(int j =0 ; j<n; j+=3){
next 11 = iblocl j];
it (j+2 < n) {
next 12 = iblock j+1];
next 13 ibloc j+2];
oblocK j] = next O
obloci j+1 next O2
oblocH j+2 next O3;
} else if (j+1 < n) {
next 12 = iblock j+1];
obloc j] = next O%,
oblocK j+1] = next 02
} else{
obloc j] = next 0%,

]:
]:

}

Figure 7.8: An equivalent version of the rst task in Figlrel 7.7 for which tool
does not report a deadlock

they are based on Kahn netwofK€]. This allows us to check for deadlock on syn-
chronous models of SHIM programs and know the result holds for &sgnous
implementations.

We expand each SHIM program into a tree of tasks, abstract eachgask a
automaton that performs communication and invokes and waits for its children,
then express these automata in a form suitable for the NuSMV symbolic model
checker. This is a mechanical process.

We abstract away data-dependent decisions when building eachdasi'sa-
ton. This both greatly simpli es their structure and can lead to false positouas:
technique can report a program will deadlock even though it cannatettr, we
believe this is not a serious limitation because there is often an alternative way to
code a particular protocol that makes it insensitive to data and more tokaregll
modi cations, i.e., less likely to be buggy.

Experimentally, we nd NuSMV is able to detect or prove the absence of
deadlock in seconds for modestly sized examples. We believe this is fagjteno
to make deadlock checking a standard part of the compilation process &teadn
of something too costly to run more than occasionally), which we believe ista rs
for concurrent languages.

We currently ignore exceptions in SHIM, which is safe but as a result, we ma
report as erroneous programs that throw exceptions to avoid a dkaitioation.
While we do not know of any such programs, we plan to consider this isghe in
future.
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Although we were able to analyze programs ef ciently, we further improved
our technique by compositionally building the state space of SHIM programas. W
discuss this algorithm in detail in the next chapter.
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Chapter 8

Compositional Deadlock
Detection for SHIM

Our previous chapter used NuSMV, a symbolic model checker, to dezadtatk

in a SHIM program, but it did not scale well with the size of the problem. In
this chapter, we take an incremental, divide-and-conquer approachattiogk
detection. We present a compositional deadlock detection technique fbtf, SH
in which tasks run asynchronously and communicate using synchron8Bs C
style rendezvous. Although SHIM guarantees the absence of datg ea&éllM
program may still deadlock if the communication protocol is violated.

SHIM's scheduling independence makes other properties easier tk bhec
cause they do not have to be tested across all schedules; one is ebeagliock
is one such property: for a particular input, a program will either alvaaysever
deadlock; scheduling choices cannot cause or prevent a deadidelexploited
this property in the previous chapter, where we transformed asyrmisddHIM
models into synchronous state machines and used the symbolic model checker
NuSMV [34] to verify the absence of deadlock. This is unlike traditional tech-
nigues, such as Holzmann's SPIN model ched&ét, in which all possible inter-
leavings must be considered. While our technique was fairly effectivause it
could ignore interleavings, we improve upon it here.

In this chapter, we use explicit model checking with a form of assumeagtes
reasonind10d to quickly detect the possibility of a deadlock in a SHIM program.
Step by step, we build up a complete model of the program by forming the girodu
machine of an automaton we are accumulating with another process from the
program, each time checking the accumulated model for deadlock.

Our key trick: we simplify the accumulated automaton after each step, which
often avoids exponential state growth. Speci cally, we abstract awaynialte
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channels—those that do not appear in any other processes.

Figure[8.1 shows our technique in action. Starting from the (contrivea) pr
gram, we rst abstract the behavior of the rst two tasks into simple automdta. T
rst task communicates on channglthen on channdd, then repeats; the second
task does the same on channeBndc. We compose these automata by allowing
either to take a step on unshared channels but insisting on a rendeziensaw
channel is shared. Then, since chanm& local to these two tasks, we abstract
away its behavior by merging two states. This produces a simpli ed automaton
that we then compose with the automaton for the third task. This time, charmel
local, so again we simplify the automaton and compose it with the automaton for
the fourth task.

The automaton we obtained for the rst three tasks insists on communicating
rst on athend; the fourth tasks communicates drthena. This is a deadlock,
which manifests itself as a state with no outgoing arcs.

For programs that follow such a pipeline pattern, the number of states grows
exponentially with the number of pipeline stages (preciselgtages produce"2
states), yet our analysis only builds machines withsgates before simplifying
them ton+ 1 states at each step. Although we still have to step through and analyze
each of then stages (leading to quadratic complexity), this is still a substantial
improvement.

Of course, our technigue cannot always reduce an exponentiabptate to a
polynomial one, but we nd it often did on the example programs we tried.

In the rest of this chapter, we show how we check SHIM programs fad-de
locks (Section 81)2) following our compose-and-abstract procedsieited above.

We present experimental results in Secfion 8.3 that shows our techniqueeises
to our earlier work using a symbolic model checking, review related work in
Sectiorf 8.4, and conclude in Sectfon]8.5.

8.1 An Example

Consider the SHIM program in Figuke 8.2. Thwinfunction starts three tasks
that communicate through channelsb andc. The rst task has a conditional
statement, which we model as a nondeterministic choice. One of its branches
synchronizes on channal The other branch synchronizes on batandb. The
second task synchronizes on chanreland c; the third task synchronizes on
channelsa andc, and then orb. The ownership is as follows: chanrels shared

by all three tasks, channblis shared by task 1 and task 3, and chamriglshared

by tasks 2 and 3. This program does not deadlock. First all threesgskhkronize

on channeh exhibiting multiway rendezvous. Next, tasks 2 and 3 rendezvous on
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void mair()

chan int 3 b, ¢, d
for(;;) {

recv g b=a+ 1 send b

} par for(;;) {
recv i c=b+ 1 send ¢

} par for(;;) {

recv g d=c+ 1, send d
} par for(;;) {
recvd a=d+ 1, send a
}
}
c a
b: ZCd . éo;;\o
@) C | (10)
c | ) ™o
al b7 |a d al d (1)
O al lc a ¢ |a
(3) d al |d
d ¢ __d al lc a ¢ |a
A al |d
b a
ol N (5) (7)
d =~ = d (8) )

(12)

Figure 8.1: Analyzing a four-task SHIM program. Composing the automata fo
the rst (1) and second (2) tasks gives a product automaton (3) ni@Héa only
appears in the rst two tasks, so we abstract away its effect by idengifidhnand
merging (5) equivalent states. Next, we compose this simpli ed automatornitfb) w
that for the third task (6) to produce another (7). Now, chaengill not appear
again, so again we identify (8) and merge (9) states. Finally, we compog@}his
with the automaton for the fourth task (10) to produce a single, deadlotats s
(11) because the fourth task insists on communicating rsil bat the other three
communicate rst ona. The direct composition of the rst three tasks without
removing channels (12) is larger—eight states.
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void mair() '
{
int i; g g
chan int 3 b
{1/l Task 1 a
if (i % 10) {
a=1 ‘:’
send a
} else { b
a=_0;
send a
recv * Task 1
}
¥
} par { /I Task 2 a
recv a a
c =1 c
send ¢
c
} par {// Task 3
recv g Task 2 b
recv G
b = 10 @!!}
send b
} Task 3
}

Figure 8.2: A SHIM program and the automata for its tasks
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channel c. Task 3 then synchronizes with task 1 on chanifeéhe branch is not
taken. Otherwise, it waits for task 1 to terminate and then does a dummy send on
channelb. This is because task 3 is no longer compelled to wait for a terminated
process (task 1).

We make the same assumptions as in the previous chapter. We assume the over-
all SHIM program is not recursive. We remove statically bounded stoniusing
Edwards and Zen{p2] and do not attempt to analyze programs with unbounded
recursion.

Next, we duplicate code to force each function to have a unique call sitée Wh
this has the potential for an exponential increase in code size, we dibsetve
it.

We remove trivial functions—those that do not attempt to synchronize. A
function is trivial if it does not attempt to send or receive and all its childtke
spawned tasks) are trivial. Provided they terminate (an assumption we,rfake)
behavior of such functions does not affect whether a SHIM progiteadlocks.
Fortunately, it appears that functions called in many places rarely coraima-
nication (I/O functions are an exception), so the potential explosion fiapging
functions to ensure each has a unique call site rarely occurs in practice.

This preprocessing turns the call structure of the program into a trewjrdjo
us to statically enumerate all the tasks, the channels and their connectidns, an
identify a unique parent and call site for each task (aside from the root).

Figure 8.3: Composing (a) the automata for tasks 1 and 2 from Higdre 8.@®jand
composing this with task 3.

After preprocessing, we build a SHIM automaton for each task from the co
piler's intermediate representation. A SHIM automaton has two kinds of arcs:
channel andy. A transition labeled with a channel name represents communication



CHAPTER 8. COMPOSITIONAL DEADLOCK DETECTION FOR SHIMLO1

on that channel; gtransition models conditionals (nondeterministic choices).

Figure[8.2 shows the three SHIM automata we construct for the prograen. Th
if-elsein task 1 is modeled as state 1 with two outgogigansitions. On the other
hand, we use arcs labeled by channels to represent communication.

Figure[8.83(a) shows the composition of tasks 1 and 2 from Figute 8.2. First,
we compose task 1's state 1 with task 2's state 1. We create the (1,1) state with two
outgoingg transitions, and we then compose each of state 1's successor in task 1
with state 1 of task 2, generating states (2,1) and (3,1). At state (2,1),wsaga
that task 1 is at state 2 and task 2 is at state 1. We then add a transition frdm (2,1
to (5,2) labeledh because both tasks are ready to communicatiarstate (2,1).
Similarly, we create state (4,2).

Then, at state (4,2), task 1 can ke(in the absence of task 3) and task 2 can
re c. Since task 1 shares chanihddut notc and task 2 shares chanmddut notb,
either transition is possible so we have two scheduling choices at statenfdi@),
is represented by two transitiobsandc from (4,2). By similar rules, we compose
other states and nally we end up with Figure]8.3(a) as the result. The catpos
automaton owns channedsb, andc.

Following the same procedure, we compose the automaton in Higdre 8.3(a)
with task 3 in Figuré 8]2 to produce the automaton in Figure 8.3(b). We compose
states in a similar fashion. However, when composing state (4,2) of Higdi@ 8.3
with state 2 of task 3 in Figure 8.2, state (4,2)'s transition on chahrislnot
enabled because task 3 does not have a transititrirom its state 2. On the other
hand, state (4,2)'s transition on channe&loes not con ict with task 3, allowing us
to transit from state (4,2,2) to state (4,3,3) on chawernielFigure[8.3(b).

8.2 Compositional Deadlock Detection

8.2.1 Notation

Below, we formalize our abstraction of SHIM programs. We wanted something
like a nite automaton that could model the external behavior of a SHIM mece
(i.e., communication patterns).

We found we had to distinguish two types of choices: a nondeterministic choice
induced by concurrency that can be made by the scheduler (i.e., seleatng
of many enabled tasks) and control- ow choices made by the tasks thermselve
Although a running task is deterministic (it makes decisions based purely on its
state, which can be supplied in part by the [deterministic] series of datartiet a
on its channels), we chose to abstract data computations to simplify the w@nmca
problem at the expense of rejecting some programs that would avoid dkanllo
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practice. Thus, we treat choices made by a task (e.g., at an if-elseunijsis
nondeterministic.

These two types of nondeterministic choices must be handled differently whe
looking for deadlocks: while it is acceptable for an environment to resthicices
that arise from concurrency, an environment cannot restrict chaoie by the
tasks themselves.

Our solution is an automaton with two types of edges: those labeled with chan-
nels representing communication, which need not all be followed when cingo
automata; and those labeled wihwhich we use to represent an internal choice
made by a task and must be preserved when composing automata.

De nition 1 A SHIM automaton a 6-tupl€Q;S; g; d; g; f) where Q is the set of
states,S is the set of channelg62S, q2 Q is the initial state, f2 Q is the nal
state, andd= Q (S[f gg)! 29 the transition function, whergl(s;c)j = Oor 1
forcé g.

Thed transition function is key. For each sta2 Q and channet 2 S, either
d(s,c) = 0 and the automaton is not ready to rendezvous on channatates, or
d(s;c) is a singleton set consisting of the unique next state to which the automaton
will transition if the environment rendezvous on

The special “channelj denotes computation internal to the systentl(K; g) 6
0, the automaton may transition to any of the state®(s)g) from states with no
rendezvous requirement on the environment.

A states2 Q such that(s;c) = 0 forallc2 S[f gg corresponds to the system
terminating normally is= f and is a deadlock state otherwise.

Next, we de ne how to run two SHIM automata in parallel. The main thing is
that we require both automata to rendezvous on any shared channel.

De nition 2 The composition T T, of two SHIM automatasl= ( Q1; S1; g; ch; a1; f1)

and ©=(Q2;S2;9,th;2; 2) iIs(Q1 Q2;S1[ Sp; g, d; ho; i ; hfy; foi), where
d(hpy;pi; g)= ch(p1;9) f pg [ g k(P29

and forc2 S;[ Sp,

ci(pi;c) T pog whenc2 S; S,or
p2= fz;and

fpg  db(p2;c) when2 S, S;or
pr= f1

8
% oi(p1;0)  dh(p2;c) whenc2 Si\ Sy
d(hpa; p2i;c) = g
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Table 8.1: Comparison between compositional analysis (CA) and NuSMV

Program Lines Channels Tasks Deadlock? Runtime (s) Memory (MB)
CA NuSMV CA NusmMv
Source Sink 35 2 11 No :004 Q004 131 628
Berkeley 49 3 11 No 01 001 26 5:96
Bitonic Sort 74 56 24 No B3 401 7.82 5320
31-tap FIR Filter 218 150 120 No D 2110 2106 6333
Pipeline (1000 pipes) 1003 1000 1000 Yes B7 6078 247 813
FFT (50 FFT tasks) 978 100 52 No 38 327 167 719
Frame Buffer 220 11 12 No 81 490 550 75
JPEG Decoder (30 IDCT processes) 2120 180 31 No 951 1177 1606 20344

Here, we de ned two cases for the composed transition functiong @orre-
sponding to an internal choice), either the rst automaton or the secondakay
any of itsg transitions independently, hence the set union. Note tHatiyg = 0.

For normal channels, there are two cases. For a shared charng&h{ S,),
both automata proceed simultaneously if each has a transition on that channel,
have rendezvoused. For non-shared channels or if one of thehasksrminated,
the automaton connected to the channel may take a step independently (and im-
plicitly assumes the environment is willing to rendezvous on the channel).

There should be no difference between runningin parallel with T, and
running T, in parallel with Ty, yet this is not obvious from the above de nition.
Below, we formalize this intuition by de ning what it means for two automata to be
equivalent, then showing the composition operator produces equizaltarhata.

De nition 3 Two SHIM automatal=( Q1;S1;g; di;q1; f1) and L =( Q2; S2; g, tb; Op; f2)
are

equivalent(written T,  T) if and only if S; = S, and there exists a bijective
function b: Q1! Q2 such that g = b(qgi1), f2 = b(f1), and for every £ Q; and

c2 S1[f g9, ca(b(s);c) = b(du(s;c)).

Lemma 1 Composition is commutativey TT, T, Ti.

ProOF Follows from De nition [2 and De nition[3 by choosind(hps; p2i) =
hpz; pai - 2

Lemma 2 Composition is associativdT; T,) Tz Ti (T2 T3).

ProoFFollows from De nition[d, LemmalL, and De nitiohl3 by choositghlps; poi; psi =
hpy; hpy; p3ii . 2
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Algorithm 1 compose(automata lik)

22T=T
3: fori=2tondo

4:  T=T T {Compose using De nition R}

5. = initial state of T

6: forall channelin T that are not infj+1;:::; T, do
7 for all d(p;c)= fqgdo

8 Setd(p;c) to 0 {p is the parent of g}

9 Add gto d(p;e)
10: Add pto d(q; e)
11: end for
12:  end for
13: T = subset-constructiom() {Removee transitions}
14: end for

15: if T has a deadlock statken
16: return deadlock

17: else

18: return no-deadlock

19: end if

8.2.2 Our Algorithm

We are nally in a position to describe our algorithm for compositional deadlock
detection. Algorithni il takes a list of SHIM automata as input and returns either
composed SHIM automaton or failure when there is a deadlock. Since taeiord
which the tasks are composed does affect which automata are built alowgyhe
and hence memory requirements and runtime (but not the nal result), theee
function (called in Lind1l) orders the automata based on a heuristic thgpggrou
tasks with identical channels. Once we compose tasks, we abstract barayets
that are not used by other tasks, simplifying the composed automaton attepch

We then compose tasks one by one. At each step we check if the composed
automaton is deadlock free. We remove (Line 6 through Lide 13) any ef@nn
that are local to the composed tasks (i.e., not connected to any other tsks)
every channet, we nd all the transitions on that channel (i.&l(p;c) = fqg)
and adde transitions between statgsandqg. Then, we use the standard subset
construction algorithnf3] to merge such states.

We do not abstract away channels connected to other tasks becauskeihe
tasks may impose constraints on the communication on these channels that lead to
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a deadlock. In general, adding another connected task often impateys &or
example, when task 1 and task 2 are composed, communicatidnarmhc may
occur in either order. This manifests itself as the scheduling choice at4ajen
Figurel8.8(a). However when task 3 is added, the communicati@ooours rst.

The automata we produce along the way often have more behavior (interleav
ings) than the real system because at each point we have implicitly assuaed th
the environment will be responsive to whatever the automaton does. ldgwev
we never omit behavior, making our technique safe (i.e., we never miss-a pos
sible deadlock). Extra behavior generally goes away as we consider tasks
(our abstraction of data means that our automata are always over apgatioxs,
however). For example, when we compose Fiduré 8.3(a) with task 3, e ge
Figure[8.3(b). We get rid of the impossible case where communicatibmppears
beforec generated in Figuiie 8.3(a).

We can only guarantee the absence of deadlock. Since we are ignatag d
we check for all branches in a conditional for deadlock freedom; évame path
fails, at best we can only report the possibility of a deadlock. It may biethiea
program does not in fact deadlock due to correlations among its conditiona

8.3 Experimental Results

We ran our compositional deadlock detector on the programs listed in [Table 8.1
using a 3.2 GHz Pentium 4 machine with 1 GB memory. Theescolumn lists

the number of lines in the prograr@hannelss the number of channels declared

in the program;Tasksis the number of non-trivial tasks after transforming the
callgraph into a treeDeadlock?indicates the outcome.

The Runtimecolumns list the number of seconds taken by both our new com-
positional tool and our previous work, which relies on NuSMV to modetkhibe
automaton. Similarly, th&emorycolumns compare the peak memory consump-
tion of each.

We have used similar examples in the previous chapter. Source-Sink is a simple
example centered around a pair of tasks that pass data through alcrzchpeint
the results through an output channel. The Berkeley example contairis @f pa
tasks that communicate packets through a channel using a data-basssblpro
After ignoring data, the tasks behave like simple sources and sinks, s@agyise
prove the absence of deadlock. The veri cation time and memory consungygon
trivial for both tools in these examples because they have simple communication
patterns.

The Bitonic Sort example uses twenty-four comparison tasks that communicate
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on fty-six channels to order eight integers. Although bitonic sort hasntye
four tasks, every channel is owned at most by 2 tasks, which givesoolan
opportunity to abstract away channels when it is not used by the rest ¢hsks
during composition. This helps to reduce the size of the automaton.
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Figure 8.4: n-tap FIR

The FIR lter is a parallel 31-tap lter with 120 tasks and 150 channels.tEac
task consists of a single loop. Figurel8.4 compares our approach and\NuS
model checker for Iters of sizes ranging from 3 to 31. The time taken by ou
tool grows quartically with the number of taps and exponentially with NuSMV.
Figure[8.4(b) shows the memory consumption.
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“Pipeline” is the example from Figute 8.1. Like the FIR, we tested our tool on
a varying number of tasks. Although both tools seem to ach¥wé) asymptotic
time behavior, ours remains faster and uses less memory. Eigure 8.8 illubbates
our tool performs exponentially on this example if we omit the channel altisinac
step.

The FFT example is similar to the pipeline: most of the tasks' SHIM automata
consist of a single loop. However, there is a master task that dividesoamaheni-
cates data to its slaves. The slaves and the master run in parallel. The master the
waits for the processed data from each of the slaves. Higure 8.6 shopsriorm
much better as the size of the FFT increases.

The Framebuffer and JPEG examples are the only programs we tested with
conditionals. Framebuffer is a 640480 video framebuffer driven by a line-
drawing task. It has a complicated, nhondeterministic communication pattern, but
is fairly small and not parametric. Our technique is still superior, but nat Wwide
margin.

The JPEG decoder is one of the largest applications we have written and is
parametric. JPEG decoder has a number of parallel tasks, among which is a
producer task that nondeterministically communicates with rest of the IDC$.task
Figure[8.7(a) shows our tool exhibiting better asymptotic behavior than NUSM

Although our tool worked well on the examples we tried, it has some limita-
tions. Our tool is sensitive to the order in which it composes automata. Although
we use a heuristic to order the automata, it hardly guarantees optimality.

By design, our tool is not a general-purpose model checker; it ¢cammify
any properties other than the absence of deadlock. Furthermore pihlygorovide
abstract counter-examples because we remove channels during d@mmpod/e
have not examined how best to present this information to a user.

Our compositional approach is forced to build the entire system for centain p
gram structures. Consider the call graph shown in Figure 8.9. The madtidn

rst compose the children of and then inline the composed childrenfirbefore
composingf with g. If f is a pipeline program with a structure similar to the
one described in Figufe 8.1, when we compdsechildren, we cannot abstract
away any channel becaugelso owns all the channels. This leads to exponential
behavior, but we nd SHIM programs are not written like this in practice.

8.4 Related work

Many have tried to detect deadlocks in models with rendezvous communication.
For example, Corbefét0] proposes static methods for detecting deadlocks in Ada
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programs. He uses partial order reduction, symbolic model checkirdyjran
equality necessary conditions to combat state space explosion. Houlrese,
techniques do build the entire state space with some optimizations. These may be
necessary for Ada, which does not have SHIM's scheduling indigree. By
contrast, we avoid building the complete state space by abstracting the system
along the way. Masticola et d81] also propose a way to nd deadlocks in Ada
programs. Their technique is less precise because they use approxiaralpsis

that runs in polynomial time. Secondly, their method only applies to a subset of
Ada programs. By contrast, our technique can be applied to any SHIlytarg

but can run in exponential time on some.

Compositional veri cation is a common approach for alleviating the state ex-
plosion problem. It decomposes a system into several components,sveaeh
component separately, and infers the system's correctness. Th@aappreri es
the properties of a component in the absence of the whole system. Twatsaria
of the method have been developed: assume-guarfit®€keand compositional
minimization[35].

In the assume-guarantee paradigm, assumptions are rst made abanpa-co
nent, then the component's properties are veri ed under these assumptiow-
ever, it is dif cult to automatically generate reasonable assumptions, oftgurire
ing human intervention. Although there has been signi cant work on [fhis
26;[39;60; 90, Cobleigh et al[38] report that, on average, assume-guarantee
reasoning does not show signi cant advantage over monolithic veri oatither
in speed or in scalability. Compared to assume-guarantee reasoning vehiel
a system top down with assumptions, our work incrementally veri es the system
bottom up. In addition, the assumptions we make along the way are somehow
trivial: the environment is assumed to be merely responsive to our taskistde
rendezvous.

Instead of assuming an environment, compositional minimization models the
environment of a component using another component called the intexfate
reasons about the whole system's correctness through inferense Krienm et
al. [99] implemented this algorithm to generate state space from Lotos programs,
then extended their work73| to detect deadlocks in CSP programs with partial
order reduction. Our work is similar in that we iteratively compose an interfac
with a component and later simplify the new interface by removing channels and
merging equivalent states. However, they provide little experimental eséden
about how their algorithm scales or compares with traditional model checkers

Zheng et al[135 apply the compositional minimization paradigm to hard-
ware veri cation. They propose a failure-preserving interface albstyn for asyn-
chronous design veri cation. To reduce complexity, they use a fully autedtha
interface re nement approach before composition. Our channelaattistn tech-
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nique is analogous to their interface re nement, but we apply it to asynclus
software instead of synchronous hardware.

There are many other compositional techniques for formal analysisziBexe
al. [14] survey several compositional model checking techniques used in @ractic
and discuss their merits. For example, Chaki €i24;[24 and Bensalem et d[17]
combine compositional veri cation with abstraction-re nement methodology. |
other words, they iteratively abstract, compose and re ne the systempaoents,
once a counter example is obtained. By contrast, we do not apply angment
techniques but build the system incrementally to even nd a counter example.

Compared to the previous chapter on deadlock detection in SHIM, what we
present here uses explicit model checking, incremental model buildnypra-
the- y abstraction instead of throwing a large model at a state-of-theyarbslic
model checker (we used NuSMi24]). Experimentally, we nd the approach we
present here is better for all but the smallest examples.

8.5 Conclusions

We presented a static deadlock detection technique for the SHIM contiane
guage. The semantics of SHIM allow us to check for deadlock in programs c
positionally without loss of precision.

We expand a SHIM program into a tree of tasks, abstract each as a commu-
nicating automaton, then compose the tasks incrementally, abstracting away loca
channels after each step.

We have compared our compositional technique with the previous chaieh(w
used the NuSMV general-purpose model checker) on different deamwith vary-
ing problem sizes. Experimentally, we nd our compositional algorithm is able to
detect or prove the absence of deadlock faster: on the order aidséor large-
sized examples. We believe this is fast enough to make deadlock checkimpgjarr
part of the compilation process.

In both the methods, we abstract away data-dependent decisions witaimgo
each task's automaton. This both greatly simpli es their structure and cartdead
false positives: our technique can report a program will deadlock gweugh it
cannot. However, we believe this is not a serious limitation because thetenms of
an alternative way to code a particular protocol that makes it insensitiatacadd
more robust to small modi cations. A more robust, but less ef cient soluticto is
implement a runtime deadlock detection algorithm which we discuss in the next
chapter.
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Chapter 9

Runtime Deadlock Detection for
SHIM

Our deadlock detection techniques for SHIM in the previous chapters may g
false positives, because they operate at compile time and abstract awwayTda
avoid this problem, we designed a runtime deadlock detection technique. If the
static technique reports that a program is deadlock free, the prograrddedn
deadlock free. However, if it reports a program erroneous, thgrano may
actually not deadlock. In the latter case, we would like to switch on the runtime
deadlock detection technique; i.e., use the runtime deadlock detection tezhniqu
(which adds extra overhead) only when necessary.

In this chapter, we design a runtime technique for detecting deadlocks M.SHI
We also provide a mechanism for deterministically breaking deadlocks anchre
ing execution in SHIM programs. We discuss the algorithm in detail in the next
section.

9.1 The Algorithm

SHIM is deterministic but not deadlock free. However, the deadlocksegmm-
ducible[124; a deadlock that occurs with one schedule will always occur under
another schedule for a given input.

To remove deadlocks, we maintain a dependency graph during runtime. The
vertices of the graph are task numbers. SHIM's runtime system runs Hudodé
detection algorithm. Whenever a tagkallssendon a channel, it waits for a peer
taskq to do its counterpart operatiaecv on the same channel. If taskis also
ready to communicate, then the two tasks rendezvous and the communication is
successful. On the other hand if tapis not ready and doing some other work, then
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] ]
(a) A possible SHIM network (b) An impossible

SHIM network. p has
two outgoing edges

Figure 9.1: Possible and impossible con gurations of tasks in the SHIM model

taskp indicates that it is waiting, by adding an edge froro q in the dependency
graph. Then,p checks if there is a path from leading back to itself. If there
is a cycle, then the program has a deadlock. This cycle- nding algorithnots
expensive because of the following reason. By SHIM semantics, ahatant, a
task can at most block on one channel. Therefore, there is at mosuty@ra
edge from any task. See Figuré 9]1. Consequently, our cycle nding algorithm
takes time linear in the number of tasks.

Since every task updates edges originating from its vertex in the shapsshdency
graph, the addition of edges by two tasks to the shared dependentyaguappe
done concurrently. This is because no two tasks are going to add the dgme e
(i.e., an edge with the same end vertices).

Two or more tasks can check for a cycle concurrently and at least ekénta
the deadlock will detect a cycle. This is because every task adds therstged
then checks for a cycle. If a cycle is found, the deadlock-breakindharésm is
initiated. The rst task to detect a cycle, clears the cycle by removing theseitlg
the dependency graph and signals all other blocked processes irtthéacsevive.

All revived tasks (including the task that signalled) now complete their commu-
nication by not waiting for their counterpart operations. A revivecy operation
receives the last value seen on the channel. A revagdivalue puts the new
value on the channel by performing a dummy write.

We will now run our technique on a simple example shown in Figuré 9.2.
There are four tasks running simultaneously. Tasksend awaits forg's recv
a. Taskg's send bwaits for h's recv h Taskh's send cwaits for f's recv ¢ In
the absence of a deadlock breaker, the three tasks wait for eachcatisng a
deadlock.

If we break the deadlocks in the program, the program will terminate. The
deadlock-breaking technique for Figurel9.2 is shown in Figure 9.3. &apip
calls send arst (Figure [9.3(a)), it realizes thay is not ready to receiva and
thereforef adds an edge from vertdx(itself) to vertexg in the dependency graph.
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void f(chan int &, chan int c)
{
send a = 1; / Deadlocking action/
| Writes 1 to channel "a' after the deadlock is brokén
recv ¢; / Another deadlocking action/
| Receives 3 after the deadlock is brokén

}

void g(chan int &b, chan int a)

send b = 2; / Deadlocking action/

| Writes 2 to channel b’ after the deadlock is brokén
recv a; / Another deadlocking actiorn/

| Receives 1 after the deadlock is brokén

}
void h (chan int &, chan int b, chan int &d)
{
send ¢ = 3; / Deadlocking action/
| Writes 3 to channel "¢’ after the deadlock is brokén
recv b; / Another deadlocking actior/
| Receives 2 after the deadlock is brokén
send d = 4;
}
void i (chan int d)
{
recv d; / Receives 4/
}
main() {
| Create 4 channels and initializes them with/O
chan inta =0, b=0, ¢c=0, d=0;
/ Runf, g, handiin parallel/
f(a, ¢) par g(b, a par h(c, b, d) par i(d);
/| Here:a=1,b=2,c=3,d=4
}

Figure 9.2: Another example of a deadlock and the effect of our deadbieaking
algorithm
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It then checks if there is a cycle. Since the cycle has not yet forrhedspends
itself. Next, ifh callssend c(Figure[9.3(0)), it nds thatf is not ready to receive
c and therefordr adds an edge from vertdx(itself) to vertexf, sees that there is
no cycle and suspends itself. Nexti dallsrecv d(Figure[9.3(d)), it realizes thét
is not yet ready t@end d Therefore adds an edge from vertéxto vertexh, sees
that there is no cycle and suspends itself. Ngxdallssend b(Figure[9.3(d)) and
it adds an edge from vertax(itself) to h.

After g adds an edge from itself tg g runs the deadlock detection algorithm
and detects a cycle. It (Figure 9.3(e)) now removes the edges in the mdles
all the tasks in the deadlock. Now the revived tasks go ahead with themtapes
(without waiting for the counterpartsj.writes 1 to channel & writes 2 to channel
b andh writes 3 to channel ¢ This modi esairis copy ofa, b andc. The three
tasks then move to their next statements.

Next, the tasksf, g and h deadlock again on themecvs forming a cycle
(Figures 9.3()[ 9.3(¢) and 9.3(h)). The deadlock is broken by drtbeotasks
(task f in Figure[9.3(i)). f receives whatever was last put on the charnghich
is 3. Similarly,g receives 1h receives 2. Then taskisandg terminate. Now task
h callssend d(Figure[9.3(j)) and nds that is ready to receive on chanrel The
two tasksh andi rendezvous to communicate, and they nally terminate.

The advantages of our method are that the deadlock detection technique ca
run concurrently and in linear time. However, two or more tasks may detgcta c
simultaneously; therefore we need only one of the tasks to take the réspiyns
of reviving other tasks. We therefore require some sort of synératian to break
the deadlock but not to detect a deadlock.

9.2 Conclusions

The runtime deadlock detector is the contribution of this chapter. Before any
deadlock, the execution of the SHIM program will be deterministic becafise o
the property of the SHIM model. The deadlock-breaking step is deterministic
because it just advances all the deadlocked tasks. The progranrisidétéc after
the deadlock is broken, because the remaining statements are execuiadiynor
following SHIM's principle. Therefore, we still maintain determinism even afte
introducing a runtime deadlock breaker to the basic SHIM model.

Deadlock detection algorithms cost time on general graphs. SHIM's eomistr
of never waiting on two channels sidesteps this problem, rendering the- cycle
nding algorithm linear time.

There are a number of runtime distributed deadlock detecting algorithmsd@han
Misra, and Haag2g| is among the best known. According to their technique,
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whenever a process, sgyis waiting on a process, sgyi sends a probe message
to j. j sends the same message to all the processes it is waiting on and so on. If the
probe message comes back,ttheni reports a deadlock.

Like others, Chandy et al. concentrate on the multiple-path problem where
multiple edges may leave a single vertex. Probe messages must be duplicated at
these nodes. We can apply the same algorithm to our setting, but since evathav
most one outgoing edge per vertex, we do not have to duplicate messages.

In summary, our technique ef ciently addresses the two major pitfalls of con-
current programming — nondeterminism and deadlocks. SHIM provides-de
minism. The static and runtime deadlock-detection techniques provide deadlock
freedom. We do not claim that our methods are the best; we believe that this
chapter and the preceding ones will provide insight on achieving bothndieiesm
and deadlock freedom, and the ideas here can be used while prograttnimie csf
designing concurrent models and languages.
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Chapter 10

DZC: A Deterministic
Deadlock-free Concurrent
Programming Model

The SHIM programming model is interesting but does not guarantee d&adloc
freedom by semantics. We need explicit deadlock detection techniquetcto ca
deadlocks in programs. In this chapter, we provide an extension of SHIM

a concurrent model that is both deterministic and deadlock free. Anygrog
that uses this model is guaranteed to produce the same output for a gien in
Additionally, the program will never deadlock: the program will either terrdgna
or run for ever.

10.1 Approach

Nondeterminism arises primarily due to read-write and write-write con ictshén
D?C model, we allow multiple tasks to write to a shared variable concurrently, but
we de ne a commutative, associative reduction operator that will operathase
writes.

The program in FigurE10.1 creates three tasks in pargllglandh. f and
g are modifyingx. Even thoughf and g are modifyingx concurrently,f sees
the effect ofg only when it executesext Similarly g sees the effect of only
when it executegext When a task execute®xt, it waits for all tasks that share
variables with it, to also executeext Thenextstatement is like a barrier. At this
statement, the shared variables are reduced using the reduction opématoe
example in Figuré 1011, the reduction operatof ibecause x is declared with a
reduction operatof in line[24. Therefore after theextstatement, the value of
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void f(sharedint &a) {
/ ais0 /
a =3
/ ais3,xisstill0 /
next / The reduction operator is applied
/ aisnow 8, xis 8/

}

void g( shared int &b) {
/ bis0O /
b = 5;
/ bis5, xisstill0 /
next / The reduction operator is applied
/ bisnow 8, xis 8/

}

void h (sharedint &c) {
/ cisO,xisstill0 /
next

/ cisnow8,xis8/

}

void main() {
sharedint (+) x = 0;
| If there are multiple writers, reduce
using the + reduction operatof

f(x); par g(x); par h(X);
/ xis8 /

}
Figure 10.1: ADC program

is 3+ 5 whichis 8 and it is re ected everywhere. Functtoalso rendezvous with
f andg by executingnextand thus it obtains the new value 8.

The nextsynchronization statement is deadlock free. We do not give a formal
proof here, but it follows from the fact that theext statement is a conjunctive
barrier on all shared variables. On contrast, SHIM is not deadloak fAdso,
they do not allow multiple tasks to write to a shared variable because they @rovid
ownership to variables.

10.2 Implementation

We implemented our model in the X10 programming langu28k As described
in Chaptef IR, X10 is a parallel, distributed object-oriented language. @waa J
like sequential core it adds constructs for concurrency and distribtitrongh the
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concepts of activities and places. An activity is a unit of work, like a threddva;
a place is a logical entity that contains both activities and data objects. X$0 use
the Cilk model of task parallelism and a task scheduler similar to that of Cilk.

Our preliminary implementation is as follows. We did a very conservative
analysis to check if a particular shared variable is being used by multiple tésks
yes, we force the variable to be shared with a reduction operator. Troissfoace
freedom. Otherwise, the compiler throws an error.

Each thread maintains a copy of the shared variable. A thread always rea
from or writes to its local copy. Whenever thextstatement is called, all threads
sharing the variable synchronize. The last thread to synchronize altaear
reduction of the local copies using the commutative, associative operatioe in
variable declaration. It then updates the local copies with the new value.

10.3 Results

To test the performance of our model, we ran a number of benchmarksk. 616Gz
Quad-Core Intel Xeon (E5310) server running Linux kernel 2.6.20 gtk (Fe-

dora Core 6). The processor “chip” actually consists of two dice, eantaining a

pair of processor cores. Each core has a 32 KB L1 instruction and8 34 data
cache, and each die has a 4 MB of shared L2 cache shared betwaeo tares.
Figure[10.2 shows the results. We measured the deterministic implementation
of the applications with the original implementation. A bar with value below 1
indicates that the deterministic version ran slower than the original version.

The AllIReduce Example is a parallel tree based implementation of reduction.
The Pipeline example passes data through a number of intermediate stages; at
each stage the data is processed and passed on to the next stagelveCisnvo
an application of the Pipeline program.

The N-Queens Problem nds the number of ways in which N queens can be
placed on an N*N chessboard such that none of them attack each dther.
MontiPi application nds the value op using Monte-Carlo simulation. The K-
Means program patrtitions n data points into k clusters concurrently.

The Histogram program sorts an array into buckets based on the elements
of the array. The Merge Sort program sorts an array of integerse A X
example operates on an array and the resulting array is obtained fromirthe s
of the elements in the original array up to its index.

The SOR, IDEA, RayTrace, LUFact, SparseMatMul and Series prograre
JGF benchmarks. The RayTrace r benchmarks renders an image dygieres.

It has data dependent array access.
The SOR example performs Jacobi successive relaxation on a gridtihgo
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Figure 10.2: Experimental Results

ously updates a location of the grid based on the location's neighbors.t&heilS
program is the 1-D version of the SOR.

The LUFact application transforms an N*N matrix into upper triangular form.
The Series benchmark computes the rst N coef cients of the functi¢x) =
(x+ 1)*. The IDEA benchmark performs International Data Encryption algorithm
(IDEA) encryption and decryption on an array of bytes. The SparfeMapro-
gram performs multiplication of two sparse matrices.

The UTS benchmarf@2] performing an exhaustive search on an unbalanced
tree. It counts the number of nodes in the implicitly constructed tree that impara

eterized in shape, depth, size, and imbalance.
For most of the examples, the deterministic version had a performance degrad
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tion of 1% - 25% as expected. However, for some examples like SOR andilSten
the deterministic version performed better. The original version of thezages

had explicit 2-phased barriers to differentiate between reads and writde the
deterministic version requires just a single phase, because we maintaineolpgal

in each thread to eliminate read-write con icts. Hence, the deterministic version
performed better.

10.4 Conclusions

We have presented a deterministic, deadlock free model. We have a paiof (
shown here) that formulates this hypothesis. We have added thesesfeatur
constructs to the X10 programming language. We also plan implement it as a
library. A number of examples t into this model: Histogram, Convolution, UTS,
Sparse Matrix Multiplication etc.

As future work, we plan to allow user de ned reduction operators in o la
guage. We therefore require a mechanism to check for associativitgoamehuta-
tivity of these operators. Secondly, we would like to use static analysis to w@pro
the runtime ef ciency of these constructs. Thirdly, we would like to implement this
as a library, and check the program to see if it does not override therdeistic
library. Next, we would like to build a determinizing tofil2q like Kendo[93]
and[42] based orD*C.

TheD?C model is advantageous that it does not introduce deadlocks by seman-
tics. However, thenext statement, being conjunctive, enforces more centralized
synchronization than SHIM. This may be disadvantageous in terms of atgie
for some programs, but we do not see this kind of behavior in our berrfGema

Our ultimate goal is ef cient concurrency with determinism and deadlcsi-fr
dom DZ2C will introduce a way of bug-free parallel programming that will enable
programmers to shift easily from sequential to parallel worlds and this wid be
necessary step along the way to pervasive parallelism in programming.
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Part IV

Improving Ef ciency
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Outline

Partl provides ef cient techniques to generate code from SHIMypms. Our
goal is to reduce synchronization overhead as much as possible. Iathig/p
further improve the ef ciency of SHIM constructs and related deterministic
constructs in other languages. We show both compile-time and runtime
techniques to optimize these constructs and their lower level implementations.
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Chapter 11

Reducing Memory in SHIM
programs

In this chapter, we present a static analysis technique for improving merhory e
ciency in SHIM programs. We focus on reducing memory consumption byngha
buffers among tasks, which use them to communicate using CSP-stylevendez
We determine pairs of buffers that can never be in use simultaneouslysana u
shared region of memory for each pair.

We need to optimize space because embedded systems generally have limited
memory. Overlays, which amount to time multiplexing the use of memory regions,
is one way to reduce a program's memory consumption. In this chapteropes®
a technique that automatically nds opportunities to safely overlay communication
buffer memory in SHIM.

Our technique produces a static abstraction of a SHIM program's dynamic
behavior, which we then analyze to nd buffers that can share memoxpert
mentally, we nd our technique runs quickly on modest-sized programs and ¢
sometimes reduce memory requirements by half.

SHIM processes communicate through channels. The sequence oflsymbo
transmitted over each channel is deterministic but the relative order of $gymbo
between channels is generally unde ned. If the sequences of symbnistitted
over two channels do not interfere, we can safely share buffers.tg@hnique
establishes ordering between pairs of channels. If we cannot ndaouordering,
we conclude that the pair cannot share memory.

Our analysis is conservative: if we establish two channels can shderduf
they can do so safely, but we may miss opportunities to share certain suffer
because we do not model data and may treat the program as separesé@aoid
an exponential explosion in analysis cost. Speci cally, we build sounttaditons
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void main()

chan int a, b, ¢

{

/I Task 1
next a = 6; // Send a (synchronize with task 2)

} opar {

/Il Task 2
next a; // Receive a (synchronize with task 1)
next b = a + 1; //Send 7 on b (synchronize with task 3)

} par {

/I Task 3
next b; // Receive b (synchronize with task 2)
next c = b + 1; //Send 8 on c (synchronize with task 4)

} par {

/| Task 4
next c; // Receive c (synchronize with task 3}
/l c =8 here

}
}

Figure 11.1: A SHIM program that illustrates the need for buffer sharing

to avoid state space explosions, effectively enumerating all possibleltdebedth
a product machine.

One application of our technique is to minimize buffer memory used by code
generated by the SHIM compiler for the Cell Broadband engine in ChiapTereb
heterogeneous Cell proces$68] consists of a power processor element (PPE) and
eight synergistic processor elements (SPEs). The SHIM compiler majssaiaisk
each of the SPEs. Each SPE has its own local memory and shares datyh tin®u
PPE. The PPE synchronizes communication and holds all the chanresisiafits
local memory. The SPE communicates with the PPE using maild@gks

We wish to reduce memory used by the PPE by overlapping buffers of-diffe
ent channels. Our static analyzer does live range analysis on the conaimmic
channels and determines pairs of buffers that are never live at the tsame
We demonstrate in Section 11.5 that the PPE's memory usage can be reduced
drastically for practical examples such as a JPEG decoder and an FFT.

In this chapter, we address an optimizing technique for SHIM: bufferirsia



CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS 129

In the program in Figure 11.1, the main task starts four tasks in parallels Task
and 2 communicate ca Then, tasks 2 and 3 communicatelmand nally tasks 3
and 4 onc. The value ofc received by task 4 is 8. Communication artannot
occur simultaneously with that df because task 2 forces them to occur sequen-
tially them. Similarly communications o andc are forced to be sequential by
task 3. Communications amandc cannot occur together because they are forced
to be sequential by the communication lon Our tool understands this pattern
and reports thad, b, andc can share buffers because their communications never
overlap, thereby reducing the total buffer requirements by 66% for togram.
Below, we model a SHIM program's behavior to analyze buffer usage-(S
tion 11.1), and describe how we compose models of SHIM tasks to build agirod
machine for the whole program (Section 11.2), how we avoid state explosion
(Section 11.3), and how we use these results to reduce buffer memayey (Bec-
tion 11.4). We present experimental results in Section 11.5 and relatedinvork
Section 11.6.

11.1 Abstracting SHIM Programs

First, we assume that a SHIM program has no recursion. We use théqeesiof
Edwards and Zen{b2] to remove bounded recursion, which makes the program
nite and renders the buffer minimization problem decidable. We do not attempt
to analyze programs with unbounded recursion.

Although the recursion-free subset of SHIM is nite state and therdfactable
in theory, in practice the full state space of even a small program is usually to
large to analyze exactly; a sound abstraction is necessary. A SHIM aadlidth
computation and communication, but because buffers are used only wdien ta
communicate, we abstract away the computation.

Since we abstract away computation, we must assume that all branches of
any conditional statement can be taken. This leaves open the possibility that tw
channels may appear to be used simultaneously but in fact never anes batieve
our abstraction is reasonable. In particular it is safe: we overlaprswsfdy when
we are sure that two channels can never be used at the same time regair thes
details of the computation.

11.1.1 An Example

In Figure 11.2, thenainfunction consists of two tasks that communicate through
channels, b, andc.
The rst task communicates on channelsandb in a loop; the second task
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void main)) {
chan int a, b, ¢

{

/l Task 1
for (int i
if (i %
next a
else
next b
/I state 2
next b = 10;

}
/] state 3

0; i <15; i++) { //statel
0)

nnN 1
1
1

]
X

} par {

/I Task 2

/ state 1
next ¢ = 13;
/I state 2
next b;

/] states 3 & 4

Figure 11.2: A SHIM program

synchronizes on channatsandb, then terminates. Once a task terminates, it is no
longer compelled to synchronize on the channels to which it is connectags Th
after the second task terminates, the rst task just talks to itself; i.e., it is the only
process that participates in a rendezvous on its channels. Terminatedsee do

not cause other processes to deadlock.

At compilation time, the compiler dismantles the main function of Figure 11.2
into tasksT; andT,. Ty is connected to channaisandb since a and b appear in the
code section of;. Similarly T, is connected to channdisandc. During the rst
iteration of the loop infy, T; talks to itself ona; since no other task is connected
to a. Meanwhile, T, talks to itself onc. Then the two tasks rendezvous bn
communicating the value 10, thd@n terminates. During subsequent iterations of
T1, T; talks to itself on eitheb twice ora andb once each.

In the program in Figure 11.2, communication lacannot occur simultane-
ously with that on ¢ becausk forces the two communications to be sequential
and thereford andc can share buffers. On the other hand, there is no ordering
between channels andc; a andc can rendezvous at the same time and therefore
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Figure 11.3: The main task and its subtasks

a andc cannot share buffers. By overlapping the bufferba@indc, we can save
33% of the total buffer space.

Our analysis performs the same preprocessing as our static deadloctodete
in Chapter 7. It begins by removing bounded recursion using EdwadiZeng's
techniquel52]. Next, we duplicate functions to force every call site to be unique.
This has the potential of producing an exponential blow up, but we haweb?
served it in practice.

At this point, the call graph of the program is a tree, enabling us to statically
determine all the tasks and the channels to which each is connected.

Next we disregard all functions that do not affect the communicationvi@ha
of the program. Because we are ignoring data, their behavior cariect @hether
we consider a buffer to be sharable. We implicitly assume every such fareaio
terminate—again, a safe approximation.

Next, we create an automaton that models the control and communication
behavior for each function. Figure 11.3 shows automata for the three (ashn,

T1, and T,) of Figure 11.2. For each task, we build a deterministic nite state
automaton whose edges represent choices, typically to communicate. T sta
are labeled by program counter values and the transitions by charmesn&ach
automaton has a unique nal state, which we draw as a double box. Thare is
transition from every terminating state to this nal state labeled with a dummy
channel that indicates such a transition. An automaton has only one rtal sta
but can have multiple terminating states. In fheof Figure 11.2, state 1 is the
terminating state, state 3 is the nal state, and they are connecteégd khich is

like a classicak transition. However, a truetransition would make the automaton
nondeterministic, so we instead create the dummy chamrteht is unique tal;

and allowT; to freely move from state 1 to state 3 without having to synchronize
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Figure 11.4: Composing tasks in Figure 11.3: (a) MergingndT,. (b) Inlining
T T in M.

with any other another task.

The main function has a dumnpy,; transition from its start to the entry of
state 2(T;kT,), which represents thegar statement irmain In general, we create
a dummy channel for everyar in the program.

Figure 11.4(a) shows the product Bf and T,—an automaton that represents
the combined behavior i andT,. We constructed Figure 11.4(a) as follows. We
start with state (program counter) valydsl). At this point,T; can communicate
on a and move to state 2. Therefore we have an arc ftam) to (2;1) labeled
a. Similarly, T, can communicate ooand move to its state 2. From stdtiel) it
is not possible to communicate drbecause onlyf; is ready to communicate, not
T, (T2 is also connected th). Also at statg1;1), Ty can terminate by taking the
transitiont; and moving tq(3;1).

From state(3;1), T, can transition rst to stat€3;2) by communicating on
channelc and then to staté€3; 3) by communicating oip; these transitions do not
change the state df because it has already terminated.

From(2;1), T, can communicate onand change the state (2;2). Similarly
from (1;2), T: can communicate oa and move tq2;2). In state(1;2) it is also
possible to communicate dmsince both tasks are ready. Therefore, we have an
arcb from (1;2) to (2;3). SinceT; may also choose to terminate in stéle2),
there is an arc fronfl;2) to (3;2) ont;. Other states follow similar rules.
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To determine which channels may share buffers, we consider all states tha
have two or more outgoing edges. For example, in Figure 11.4(a),(4tddehas
outgoing transitions oa andc. Either of them can re, so this is a case where the
program may choose to communicate on either c. This means the contents of
both of these buffers are needed at this point, so we conclude bidfeasandc
may not share memory. We prove this formally later in the chapter.

From Figure 11.2, itis evident thatandb can never occur together becadge
forces them to be sequential. However, since gtt2) has outgoing transitions
onaandb, our algorithm concludes thatandb can occur together. However, they
actually can not. We draw this erroneous conclusion because our afgatibs
not differentiate between scheduling choices and control ow choices {ue to
conditionals such a$ andwhile). By doing this we are only adding extra behavior
to the system and disregarding pairs of channels whose buffers aatoally be
shared. This is not a big disadvantage because our analysis remangaathis
example, our algorithm only allowsandc to share buffers.

Figure 11.4(b) is obtained by inlining the automatonTorT,—Figure 11.4(a)—
within M. This represents the entire program in Figure 11.2. Sincedheall is
blocking, inliningT; T, within M is safe. We replaced state 2 of Figure 11.3(a)
with Figure 11.4(a) to obtain Figure 11.4(b). The conclusions are the sathata
of Figure 11.4(a)—onlyp andc can share buffers.

11.2 Merging Tasks

In this subsection, we use notation from automata theory to formalize the merging
of two tasks. We show our algorithm does not generate any false negatid is
therefore safe.

De nition 4 A deterministic nite automato is a 5-tuple(Q; S; d;q; f) where
Q is the set of state§ is the set of channels, 21 Qs is the initial state, f2 Q is
the nalstate,andd Q S! Q isthe partial transition function.

De nition 5 If T; and B are automata, then theomposed automatohy, T, =
(Qr Q2:S1[ Sp;dho;hop; i hfy; f2i), where, forhpy;p2i 2 Q1 Q2 and a2
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Si[ Sz
8
hdy (p1;a); ifa2 &,and a2 ao;
§ tb(p2; a)i
hdi(py;a);p2i ifa2 &4 and
chz2(hpy; p2i;a) = (a6&,or pa= fo);
hp1; db(p2;@)i ifa2 &, and
(@a6Zyorp1= fi);

" unde ned otherwise;
is the transition rule for composition.

In general, ifT; hasm states and, hasn, then the product; T, can have at
mostmnstates. The states are labeled by a tuple composed of the program counter
values of the individual tasks. Each state can have at knmstgoing edges, where
k is the total number of channels. Consequently, the total number of edges in th
graph can at most bmnk (k accounts for the extra andp channels—one extra
channel per task and one par).

Below, we demonstrate that the order in which automata are composed does
not matter. Although the state labels will be different, the states are isomorphic.
First, we de ne exactly what we mean for two automata to be equivalent.

De nition 6 Two automata 7= ( Q1;Sy;di;q1; f1) and b = ( Qz; Sp; th; Op; f2)
are equivalent

(written T,  Tp) if and only if S; = S; and there exists a bijective function: b
Q1! Qzsuchthatg= b(q:), f2= b(f1), and for every |2 Q1 and a2 S,, either
bothdy(p;a) anddx(b(p);a) are de ned anddx(b(p);a) = b(di(p;a)) or both are
unde ned.

Lemma 3 Composition is commutative; TT, T, Ti.
PROOFBY de nition,

T T
T, Th

(Q1 Q2;S1[ Sz;dhz;ho;api; hfy; foi) and
(Q2 Q1;S2[ Si; b1, hop;qui; hfa; f1i):

We claimb(hp1; p2i) = hpy; p1i is a suitable bijective function. First, nof [
Sy = S Sy, hgp;aui = b(hos; gpi ), andhfy; f1i = b(hfy; fai).
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Next,

cha(b(hpy; p2i); a)
= gha(hpz; pii; @)
% hob(p2;a); di(p;a)i ifa2 d,anda2 &y,

hcb(p2; @); pai if a2 &, and
_ (a6, orpp = f1);
" 3 hpyi ch(py; )i if a2 &, and
(@62, 0r p2 = fa);
: djgde ned otherwise; 1
hdi(p1;a); cb(p2;a)i if a2 &, anda2 &y;
% hp1; cb(p2; )i ifa2 &,and
- b (@a6Zj orpr= f1);
hdy(py;a); pai if a2 &, and
(a6, 0orpy= f);
* unde ned otherwise;

= b di2(hpy; p2i;a)
ThUS,Tl T2 T2 Tl. 2
Lemma 4 Composition is associativdT; T,) Tz Tp (T2 T3).

PrROOFBY de nition,

(MT) T = (A Q) Qs(Sil S)I Ssdiys:
hiea; 021 ; gai s hHfy; f250; f3i)
T (T2Ts) = (1 (Q2 Q3);Si[ (S2l S3);dh23;

hay; hopp; ggii ; hfy; hfo; faii ):

We claimb(hips; p2i; p3i) = hpy; hpo; psii is a suitable bijective function. First,

note that(Sy[ S2) [ Sz = Si[ (S2[ Ss), haw;hae;agii = b(htey; gpi;gsi), and
hfy; hfy; faii = b(hhfq; f2i ; fai).



CHAPTER 11. REDUCING MEMORY IN SHIM PROGRAMS

Next,
o3 (b(htpy; p2i; p3i); @)
= (23 (hpa; hpz; psii ;@)
hdy(py;a); hob(pp; a); if a2 &, anda2 &, and
os(ps; )i a2 4s;

hdy(p1;a);hdb(pp;a); psii if a2 &1 anda2 &, and
(a6Z3orpz= f3);

hdy(p1;@); hpo; ck(ps;a)ii  if a2 &, anda2 45 and
(a2, orpp = fp);

hdy(py1;@); hpy; paii ifa2 &, and
(a6, orpy= fy) and
(a6Z3orpg= f3);

hp1;hdb(po;a); ds(ps;a)ii if a2 4, anda2 45 and
(a6Zqorpp= fq);

hp1; hob(p2; @); psil if a2 &5 and
(a6%, or pp = f1)and
(a6Z3orpg= f3);

hpy; hp; da(ps; a)ii if a2 &3 and
(262, orpy = f1)and
(262 0rpp = fp);

" unde ned otherwise;

[

hidy(p1;a); db(p2;a)i; ifa2 §, anda2 &, and
s(ps; )i a2das;
hith(p1;a); cb(pe;a)i;psi if a2 &, anda2 &, and
(a6Zzorpz= f3);
hith(p1;a); p2i; ds(ps;@)i if a2 &, anda2 &3 and
(@62 0rpz = fa);
hith(p1;a); p2i; psi ifa2d;and
(a6, 0rpp = fp)and
(a62A;0rpz= fa);
hipy; db(p2;@)i; ds(ps;a)i if a2 &, anda2 &3 and
(a6, 0orpp = f1);
hipy; ca(p2;@)i; psi ifa2&zand
(62, 0rp1= f1)and
(abBzorps = fa);
htpy; p2i; da(ps; a)i ifa2 &zand
(a6, 0rpp = f1) and
(a6 0rpz = fa);
" unde ned otherwise;
= b d13(htp1; p2i; psi; @)

Thus,(Ty To) T3 T1 (T2 Ta).

Lemma5T T, Tz Tn ((Th T2) Ts) ) Ty

136
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PROOF Since the composition is commutative and associative, we can build the
entire system incrementally by composing two tasks at a time. 2

Lemma 6 The outgoing transitions from a given state represent every possible
rendezvous that can occur at that particular state.

PrRoOOF According to the de nition ofd, we add an outgoing edge to a state for
every rendezvous that can happen immediately after that state.

Multiple outgoing arcs from a state may represent choices due to conties sta
ments (such ag or while). d(p1;a) = g2 andd(py;b) = g, then we have two
outgoing choices due to control ow.

On the other hand, a scheduling choice may occur when composing two tasks
A scheduling choice occurs when the ordering between two rendeisaus
known. This happens when two different pairs of tasks can rendszen two
different channels at the same time.

Supposea 2 S; anda 62S, and di(p1;a) = g1, and ifb2 S, and b 625
anddb(p2;b) = 0, thendio(hps; poi;a) = hou; pai anddia(hpy; poi;b) = hpa;ogi.
Thus, for every possible scheduling choice, we have an outgoing fealgethe
given state.

The absence of any choice due to control or scheduling will leave it witBreith
one or zero outgoing arcs. Consequently, the outgoing transitions frarea g
state represent all possible rendezvous that can occur at that [zarsiaie. They
represent both control ow and scheduling choices. 2

A scheduling choice imposes no ordering among rendezvous, thus alltiveing
possibility of two or more rendezvous to happen at the same time.

Theorem 1 Two channels a and b can share buffersip, at most one ofi( p; a)
andd(p;b) is de ned, but not both.

PrROOF Suppose andb can rendezvous at the same time anpsifepresents the
state of the program counter just before the rendezvous, then by Lemma&ve
two outgoing arcs fronp;: d(p1;a) = g1 andd(ps1;b) = o
Consequently, for somp, both d(p;a) andd(p;b) exists. Conversely, if for
all p at most one oti(p;a) andd(p;b) exist, then we can safely say thmtindb
can share buffers. 2
Our algorithm does not differentiate between control ow choices (ewge,td
if or while) and scheduling choices (due to partial ordering of rendezvousgh Bo
kinds of choices produce states having multiple outgoing arcs. We conitiatie
arcs going out from the same state cannot share buffers. The multiplicitpeca
contributed only by control choices leading to false positives, but ostesay is
safe; whenever we are unsure, we do not allow sharing.
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11.3 Tackling State Space Explosion

If two tasks communicate infrequently, there is a possibility that the number of
states in the product machine will grow too large to deal with. We address this
by introducing a threshold, which limits the stack depth of our recursivdymto
machine composition procedure and corresponds to the longest simple tath in
product machine. If we reach the threshold, we stop and treat the tweltagig
composed as being separate (i.e., unable to share buffers between them).

This heuristic, which we chose because our implementation was running out
of stack space on certain complex examples, has the advantage of agxsaily
when we are unlikely to nd opportunities to share buffer memory. Tightlysded
tasks tend to have small state spaces—these are exactly those that allew buff
memory to be shared. Loosely coupled tasks by de nition run nearly incbgrely
and thus the communication pattern of most pairs of channels are uncontrolled
eliminating the chance to share buffers between them.

Algorithm 2 is the composition algorithm. It recursively composes two states
p: and po. Thedepthvariable is initialized to 0 and incremented whenever suc-
cessor states are composed. Whenelegthexceeds the threshold, we declare
failure.

Algorithm 2 composefs, p2, S1, Sp, depth threshold
if depth> thresholdthen
print “Threshold exceeded”
else
forall a2 S;[ S, do
hoy; gz = d(hpa; pai; @)
if hos; gpi 62hash then
Add hgp; gpi to hash
composeqs, gz, S1, Sp, depth+ 1, threshold
end if
end for
end if

We draw conclusions about local channels (whose scope has beghetely
explored) and we remain silent about the others. We make safe conalgsien
when other channels have not been completely explored.

Theorem 2 If our algorithm concludes that two channels a and b can share buffers
after abstracting away channel c, then a and b can still share buffers iprdse=nce
of c.
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Example Lines Channels Tasks Bytes Saved Buffer Reduction Runtien States
Source-Sink 35 2 11 4 50 % :Ds 394
Pipeline 35 5 9 16388 25 D 68
Bitonic Sort 35 5 13 12 60 Q 135
Prime Number Sieve 40 5 16 12 60 :50 122
Berkeley 40 3 11 4 333 06 285
FIR Filter 110 28 28 52 443 138 74646
Framebuffer 185 11 16 28 :@02 13 15761
FFT 230 14 15 344068 50 ® 3750
JPEG Decoder 1020 7 15 772 58 18 517

Table 11.1: Experimental results with the threshold set to 8000

ProoFIf a andb can share buffers, then there is a sequential ordering between
them. By SHIM semanticBt9], introduction of a new channel can create ordering
between two channels that are not ordered, but can never disrgxistimg se-
guential ordering. Therefore, if our algorithm concludes that twodvaf€an share
channels, introducing a new channel does not affect the conclusion. 2

We conclude that two channels can share buffers only if two conditiolss ho
the two channels have been explored completely and every state has anmost

the two channels in its outgoing edge set.

We take a bottom-up approach while merging groups of tasks. Tasks in a
(preprocessed) SHIM program have a tree structure that arisesrfesting of
par constructs. We merge the leaf tasks of this tree before merging their parents
We stop merging when all tasks have exceeded the threshold or if the complete
program has been merged. This approach allows us to stop wheneven wat

of time or space without violating safety.

11.4 Buffer Allocation

Our static analysis algorithm produces a S¢hat contains pairs of channels that
can share buffers. L&’ be the complement of this set. We represent it as a
graph: channels represent vertices and for everytpat;i 2 S we draw an edge
betweenc; andcj. Two adjacent vertices cannot share buffers. Every node has a

weight, which corresponds to the size of the channel.

Minimizing buffer memory consumption, therefore, reduces to the weighted
vertex covering problert80; 79: a graphG is colored withp colors such that no
two adjacent vertices are of the same color. We denote the maximum weight of
a vertex colored with color as maxi), and we need to nd a coloring such that

&=, maxi) is minimum. The problem is NP-hard.

We use a greedy rst- t algorithm to get an approximate solution. Gebe a
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Threshold Bytes Saved Buffer Reduction Runtime States

2000 0 0% Gs 10024
3000 0 0 15 23530
4000 0 0 # 51086
5000 52 4643 124 70929
6000 52 4643 128 72101
7000 52 4643 135 73433
8000 52 4643 138 74646

Table 11.2: Effect of threshold on the FIR Iter example

list of groups. InitiallyG is empty. We order the channels in nonincreasing order
of buffer sizes, then add the channels one by one to the rst nonctmggroup

in G. If there is no such group, we create a new grou iand add the channel to
this newly created group. A group is de ned to be noncon icting if the aglno

be added can share its buffer with every channel already in the g@hgnnels in

the same group can share buffers. This algorithm runs in polynomial tinuolst
not guarantee an optimal solution.

11.5 Experimental Results

We implemented our algorithm and ran it on various SHIM programs. Table 11.1
lists the results of running the experiments on a 3 GHz Pentium 4 Linux machine
with 1 GB RAM. For each example, the columns list the number of lines of code in
the program, the total number of channels it uses, the number of taskkihptird

in communication (i.e., excluding any functions that perform no communication),
the number of bytes of buffer memory saved by applying our algorithm, what
percentage this is of overall buffer memory, the time taken for analysis @imgju
compilation, abstraction, veri cation, and grouping buffers), and thelmer of
states our algorithm explored. For these experiments, we set the thresB6I20.

We use the same benchmarks from the previous chapters.

Speci cally, it takes about thirteen seconds to analyze the FIR prognahthe
number of states explored is about eighty thousand. Since this was omerbth
challenging examples for our algorithm, we tried varying the threshold. Tab
summarizes our results. As expected, the number of visited states incasages
increase the threshold. With a threshold of 1000, we hardly explore tgggm,
but higher thresholds let us explore more. When the threshold reatbés we
have explored enough of the system to begin to nd opportunities foirghuffer
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memory, even though we have not explored the system completely.

Experimentally, we nd that the analysis takes less than a minute for modestly
large programs and that we can reduce buffer space by 60% antbtieerensid-
erable amount of PPE memory on the Cell processor for examples like thébiton
sort and the prime number sieve.

11.6 Related Work

Many memory reduction techniques exist for embedded systems. Gréef4d]a
reduce array storage in a sequential program by reusing memory. afjpwach
has two phases: they internally reduce storage for each array, theallgltry to
share arrays. By contrast, our approach looks for sharing opptetiglobally on
communication buffers in a concurrent setting.

StreamIt[120 is a deterministic language like SHIM. Sermulins et[aD§
present cache aware optimizations that exploit communication patterns im8trea
programs. They aim to improve instruction and data locality at the cost of data
buffer size. Instead, we try to reduce buffer sizes.

Chrobak et al[33] schedule tasks in a multiprocessor environment to minimize
maximum buffer size. Our algorithm does not add scheduling constrainte to th
problem: it reduces the total buffer size without affecting the schedutktreereby
not affecting the overall speed.

The techniques of Murthy et d86; 87; 88; 89, Teich etal[118, and Geilen et
al.[57] are closest to ours. They describe several algorithms for mergingrbirff
signal processing systems that use synchronous data ow mptilsGovindara-
jan et al.[58] minimize buffer space while executing at the optimal computation
rate in data ow networks. They cast this as a linear programming problefro-So
nis et al[112 propose an optimal buffer scheme with a synchronous task model as
basis. These papers revolve around minimizing buffers in a synchseiting;
our work solves similar problems in an asynchronous setting. Our agpnode if
there is an ordering between rendezvous of different channeld bagbe product
machine. We believe that our algorithm works on a richer set of programs.

Lin [78] talks about an ef cient compilation process of programs that have
communication constructs similar to SHIM. He uses Petri nets to model the pro-
gram and uses loop unrolling techniques. We did not attempt this appreaabde
loop unrolling would cause the state space to explode even for small SHIM pr
grams.

Static veri cation methods already exist for SHIM. In Chapter 7, we built a
synchronous system to nd deadlocks in a SHIM program. We make ufieeof
fact that for a particular input sequence, if a SHIM program deadlocikder one
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schedule it will deadlock under any other. By contrast, the property veelc
in this chapter is not schedule independent: two channels may rendeavihes
same time under one schedule but may not under another schedule. Tleis mak
our problem more challenging.

There is a partial evaluation methddg| for SHIM that combines multiple
concurrent processes to produce sequential code. Again, themak&s use of
the scheduling independence property by expanding one task at a timet until
terminates or blocks on a channel. On the other hand, in this chapter, @wedexp
all possible communications from a given state forcing us to consider ad thak
can communicate from that state, rather than a single task.

11.7 Conclusions

We presented a static buffer memory minimization technique for the SHIM con-
current language. We obtain the partial order between communicatiotseven
channels by forming the product machine representing the behaviortakd in

a program. To avoid state space explosion, we can treat the programssting

of separate pieces.

We remove bounded recursion and expand each SHIM program inte a tre
of tasks and use sound abstractions to construct for each task an tordhet
performs communication. Then we use the merging rules to combine tasks.

We abstract away data and computation from the program and only main-
tain parallel, communication and branch structures. We abstract away tire da
dependent decisions formed by conditionals and loops and do notedifigie
between scheduling choices and conditional branches. This may leatk¢o fa
positives: our technique can discard pairs even though they can khfiees.
However, our experimental results suggest this is not a big disadvaataba
any case our technique remains safe.

Our algorithm can be practically applied to the SHIM compiler that generates
code for the Cell Broadband Engine. We found we could save 344KBedPPE's
memory for an FFT example.

We reduce memory without affecting the runtime schedule or performaryce. B
sharing, two or more buffer pointers point to the same memory location. This ca
be done at compile time during the code-generation phase.
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Chapter 12

Optimizing Barrier
Synchronization

The SHIM model uses channels for communication. Channels generaljydzda,
but dataless channels are also interesting because they act as bdbatatess
channels are used merely for synchronization and are popularly kaswiocks
in many programming languages.

In this chapter, we improve the runtime ef ciency of clocks that are restticte
versions of SHIM's channels. Like SHIM's channels, clocks areallgtimple-
mented using primitive communication mechanisms and thus spare the program-
mer from reasoning about low-level implementation details such as remote-proc
dure calls and error conditions.

We statically analyze the use of these clocks—a form of synchronizatidetsa—
in the Java-derived X10 concurrent programming langud2§e 104 and use the
results to safely substitute more specialized implementations of these standard
library elements. X10's clocks were motivated from SHIM's channels wed
believe that this analysis can also be applied in the SHIM setting.

A clock in X10 is a structured form of synchronization barrier usefulew-
pressing patterns such as wavefront computations and software piélioecur-
rent tasks registered on the same clock advance in lockstep. This is anmsiog
concurrent tasks in SHIM registered with the same channel.

Clocks provide exibility, but programs often use them in speci ¢ ways that
not require their full implementation. In this chapter, we describe a tool that miti-
gates the overhead of general-purpose clocks by statically analyzingrbgrams
use them and choosing optimized implementations when available.

Our static analysis technique models an X10 program as a nite automaton;
we ignore data but consider the possibility of clocks being aliased. Wetlpiass
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automaton to the NuSMV model checK&#d], which reports erroneous usage of a
clock and whether a particular clock follows certain idioms. If the clocksiaesl
properly, we use the idiom information to restructure the program to use @ mor
ef cient implementation of each clock. The result is a faster program thlaabtes

like one that uses the general-purpose library.

Our analysis ow has been designed to be exible and amenable to supgartin
growing variety of patterns. In the sequel, we focus on inexpensiggegithat can
be answered by treating programs as sequential. While analysis time is negligible
speedup is considerable and varies across benchmarks from arfeani® a 3
improvement in total execution time.

The techniques we present can be applied to a large class of cordarren
guages, not just X10 or SHIM. These kind of optimizations are veryuligéfen a
bunch of programs follow a certain pattern and can be specialized.

In summary, our contributions are

a methodology for the analysis and specialization of clocked programs;
a set of cost-effective clock transformations;

a prototype implementation: a plug-in for the X10 v1.5 tool chain; and
experimental results on some modest-size benchmarks.

After a brief overview of the X10 language in Section 12.1 and the clock
library in Section 12.2, we describe our static analysis technique in Secti@n 12
and how we use its results to optimize programs in Section 12.4. We present
experimental evidence that our technique can improve the performanggQof
programs in Section 12.5. We discuss related work in Section 12.6 and denclu
in Section 12.7.

12.1 The X10 Programming Language

X10 [29; 104 is a parallel, distributed object-oriented language. To a Java-like
sequential core it adds constructs for concurrency and distributiaughrthe
concepts ofactivitiesand places An activity is a unit of work, like a thread in
Java; a place is a logical entity that contains both activities and data objects.

The X10 language is more exible than SHIM. It allows races and does not
impose hard restrictions on how activities should be created.a$jecconstruct
creates activities; parent and child execute concurrently. The XXffgoroin Fig-
ure 12.1 uses clocks to recursively compute the rst ten rows of PasEadingle.
The call of the methodow on line 40 creates a new stream object, spawns an
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public class IntStream {
public nal clock clk = clock factory. clock)); // stream clock
private nal int[] buf = new inf2]; // current and next stream values

public IntStreand nal int v) {
buf O] = v; // set initial stream value

public void pu€ nal int v) {
clk. next(); //  enter new clockphase
bufl( clk. phasd)+ 1)%2] = v; /| set next stream value
clk. resumé); // complete clockphase

}

public int gef) {
clk. next(); //  enter new clockphase
nal int v = buf clk. phas€)% 2]; // get current stream value
clk. resumé); // complete clockphase
return v;

b}

public class PascalsTriangle{
static IntStream ro nal int n) {
nal IntStream r = new IntStrearil); //  start row with 1
async clockegr. clk) { // spawn clocked task to compute tasvvalues
if (n>0){/ recursively compute previous row
nal IntStream previous= row( n- 1);
int v; int w = previous ge{);
while (w I= 0) {
v = w;, w = previous gel);
r. put{ v+w); //  emit row s values

}
r.put(0); / end row with O

return r;

}

public static void mai(String[] argsy{

nal IntStream r = row( 10);

int w = r.ge(); // print row excluding nal 0

while (w = 0) { Systemout printin(w); w = r. gel); }
}}

Figure 12.1: A program to compute Pascal's Triangle in X10 using clocks
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IntStream constructor IntStream get

| A N 1

I U

| |
25: async clockefi —[10: nexf}—
| |
| |
| |
| 11: phasﬂz !
| |
| |
@ : 12: resum
| |

_E— e e — — —

IntStream put

Figure 12.2: The automaton model for the clock in the Pascal's Triangle d&amp
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activity to produce the stream values, and nally returns the stream diojechin
The rest oimainexecutes in parallel with the spawned activity, printing the stream
values as they are produced.

Spawned activities may only access nal variables of enclosing activiigs,
nal int a = 3; int b = 4
async{ int x = g /I OK: ais a nal
inty=~5b } // ERROR b is not nal
An X10 program runs in a xed, platform-dependent set of places mhin
method always runs iplace.FIRST_PLACEhe programmer may specify where

other activities run. Activities cannot migrate between places.
nal IntStream s = new IntStrearfi4);
async ( place LAST_PLACE { //  spawn activity at placeLAST_PLACE
/I cannot call methodsof s if LAST_PLACE!= FIRST_PLACE
nal int i = 3;
async () s put(i); //  spawn activity at the placef s; s is local => ok to deref

Activities that share a place share a common heap. While activities may hold
references to remote objects, they can only access the elds and methads o
remote object by spawning an activity at the object's place.

X10 also introducevalue classeswhose elds are allnal. The elds and
methods of an instance of a value class may be accessed remotely, uniika nor
classes. Clocks are implemented as value classes.

X10 provides two primitive constructs for synchronizationish andwhen
nish p q delays the execution of statemepantil after statemenp and all activi-
ties recursively spawned hyhave completed. For example,
nish { async{ async{ Systemout print(" Hello"); } } }

Systemout printin(C"  world");
prints “Hello world.” The statemenvher(e) p suspends until the Boolean condi-
tion e becomes true, then execuggatomically, i.e., as if in one step during which
all other activities in the same place are susperided.
X10 also permits unconditional atomic blocks and methods, which are speci-

ed with the atomickeyword. For example,
atomic { inttmp=x, x =y, y = tmg }

12.2 Clocks in X10

Clocks in X10 are a generalization of barriers. Unlike X18ish construct, clocks
permit activities to synchronize repeatedly. By contrasivt@nconstructs, they
provide a structured, distributed, and determinate form of coordinatiohileW
a complete discussion of X10's clocks is beyond the scope of this chdpéer,

1X10 does not guarantee thawill execute ife holds only intermittently.
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following subsections will demonstrate that clocks are amenable to ef ciaat a
effective static analysis.

Figure 12.3 lists the main elements of the clock API. An activity must be
registered with a clock to interact with it. Activities are registered in one of two
ways: creating a clock with thelock.factory.clock(static method automatically
registers the calling activity with the new clock. Also, an activity can register
activities it spawns with thasync clockedonstruct.
nal clock clk = clock factory. clock);
async clockefclk) { AL clk next); A2 clk next(); A3}
async clockedclk) { B1, clk next); B2 }
async{ C; }

M1; clk. resumé); M1 2 clk next); M2

A clock synchronizes the execution of activities through phases. Atesgis
activity can request the clock to enter a new phase with a calto which blocks
the activity until all other registered activities are done with the currensg@hiae.,
have callechextor resume For instance, in the program above, action A1 must
complete before action B2 can start. In other words, A1 and B1 belongaseph
of clock clk; A2 and B2 belong to phase 2. C, however, does not belong to an
activity registered witrtlk; it may execute at any time.

Theresumemethod provides slack to the schedlékn activity callsresume
when it is done with the current clock phase but does not yet need tatbateext.
Unlike next resumedoes not block the activity, and the activity must still aagixt
to enter the next phase. In the example above, while M1 must terminate B&ore
can start and A1l must terminate before M2 can start, M1_2 may start b&fore
completes and continue after A2 starts becausesaime

In Figure 12.1, the value at thgth column andith row of this triangle (0 p
n) is the number of possible unordered choicep @ems among. One task per
row produces the stream of values for the row by summing the two entriesii®
row immediately above. Each stream uses a clock to enforce single-wriie-sin
read interleaving, so each task registers with two clocks: its own and thefolloc
the row immediately above. The clocks ensure proper inter-row coordmatio

The phasemethod returns the current phase index (counting from 1). Fig-
ure 12.1 demonstrates this and also how activities can register with multiple clocks
(using recursion in this example).

Finally, activities can explicitly unregister from a clock by callidgpp. Activ-
ities are implicitly unregistered from their clocks when they terminate.

The operations of an activity on a clock modify the state of this activity w.r.t.
that clock. Figure 12.4 shows the behavior. The activity may be in oneusf fo
statesActive Resumednactive or Exception Transitions are labeled with clock-

2Theresumemethod is typically used in activities registered with multiple clocks.
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related operationsasync clockedresumenext phase anddrop. For example, an
activity moves from théActivestate toResumedf it calls resumeon the clock. If

it calls resumeagain, it moves to th&xceptionstate. Any operation that leads to
the Exceptionstate throws th€lockUseExceptiomxception.

/= Create a new clock Register the calling activity with this clock*/
nal clock clk = clock factory. clock);

/= Spawn an activity registered with clocks clk_1., clk_n with body p =*/
async clockefclk_1, ..., ck n p

public interface clock{
[ * Notify this clock that the calling activity is done with wheaer it intended
* to do during this phase ofthe clock Does not block =*/
void resume@;

/ = Block until all activities registered with this clock are ready to enter thext
* clock phase Imply that calling activity is done with thiphase ofthe clock =*/
void next();

/= Return thephase index Calling activity cannot be resumed on the clock/
int phas€);

/ = Unregister the caller from this clock release it from having to participate/
void drop();

Figure 12.3: The clock API

12.2.1 Clock Patterns

We now describe the four clock patterns we currently identify. We belieateoir
techniques can also be applied to nd other patterns.

Our rst pattern is concerned with exceptions: can an activity reach xhe e
ception state for a particular clock? The default clock implementation looks for
transitions to this state and thro@ockUseExceptioif they occur. Aside from
the annoyance of runtime errors, runtime checks slow down the implementation.
We want to avoid them if possible.

Our algorithm nds that the clocks are used properly in the program of Fig
ure 12.1; e.g., no task erroneously attempts to use a clock it is not registered
with. Therefore, it substitutes the default implementation with one that avoids
the overhead of runtime checks for these error conditions.

We also want to know whetheesumeis ever called on a clock. This fea-
ture's implementation requires additional data structures and slows downckl c
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register with ¢

c.next, c.phaser| —-— c.resume IR—ﬂasync clocked(c)
async clocked(¢)ACtVel cnext esume

c.drop c.resumeor c.phase

Inactive any Exceptioh any

Figure 12.4: The state of one activity with respect to clock
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operations. We discuss this and other optimizations in Section 12.4.

Activities often use clocks to wait for subactivities to terminate. Consider
nal clock clk = clock factory. clock));
async clocked( clk) AL
async A2
async clocked( clk) A3
clk. next);

A4;

Here, if A1 and A2 do not interact with cloalk, clk.next()requires activities Al

and A3 to terminate before A4 starts executing and nothing else. In partié@ar
and A4 may execute in parallel. We want to detect subactivities that ar¢eregis
with the clock yet never request to enter a new clock phase.

Finally, the default clock implementation enables distributed activities to syn-
chronize. Ifitturn out that all registered activities belong to the same paneich
faster clock implementation is possible. Our Pascal's Triangle program igal tri
example of this since all activities are spawned in the default place.

12.3 The Static Analyzer

In this subsection, we describe how we detect clock idioms. We start frem th
program's abstract syntax tree, compute its call graph, and run aliasahgsés on
clocks. We then abstract data by replacing conditional statements withteonde
ministic choice. From the control ow graph of this abstract program, weaex
one automaton per clock. This gives a conservative approximation cétjuerces

of operations that the program may apply to the clock.

To a model checker, we feed the automaton for the control- ow of thenarag
along with an automaton model of the clock API and a series of temporal logic
properties, one for each idiom of interest. For each property andaack, the
model checker either proves the property or returns a counterexaniple farm
of a path in the automaton that violates the property.

We use the T.J. Watson Libraries for Analysiga(A) [66] for parsing, call-
and control- ow-graph construction, and aliasing analysis. We hatenebed the
Java frontend ofvaLA to accommodate X10 and extract from the AST the required
automata in the form of input les for the NuSMV model checka4].

We now describe the key technical steps in detail. We start with the construc-
tion of the automaton, then discuss the encoding of the clock API, the temporal
properties, and nally aliasing.
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stmt],
async clocke(c) {
stmt3 lasync clocked(¢) Figure 12.5: Modelingasync

} | calls
stmt2 stmt

12.3.1 Constructing the Automaton

Figure 12.2 shows the automaton we build for the cloigkin Figure 12.1. Each
operation ortlk in the text of the program becomes one state, which we label with
the type of operation and its line number. Transitions arise from our atistrac
of the program's control ow. We highlighted the fragments correspogdmthe
constructor and methods of th&Streamclass.

methods Each method body becomes a fragment of the automaton. Each call of a
method adds a transition to and from its entry and exit nodes. For example,
sincegetmay be called twice in a row (lines 28 and 30), we added the edge
from its exit node “18: resume” to its entry node “16: next.” It may also be
called after put, looping from line 31 back to line 30, so we added an edge
from node “12: resume” to node “16: next.”

conditionals We ignore guards on conditionals and add arcs for both branches.
For example, thé& on line 26 runs immediately after ttesync clockean
line 25. The “then” branch of thig runs line 27, which starts with a call
to row that starts by constructing dntStream(line 24) whose constructor
calls clock.factory.clock()line 2). This gives the arc from node “25: async
clocked” to “2: clock.factory.clock.” The “else” branch is line 34, which
calls put, which starts with a call taext (line 10). This gives the arc to
“10: next.”

async Because we are not checking properties that depend on interactiong amo
tasks, we can treat a spawned activity as just another path in the program.
When execution reaches asyncconstruct, we model it as either jumping
directly to the task being spawned or skipping the child and continuing to
execute the parent. This is illustrated in Figure 12.5.

In our Pascal's Triangle example, this means control may ow from the
IntStreamconstructor exit point “2: clock.factory.clock” to theesynccon-
struct “25: async clocked” or ignore tlesyncand ow back via thereturn
statement to the subsequent get method call in eftia@nor row, i.e., node
“16: next.”
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We build one automaton for each call@bck.factory.clochn the source code,
meaning our algorithm does not distinguish clocks instantiated from the same
allocation site. So we construct only one automaton for our example, eveghtho
the program uses ten (very similar) clocks when it executes.

We have taken a concurrent program and transformed it into a sequentia
gram with multiple paths. Thanks to this abstraction, we avoid state space explo-
sion both in the automaton construction and in the model checker.

async clocked(g) | Active

| Resume

async clocked(c)

asyng (|nactive Xception|any async
;async clocked(

Figure 12.6: Additional transitions in the clock state for modelisgncoperations

12.3.2 Handling Async Constructs with the Clock Model

Our model of clock state transitions—Figure 12.4—only considers a sintijégc
but X10 programs may have many. As explained in Section 12.3.1, we model
asyncconstructs with nondeterministic branches, so we have to extend the typestate
automaton (described later) for the clock to do the same.

Figure 12.6 shows the additional transitions necessary for hanakiyigcac-
tions. We consider two cases: when analyzing clo@dnd we encountesisync
clocked(c) the new activity stays eithekctive or Resumed By contrast, if we
encounter ammsyncnot clocked orc, the new activity starts in thmactive state
(arcs labeled jusiasyng.

12.3.3 Specifying Clock Idioms

Once we have the automata modeling the program and clock state, it bec@ayes ea
to specify patterns for NuSMV as temporal logic formulas.
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Three patterns are CTL reachability properties of the form
SPEC AQ!( targed)
wheretargetis either theExceptiorstate, aesumeoperation, or aasync clocked(c)
node annotated with a place expression, that is, a remote activity creation.
We check for the fourth pattern—whether spawned activities evernexi
on the clock—by looking for control- ow paths that contain aaync clocked(c)

operation followed by &.nextoperation. The LTL speci cation is
LTLSPEC ( c_next-> H(! async_clocked)t

12.3.4 Combining Clock Analysis with Aliasing Analysis

Clocks can be aliased just like any objects. Figure 12.7 shows an example of
aliasing of clocks in X10. We create two clookbandc2. The variablex can take
the value of eithecl or c2 depending on the value of

We could abstract the program into two control paths, one that assumes
cl and one that assumas= c2. However, this would produce a number of paths
exponential in the number of aliases that have to be considered simultBneous

Instead, we chose to bound the size of our program abstraction (attbese
of precision) as shown in the bottom three diagrams of Figure 12.7. Wedeons
each clock operation oxin isolation and apply it nondeterministically to any of
the possible targets afas returned byaLA''s aliasing engine.

Figure 12.8 shows how we extend this ideasyncconstructs. Our tool reports
that operations on clookl cannot thronClockUseExceptianHowever, it fails to
establish the same fa2 because our abstraction creates a false patxt—c2
following async clocked(c1,cl)

12.4 The Code Optimizer

Results from our static analyzer drive a code optimizer that substitutesireach
stance of the clock class for a specialized version. We manually wrotetiamzgd
version of the clock class for each clock pattern we encountered insiwdses; a
complete tool would include more. Our specialized versions include a closk cla
that does not check for protocol violations (transitions todkeeptiorstate) and
one that does not suppagsume

There is one abstract clock base class that contains empty methods foclall clo
functions; each specialized implementation has different versions ofitinetbeds
that uses X10 primitives to perform the actual synchronization. Our optimize
changes the code (actually theT) to use the appropriate derived class for each
clock, e.g.c = clock.factory.clock(yvould be replaced with = clock.factory.clockef()
if clock c is known to be exception free.
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[create c
nal ook c1 = dlook factons ooy st
nal clock x = (n>1? cl c2 [iexty
X. resume);

)éi.nr?)efzz('); @'(E

create ¢ create

create c

-

resume C

[resume c]l [resume cp

iy

[next c2

next next cl @'(E

Figure 12.7: Top Left Aliasing clocks in X10,Top Right the corresponding
control ow graph, Bottom Left our abstractionBottom Center automaton for
cl, Bottom Right automaton foc2

[next c

The top of Figure 12.9 shows the general-purpose implementatiorexif
The clock value class contains the public clock methods; the inte@hatkState
maintains the state and synchronization variables of the clock.n&kemethod
rst veri es that the activity is registered with the clock (and throws aneption
otherwise), then calls theelectfunction to wait on datch: a data structure that
indicates the phase. Thatch is eithernull if next()was called from aractive()
state or holds a value ifext()was called from aesumed(tate. Thewait func-
tion blocks and actually waits for the clock to change phase. cHeekmethod
decrements the number of activities not yet resumed on the clock andcadvihie
clock phase when all activities registered on the clock are resumed.

A basic optimization: when we know the clock is used properly, we can elim-
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create c

[next c1 [async clocked(x, clL)

[next}
next cl
create c]
nal clock cl = create ¢
clock factory. clock);
nal clock c2 = [nextcd [async clocked(cl, cll) [async clocked(c2, c]l)

clock factory. clock);

nal clock x = (n > 1)? cl c2
async clocke@x, cl) {

X. next);

cl next);

cl next);

Figure 12.8: Asyncs and Aliases

inate the registration check imextand elsewhere. Figure 12.9 shows such an
exception-free implementation.

Accommodatingeesumecarries signi cant overhead, but if we know the-
sumefunctionality is never used, we can simplify the bodysefectas shown in
Figure 12.9. We removed the now-unneediith object and can do something
similar in other methods (not shown).

Figure 12.9 also shows a third optimization. Because clocked activities may be
distributed among places, synchronization variables have to be updatethbte
activities. When we know a clock is only used in a single place, we dispeitise w
theasyncand nish constructs.



CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 157

/[ The default implementation
class ClockState {

atomic int chec {

int resumedPhase= currentPhase

if (remainingActivities ==0){
/[ set the numberof activities
Il expected to resume
remainingActivities=

registeredActivities

/[ advance to thenext phase
currentPhase+;

}

return resumedPhase

}

void waif nal int resumedPhasg {
when( resumedPhasé= currentPhasg

}}

value class clock {
nal ClockState state= new ClockStatg;

void seledf nullable<future<int>> latch) {
if (latch == null) {
async ( stat§ state wait( state check));
} else{
nal int phase = latch. force);
async ( stat§ state wait( phase;
}
}

public void next() {
if (! registered))
throw new ClockUseExceptifn
nish selec{ ClockPhasespuf( this, null));
}}

/I An exceptionfree implementation

public void next() {
nish
select ClockPhasesput( this, null));

/I For when resum¢) is never used

void seledf) {
async ( statg state wait( state check));

public void next() {
if (! registered))
throw new ClockUseExceptifn
nish selecf);

}

/I A clock is onlyin a single place

void seledf nullable<future<int>> latch) {
if (latch == null)
state wait( state check));
else
state wait( latch. force());
}

public void next() {

if (! registered))
throw new ClockUseExceptifn
selec( ClockPhasesput( this, null));

}

Figure 12.9: Various implementationsméxtand related methods



CHAPTER 12. OPTIMIZING BARRIER SYNCHRONIZATION 158

Table 12.1: Experimental Results of our clock specialization

Example Clocks Lines Result Speed Analysis Time
Up Base NuSMV

Linear Search 1 35 EF, NR, L Bo 335s Q4s

Relaxation 1 55 EF, NR, L 88 6.7 0:3

All Reduction Barrier 1 65 EF, NR ) 272 01

Pascal's Triangle 1 60 EF, L X 258 04

Prime Number Sieve 1 95 NR, L 28 347 04

N-Queens 1 155 EF, NR, ON, L 3 243 0.5

LU Factorization 1 210 EF, NR B 206 09

MolDyn JGF Bench. 1 930 NR 3 351 0.5

Pipeline 2 55 Clock 1: EF,NR,L 314 75 0.5
Clock 2: EF, NR, L

Edmiston 2 205 Clock 1: NR, L 14:2 299 0.5
Clock 2: NR, L

EF: No ClockUseException, NR: No Resume, ON: Only the activity thattecea
the clock callsexton it, L: Clocked used locally (in a single place)

12.5 Results

We applied our static analyzer to various programs, running it on a 3 GHz Pe
tium 4 machine with 1 GB RAM. Since we want to measure the overhead of
the clock library, we purposely run our benchmarks on a single-careepsor.
Table 12.1 shows the results. For each example, we list its name, the number of
clock de nitions in the source code, its size (number of lines of code, imetud
comments), what our analysis discovered about the clock(s), how rastdr the
executable for each example ran after we applied our optimizations, afig tha

time required to analyze the example. (TBesecolumn includes the time to read
the source, build the IR, perform pointer analysis, build the automataNetSMV
indicates the time spent running the NuSMV model checker. Total time is their
sum.)

The rst example is a paced linear search algorithm. It consists of two tasks
that search an array in parallel and use a clock to synchronize aéter @mpar-
ison. The Relaxation example, for each cell in an array, spawns omgyathat
repeatedly updates the cell value using the neighboring values. It udeskao
force these activities to advance in lockstep. The All Reduction Barremeie is
a variant on Relaxation that distributes the array across multiple placesalPas
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Triangle is the example of Figure 12.1. Our prime number sieve uses the $ieve o
Eratosthenes. N-Queens is a brute-force tree search algorithm ésad gtock to
mimic a join operation. LU Factorization decomposes a matrix in parallel using
clocks. We also ported the MolDyn Java Grande Forum Benchiddr® in X10

with clocks, the largest application on which we ran our tool. Pipeline has thre
stages; its buffers use two clocks for synchronization. Edmiston aligrsrings

in parallel and uses two clocks for synchronization.

The Result column lists the properties satis ed by each example's clocks. Fo
example, the N-Queens example cannot th@lackUseExceptigndoes not call
resumeand uses only locally created clocks. Our tool reports the JGF benkhmar
may throw exceptions and pass clocks around, although it also doeallimesome
In truth, it does not throw exceptions, but our tool failed to establish trdaume of
the approximations it uses. This reduced the speedup we could achi¢vmnds
not affect correctness.

The Linear Search, Relaxation, Prime Number Sieve, and Pipeline examples
use clocks frequently and locally, providing a substantial speeduprimnity.
Although our analysis found N-Queens satis es the same properties s the
could improve it up only slightly because its clock is used rarely and only in one
part of the computation. Switching to the local clock implementation provided
the majority of the speedup we observed, but our 5% improvement on tlaealre
heavily optimized distributed LU Factorization example is signi cant.

Our tool analyzed each example in under a minute and the model checker took
less than a second in each case. Most of the construction time is spent enchll-
control- ow graph constructions and aliasing analysis, which are ajrelade for
other reasons, so the added cost of our tool is on the order of seamadfing it
reasonable to include as part of normal compilation.

12.6 Related Work

Typestate analysig114] tracks the states that an object goes through during the
execution of a program. Standard typestate analysis and concurrealysia

are disjoint. Our analysis can be viewed as a typestate analysis for cemcur
programs. Clocks are shared, stateful objects. We therefore haeekdlie state

of each clock from the point of view of each activity.

Model checking concurrent programiS6; 34 is usually demanding because
of the potential for exponentially large state spaces often due to havinghto co
sider different interleavings of concurrent operations. By contmsttechnique
analyzes concurrent programs as if they were sequential—we comsgidaned
tasks to be additional execution paths in a sequential program—hencagwvbiel
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explosion.

Concurrency modelscome in many varieties. We showed in Chapter 7 that the
state space explosion can also be avoided by carefully choosing the pesrifiv
the concurrent programming language. Unfortunately, this restricts tibiligy
of the language. Our work focuses on concurrency constructs simildmose
advocated by us in Chapter 7, but features like resume and aliased atecdssent
from their proposal. We trade a more exible concurrency model ag#iesheed
for further approximation in modeling the programs.

Static analysis of concurrencydepends greatly on the underlying model. Al-
though X10 supports both message-passing-style and shared-mewpierges-
currency (in the case of co-located activities), we focus exclusivel{sanessage-
passing aspects, as have others. MercoU@ff approximates the number of
messages between tasks in J8P] programs. Reppy and Xiald 02 analyze
communication patterns in CML. Like ours, their work aims at identifying patterns
amenable to more ef cient implementations. They attempt to approximate the
number of pending send and receive operations on a channel. OkirisMooth
more speci c—it focuses on clocks—and more general: our tool cae edfh
any CTL or LTL formula about clock operations.

Reppy and Xiao use modular techniques; we consider an X10 program as
whole. A modular approach may improve out tool's scaling, but we have not
explored this yet.

Analysis of X10 programshas also been considered. Agarwal ef2).de-
scribe a novel algorithm for may-happen-in-parallel analysis in X10ft@aises
on atomic subsections. Chandra et[alf] introduce a dependent type system for
the speci cation and inference of object locations. We could use the lattiedide
whether activities and clocks belong to the same place.

12.7 Conclusions and Future Work

We presented a static analysis technique for clocks in the X10 programming lan
guage. The result allows us to specialize the implementation of each clocly whic
we found resulted in substantial speed improvements on certain benchroark p
grams. Our technique has the advantage of being able to analyze areohcur
language using techniques for sequential code.

We treat each clock separately and model subtasks as extra paths iwthe pr
gram, much like conditionals. We abstract away conditional predicateshwhic
simpli es the structure at the cost of introducing false positives. Howewer
technique is safe: we revert to the unoptimized, general purpose clonmapta-
tion when we are unsure a particular property is satis ed. Adding cowexample
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guided abstraction re nemeh87] could help.

We produce two automata for each clock: one models the X10 program; the
other encodes the protocol (typestate) for the clock. We expresstihmaia in a
form suitable for the NuSMV model checker. Experimentally, we nd NuSMV
able to check properties for modestly sized examples in seconds, whioblieesh
makes it fast enough to be part of the usual compilation process.

Finally, we plan to extend these ideas to SHIM — provide veri cation based
specialization of the generated code and see how the ef ciency improves.
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Chapter 13

Optimizing Locks

In the previous chapters, we optimized deterministic constructs at the laamguag
level. Most of these constructs are implemented using low-level constuaiisas
locks. In this chapter, we improve the ef ciency of locks, especially witeme is
biased behavior. We do not directly solve the nondeterminism problemihére
general concurrency problem that can be applied to any system tsakocks.

Locks are used to ensure exclusive access to shared memory locbhidos.
tunately, lock operations are expensive, so work has been dondiorizipg their
performance for common access patterns. One such pattern is fourtdrorkiag
applications, where there is a single thread dominating lock accesses. Anantpo
special case arises when a single-threaded program calls a thfedithrsaty that
uses locks.

Another instance occurs when a channel is used dominantly by a singhel thre
in the D?C model (Chapter 10) that allows multiple writes but in a deterministic
way. Shared variables and communication are implemented using locks.hn suc
cases, we want the dominant thread to access the channel in an ehGgrand
thus we would like to optimize locks that constitute a major component in the
implementation of a channel.

An effective way to optimize the dominant-thread pattern is to “bias” the lock
implementation so that accesses by the dominant thread have negligibleaulerhe
We take this approach in this work: we simplify and generalize existing tecésiqu
for biased locks, producing a large design space with many trade-bBés.ex-
ample, if we assume the dominant process acquires the lock in nitely often (a
reasonable assumption for packet processing), it is possible to makerttieasht
process perform a lock operation without expensive fence or caygrad-swap
instructions. This gives a very low overhead solution; we con rm its atg by
experiments. We show how these constructions can be extended foebkmva-
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tion, re-reservation, and to reader-writer situations.

13.1 Introduction

Programmers typically use locks to control access to shared memory and to
achieve determinism. While using locks correctly is often the biggest challenge
programmers are also concerned with their ef ciency. We are too: thik wor
improves the performance of locking mechanisms by using knowledge of their
access patterns to speed the common case.

Figure 13.1 shows the standard way of implementing a spin-lock using an
atomic compare-and-swap (CAS) operation. To acquire the lock, a thrstad
waits (“spins”) until the lock variabldck is O (indicating no other thread holds
the lock), then attempts to change the lock value from O to 1. Since other shread
may also be attempting to acquire the lock at the same time, the change is done
atomically to guarantee only one thread changes the value. Although otbadshr
while loops would see the lock variable become 0, their compare-and-swap would
fail because the winning thread would have changed the lock to 1.

void lock(int *Ick) {
bool success
do {
while (*Ick '= 0) { / wait /
success= compare_and_swéfck, 0, 1);
} while (! succesp

void unlock(int lck) { =*Ick = O; }

atomic / function is one atomic machine instructioh
bool compare_and_swgimt *Ick, int old, int new) {
if (*lck == old) {
x|lck = new, return 1;
} else
return O;

Figure 13.1: A spin lock using atomic compare-and-swap

We found, on an unloaded 1.66 GHz Intel Core Duo, the compareiaag-s
instruction took seven times longer thacotinter+,” a comparable nonatomic
read-modify-write operation. The cost when there is contention among multiple
processors can be substantially higher, especially if a cache miss is idvalves
overhead can be prohibitive for a performance-critical application asgtacket
processing, which may have to sustain line rates of over 1 Gbps and thas/bey
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limited cycle budget for actual processing. Reducing locking overhbadzfore,
can be very useful.

Bacon et al.'s thin locks for Javi8] are an in uential example of lock opti-
mization. Their technique was motivated by the observation that sequental Ja
programs often needlessly use locks indirectly by calling thread-safeidéibralo
reduce this overhead, thin locks overlay a compare-and-swap-bzagedn top
of Java's more costly monitor mechanism. Thus a single-threaded progmads a
all monitor accesses yet would operate correctly (i.e., use monitors) if aualitio
threads were introduced. Thin locks considerably reduce overhgatilbrequire
one atomic operation per lock acquisition.

A re nement of this techniqué71; 94; 7 further improves performance by
allowing a single thread to reserve a lock. Acquisitions of the lock by theviese
thread do not require an atomic operation but do require the part-wdnditee
that achieves the same functionality as fences with almost the same cost.

Lamport[74] also optimizes for the low contention access pattern by avoid-
ing atomic operations. This algorithm uses a bakery-style algorithm to resolve
contention, which has been found to be less ef cient than algorithms thaseo
atomic operations, such as the MCS I¢8#].

Lopsided lock-access patterns in network packet-processing appiigatio-
tivated our work. In a typical architecture, a packet is read off a nétward by
a dedicated core and then dispatched to one of several processasy ¢orthe
commercial network-traf ¢ analyzer with which we are familiar, the packeéts a
partitioned among cores by source address; i.e., all packets with the same so
address are sent to the same core. Each processing core maintairtsudfiiees
for its group of source addresses. Nearly all access to a groupnistfr® owner
core. Occasionally, however, a core might update information for apgheld
by a different core; thus, it is necessary to maintain atomicity of updateg usin
locks. Such an arrangement of data and processing results in a higteyl lsiecess
pattern for a data item: the owner is responsible for a large (90% or mauiafin
of the accesses to its data, the rest originate from other cores.

This work looks at the question of optimizing lock performance under such
lopsided access patterns. It makes four contributions. First, we pravigmeric
method for building biased locks. In a nutshell, we implement biased locks with a
two-process mutual exclusion algorithm between the dominant thread amglex s
representative of all of the other threads, chosen with a geNepimcess mutual
exclusion algorithm. This construction simpli es and generalizes the algorithm o
Kawachiya et al[94], which is a speci ¢c combination of this type that intertwines
a Dekker-lock for two threads and a CAS-based lock foNatlread mutex. Our
experiments show that different choices for thgrocess mutex algorithm can
improve overall performance.
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Our second contribution is a simple scheme for changing the primary owner
of a lock (“re-reservation”). The scheme given by Kawachiya €ft7dl is heavy-
weight: it requires suspending the thread owning the lock and often moglifign
program counter to a retry point; in their later work, they abandoned ithfier
reasor[94]. By contrast, we show a simple way to change a lock's owner without
suspending the existing owner.

In our third contribution, we establish conditions under which atomic and
memory fence operations in a dominant thread cardispensed with entirely
Most multiprocessor memory systems do not provide sequential consistenrss
threads: a sequence of writes by one thread may appear to occur ireiemtiff
order to a different thread. Few synchronization algorithms can copesuith
an unruly communication mechanism, so multiprocessors typically provide costly
but effective “fence” instructions that force all outstanding writes tmpkete.
Experiments on the Intel Core Duo chip show that their “mfence” instructions
require about two to three clock cycles. We show memory fences aratiesse
for the biased lock construction described above, assuming the weakeoryne
ordering imposed by store-buffer forwarding, which is a feature oftmaxdern
processors. We prove that for a processor with store-forwardimgmutual ex-
clusion algorithm with a “symmetric choice” property requires memory fences.
The symmetric choice property is that there is a protocol state where either of
two contending threads may acquire the lock. Since standard algorithmssuch
those by Dekkel45], Petersori96], and Lamporf74] have the symmetric choice
property, they all require memory fences to be correct. Our propasietios,
therefore, is asymmetric by nature: it requires the dominant thread toapesess
to the lock after receiving a request from a nondominant thread. Toteqm
as a whole is free from starvation provided the dominant thread checlssiéh
requests in nitely often.

Finally, we introduce biased read-write locks. A read-write lock allows mul-
tiple readers to read at the same time, but only one writer to access the critical
section at any time. We show, along with experiments that the general odtitstru
of bias in normal locks can be extended to provide biased read-write. locks

In summary, we make four new contributions in this chapter:

1. we provide a simple, generalized construction of biased locks (KayaldH]
is a special case of our algorithm);

2. we provide a light-weight scheme for changing the owner of a lockmima
cally;

3. we introduce asymmetric locks; and

4. we apply bias to read-write locks.
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In the next section, we describe our generic owner-based lockingnesh
which assumes a xed owner. We then discuss the algorithm for switchimgoew
ship (Section 13.3). The formalization of memory fence operations, the syinmetr
choice property, and the subsequent proofs are discussed in SE2#loWe de ne
asymmetric locks in Section 13.5. We discuss how we veri ed our algorithms in
Section 13.7 and discuss experimental results in Section 13.8.

13.2 Flexible, Fixed-Owner Biased Locks

In this section, we de ne a exible biased locking scheme that assumes a lock
isowned by a xed, pre-speci ed thread. The scheme reduces th@tascess for
the owning thread. In particular, the scheme does not incur the costoohpare-
and-swap operation, but it does require memaory fences for corssctReom this
point on, we focus on the x86 architecture; the kind of fences and tlasiement
may differ for other architectures.

At its core, our scheme employs different locking protocols for the owner
the nonowners. For the owner, any two-process mutual exclusioncptotgth
operationslock2 and unlock2 suf ces; for the other threads, we use a generic
N-process mutual exclusion protocol with operatidmskN and unlockN This
exploits complementary characteristics: protocols that rely only on atomicity of
read and write, such as Peterson's algorif86), are ef cient for two processes but
not necessarily for larger numbers of threads; protocols based micgiamitives,
such as the MCS lock83], are more effective when there are many contending
threads.

Figure 13.2 shows our biased lock scheme. g thread_iddenti er con-
tains a unique number identifying the current thread. The nonownerdhrest
compete for theN-process lock; the winning thread then competes for the two-
process lock with the owner process.

It is easy to see the scheme assures mutual exclusion among the threads pro
vided the two locking protocols work, and thread IDs are well-behavéitkero
properties depend on the locking protocols themselves. For example nitvneol
protocol is starvation free if both locking protocols are; if only the 2-pesc
locking protocol is starvation free, the owner is always guaranteed tarothe
lock but one or more of the nonowning threads could remain forever in #iténgy
state. Similar results hold for bounded waiting, assuming starvation freedom.

This scheme can be implemented by employing Dekker's algorithm for 2-
process locking and the compare_and_swap spin-lock algorithm fronmttioe
duction forN-process locking. Such an implementation is similar to Onodera et
al. [94], but differs in the details of how-process locking is invoked.

An alternative: use Peterson's algorithm (Figure 13.3) for 2-protmssng
and the MCS algorithm fdX-process locking. On the Intel architecture, Peterson's
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typedef struct {
Threadld owner
Lock2 t / lightweight, 2 process lock/
LockN n; / N process lock/

} Lock;

biased_lockLock *1) {
if (this_thread_id== [-> owne))
lock2( 1->t);
else {
lockN( I-> n);
lock2( 1->t);

}
}
biased_unlockLock =I) {
if (this_thread_id== 1I-> owne))
unlock? I-> t);
else {
unlock? |-> t);
unlockN( |-> n);

}
}

Figure 13.2: Our general biased-lock scheme

algorithm requires memory fences to ensure operations issued befdemtieeare
carried out before operations issued after the fence and to enstingptietes to
shared variables are made visible to other threads. This is because x@&ver
implementations employ “store-forwarding” that effectively propagates mgmo
updates lazily, depositing them in processor-local store buffer befitiraately
dispatching them to the memory system. Hence the store buffer functions as an
additional level of cache and improves performance.

Unfortunately, store buffers break sequential memory consistencgbatpro-
cessors. To ensure local sequential consistency, a processysabonsults its
local store buffer on a read to ensure it sees all its earlier writes, bubtfients
of each processor's (local) store buffer are not made visible to otteeepsors,
meaning a shared memory update may be delayed or even missed by otlesr proc
sors. For instance, if variablesandy are both initialized to 0, one thread executes
write X 1; read y and another thread executeste y 1; read x it is possible under
store forwarding for both threads to read O for bathndy, an outcome that is
impossible under sequential consistency. Intel's reference ma6daprovides
more details and examples.

In the protocol in Figure 13.3, in the absence of the rst fence, thieady
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not see the updated ag value of threacnd threadj may not see the updated
ag value of thread. This would allow both threads to enter the critical section at
once, violating mutual exclusion. The second fence ensures all chamggobal
variables made in the critical section become visible to other processors.

ag[i] = 1;

turn = j;

fencd); / force other threads to see ag and turh
while ( ag[j] && turn == j) {} [/ spin /

/ ...critical section.../

fencd); / make visible changes made in critical sectidn
ag[i] = 0;

Figure 13.3: Peterson's mutual exclusion algorithm for pro¢eshen running
concurrently with procesg Its correctness demands memory fences.

13.3 Transferring Ownership On-The-Fly

Our biased lock scheme from the last section assumes that the dominadt threa
is xed and known in advance. However, certain applications may neeldaoge
a lock's dominant thread, such as when ownership of shared datesisdoiasa dif-
ferent thread. We call this ownership transfer or re-reservatiothigrsection, we
describe a simple method for effecting this transfer. Figure 13.4 showsitliieeo
of our method. We do not x a particular condition for switching ownershgaeh
application may de ne its own condition for when a switch is necessary. Ocle s
scheme, for instance, is to maintain an average frequency of usage @k hylo
each thread, and switch ownership when the frequency of a nondantimaad
exceeds that of the dominant one.

The bias-transfer mechanism necessarily switches the status of a noadomin
thread. There are certain times when doing so is not safe. For exampltayld w
be incorrect to do so when the dominant thread is about to enter its critatadrse
S0 we require that a nondominant thread hold the biased lock before mgiith
status to dominant. This requirement is not, however, suf cient in itself. Aatir
may switch to being dominant at a point in time where the earlier dominant thread
(line 12) is waiting for its lock. Therefore, we demand additional syndledion
between the old and new dominant threads.

The try ag array (line 5), which has one entry per thread, provides syn-
chronization. If threadA is dominant, thery[A] entry, if set, indicates to other
threads that the ownenay bein the process of acquiring the lock in lines 9-12.
Meanwhile, if some other thread (sd) calls switch_to_dominanin an attempt
to become dominant (lines 29-37), thBrchanges the owner and waits for the
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typedef struct {
Threadld owner

Lock2 t / lightweight, 2 process lock/
LockN n; / N process lock/ . . . .
bool try{ NTHREADS; 28 }/md switch_to_dominarftLock *I)
} Lock; 30 lockN( I-> n);
lock2( 1-> t);

void biased_lockLock *I) { 32 prev_owner= I-> owner

> try[ this_thread_ifi = 1; I-> owner = this_thread_id
fence); L 34 unlockX 1->t); B
if I(trlllzs(_lthre)ad_ld__ [-> ownel) { while (1-> try[ prev_owne}) {}
ock2( 1> t); _ _
if (this_thread_idl= |-> owne) { * unlockN(->n);
| owner has changed 38
ulockq |~ g?WNER void biased_unlockLock *I){
9 — 40 if (this_thread_id== I-> owne)
} else/ owner has not changed unlock? 1-> 1);
[-> try[ this_thread_ifl = 0; 2 else{ ’
} else{ .
unlock? |-> t);
NON—OWNER oA, 44 unlockN( I-> n);
[-> try[ this_thread_ifl = 0; }
lockN( I-> n); 16}
lock2( I->t);
}
}

Figure 13.4: Bias Transfer

previously dominant threadl to reach a stable state: one where it is certain Ahat
realizes the change of ownership (line 35).

This procedure adds a few instructions (starting line 9) to the lock algorithm
for the owner thread. The overhead is two additional assignments, dnentks
a fence instruction, due to the infrequency of owner switching and thectxg
infrequency in nonowner locks.

13.4 Mutual Exclusion and Memory Fences

Given the high cost of atomic and fence operations, one may wonder @vheth
there are mutual exclusion schemes where these operations are ned.n€éak-
sical algorithms such as Dekker or Peterson do not use atomic operdtinrn
require fences to be correct on modern architectures. In this sectoshow that
the use of fences is unavoidable if the architecture supports storer-bufivarding
unless certain requirements are relaxed.

Fence and atomic operations have the property that they both make prior mem-
ory updates “visible” to all other processors in a shared-memory systemcel
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the following de nition.

De nition 7 A revealing operatiormakes updates to all shared variables per-
formed in the current thread prior to the operation visible to other processo
l.e., a processor reading a shared variable immediately after the operatoarid
obtain the same value as the revealing thread would immediately before the ope
ation.

Without a revealing operation, updates may never be propagated to obher p
cessors. The statement of our rst theorem is not particularly surgrigint it is
interesting to see where the requirement of a revealing operation ariseirot.

Theorem 3 Any mutual exclusion protocol that ensures freedom from starvation
must use a revealing operation within every matched lock-unlock pairdoh e
thread in the protocol.

PrRoOOF The proof is by contradiction. Suppose there is a protocol meeting the as-
sumptions; i.e., it (C1) ensures mutual exclusion, (C2) ensures starfia@mom

for each thread, assuming each thread stays in its critical section for aamibeint

of time, and (C3) and does so assuming a demonic scheduler.

Consider the operation of the protocol on a pair of threads, A and Brevhe
operations in As lock, unlock, and critical section code do not use angaling
operation. Suppose that A and B start at their initial state. If A is at a loekatipn
and runs by itself, by (C2), it must enter its critical section. After the poimene
A enters its critical section, consider a new continuation, E1, where Bite®s
lock instruction. By (C1), thread B is enabled but must wait since A is in its atitic
section.

Continue E1 so that thread A exits its critical section and then B runs by
itself. By (C2), B must enter its critical section. The decision by B to enter its
critical section cannot be made on local information alone since otherwise the
is a different schedule where, by (C3), the demonic scheduler cansgiwcient
time to B to make its decision while A is in its critical region, violating (C1).
Thus, between the point in E1 where B waits to the point where it enters itstritic
section, A must have changed at least one global variable also visible tal B a
these critical changes must have been made be visible to B.

Now consider an alternative execution, E2, from the pointin E1 whenetére
its critical section and B is waiting such that in E2, thread A exits its critical
section but changes to the global variables by A are not made visible todd. Su
an execution is allowed since A is assumed not to execute a revealing operatio
within its lock-unlock actions. Without a revealing operation, the architedture
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not constrained to make the shared-variable updates in A visible to B. Tieus,
state visible to B is unchanged. There are two cases to consider at thislpgint.
cannot acquire the lock again (e.g., if the lock is turn based), then botrdBan
are blocked, leading to starvation. If A can acquire the lock, the priareseze can
be repeated, leading to starvation for B. In either case, thread B dbesteo its
critical section, contradicting (C2). 2
This theorem raises the question of whether revealing operations cdimbe e
inated by giving up starvation freedom. The next theorem shows that thit is
possible for most standard protocols, all of which have the following gntgp

De nition 8 A symmetric choiceoint in a mutual exclusion protocol is a state
where two or more threads are waiting to enter a critical section aitderthread
can win the race by executing a sequence of its own actions.

A mutual exclusion protocol has tteymmetric choicgroperty if there is a
reachable symmetric choice point. The standard mutual exclusion protocols b
Dekker, Peterson, and Lamport as well as the spin-lock protocokmpies in the
introduction have the symmetric choice property.

Theorem 4 A mutual exclusion protocol requires a revealing operation for each
acquire operation at a symmetric choice point.

PROOF by contradiction. Suppose there is a mutual exclusion protocol with a
symmetric choice points, where two threads, A and B are waiting to enter the
critical section and A does not have a revealing operation in its acquiratope

By de nition of symmetric choice, there is an execution E1 frerwhere A
acquires the lock rst and another execution, E2, fremhere B acquires the lock
rst. Construct execution E3 by rst executing E1, then E2. Since thisreo
revealing operation in E1, the values of the shared variables as seeadesp B
at the end of E1 are the same as thad,iand the local state @& is unchanged by
E1 (B remains in its waiting state). Therefore, it is possible to append execution
E2 to E1 and get E1;E2, but the sequence E1;E2 results in both A and Biagqu
the lock concurrently, violating mutual exclusion. 2

13.5 Asymmetric Locks

Theorem 4 implies an algorithm that avoids revealing operations in locks must
not have a symmetric choice state—i.e., it must be asymmetric. We now present
such an algorithm.

For this section only, we return to assuming there is a xed, known dominant
thread. The algorithm is made asymmetric by forcing the nondominant threads to
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request permission from the dominant thread to proceed. Figure 135 she
algorithm.

Before entering the critical section, the dominant thread checks whether a
other thread is accessing the critical section by probing the grant vaiiasé.0).
While leaving the critical section (lines 20—-24), it checks the request atpter-
mine whether another (nondominant) thread wishes to enter the critical sd€tion
the ag is set, the dominant process hands the lock to the other thread bygcallin
fenceand setting thgrantvariable to 1. The call ttencecommits any changes to
shared variables made in the critical section before it passes the lock tdteery
thread.

A nondominant thread that desires to enter the critical section (lines 12—-14)
must rst acquire a n-process lock, then set the request ag andfaadé grant.
While leaving the critical section (lines 26—28), it resets ginant variable after
calling fence The call tofencecommits all local changes to the main memory
before the lock is passed back to the dominant process.

This method has the disadvantage that a nondominant requesting thread must
wait for the dominant process to grant it permission. This implies the dominant
thread must periodically check the request ag. Thus, the algorithmresstiar-
vation freedom for the nondominant threads only when the dominant tbhesmtts
the request ag in nitely often in any in nite computation. This can be ensLipg
periodically polling the request ag.

The advantage of the algorithm is that the dominant thread does not use a
compare-and-swap instruction and uses a fence instrumtigronly when it passes
control of the critical region to a nondominant thread. In periods of mierdion
from other threads, the dominant thread does not use any atomic orifete-
tions, so locking incurs very little overhead.

13.6 Read-Write Biased Locks

In this section, instead of considering only exclusive locks, we discuess th
design of biased read-write locks that incur very little overhead on the dorhin
thread. In general, a read-write lock allows either multiple readers or ke simger
to access a critical section at any time.

We use a combination of a 2-process lock and a n-process lock. For the 2
process lock, we use a modi ed version of Peterson's algorithm; sead-if16
and Figure 13.7. The ag variable can take three valuBREAD, WRITE and
UNLOCK When a dominant threadtries to obtain a read lock, it spins if at the
same time there is another threpdriting (lines 13-16 in Figure 13.6). When the
dominant thread tries to obtain a write lock, it waits if there is another thread that
is either reading or writing (lines 4—7, Figure 13.7).



CHAPTER 13. OPTIMIZING LOCKS 173

typedef struct {
2 Threadld owner
lockN n; / N process lock/
4 bool request
bool grant
6} Lock;

8 biased_lockLock =*1) {
if (this_thread_id== [-> ownel)
10 while (I->gran) { / wait /
else {
12 lockN( [-> n);
[->request= 1,
14 while (! I->gran) {} / wait /
}

16 }

18 biased_unlockLock *I) {
if (this_thread_id== I->owne) {

20 if (1->request {

I-> request= O0;
22 fencd); / make visible all memory updates

[->grant = 1; fencd);
24

} else{
26 fencd);
[-> grant = 0O;

28 unlockN( I-> n);
30}

Figure 13.5: Our asymmetric lock algorithm

For a nondominant process to acquire a write lock (lines 10-13, Figur, it3
rst acquires a normah-process write lockwn. This write lockrwn is contended
only by nondominant processes. Once this lock is obtained, the prduesissdf
the dominating process is in the unlock state and then enters the critical section.
At this point the nondominant process is the only process in the critical Bectio
because thewlockN provides exclusive access among the nondominant processes.
The Peterson-like algorithm that follows it provides exclusive accem®s fihe
dominant thread.

For a nondominant process to acquire a read lock (lines 18-28, Figusg 1
it rst acquires a normah-process read lock on. Since then-process read lock
onrwn can be held by multiple non-dominating processes, the rst nondominant
reader competes with the dominant process. If the dominant procesyisbitis
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typedef struct {

2
4
6
8

}

10

Threadld owner

int agi; / Owner's ag /
int agj; / Non owner's ag /
bool turn

RWIlockN rwrt / N process readwrite lock /
LockN n; / N process lock/

int non_owner_readers/ No. of nondominant readerg
Lock;

biased_r_lockLock 1) {

12
14
16
18
20
22
24
26
28

30}

if (this_thread_id== [->ownel {
|-> agi = READ;
[->turn = j;
fencd);
while (I->turn == j && I-> agj == WRITE) {}

} else{

rwlockN(I-> rwn, READ); / Getaread lock/
lockN(I->n); / Getan exclusive lock/
|-> non_owner_readets;
if (I->non_owner_readers= 1) {
/| First nondominant readey
[-> agj = READ;
[->turn = i;
fencd);
while (I->turn == i && |-> agi == WRITE) {}

unlockN( I-> n);

32

34

36

38

40

42

44

46 }
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biased_r_unloakLock *I) {

if (this_thread_id== I->ownel {
[-> agi = UNLOCK;
fencd);

else {
[ockN( I-> n);
[-> non_owner_readers
if (1->non_owner_readers= 0)
I-> agj = UNLOCK;
unlockN( I-> n);
rwunlockN( I-> rwn);

}

Figure 13.6: Read functions of biased read-write locks

ing, the rst nondominant reader spins on the ag variable. The lastioaminant
reader to exit the critical section sets tlagj variable to UNLOCK(lines 41—
42, Figure 13.6). The rst and last readers are maintained by a covateble
non_owner_readerand the eld is protected by a normalprocess lock.

As in the previous sections, for the dominant process to obtain either a read
lock (lines 12-16 in Figure 13.6) or write lock (lines 3—7 in Figure 13.7) when
there is no contention, requires the manipulation of only two ags, whichHtesu
far less overhead than normaprocess read-write locks.

TherwlockN function, which obtains a normatprocess read or write lock, can
use standard reader-writer locks and implemented to be reader starfvagoor-
writer starvation-free. Between the dominant and nondominant prabesariter
dominant process may starve, especially when nondominant readersdwéng
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1 biased_w_lockLock *1)

3 if (this_thread_id== owne) {
[-> agi = WRITE;

5 [->turn = j;
fencd);
7 while (I->turn == j && |-> agj != UNLOCK) {}
} else{

9 rwlockN( I-> rwn, WRITE);
[-> agj = WRITE;

11 [->turn = i
fencd);
13 while (I->turn == i && |-> agi != UNLOCK) {}
}
15}

17 biased_w_unlogkLock *1) {
if (this_thread_id== I|->owne) {
19 [-> agi = UNLOCK;
fencd);
21
else {
23 [-> agj = UNLOCK;
[-> rwunlockN( I-> rwn);
25}

}

Figure 13.7: Write functions of biased read-write locks

in and never relinquishing the lock. But since these readers are noraanin
we expect the readers to arrive infrequently. Therefore, starvaianlikely in
practice.

13.7 Algorithm Veri cation

The correctness of the algorithm presented in Section 13.2 can be thferre
easily from its construction. The-lock provides mutual exclusion among non-
dominant threads. The 2-lock provides mutual exclusion among the donaindnt
the nondominant thread.

The correctness of the asymmetric algorithm is less obvious and in fact, we
discovered several pitfalls while developing it. We veri ed the algorithnmrfro
Section 13.5 using the SPIN3] model checker. We created two processes, one
dominant; the other nondominant, and veri ed mutual exclusion and pregreg-
erties. Even when there is more than one nondominant thread in the systeral, mutu
exclusion holds because the normdock provides exclusive access among the
nondominant threads. The progress property also holds if the nornkaddtis es
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the progress property. The bounded waiting property however is atist exi
because nondominant threads are dependent on the dominant thregdite the
lock.

For the ownership transfer protocol, we used SPIN to verify a coragan
with one dominant thread and two nondominant threads. Each nondomiread th
attempts nondeterministically to change ownership. We believe that this can gur
tion describes all interesting interactions; the generalization of this automadt pr
to arbitrary numbers of threads is ongoing work.

We also veri ed the biased read-write protocol using SPIN. We codeadl on
dominant thread and two nondominant threads. Each one nondeterministically
attempts a read or a write lock. The mutual exclusion property is satis ed even
when there are more than two nondominant threads because the nondominan
thread has to acquire either a nornmalvrite-lock or n-read-lock depending on
the action before entering the critical section.

The veri cation with SPIN is based on a sequentially consistent model. By per
turbing the sequence of assignments, it is possible to discover whichingsiare
relevant for the proof of correctness; this indicates positions wheeegemust be
inserted for correctness on modern architectures with weaker ordprargntees.

In the future, we plan to use tools such as Check-F&2@leo determine optimum
placement of fences.

13.8 Experimental Results

The experiments described in this section have two purposes: to compare the
performance of the new biased lock algorithms against similar algorithmsgedpo
in earlier work using the pthread spin-lock implementation on Linux as the base
reference, and to con rm our intuition about the behavior of these #lgos,
i.e., that the performance improves monotonically with increasing domination.
We coded the algorithms in C and we ran the experiments on an Intel Core 2
Quad processor with 2GB Memory and Fedora Core 7 installed. Prograres we
compiled with -O ag. We reimplemented reference [12] in C.

13.8.1 Performance with varying domination

To compare the different algorithms, we created four threads and male on
of them dominant. The critical section just incremented a counter—a delilyerate
small task to maximize lock overhead. We varied the dominance percentage and
measured the execution times; see Figure 13.8. A dominance of 90% indicdtes th
for 100 accesses to the critical section, the dominant thread accessz#itia
section 90 times and the remaining threads access the critical section 10 times.
The lock accesses were evenly spaced: they follow a skewed butirstybccess
pattern.
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We tested our micro benchmark on various algorithms. Our base casenfor co
parison is the pthread spin lock (represented by a horizontal line at€jledtribed
the biased asymmetric lock in Section 13.5. The biased thread implementation
uses Peterson's algorithm for 2-lock and p-threadsnftwck. The biased MCS
implementation uses Peterson along with MCS locks. The biased CAS is the
implementation from Kawachiya et 404
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Figure 13.8: Behavior at varying domination percentages

For each of these algorithms, we observed the performance improve as we
increased the dominance of the owner thread. Figure 13.9 shows detéils of
results from Figure 13.8 for domination between 90 and 100%, the expectgd
for the motivating packet processing application. Not surprisingly, thmawetric
method performs best when the domination percentage is high because agsgmme
locks are very lightweight and do not require fence instructions in the darhin
thread when there is no intervention from other threads. On the other Waed
the domination is less, the nondominant threads have to wait until the dominant
thread signals; this overhead is insigni cant for high dominance.
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Figure 13.9: Behavior at high domination percentages
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Figure 13.10: Lock overhead for a sequential program
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Figure 13.11: Behavior of our packet-processing simulator with asymmetiis lo
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Figure 13.12: Performance of our biased locks on a database simulatibrefo
query SELECT SUM(C2) GROUP BY C1
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Figure 13.14: The effect of bias transfer for incorrect biasing
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Figure 13.15: Performance of our biased locks on applications (SPRA®Hch-
mark) without dominant behavior.
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Figure 13.16: A comparison of our biased rwlock with Linux thread rwlock.
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Figure 13.17: Performance of our biased read-write locks on a romeragor
with 95% reads and 5% writes.

13.8.2 Locked vs. lockless sequential computation

Next, to measure the overhead of each of these locks, we createdemtalqu
program that, to represent work, does the naive recursive Fibormmputation
b(n)= b(n 1)+ b(n 2),andthus shows exponential behavior with increas-
ing n. We protected the counter by a lock and compared the performance of
different locks with the version without locks; see Figure 13.10. Thigseterely
measures the overhead of these locks. First, we see that the threathdschkee
maximum overhead (about 100%) and asymmetric locks has the least (lass tha

1%). Second, as the computation load increases, the relative overbe@hskes
slowly.

13.8.3 Performance of a packet-processing simulator with asymnmét locks

From these experiments, we concluded that asymmetric locks are the best fo
our packet-processing application. Also, since the nondominant thregdse
permission from the dominant/owner thread to enter the critical section, asymmet-
ric locks are suitable for applications that have dominant threads thatmewef. In
our packet-processing application, we replaced the thread locks lagpommetric
locks and compared the performance with the original one with pthreads (Fig
ure 13.11). Within each lock we also added a synthetic computation that ¢akula
Fibonacci numbers. When the computation time is high (e.g., for b(13)), the
nondominant threads have to wait more for the dominant thread to signaffdreer
we see b(8) performing better than b(13). The difference betweenttto loads
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is roughly a factor of 10 because(h) scales ag", wheref  1:618 is the golden
ratio.

13.8.4 Biased Locks for Database Queries

Flexible locks (Section 13.2) that consist of 2-locks combined wwitbcks
are more robust to variations in computational load, although they requice fe
instructions whenever a dominant lock is obtained or released. To tesethe b
havior of these locks, we wrote code that performs the SOL query “€HLE
aggregate_function(c1) FROM t group by c2.” Such a query is typigaithgessed
concurrently. The tableis divided inton parts; each partis processed by a separate
thread, which maintains a local hash table. If the data ¢4dsrocalized, most of
the hash updates are local to the thread, otherwise it is necessary to thedifsh
table of a different thread; see Figure 13.12. As the locality of data inesedhe
biased locks perform better. Although the performance depends stramdow
the data are ordered, in many cases the ordering is such that data firetbca

13.8.5 Ownership transfer

We xed the ownership of locks in the above applications, but our algorithm
in Section 13.3 allows for ownership transfer. To test its performanceresed
four threads that each perform a Fibonacci calculation in the critictibsed=ig-
ure 13.13 compares the performance of our biased locks that suppettie-oy
ownership changes with the implementation that only supports static ownership.
The implementation that supports change of ownership does not do assviled a
the static implementation because of the extra overhead to support biagrtransf
The ownership changes to the thread that was recently dominant, i.e, the most
recent thread that has been acquiring the lock continuously. Howeslees better
than the unbiased implementation.

13.8.6 Ownership transfer with incorrect dominance

In Figure 13.14, we also compare the ownership on-the-y implementation
with a static ownership implementation, but for the latter implementation, we set
the dominance incorrectly. The ownership on-the- y implementation easilgtada
itself and changes the dominance to the most recently dominant.

13.8.7 Overheads for nondominant behavior

The general trend is that as the dominance increases, biased loakspeet-
ter than unbiased locks. With applications that do not exhibit dominant ehav
we do not expect any improvement. We tested our biased locks on SPLASH2
benchmark$134]. Most of these benchmarks exhibit master-slave behavior where
work is divided among different threads. Even in the absence of docenamur
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biased implementation deteriorated by at most 2% compared to the sequential
version for these benchmarks.

13.8.8 Performance of biased read-write locks

Finally, we compared our biased read-write lock implementation with the pthread
implementation of read-write locks. Figure 13.16 shows the results. Ourdbiase
read-write lock performs very well even when the dominance fractiontiseny
high because read-write locks are generally very expensive artbaunant read-
write lock optimizes it to a large extent.

13.8.9 Performance on a simulated router application

To test the effect of biased read-write locks on actual examples, we sadaa
router application. A router maintains a look-up table where the entries attymos
static, but occasionally (5% of the time) the IP addresses change, in wdseh ¢
a write lock is required. It usually maintains a distributed look-up table in which
most lookups are local to a thread. Figure 13.17 suggests that, as ex@ectee
increase the number of local lookups, the biased read-write locksrpebfetter.

13.9 Related Work and Conclusions

We have provided simple algorithms for constructing biased locks. We imple-
mented these algorithms as a simple library, without any special supportfieom
operating system. Our experimental evaluation shows that our algorithfiosrper
well in practice when the dominance fraction is high, as expected. This nsatche
the pro le of our intended applications, e.g., network packet processihige
evaluations were all carried out on an Intel Quad core machine and sh#sre
therefore, re ect the relatively high costs of fence and atomic operatmthe
x86 architecture.

As we mentioned in the introduction, there is other work on optimizing lock
implementations, such as thin lockd] and lock-reservation algorithnig1; 94;

7]. The original thin lock algorithm requires a compare-and-swap on eath lo
acquisition, which our algorithm avoids.

The lock-reservation work is closest to ours. In Kawachiya ef7l], the
disadvantage is that when a lock is reserved for the owner and the nentnes
to attempt the lock, the nonowner stops the owner thread and replacesveol@mtk
This step is very expensive because the owner thread is suspendeder@ et
al. [94] proposes a modi cation similar to ours: a hybrid algorithm that tightly
intertwines Dekker's 2-process algorithm with esprocess CAS algorithm. Our
scheme simpli es this by keeping the two algorithms separate and generaliges it b
allowing any choice of 2-process anerocess mutual algorithms.
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We show how to transfer lock ownership among threads without susgendin
the current owner. Although Russell and DetlEf§4] also support bias transfer,
their global safe-point technique for bias revocation is costly. In thehrtieeie,
it is dif cult to determine at any point whether a biased lock is actually held by a
given thread. Our technique is simple and inexpensive: it only requireexiva
assignments and two comparisons.

Finally, we examined the necessity of memory fence instructions on modern
processors and shed light on the key role played by the symmetric chaipe pr
erty of most mutual-exclusion algorithms. The asymmetric algorithm presented
in Section 13.5 is, in a sense, the most ef cient possible, since it avoids both
memory fence and atomic operations in the dominant process except atinhe po
of transferring control of the lock, where they are unavoidable. Ean@k on
asymmetric biased locKgt3; 44 has a similar motivation, but the analogues of
the request-grant protocol, called SERIALIZE(t) by Dice ef48], appear fairly
heavyweight, involving either thread suspension and program cowasrieation,
or context switches.

It is clear that the performance improvement of biased locks dependson th
relative performance of compare-and-swap, memory fence, and simpi®nye
instructions. There is unfortunately no standard model that one can tssoret-
ically analyze performance, therefore we picked the instance of the mmshon
architecture for our experiments. We plan to experiment on more machines in th
future.

Lastly, we have not yet used biased locks in our SHIM models and compilers
that guarantee determinism, even though their deterministic constructs are imple-
mented using locks. We wish to do this soon.
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Chapter 14

Conclusions

It is time for a new era of bug-free parallel programming that will enablg@m-
mers to shift easily from the sequential to the parallel world. | believe that this
thesis will be a signi cant step along the way to parallel programming.

This thesis provides programming language support to address the two major
problems of concurrency — nondeterminism and deadlocks. Througthtsss,
we demonstrate that determinism is not a huge performance bottlenecks It ha
advantages for code synthesis, optimization, and veri cation, making iereas
for an automated tool to understand a program's behavior. This adeargag
particularly helpful for deadlock detection, which for models like SHIM maTOre
differently interleaved executions.

Most concurrent programming languages that are in use today allowamneg
mers to write programs that are nondeterministic and/or prone to deadlduése T
bugs are usually checked during runtime. This thesis presents a wayiddlzese
bugs during the software development phase.

We believe that our techniques simplify debugging and hence enhance the
productivity of programmers. The language and the compiler simply prexemnt
determinism and deadlocks. The programmer does not have to worry thlesa
concurrency bugs and can focus on the logic of the program.

Since we adopt our techniques at the compiler level, the application-lexel pr
grammer does not have to worry about the hardware. This enhandebility,
especially when the underlying hardware changes. Also, we also duropbse
changes in the hardware; a software amendment is always easiestanddapply.

Although we have presented our techniques with SHIM, we believe that our
ideas can be extended to any general programming language. In Ch@ptee
adopted our model to the X10 programming language. Realistically, it will take on
engineer and approximately six months to port our ideas to any genepaigaur
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concurrent programming language. Some of the techniques we havestidcare
already in the of cial X10 release. A good way to evaluate the practicaldishis
thesis is to adopt these ideas in many other concurrent programming lasg \eg
would like to see how their benchmarks perform and if there is signi carfope
mance overhead. In addition, we would like to see how programmer proiycti
increases.

Our future plans forsHiM include code generation fusing parallelism with
static scheduling4§], extracting parallelismi82], data distribution113, com-
munication optimizatior{102, synthesis of hardware and dealing with reactive
systems.

We currently do not deal with pointers and complicated data structures, and
we need a good mechanism to include them. Our long term goal is automatic
determinism{125— starting from a nondeterministic program, our compiler will
insert just enough additional synchronization to guarantee determini$iavioe,
even in the presence of nondeterministic scheduling choices. Our ultimdtis goa
deterministic deadlock-free concurrency along with ef ciency.
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