
Implementing Zeroconf in Linphone

Abhishek Srivastava,∗ Jae Woo Lee,† and Henning Schulzrinne‡

Computer Science Department, Columbia University
(Dated: January 12, 2011)

ABSTRACT
This report describes the motivation behind implementing Zeroconf in a open source SIP phone(Linphone) [1] and the
architecture of the solution implemented. It also describes the roadblocks encountered and how they were tackled in the
implementation. It concludes with a few mentions about future enhancements that may be implemented on a later date.

I. INTRODUCTION

Linphone [1] is a freely available open source SIP phone
that has been ported to a number of different platforms
like Linux, Windows, iPhone and more recently, even An-
droid. It has an easily extendible architecture that allows
developers to build on the existing low level libraries to
easily add new features and improvements.

One such feature that has been implemented in a num-
ber of IM clients is the ability of the agent to discover
other agents like itself that are present on the local net-
work. Consider a small office or organization of people
wanting to be able to communicate with each other with-
out having to constantly configure and add friends/users
into their contact lists to establish short duration conver-
sations over voice or IM.

The Apple Bonjour protocol [3], also known as the Ze-
roconf protocol, provides the APIs for applications to
implement service discovery and service publishing func-
tionalities.Bonjour locates devices such as printers, other
computers, and the services that those devices offer on
a local network using multicast Domain Name System
service records. A number of applications like ITunes,
XMMS and Ekiga now implement some form of service
discovery mechanisms to take advantage of the enhance-
ment it brings to user experience.

Lee et all in their IETF draft [2] proposed using Zero-
conf for SIP URI discovery using DNS Service Discovery.
This would allow SIP agents in a local network to discover
each other without the presence of a SIP Registrar. Set-
ting up a SIP Registrar in a small adhoc network may
not be entirely feasible; and this is the perfect scenario for
the solution proposed in the draft. Linphone is one such
SIP agent that was chosen as an appropriate candidate
for implementing the prototype of this solution.

There are alternatives to using DNS-SD for estab-
lishing adhoc SIP calls between agents in a local net-
work. SIP Multicast sends SIP INVITEs to other
agents using multicast groups with destination IP address
(224.0.1.75). To be able to discover each other though,
they would have to send multicast REGISTER requests
and maintain databases of peers whose REGISTERs they

∗ aas2234@columbia.edu
† jae@cs.columbia.edu
‡ hgs@cs.columbia.edu

have received. Unlike DNS-SD, newly arriving UAs will
not discover other UAs until they refresh their REGIS-
TERs, thus providing only passive discovery. There could
be a significant amount of delay introduced due to this
in high-churn networks like adhoc wireless networks.

II. MOTIVATION FOR CHOOSING LINPHONE

Linphone is a SIP client that provides functionalities
for placing SIP voice calls when configured with an ac-
count in a SIP Registrar. It provides a minimalistic GUI
but has an extensive command-line based UI. Due to its
layered architecture, it has been ported to a number of
platforms with ease. Figure 1 shows the architecture of
the Linphone source code.

FIG. 1. Layered Architecture of Linphone Code

2

Previously, the prototype that implemented Zeroconf
for SIP Communicator used Bonjour APIs and was im-
plemented in Java. This project aimed to replicate a
similar functionality in Linphone for the Linux platform.
The Avahi APIs [5] are a perfect fit for an application
based in C on Linux, like Linphone. It provides high-
level C APIs for implementing service browsing and ser-
vice publishing and also provides methods for turning
these into threads that can be started and terminated
asynchronously from another controlling thread.

Linphone is built over a high level library called Lib-
linphone that integrates all the SIP video calling features
into a single easy to use API. The core functionalities of
liblinphone are call initiation, termination, acceptation,
management of proxy configurations and registrations,
addressbook, presence, call logs and persistence of con-
figuration data and contact lists. Currently, this library
has been ported to Linux (x86, x86 64, ARM, blackfin),
Windows (XP, V ista, 7), MacOS X (audio only) and
Google Android (audio only).Liblinphone brings together
the 2 aspects of VOIP communication : media and sig-
naling. It uses the exoSIP2 stack for SIP signaling and
mediastreamer2 for voice/video streaming.

III. ARCHITECTURE OF IMPLEMENTATION

Initially, the aim of the prototype solution was to be
able to allow discovery of SIP URIs on the local network.
Having achieved this, the goal was then to make it pos-
sible to call these SIP URIs, send messages to them and
add them as contacts. A complete list of the use cases
that were envisioned are documented in Figure 2.

FIG. 2. Use Cases for Zeroconf in Linphone

The Avahi daemon acts on behalf of an application to
advertise the service, discover new services and manage
the traffic shaping of the DNS queries by caching DNS
records. Applications are exposed to the avahi-common
API that is built over the Avahi daemon’s interfaces.
The inter-process communication between the applica-
tion and the daemon is done using the D-Bus messaging
system [6]. As an application developer wanting to use
mDNS-SD [4], one has to write the callback functions
that will be called when a new service is discovered, a
server state change occurs, etc. The avahi-common API
is essentially event-based from the viewpoint of an appli-
cation developer, although underneath it polls for Avahi

daemon state changes.

FIG. 3. Linphone’s Linux GUI

Instead of trying to integrate the solution into Lin-
phone right from the start, the approach taken was to
first create and test the Avahi service browsing and pub-
lishing modules in a standalone mode. These modules
were implemented as separate threads (pthreads) and
were then integrated into Liblinphone. The threads were
triggered with a configuration option in the Linphone
configuration menu. A separate tab (separate from the
usual contacts) was added to display “zeroconf contacts”
as was suggested in [2]. A simplistic component diagram
in Figure 4 indicates how these modules interact when a
SIP call is to be placed.

UAs discovered via mDNS-SD would need to be pre-
sented appropriately to the user in a GUI. The Linphone
GUI in Linux is built with GTK widgets [7] and it was
fairly simple to add a GTK tab (“Users Nearby”) (Figure
3) to display the zeroconf users discovered in the .local
domain. Users discovered through zeroconf would be like
transient contacts that the user can interact with by call-
ing or messaging. The GUI also provides the means to
add a transient contact as a permanent contact. Doing
so may be beneficial if the contact’s zeroconf broadcast is
switched off and the user wishes to call him/her. Offline
users are not displayed in zeroconf and as opposed to
Bonjour, the disappearance of a contact on the network
is almost instantaneous.

IV. CHALLENGES FACED

The challenges faced while implementing this project
were mainly due to inadequate documentation of the
Avahi libraries, synchronizing data structures between
threads and integration issues with Linphone’s large code

3

FIG. 4. Component Diagram of Solution

base. Since the Avahi service browser and publisher were
implemented as independent threads, they needed to be
managed from the controlling Linphone g main() thread.
As it turns out, in the world of pthreads, one thread can-
not directly terminate another thread. The suggested
method is to have a shared mutex that one thread may
write to and the other keeps reading from to see if it has
to terminate. More recently, the Avahi community has
come up with the AvahiThreadedPoll object that simpli-
fies the integration of Avahi into multithreaded applica-
tions. The polling is run in a different thread and there
are functions that can be called to start/stop this polling
object.

Since the UI widgets and handlers were written in
GTK, the appropriate handlers had to be integrated so
as to display the zeroconf users list and their presence.
There was a steep learning curve in understanding the
GTK event loops, callback functions from the widgets
and the GTK tags that were required for designing the
UI.

Integration with a large pre-existing code base also
was quite challenging. There were a number of execu-
tion flows in Linphone; some were triggered from the UI
and some were triggered by externally arriving SIP IN-
VITE requests. It was important to make sure that any
changes that were made to add zeroconf did not break
any of these flows. A large amount of effort went into
testing all the features after integration of zeroconf with
Linphone.

V. CONCLUSIONS AND FUTURE WORK

As more and more applications move towards adopt-
ing Zeroconf as a de-facto standard of discovering peers
and publishing their own services, it is becoming increas-

ingly important to have a well-documented and easy to
implement API for mDNS-SD. The Avahi API design-
ers have achieved this distinction to a large extent, and
today, there are a large number of applications that use
Avahi as their mDNS-SD implementation.

The patch created as a deliverable in this project has
been sent to the Linphone developers so that it may
be integrated with the mainstream Linphone project.For
brevity, the patch has not been included in this report but
the code is available as a public git repository hosted on
Gitorious (gitorious.org/linphone-with-avahi-zeroconf).

Future enhancements to Zeroconf on Linphone may in-
clude parsing the TXT record for obtaining more infor-
mation about a contact like presence information, loca-
tion details and status messages. It is debatable whether
one would want to broadcast such information in the
TXT record because it would violate privacy and make
it easy for miscreants to obtain sensitive details about
the contact. In the context of a small office or home net-
work, it should be reasonable to assume that such details
may be broadcast without causing much harm, with the
knowledge and permission of the user.

mDNS-SD may also be used to obtain configuration
data for a SIP UA like SIP Proxy and Registrar servers
and port numbers. The SIP Proxy servers in a partic-
ular domain may advertise themselves as PTR records
and send across more detailed information in the TXT
record when resolved for by a SIP UA. This would cater
to a larger domain of SIP UAs that would like to call
other UAs registered on different SIP Registrars. These
SIP Registrars may be in the .local domain or a wide
area domain; generally, one would call other SIP UAs
through a Registrar only if they are on a different net-
work domain. mDNS-SD can be done on the wide area
domain to resolve such SIP Registrars.

4

[1] Linphone : An Open Source SIP Phone, www.linphone.org
[2] Lee, Schulzrinne, Kellerer, Despotovic, SIP URI Service

Discovery using DNS-SD IETF, Network Working Group
Internet-Draft

[3] Bonjour : Implementation of Zeroconf Service Discovery
Protocol, http://www.apple.com/support/bonjour/

[4] Cheshire, Krochmal, DNS-Based Service Discovery IETF,
Network Working Group Internet-Draft

[5] Avahi : Service Discovery API www.avahi.org
[6] D-Bus : Message Bus System for IPC

http://www.freedesktop.org/wiki/Software/dbus
[7] GTK : Library for Building GUIs for X Window System

www.gtk.org

