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Abstract

Tractability of multivariate problems has become nowadays a popular research
subject. Polynomial tractability means that the solution of a d-variate problem
can be solved to within ε with polynomial cost in ε−1 and d. Unfortunately, many
multivariate problems are not polynomially tractable. This holds for all non-trivial
unweighted linear tensor product problems. By an unweighted problem we mean
the case when all variables and groups of variables play the same role.

It seems natural to ask what is the “smallest” non-exponential function T :
[1,∞) × [1,∞) → [1,∞) for which we have T -tractability of unweighted linear
tensor product problems. That is, when the cost of a multivariate problem can be
bounded by a multiple of a power of T (ε−1, d). Under natural assumptions, it turns
out that this function is

T qpol(x, y) = exp ( (1 + ln x) (1 + ln y) ) for all x, y ∈ [1,∞).

The function T qpol goes to infinity faster than any polynomial although not “much”
faster, and that is why we refer to T qpol-tractability as quasi-polynomial tractability.

The main purpose of this paper is to promote quasi-polynomial tractability es-
pecially for the study of unweighted multivariate problems. We do this for the worst
case and randomized settings and for algorithms using arbitrary linear functionals
or only function values. We prove relations between quasi-polynomial tractability
in these two settings and for the two classes of algorithms.
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1 Introduction

Many computational problems are defined on spaces of functions depending on d variables
with large or even huge d. Such problems are usually solved by algorithms that use finitely
many information operations. One information operation is defined as one function value
or the evaluation of one linear functional. The minimal number of information operations
needed to find the solution to within ε is the intrinsic difficulty of the problem. It is called
the information complexity and is denoted by n(ε, d) to stress the dependence on the two
important parameters.

Tractability of multivariate problems studies when n(ε, d) is not exponential in ε−1

and d. If this holds we say that a multivariate problem is weakly tractable. It turns out
that many standard multivariate problems are not weakly tractability. More precisely,
many of them suffer the curse of dimensionality since the information complexity depends
exponentially on d. We stress that this may hold independently of the smoothness of the
functions of a multivariate problem.

Even if the multivariate problem is weakly tractable, we want to know more accurately
what is the non-exponential behavior of its information complexity. Since there are many
ways to define the lack of exponential dependence, we have many different notions of
tractability.

The first and the most studied case of tractability of multivariate problems has been
polynomial tractability. We now want to guarantee that the information complexity n(ε, d)
can be bounded by a polynomial in ε−1 and d. Unfortunately, many unweighted multi-
variate problems are not polynomially tractable. By an unweighted problem we mean a
multivariate problem that is defined for functions for which all variables and groups of
variables play the same role. The primary example of such an unweighted problem is a
linear tensor product when the d-variate problem is given as the d-fold copy of the linear
univariate problem.

The negative results for weak and polynomial tractability have opened up a new
research direction of the tractability study for multivariate problems defined for weighted
spaces. In this case, all variables and groups of variables of functions are moderated
by weights. Then the major question studied thoroughly in many papers has been to
find necessary and sufficient conditions on the weights to guarantee weak or polynomial
tractability. It turns out that for properly decaying weights, indeed weak and polynomial
tractability hold. The reader may consult the books [6, 7] for the state of art of tractability
study.

The current paper studies only unweighted multivariate problems. As already men-
tioned, for most of them we do not have polynomial tractability. On the other hand, for
some of them we do have weak tractability. In particular, this is the case for all linear
tensor product problems for which the corresponding eigenvalues λn for the univariate
case go to zero faster than [ln n]−2, see Papageorgiou and Petras [8]. This means that the
information complexity n(ε, d) of such multivariate problems goes to infinity faster than
any polynomial but slower than an exponential function in ε−1 and d. The question that
we study here is to characterize more accurately the behavior of n(ε, d). In particular, we
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want to find a “smallest” function T : [0,∞)× [1,∞)→ [1,∞) which is non-decreasing in
both variables and which tends to infinity slower than exponentially and such that n(ε, d)
can be bounded by a multiple of a power of T (ε−1, d). That is, there are two non-negative
numbers C and t such that

n(ε, d) ≤ C T (ε−1, d)t for all ε ∈ (0, 1), d ∈ N.

The concept of a “smallest” function is explained in the paper. It turns out that the
function

T (x, y) = T qpol(x, y) := exp ((1 + ln x)(1 + ln y)) for all x, y ∈ [1,∞)

is the solution of this problem.
Note that for fixed x or y, the function T qpol behaves polynomially in the second

argument with the exponent 1 + ln x or 1 + ln y. So if x and y vary then the exponent
is not fixed and therefore T qpol is not a polynomial. However, the exponent 1 + ln x or
1 + ln y slowly increases to infinity and that is why we decided to call tractability for
the function T qpol quasi-polynomial tractability. The function T qpol is a special case of
T -tractability functions studied in [1, 2, 3, 6, 7].

The main purpose of this paper is to promote quasi-polynomial tractability especially
for the study of unweighted multivariate problems. Quasi-polynomial tractability offers
an alternative solution how to deal with the lack of polynomial tractability. One solution
is to regain polynomial tractability by switching to appropriately smaller weighted spaces.
The other solution is to keep the unweighted spaces but switch to “slightly” faster growing
tractability functions T and prove T -tractability for unweighted multivariate problems.
The latter solution is obtained for quasi-polynomial tractability at least for a natural class
of unweighted linear tensor problems.

Tractability can be studied in different settings and for different error criteria. In this
paper we study quasi-polynomial tractability in the worst case and randomized settings
for the normalized error criterion, and it is done for the class Λall

d of arbitrary linear
functionals and the class Λstd

d of function evaluations.
In Section 3, we study the worst case setting for unweighted linear tensor product

problems. We first consider the class Λall
d . We show that such multivariate problems

are quasi-polynomially tractable iff the corresponding eigenvalues λn for the univariate
case go polynomially fast to zero and the largest eigenvalue is of multiplicity one, see
Theorem 3.3. We find the exponent of quasi-polynomial tractability which is defined as
the smallest power of T qpol(ε−1, d) whose multiple bounds the information complexity
n(ε, d). The exponent depends only on the decay of λn and on the ratio of the two largest
eigenvalues. We also prove that T qpol is the “smallest” tractability function for which
T -tractability holds, see Theorems 3.4 and 3.6. The concept of a “smallest” function is
explained in Section 3.1.

We then turn to the class Λstd
d . We show that quasi-polynomial tractability for the

class Λall
d does not, in general, imply quasi-polynomial tractability for the class Λstd

d . This
is demonstrated by two examples of the multivariate approximation problem. The first
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example deals with a tensor product space of piecewise constant functions for which there
is no difference between the classes Λall

d and Λstd
d . The second example deals with a

Korobov space of periodic and smooth functions for which quasi-polynomial tractability
holds for the class Λall

d , whereas we do not even have weak tractability for the class
Λstd
d . In fact, for the class Λstd

d , we have the curse of dimensionality since n(ε, d) depends
exponentially on d. This holds even if we consider arbitrarily smooth functions and when
the exponent of T qpol-tractability for the class Λall

d is arbitrarily small. It would be of
interest to characterize the unweighted linear tensor product problems for which we have
the equivalence of quasi-polynomial tractability for the classes Λall

d and Λstd
d .

In Section 4 we study the randomized setting. As before, we first study the class
Λall
d . In this case, we analyze more general linear multivariate problems that are not

necessarily linear tensor product problems. Based on known results, we conclude that
quasi-polynomial tractability in the randomized setting is equivalent to quasi-polynomial
tractability in the worst case setting, and this holds with the same tractability exponents,
see Corollary 4.1.

For the class Λstd
d , we restrict ourselves to multivariate approximation for an L2 space.

Based on [10], we show that quasi-polynomial tractability in the randomized setting and
for the class Λstd

d is equivalent to quasi-polynomial tractability for the class Λall
d and both

are equivalent to quasi-polynomial tractability in the worst case setting for the class Λall
d ,

and this holds with the same tractability exponents, see Theorem 4.2.

2 Preliminaries

2.1 Linear Multivariate Problems

Let m ∈ N = {1, 2, . . .} be a fixed positive integer. For d = 1, 2, . . ., let Hd be a normed
linear space of complex-valued functions

f : Dd ⊆ R dm → C,

and let Gd be a normed linear space. In this paper we consider sequences S = {Sd} of
linear operators Sd : Hd → Gd. We call S a linear multivariate problem.

By linear information, we mean the class Λall
d of all linear functionals defined on Hd.

By standard information, we mean the class Λstd
d of all function evaluations, i.e., all

functionals L on Hd of the form L(f) = f(x) for some x ∈ Dd and all f ∈ Hd. Let

Λd ∈ {Λall
d ,Λ

std
d }.

We consider Λd = Λall
d in Subsections 3.1 and 4.1, whereas Λd = Λstd

d in Subsection 3.2
and 4.2.

We can restrict ourselves to linear algorithms that use finitely many admissible infor-
mation operations, as explained in [9, Ch. 4] for the worst case and in [10, Remark 1] for
the randomized setting. In the worst case setting a linear algorithm An,d has the form

An,d(f) =
n∑
i=1

giLi(f) (1)
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for some Li ∈ Λd and some gi ∈ Gd. In the randomized setting, a linear algorithm An,d
has the form

An,d(f, ω) =
n∑
i=1

gi,ωLi,ω(f) (2)

for some random element ω distributed according to some probability measure σ on some
probability space Ω. That is, both the elements gi,ω ∈ Gd and the admissible functionals
Li,ω ∈ Λd can be selected randomly. We assume that An,d(f, ·) is measurable.

The worst case error of an algorithm An,d is defined as

ewor(An,d) = sup
f∈Hd,‖f‖Hd≤1

‖Sd(f)− An,d(f)‖Gd . (3)

The randomized error of an algorithm An,d is defined as

eran(An,d) = sup
f∈Hd,‖f‖Hd≤1

(
Eω‖Sd(f)− An,d(f, ω)‖2

Gd

)1/2
(4)

where

Eω‖Sd(f)− An,d(f, ω)‖2
Gd

=

∫
Ω

‖Sd(f)− An,d(f, ω)‖2
Gd

dσ(ω). (5)

In both cases the initial error is

einit(Sd) = ‖Sd‖ = ewor(A∗0,d) = eran(A∗0,d) ,

where ‖Sd‖ is the operator norm of Sd and A∗0,d = 0 is the zero algorithm. Let

ewor(n;Sd,Λd) = inf{ewor(An,d) | An,d is of the form (1)}, (6)

and let
eran(n;Sd,Λd) = inf{eran(An,d) | An,d is of the form (2)}. (7)

Furthermore, let

nwor(ε, Sd,Λd) = min{n | ewor(n;Sd,Λd) ≤ ε einit(Sd) } (8)

and
nran(ε, Sd,Λd) = min{n | eran(n;Sd,Λd) ≤ ε einit(Sd) } (9)

denote the minimal number of admissible information operations from Λd ∈ {Λall
d ,Λ

std
d }

needed to reduce the initial error by a factor ε ∈ (0, 1). This corresponds to the normalized
error criterion. The numbers nwor(ε, Sd,Λd) and nran(ε, Sd,Λd) are called the information
complexity of the problem Sd in the worst case and the randomized settings, respectively.
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2.2 Generalized Tractability

In this paper we are interested in arbitrarily large dimension d. Hence it is not sufficient
to determine solely the dependence of the information complexity on the approximation
error ε, but it is necessary to study the explicit dependence on both parameters ε and d.
This issue is addressed by the notion of tractability, see e.g. [11], where this notion was
introduced. We recall here the more general concept presented in [1], see also [6, Ch. 8].

An unbounded subset Ω of [1,∞)× N is called a tractability domain. A function

T : [1,∞)× [1,∞) → [1,∞)

is a tractability function if T is non-decreasing in x and y and

lim
(x,y)∈Ω, x+y→∞

lnT (x, y)

x+ y
= 0 . (10)

Let now Ω be a tractability domain and T a tractability function. The multivariate
problem S = {Sd} is (T,Ω)-tractable in the class Λ = {Λd} in the worst case or ran-
domized setting if there exist non-negative numbers C and t such that the corresponding
information complexity satisfies

nwor/ran(ε, Sd,Λd) ≤ C T (ε−1, d)t for all (ε−1, d) ∈ Ω. (11)

The exponent ttra of (T,Ω)-tractability in the class Λ is defined as the infimum of all
non-negative t for which there exists a C = C(t) such that (11) holds.

The multivariate problem S is strongly (T,Ω)-tractable in the class Λ = {Λd} in the
worst case or randomized setting if there exist non-negative numbers C and t such that
the corresponding information complexity satisfies

nwor/ran(ε, Sd,Λd) ≤ C T (ε−1, 1)t for all (ε−1, d) ∈ Ω. (12)

The exponent tstr of strong (T,Ω)-tractability in the class Λ is the infimum of all non-
negative t for which there exists a C = C(t) such that (12) holds.

Assume that we have two tractability functions T1 and T2 such that there exist numbers
C1, C2 > 0 and α1, α2 > 0 such that C1T

α1
1 ≤ T2 ≤ C2T

α2
1 . It is clear from our definitions

that the concepts of Ti-tractability are the same modulo the obvious changes in the
corresponding exponents and factors. This makes clear that we can obtain (substantially)
different tractability results for T1 and T2 only if they are not polynomially related.

A motivation of the notion of generalized tractability and many examples of tractabil-
ity domains and functions can be found in [1]. We just mention here two important
examples. If our tractability function T = T pol is given by

T pol(x, y) = xy for all x, y ∈ [1,∞),

then we have the (standard) polynomial tractability defined as in [11] and studied in many
papers afterwards. If our tractability function T = T qpol is given by

T qpol(x, y) = exp
(
(1 + ln(x))(1 + ln(y))

)
for all x, y ∈ [1,∞),
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then we have quasi-polynomial tractability. Quasi-polynomial tractability is the main
subject of this paper.

If we fix the variable x or y, the function

T qpol(x, y) = (e x)1+ln y = (e y)1+lnx

behaves polynomially in the other variable. Moreover, even if both variables vary the
exponent of x or y depends only weakly on the second argument. That is why we call this
behavior quasi-polynomial. Notice that T = T pol is of product form T (x, y) = F1(x)F2(y),
while the tractability function T = T qpol is not.

Note that strong quasi-polynomial tractability is the same as strong polynomial tractabil-
ity since T qpol(x, 1) = ex. This also implies that the exponent of strong quasi-polynomial
tractability is the same as the exponent of strong polynomial tractability.

A weaker concept of tractability, which only measures the absence of an exponential
growth of the information complexity in d and ε, is the notion of weak tractability, which
was introduced in [2] and [6]. We say that a multivariate problem S is weakly tractable if

lim
d+ε−1→∞

lnnran/wor(ε, Sd,Λd)

d+ ε−1
= 0 .

Looking at these different notions of tractability, one may ask whether they are really
different and if they describe different classes of T -tractable problems. More to the point,
one may be interested in the answers to the following questions.

Question 2.1. Are there linear multivariate problems

(i) for which the restriction of the tractability domain helps to achieve tractability?

(ii) for which weak tractability holds but polynomial tractability does not?

(iii) for which quasi-polynomial tractability holds but polynomial tractability does not?

(iv) for which it is more adequate to consider tractability functions of non-product form?

Question 2.1(i) was addressed in [1], see also [6, Ch. 8], and the answer is indeed
affirmative. For simplicity, in this paper we restrict ourselves to the tractability domain
Ωunr := [1,∞) × N, which is called the unrestricted tractability domain, and answer the
remaining questions for Ωunr.

In the next sections, we will show that the answers to Questions 2.1(ii), (iii), and (iv)
are also affirmative for linear tensor product problems.

Since from now on we only consider Ω = Ωunr, we omit any reference to the tractability
domain Ω, and by T -tractability we will mean (T,Ωunr)-tractability.
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2.3 Linear Tensor Product Problems

We describe the setting we want to study in this paper in more detail. Let H1 be a
separable Hilbert space of complex-valued functions defined on D1 ⊆ Rm, and let G1 be
an arbitrary separable Hilbert space. Let S1 : H1 → G1 be a compact linear operator.
Then the non-negative self-adjoint operator

W1 := S∗1S1 : H1 → H1

is also compact. Let {λj}j∈N denote the sequence of non-increasing eigenvalues of W1, or
equivalently let {

√
λj}j∈N be the sequence of the singular values of S1. If k = dim(H1)

is finite, then W1 has just finitely many eigenvalues λ1, λ2, . . . , λk. Then we formally put
λj = 0 for j > k. In any case, the eigenvalues λj converge to zero. Without loss of
generality, we assume that S1 is not the zero operator, and normalize the problem by
assuming that λ1 = 1. Hence,

1 = λ1 ≥ λ2 ≥ · · · ≥ 0 .

This implies that ‖S1‖ = 1 and the initial error einit(S1) is also one.
For d ≥ 2, let

Hd = H1 ⊗ · · · ⊗H1

be the complete d-fold tensor product Hilbert space of H1 of complex-valued functions
defined on Dd = D1 × · · · ×D1 ⊆ R dm. Similarly, let Gd = G1 ⊗ · · · ⊗G1, d times.

The linear operator Sd is defined as the tensor product operator

Sd = S1 ⊗ · · · ⊗ S1 : Hd → Gd.

We have ‖Sd‖ = ‖S1‖d = 1, so that the initial error is one for all d. We call the linear
multivariate problem S = {Sd} a linear tensor product problem. We stress that S is
an example of an unweighted problem since all variables and all groups of variables of
functions play the same role.

3 The Worst Case Setting

In this section we study linear tensor product problems in the worst case setting. This
will be done for the class of linear information in the first subsection, and for the class of
standard information in the second subsection.

3.1 Linear Information

In this subsection we study the linear tensor product problem S in the worst case setting
and for the class of linear information Λall = {Λall

d }. It is known, see e.g., [9], that

nwor(ε, Sd,Λ
all
d ) = |{(i1, . . . , id) ∈ Nd | λi1 . . . λid > ε2}|, (13)
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with the convention that the cardinality of the empty set is zero. The linear tensor product
problem S is trivial if λ2 = 0, since nwor(ε, Sd,Λ

all
d ) = 1 for all ε ∈ [0, 1). On the other

hand, nwor(ε, Sd,Λ
all
d ) grows exponentially in d if λ2 = 1, since nwor(ε, Sd,Λ

all
d ) ≥ 2d for all

ε ∈ [0, 1). In this case, even weak tractability does not hold.
Therefore we assume that λ2 ∈ (0, 1). So, without loss of generality, we study in this

subsection only the case
1 = λ1 > λ2 > 0.

If we consider polynomial tractability, i.e., T pol(ε−1, d) = ε−1d, then it was proved in [11,
Thm. 3.1] that S is not polynomially tractable, even in the case when 0 = λ3 = λ4 = . . ..
Moreover, S is weakly tractable iff

λj = o((ln(j))−2) for all j ∈ N. (14)

The sufficiency has recently been proved by Papageorgiou and Petras [8], improving the
slightly weaker result in [3] and [6]. In [3, 6] also the necessity was proved. This shows
that the answer to Question 2.1(ii) is affirmative.

We will now state a condition on the decay of the eigenvalues {λj}j∈N that is necessary
and sufficient for S to be quasi-polynomially tractable. For this purpose and for a real
sequence ξ = {ξj}j∈N converging to zero let us define the quantity

decayξ := sup
{
p ≥ 0 | lim

j→∞
ξjj

p = 0
}
. (15)

Lemma 3.1. Let 1 = λ1 > λ2 > 0, and let S be T qpol-tractable. Then decayλ > 0 and
the exponent ttra− qpol of T qpol-tractability satisfies

ttra− qpol ≥ 2

decayλ
.

Proof. Let t > ttra− qpol. Then there exists a constant C > 0 such that

nwor(ε, Sd,Λ
all
d ) ≤ C exp(t(1 + ln(ε−1))(1 + ln(d))) for all ε ∈ (0, 1) and all d ∈ N.

For d = 1 we have

nwor(ε, S1,Λ
all
1 ) = min{n ∈ N |λn+1 ≤ ε2} ≤ Cetε−t for all ε ∈ (0, 1).

Let k1 = 1, and for j ≥ 2 let kj be the uniquely determined natural number satisfying
λkj−1

= . . . = λkj−1 > λkj . For j ∈ N, let εj =
√
λkj . Then for all ε ∈ [εj+1, εj) we have

nwor(ε, S1,Λ
all
1 ) = kj+1 − 1 ≤ Cetε−t.

Since ε can be arbitrarily close to εj, we obtain kj+1 − 1 ≤ Cetε−tj . Therefore

λkj = . . . = λkj+1−1 = ε2
j ≤ e2

(
C

kj+1 − 1

)2/t

.

This proves that λj = O(j−2/t) for all j, and consequently decayλ ≥ 2/t > 0. Since t can
be arbitrarily close to ttra− qpol, this also shows that ttra− qpol ≥ 2/ decayλ, as claimed.
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Since the focus of this paper is on quasi-polynomial tractability, the result of Lemma 3.1
motivates us to restrict ourselves in the rest of this subsection to the case where the de-
cay of the eigenvalues is polynomial. We believe that such behavior of the eigenvalues is
probably the most relevant in applications.

As explained above, we do not have polynomial tractability in this case, but we have
weak tractability. So the question remains for which tractability function we actually
have T -tractability, and in particular, when we have T qpol-tractability.

The following result was proved in [3], see also [6, Ch. 8].

Theorem 3.2. [3, Cor. 5.2] Let 1 = λ1 > λ2 > 0 and λj = O(j−β) for all j ∈ N and
some β > 0. Let fi : [1,∞)→ (0,∞), i = 1, 2, be non-decreasing functions such that

lim
x+y→∞

f1(x)f2(y)

x+ y
= 0 .

Let the tractability function T be of the form

T (x, y) = exp(f1(x)f2(y)) for all x, y ∈ [1,∞). (16)

Then the multivariate tensor product problem S is T -tractable if and only if

ai := lim inf
x→∞

fi(x)

lnx
∈ (0,∞] for i = 1, 2.

If a1, a2 ∈ (0,∞], then the exponent of tractability satisfies

2

a1 a2 ln(λ−1
2 )
≤ ttra ≤ max

{
2

β
,

2

ln(λ−1
2 )

}
1

min{a1b2, b1a2}
,

where

b1 := inf
ε<
√
λ2

f1(ε−1)

ln(ε−1)
and b2 := inf

d∈N

f2(d)

1 + ln(d)
.

Lemma 3.1 and Theorem 3.2 imply the following theorem.

Theorem 3.3. Let 1 = λ1 > λ2 > 0. Then

S is T qpol-tractable if and only if decayλ > 0.

If S is T qpol-tractable, then the exponent of T qpol-tractability is given by

ttra− qpol = max

{
2

decayλ
,

2

ln(λ−1
2 )

}
. (17)

Proof. For the tractability function T qpol the quantities a1, a2, b1, b2 defined in Theorem
3.2 are given by

ai = lim inf
x→∞

1 + ln(x)

ln(x)
= 1 for i = 1, 2,
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and

b1 = inf
ε<
√
λ2

1 + ln(ε−1)

ln(ε−1)
= 1 and b2 = inf

d∈N

1 + ln(d)

1 + ln(d)
= 1.

The first statement of the theorem follows directly from Lemma 3.1 and Theorem 3.2.
Let now S be T qpol-tractable. From Lemma 3.1 we get ttra− qpol ≥ 2/ decayλ. Theorem
3.2 gives us for all β < decayλ

2

ln(λ−1
2 )
≤ ttra− qpol ≤ max

{
2

β
,

2

ln(λ−1
2 )

}
,

which, by letting β tend to decayλ, concludes the proof of (17).

In particular, from the previous discussion and Theorem 3.3 we conclude that, although
the linear tensor product problem S is not polynomially tractable, S is quasi-polynomially
tractable. Thus, the answer to Question 2.1(iii) is affirmative. In other words, choosing
the tractability function T = T qpol instead of T pol allows us to obtain T -tractability for
linear tensor product problems with polynomially decaying univariate eigenvalues.

Actually even more can be said. Namely, T qpol is, in some sense, the “smallest”
tractability function T of the form (16) which ensures T -tractability of linear tensor
product problems S. To make this statement more precise, let us introduce a partial
ordering on the class of tractability functions. For tractability functions T1 and T2 we
write

T1 � T2

if there exist positive constants C, p such that

T1(x, y) ≤ C T2(x, y)p for all x, y ∈ [1,∞).

We write T1 � T2 if T1 � T2 and T2 � T1. The relation � is obviously an equivalence
relation on the class of tractability functions. If we have T1 � T2, we may say that the
equivalence class [T1] of T1 is smaller than the equivalence class [T2] of T2.

With these definitions we are able to state the following theorem.

Theorem 3.4. Let 1 = λ1 > λ2 > 0 and λj = O(j−β) for all j ∈ N and some β > 0.
Let the tractability function T be of the form (16). If the linear tensor product problem
S = {Sd} is T -tractable, then we have

T qpol � T.

Proof. If T -tractability holds for T (x, y) = exp(f1(x)f2(y)), with f1, f2 as in Theorem
3.2, then this theorem implies that there exist positive numbers a, b, x0, and y0 such that

f1(x) ≥ a(1 + ln(x)) for all x ≥ x0

and
f2(y) ≥ b(1 + ln(y)) for all y ≥ y0.
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By choosing a′ = min{a, f1(1)(1 + ln(x0))−1} and b′ = min{b, f2(1)(1 + ln(y0))−1}, we
have, due to the fact that f1 and f2 are non-decreasing,

f1(x) ≥ a′(1 + ln(x)) for all x ≥ [1,∞)

and
f2(y) ≥ b′(1 + ln(y)) for all y ≥ [1,∞).

Putting τ = a′b′, we obtain

T (x, y) = exp(f1(x)f2(y)) ≥ exp(a′b′(1 + ln(x))(1 + ln(y))) = T qpol(x, y)τ

for all x, y ∈ [1,∞). This implies that T qpol � T , and completes the proof.

So far we know that the equivalence class of T qpol is the smallest under all equiv-
alence classes of tractability functions T of the form (16). One might wonder whether
tractability functions of the form (16) are adequate functions to describe the behavior of
the information complexity nwor(ε, Sd,Λ

all
d ). To some extent, this is a matter of taste. On

the one hand, the tractability function that describes the behavior of nwor(ε, Sd,Λ
all
d ) most

accurately is obviously nwor(ε, Sd,Λ
all
d ) itself or, more precisely, an adequate extension of

it to [1,∞)× [1,∞). On the other hand, a tractability function should be simple enough
so that we can easily understand how it grows for arbitrary values of the parameters ε−1

and d.
To address this point, we compare T qpol to tractability functions of product form

T F (x, y) = F1(x)F2(y). For our next result we need to apply the following result from [3]1.

Theorem 3.5. [3, Thm. 5.3] Let 1 = λ1 > λ2 > 0 and λj = O(j−β) for all j ∈ N and
some β > 0. Let Fi : [1,∞)→ [1,∞), i = 1, 2, be non-decreasing functions satisfying

lim
x→∞

lnFi(x)

x
= 0 (18)

and let F = (F1, F2). Then the function T F given by

T F (x, y) = F1(x)F2(y) for all x, y ∈ [1,∞) (19)

is a tractability function. For i = 1, 2, let

ai := lim inf
x→∞

ln lnFi(x)

ln lnx
<∞.

Then S is T F -tractable if and only if

a1 > 1, a2 > 1, (a1 − 1)(a2 − 1) ≥ 1, and B2 ∈ (0,∞].

1Note that in [3, Thm. 5.3] and also in [6, Thm. 8.25] the obviously necessary condition (18) is missing.
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Here B2 is given by

B2 := lim inf
d→∞

inf
1≤α(ε)≤d/2

lnT F (ε−1, d)

m2(ε, d)
∈ (0,∞] ,

where

m2(ε, d) := α(ε) ln( d
α(ε)

) + (d− α(ε)) ln( d
d−α(ε)

),

α(ε) := d2 ln(ε−1)/ ln(λ−1
2 )e − 1.

If
a1 > 1, a2 > 1 and (a1 − 1)(a2 − 1) > 1

then B2 =∞ and the exponent of T F -tractability ttra−F is zero.
If

a1 > 1, a2 > 1, (a1 − 1)(a2 − 1) = 1 and B2 > 0

then the exponent of T F -tractability is ttra−F = B−1
2 .

We are ready to compare the tractability functions T qpol and T F .

Theorem 3.6. Let the conditions of Theorem 3.5 hold. If S is T F -tractable then

T qpol � T F .

Proof. We want to show that there exist C, t > 0 such that

exp((1 + ln(x))(1 + ln(y))) ≤ C F1(x)t F2(y)t for all x, y ∈ [1,∞). (20)

Taking the logarithm of both sides, one easily realizes that (20) is equivalent to

lim inf
x+y→∞

lnF1(x) + lnF2(y)

(1 + ln(x))(1 + ln(y))
> 0. (21)

From the conditions of Theorem 3.5, for arbitrary a′1 ∈ (1, a1) and a′2 ∈ (1, a2), we find
x′, y′ such that

ln lnF1(x) ≥ a′1 ln ln(x) for all x ≥ x′ and ln lnF2(y) ≥ a′2 ln ln(y) for all y ≥ y′.

This implies

lnF1(x) ≥ (ln(x))a
′
1 for all x ≥ x′ and lnF2(y) ≥ (ln(y))a

′
2 for all y ≥ y′. (22)

The last two inequalities show that (20) is equivalent to

lim inf
x→∞
y→∞

lnF1(x) + lnF2(y)

(1 + ln(x))(1 + ln(y))
> 0. (23)
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Note that the difference of the limit inferior in (23) compared to the one in (21) is that in
(23) we require that both x and y go to infinity, whereas in (21) it is possible that only x
or y goes to infinity.

Note that in the definition of B2 we only consider 1 ≤ α(ε) ≤ d/2, so that we have

(d−α(ε)) ln

(
d

d− α(ε)

)
= (d−α(ε)) ln

(
1 +

α(ε)

d− α(ε)

)
≤ (d−α(ε))

(
α(ε)

d− α(ε)

)
= α(ε),

since ln(1 + x) ≤ x for x ≥ 0.
Let us consider a sequence {(εn, dn)} in (0, 1)×N. Assume first that {ε−1

n } is bounded.
Since a′2 > 1, we get

lim
n→∞

lnF1(ε−1
n ) + lnF2(dn)

m2(εn, dn)
≥ lim

n→∞

(ln(dn))a
′
2

α(εn)(ln(dn) + 1)
=∞.

Assume now that {ε−1
n } is unbounded . If ln(dn) = o(ln(ε−1

n )a
′
1−1), then

lim
n→∞

lnF1(ε−1
n ) + lnF2(dn)

m2(εn, dn)
≥ lim

n→∞

(ln(ε−1
n ))a

′
1

α(εn)(ln(dn) + 1)
=∞.

This shows that to find B2 we can confine ourselves to sequences {(ε−1
n , dn)} for which

{ε−1
n } is unbounded and which satisfy ln(dn) = Ω(ln(ε−1

n )a
′
1−1). For these sequences we

have
m2(εn, dn) = α(εn) ln(dn)(1 + o(1)).

From this we conclude that

B2 = lim inf
ε−1→∞
d→∞

lnF1(ε−1) + lnF2(d)

α(ε) ln(d)
. (24)

Due Theorem 3.5 we have B2 > 0. Thus

lim inf
ε−1→∞
d→∞

lnF1(ε−1) + lnF2(d)

(1 + ln(ε−1))(1 + ln(d))
≥(

lim inf
ε−1→∞
d→∞

lnF1(ε−1) + lnF2(d)

α(ε) ln(d)

)(
lim inf
ε−1→∞
d→∞

α(ε)

1 + ln(ε−1)

ln(d)

1 + ln(d)

)
≥ B2

2

ln(λ−1
2 )

> 0.

Hence (23) holds, which establishes that T qpol � T F .

Theorems 3.4 and 3.6 state that T qpol is “smaller” than all tractability functions of
the forms (16) and (19) for which the linear tensor product problem S is T -tractable.

We now illustrate Theorem 3.6 assuming that λj = O(j−β) for some positive β, and
for the tractability function

T (µ,ν)(ε−1, d) := exp((1 + ln ε−1)µ + (1 + ln d)ν),
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where µ, ν are positive. That is, for

F1(x) = exp((1 + ln(x))µ) and F2(y) = exp((1 + ln(y))ν).

We then have a1 = µ and a2 = ν.
The linear tensor product problem S is T (µ,ν)-tractable if and only if (µ−1)(ν−1) ≥ 1;

this was originally proved in [12] and it also follows from Theorem 3.5.
Furthermore, we know from Theorem 3.5 that (µ − 1)(ν − 1) > 1 implies that the

exponent of T (µ,ν)-tractability ttra−(µ,ν) is zero. This indicates that in this case T (µ,ν)

increases too fast to provide an accurate bound for nwor(ε, Sd,Λ
all
d ). That is why we focus

on the case
(µ− 1)(ν − 1) = 1.

We first compute the exponent of T (µ,ν)-tractability. To do this, we need to analyze the
function

g(x) := xµ − µ1/µν1/νxb+ bν for all x ≥ 0,

where b is a fixed positive number. Then

d

dx
g(x) = µxµ−1 − µ1/µν1/νb,

and the last expression is zero only if we choose x = ab, where

ab =

(
ν

µ

)1/µ

bν−1. (25)

The number ab is positive and it is the minimum of the function g, which is g(ab) = 0.
Using this, we compute B2 given by (24). For T (µ,ν) we have

B2 =
ln(λ−1

2 )

2
lim inf
a,b→∞

aµ + bν

ab
.

Due to the properties of g we see that the limit inferior is bounded from below by µ1/µν1/ν .
In fact, it takes this value when a = ab and b tends to infinity. Due to Theorem 3.5 we
obtain

ttra−(µ,ν) = B−1
2 =

2

ln(λ−1
2 )µ1/µν1/ν

.

We are ready to compare T qpol and T (µ,ν) for (µ − 1)(ν − 1) = 1. Since these two
functions tend to infinity with different rates, it is more reasonable to compare their
corresponding powers

T qpol(ε−1, d)t
tra−qpol

and T (µ,ν)(ε−1, d)t
tra−(µ,ν)

since their multiplies roughly bound the information complexity nwor(ε, Sd,Λ
all
d ).

Consider first the case when

decayλ ≥ ln(λ−1
2 ).
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Then Theorem 3.3 states that the exponent of T qpol-tractability is given by

ttra−qpol =
2

ln(λ−1
2 )

.

Recall that ab ≤ µ−1/µν−1/ν(aµ + bν), and the equality holds if and only if a = ab with
ab given by (25). From this we obtain

T qpol(ε−1, d)t
tra−qpol ≤ T (µ,ν)(ε−1, d)t

tra−(µ,ν)

for all ε ∈ (0, 1) and d ∈ N. Furthermore, we have

T qpol(ε−1, d)t
tra−qpol

= T (µ,ν)(ε−1, d)t
tra−(µ,ν)

if and only if

ε−1 =
1

e
exp

((
ν

µ

)1/µ

(1 + ln(d))ν/µ

)
(26)

for all d ∈ N.
Furthermore, if one of the parameters ε−1 or d is fixed, then T qpol(ε−1, d)t

tra−qpol
grows

polynomially in the other parameter, while T (µ,ν)(ε−1, d)t
tra−(µ,ν)

grows super-polynomially.
In this case, T qpol describes the growth of nwor(ε, Sd,Λ

all
d ) more accurately than T (µ,ν).

This also underlines that it is not a good idea to require tractability functions to be of
product form in the variables ε−1 and d when we want to describe the information com-
plexity of linear tensor products problems. In particular, Theorem 3.6 and the comparison
of T qpol and T (µ,ν) show that the answer to Question 2.1(iv) is affirmative.

Consider finally the case when

decayλ < ln(λ−1
2 ).

Then ttra− qpol = 2/decayλ depends now on the decay of the eigenvalues λj, and it can be
arbitrarily large. On the other hand, the exponent ttra−(µ,ν) is independent of decayλ, and
it is always smaller than ttra− qpol. As we know, this fact is not so much relevant and we
should again compare T qpol(ε−1, d)t

tra−qpol
and T (µ,ν)(ε−1, d)t

tra−(µ,ν)
. Unfortunately in this

case, sometimes T qpol(ε−1, d)t
tra−qpol

(ε−1, d) is less than T (µ,ν)(ε−1, d)t
tra−(µ,ν)

(ε−1, d), and
sometimes it is larger. Indeed, since µ and ν are larger than 1, then

T qpol(ε−1, d)t
tra−qpol

< T (µ,ν)(ε−1, d)t
tra−(µ,ν)

if min{ε−1, d} is fixed and max{ε−1, d} goes to infinity. On the other hand for ε and d
related as in (26), the opposite is true. Hence, for decayλ < ln(λ−1

2 ) we cannot draw a
clear conclusion which tractability function T qpol or T (µ,ν) is better.
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3.2 Standard Information

We know from the previous section that all linear tensor product problems are quasi-
polynomially tractable when the univariate eigenvalues decay polynomially and when we
use the class Λall

d . It is natural to ask what happens if the class Λall
d of arbitrary linear

functionals is replaced by the class Λstd
d of function evaluations. Unfortunately it is not

true, in general, that quasi-polynomial tractability is preserved for the class Λstd
d . More

precisely, depending on the specific tensor product problem which is quasi-polynomially
tractable for the class Λall

d , it may or may not be quasi-polynomially tractable for the
class Λstd

d . We now present two examples of a linear tensor problem with and without
quasi-polynomial tractability, respectively.

Example: Piecewise Constant Functions Space
We present an example of a tensor product problem for which there is no difference

between quasi-polynomial tractability for the classes Λall
d and Λstd

d .
Let H1 be the space of functions f : [0, 2] → C which vanish at zero, f(0) = 0, and

which are piecewise constant on the subintervals (2−j+1, 2−j+2] for j ∈ N. That is,

f(x) = fj for all x ∈ (2−j+1, 2−j+2] and j ∈ N,

with

‖f‖2
H1

:=
∞∑
j=1

|fj|2 <∞.

The inner product of H1 for f, g ∈ H1 is given by

〈f, g〉H1
=
∞∑
j=1

fjgj.

Let G1 = L2([0, 2]) and consider the approximation problem S1 : H1 → G1 given by

S1f = f for all f ∈ H1.

Note that

‖S1f‖2
G1

=

∫ 2

0

|f(x)|2 dx =
∞∑
j=1

|fj|2 2−j+1 ≤ ‖f‖2
H1
.

The last bound is sharp and therefore ‖S1‖ = 1.
The operator W1 takes now the form

W1f =
∞∑
j=1

2−j+1 fjηj,

where ηj(x) = 1 for x ∈ (2−j+1, 2−j+2] and ηj(x) = 0 otherwise. Clearly,

W1ηj = 2−j+1 ηj for all j ∈ N.
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Hence, the eigenpairs of W1 are (λj, ηj) with λj = 2−j+1. Hence, λ1 = 1 and λ2 = 1
2
.

Obviously, decayλ =∞ and therefore the tensor product problem S is quasi-polynomially
tractable for the class Λall

d with the exponent

ttra−qpol = 2/ ln 2 = 2.88539 . . . .

Furthermore, it is known that the algorithm

An,1f =
n∑
j=1

〈f, ηj〉H1
ηj for all f ∈ H1

minimizes the worst case error among all algorithms that use n linear functionals from
the class Λall

d , and its error is
√
λn+1 = 2−n/2. Note that

〈f, ηj〉H1
= f(2−j+2) for all j ∈ N.

this means that the algorithm An,1 is also optimal for the class Λstd
d .

Due to the tensor product structure, the same is true for all d. That is, the eigenpairs
of Wd are {λd,j, ηd,j}j∈N , where λd,j ≥ λd,j+1 and

{λd,j}j∈N =

{
d∏

k=1

λik

}
i=[i1,i2,...,id]∈Nd

,

whereas

ηd,j(x) =
d∏

k=1

ηij,k(xk) for all x ∈ [0, 2]d.

Here, the index ij = [ij,1, ij,2, . . . , ij,d] is chosen such that λd,j =
∏d

k=1 λij ,k. Then the
algorithm

An,df =
n∑
j=1

〈f, ηd,j〉Hd ηd,j =
n∑
j=1

f
(
2−ij,1+2, 2−ij,2+2, . . . , 2−ij,d+2

)
ηd,j

minimizes the worst case error in the classes Λall
d and Λstd

d . That is why we also have
quasi-polynomial tractability for the class Λstd

d with the same exponent since we now have

nwor(ε, Sd,Λ
all
d ) = {n |λd,n+1 ≤ ε2} = nwor(ε, Sd,Λ

std
d ).

Example: Korobov Space
We take Hd as the Korobov space of periodic functions f : [0, 1]d → C for which

‖f‖2
Hd

:=
∑

h=[h1,h2,...,hd]∈Zd

[
d∏
j=1

max{1, β−1 |hj|2α}

]
|f̂(h)|2 <∞.
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Here α > 1/2, β ∈ (0, 1] and f̂(h) denotes the Fourier coefficient of f ,

f̂(h) =

∫
[0,1]d

exp(−2π ih · x) f(x) dx,

with the imaginary unit i =
√
−1 and h ·x = h1x1 +h2x2 + · · ·+hdxd. The inner product

of f, g ∈ Hd is obviously given as

〈f, g〉Hd =
∑

h=[h1,h2,··· ,hd]∈Zd

[
d∏
j=1

max{1, β−1|hj|2α}

]
f̂(h) ĝ(h).

The Korobov space Hd is a separable tensor product and reproducing kernel Hilbert space
with the kernel

Kd(x, y) =
d∏
j=1

(
1 + 2β

∞∑
j=1

cos(2π h(xj − yj))
h2α

)
for all x, y ∈ [0, 1]d.

Note that α > 1
2

implies that the last series is convergent. That is why Ly(f) :=
f(y) = 〈f,Kd(·, y)〉Hd is well defined and it is a continuous linear functional with ‖Ly‖ =√
Kd(y, y).
We consider the approximation problem for Gd = L2([0, 1]d), that is Sd : Hd → Gd

given by
Sdf = f for all f ∈ Hd.

The operator W1 takes now the form

W1f =
∑
h∈Z

f̂(h) exp (2π ihx) ,

and its eigenvalues are

{1, β, β, β 2−2α, β 2−2α, . . . , β j−2α, β j−2α, . . . },

see e.g., Appendix A of [6]. Hence, λ1 = 1 and λ2 = β.
For β = 1, we have the curse of dimensionality. Indeed, the largest eigenvalue is now

of multiplicity 3 and

nwor(ε, Sd,Λ
std
d ) ≥ nwor(ε, Sd,Λ

all
d ) ≥ 3d for all ε ∈ (0, 1).

For β < 1, we have λ2 = β < λ1 = 1, and decayλ = 2α. From Theorem 3.3 we conclude
that the approximation problem for the class Λall

d is quasi-polynomially tractable with the
exponent

ttra−qpol = max{α−1,−2/ ln β}.
Unfortunately, the approximation problem for the class Λstd

d is not quasi-polynomially
tractable. In fact, it is not even weakly tractable since it suffers from the curse of dimen-
sionality, i.e., there exist numbers C > 1 and ε0 > 0 such that

nwor(ε, Sd,Λ
all
d ) ≥ C d for all d ∈ N, ε ∈ (0, ε0).
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This result can be obtained as follows. Consider the integration problem

INTdf =

∫
[0,1]d

f(x) dx for all f ∈ Hd.

Then the initial error is ‖INTd‖ = 1, as for the approximation problem. It is well know
that the approximation problem is not easier than the integration problem, and therefore
lower bounds for the information complexity of the integration problem are also valid as
lower bounds for the information complexity of the approximation problem. The curse of
dimensionality of this integration problem is proved in [7], see Theorem 16.8 and Corollary
12.7, and is based on [4, 5].

It would be of interest to characterize for which tensor product problems quasi-
polynomial tractability for the class Λall

d implies the same tractability for the class Λstd
d .

We know from the two examples of this subsection that the class of such tensor product
problems is non-empty but it does not contain all tensor product problems. This problem
is, however, beyond the scope of the current paper.

4 The Randomized Setting

In the randomized setting we discuss linear multivariate problems S = {Sd} for a compact
linear operators Sd : Hd → Gd between Hilbert spaces Hd and Gd, without assuming that
they are tensor product problems. As in the worst case setting, we discuss the class Λall

d

in the first subsection and the class Λstd
d in the second subsection.

4.1 Linear Information

It is known that for the class Λall
d tractability results for the randomized setting are closely

related to tractability results for the worst case setting. Namely, we have the following
relations between the information complexities

1
4

(
nwor(2ε, Sd,Λ

all
d ) + 1

)
≤ nran(ε, Sd,Λ

all
d ) ≤ nwor(ε, Sd,Λ

all
d )

assuming, without loss of generality, that nran(ε, Sd,Λ
all
d ) ≥ 1, see Chapter 7 of [6] and

in particular Section 4.3.3, where these bounds are proved and references to the original
papers are given.

Obviously, the second bound is trivial since all problems in the randomized setting
are no harder than in the worst case setting. The first bound is of interest since it states
that, modulo some factors, the randomized case cannot be much easier than the worst
case setting for the class Λall

d .
We may apply these bounds to conclude easily that quasi-polynomial tractability in

the randomized and worst case setting are equivalent for the class Λall
d . However, the

presence of the factor 2 multiplying ε in the left-hand side estimate does not allow us
to prove that the exponents of quasi-polynomial tractability are the same in the worst
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case and randomized settings. Nevertheless, it is easy to repeat the proof of the left-hand
side bound and replace the factor 2 by (1 − δ)−1 for an arbitrarily small positive δ at
the expense of decreasing the factor 1

4
. More precisely, for nran(ε, Sd,Λ

all
d ) ≥ 1 and for all

δ ∈ (0, 1), we have

δ2
(
nwor((1− δ)−1ε, Sd,Λ

all
d ) + 1

)
≤ nran(ε, Sd,Λ

all
d ) ≤ nwor(ε, Sd,Λ

all
d ).

Hence, nran(ε, Sd,Λ
all
d ) ≤ C T qpol(ε−1, d)t implies that

nwor(ε, Sd,Λ
all
d ) ≤ δ−2C T qpol(ε−1, d)t(1−ln(1−δ)).

Since δ can be arbitrarily small, it shows that the exponents of quasi-polynomial tractabil-
ity are the same in the worst case and randomized settings for the class Λall

d ,

ttra−wor−qpol = ttra−ran−qpol.

Similarly, if we have strong quasi-polynomial tractability, which is the same as strong
polynomial tractability, in the randomized setting then the same holds in the worst case
setting and the exponents are the same. We summarize this in the following corollary.

Corollary 4.1. Consider a linear multivariate problem S = {Sd} defined as in this paper.
Then

• (strong) quasi-polynomial tractability in the worst case setting for the class Λall
d is

equivalent to (strong) quasi-polynomial tractability in the randomized setting for the
class Λall

d ,

• the exponents of quasi-polynomial tractability are in both cases the same.

4.2 Standard Information

For the class Λstd
d in the randomized setting, we restrict our attention to the approximation

problem that is defined as follows. Let Hd be a separable Hilbert space of complex-valued
functions defined on Dd, which is a subset of Rd. We take the space Gd as an L2 space.
More precisely, let ρd : Dd → [0,∞) be a probability density on Dd, and let

Gd :=

{
g : Dd → C

∣∣ g is measurable and ‖g‖2
Gd

:=

∫
Dd

|g(x)|2ρd(x) dx <∞
}
.

We assume that Hd is a subset of Gd and that there exists a number Cd such that

‖f‖Gd ≤ Cd ‖f‖Hd for all f ∈ Hd.

The approximation problem is defined as Sd : Hd → Gd with

Sdf = f for all f ∈ Hd.
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Clearly, Sd is a continuous linear operator and ‖Sd‖ ≤ Cd.
We also assume that the operator Wd = S∗dSd : Hd → Hd is compact. Then its

eigenvalues
λd,1 ≥ λd,2 ≥ λd,3 ≥ · · · ,

converge to zero. Since we consider the normalized error criterion, see (8) and (9), we can
without loss of generality assume that

einit(Sd) =
√
λd,1 = 1.

In general, the approximation problem S = {Sd} is not a linear tensor product prob-
lem; such problems were defined in Section 2.3. However, if

Dd = D1 × · · · ×D1, d times,

ρd((x1, . . . , xd)) =
d∏
j=1

ρ1(xj) for all xj ∈ D1

then Gd is a tensor product space. If we additionally take Hd as the d-fold tensor product
of H1 then the approximation problem becomes a linear tensor product problem.

Theorem 4.2. Consider multivariate approximation S = {Sd} defined as in this subsec-
tion. Then

• quasi-polynomial tractability in the randomized setting for the class Λall is equivalent
to quasi-polynomial tractability in the randomized setting for the class Λstd,

• quasi-polynomial tractability in the worst case setting for the class Λall is equivalent
to quasi-polynomial tractability in the randomized setting for the class Λstd,

• the exponents of quasi-polynomial tractability are in all cases the same.

Proof. Due to Corollary 4.1, it is enough to prove that quasi-polynomial tractability in the
worst case setting for the class Λall

d implies quasi-polynomial tractability in the randomized
setting for the class Λstd

d with at most the same tractability exponent. So let

nwor(ε, Sd,Λ
all
d ) ≤ C T qpol(ε−1, d)t for all ε ∈ (0, 1), d ∈ N,

for some positive C and t. We can take t arbitrarily close to ttra−wor−qpol, and C can be
assumed to be at least one. We know that

nwor(ε, Sd,Λ
all
d ) = min{n | λd,n+1 ≤ ε2}.

Taking n = nwor(ε, Sd,Λ
all
d ) and varying ε as in the proof of Lemma 3.1, we obtain

λd,n ≤ e2C2 t−1(1+ln d)−1

n−2 t−1(1+ln d)−1

for all d, n ∈ N. (27)

Let δ ∈ (0, 1) be fixed. We will be especially interested in small δ. Let

d(δ) = dexp(δ−1)e.
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We consider two cases for d ∈ N.

Case 1. Let d ≥ d(δ). It is proved in [10], see the first step of the proof of Theorem 1,
that for any m ∈ N there exists an algorithm An,m of the form (2) that uses n randomized
function values such that

eran(An,m)2 ≤ λd,m+1 +
m

n
.

Take

m = nwor
(
(1− δ)ε, d,Λall

d

)
,

n = dδ−1(2− δ)−1ε−2me.

Then
λd,m+1 ≤ (1− δ)2ε2 and

m

n
≤ (2δ − δ2)ε2,

so that eran(An,m) ≤ ε. Hence,

nran(ε, Sd,Λ
std
d ) ≤ n = O

(
T qpol(ε−1, d)t(1+O(δ))

)
,

where the implicit factor in the big O notation depends on δ. For small δ the exponent
is close to t.

Case 2. Let d < d(δ). Define p(d) := [t(1 + ln(d))]−1. Then we can rewrite (27) as√
λd,n ≤ C1 n

−p(d) for all n, d ∈ N

with C1 = eC1/t. Let

k =

⌈
ln(1 + ln(n))

ln(1 + 1/(2p(d)) )

⌉
.

Due to [10, Thm. 1], there exists an algorithm An,k of the form (2) that uses nk randomized
function values such that2

eran(An,k) ≤ C1

( e

n

)p(d)

√
2 +

ln(1 + ln(n))

ln(1 + 1/(2p(d)) )
for all n, d ∈ N.

Since

p(d) ∈
[

1

t(1 + ln d(δ))
,
1

t

]
,

the last estimate can be rewritten as

eran(An,k) ≤ Cδ n
−p(d)(1−δ) for all n ∈ N, d < d(δ)

for some number Cδ which goes to infinity as δ goes to zero. So eran(An,k) ≤ ε if we take
n = O(ε−t(1+ln d)/(1−δ)). This implies that

nran(ε, Sd,Λ
std
d ) ≤ nk = O

(
ε−t(1+ln d)/(1−δ) ln

(
1 + ln

(
ε−t(1+ln d)/(1−δ)))) ,

2The estimate in [10] has the wrong factor e instead of ep(d).
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with the factor in the big O notation depending only on δ. From this we easily conclude
that for any positive η there exists a number Cδ,η such that

nran(ε, Sd,Λ
std
d ) ≤ Cδ,η T

qpol(ε−1, d)(t+η)/(1−δ) for all ε ∈ (0, 1), d < d(δ).

This proves quasi-polynomial tractability in the randomized setting for the class Λstd
d with

the exponent arbitrarily close to t, and this completes the proof.
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