Generalizing Logic Circuit Designs By

Analyzing Proots of Correctness

Thomas Ellman

January, 1985

CUCS-190-85

Generalizing Logic Circuit Designs By

Analyzing Proofs of Correctness

Thomas Ellman*
Columbia University
Department of Computer Science
New York, N.Y. 10027
(212) 280-8182
Eliman@ GetUMBHA-28-ARPA
cs . colunwbian . edia

Abstract

This paper presents a method of learning to solve design problems by
generalizing examples. The technique has been developed in the domain of logic
circuit design. It involves the use of domain knowledge to analyze examples and
produce generalized circuit designs. The method utilizes proofs of design
correctness to guide the process of generalization. Our approach is illustrated by
showing it can generalize a circular shift register into a schema describing
devices capable of computing arbitrary permutations.

Introduction

Research in machine learning has identified two contrasting approaches to the problem of
learning from examples. The traditional “‘empirical” approach is based on the idea that an
intelligent system can learn from examples without having much prior knowledge of the domain
of application. This approach has involved looking at a large number of examples in order to
identify similar features. It usually relies on syntactic methods of matching instances and
correlating the common features. Examples of this approach include [Winston 72]; [Michalski
80), among others. The alternative “analytical’ approach takes a different point of view. It
assumes that generalization requires a great deal of background knowledge of the domain
under study. It typically relies on intensive analysis of a single example in order to generalize.
The work reported in this paper takes the analytical approach. It has been applied to the
problem of learning to design logic circuits. The method involves analyzing single examples of
circuit designs and producing generalized designs.

*This research was supported in part by the Defense Advanced Research Projects Agency under contract
NO0039-84-C-0165. This paper also appears in the Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, 1985.

abpaimouy punosbxoeq ybnous ueaib si walsAs sy ‘uoneinwuad Aue Bujuswadwi jo 8jqedes
BWSYOS 1IN2J10 B ol sa)sibal Yiys eyl ez)esausb Ajnysseoons o) eige si weiboid ay| -8diA0u
uewny ey} j0 JOIABYSQ 8y} [gpow 0} sidwane jeyl wesboisd B aquassp |im Jaded syl

J818168Y Yiys Jenasl) it aunbig

[elavon [2lavon [Llgvol folavon
ol [e]mdéno
0lLNd1noO —\OY4

‘NOBS B * *
v 9 L L [[[XA R
[elxnw [2Ixnw Yal [olxNW
4
I J l Z'HLAIM
TOH1INOD
L L L
(€l43a [2ld4a (11440 [0]l44a

wort — o
[olXnW oL [elxnw oL

[elLndLnO [2lLndLnO [11lLNdLNO [olLndLnoO

‘uoyesado jo 8dioupd swes syl Buisn pajuswa|dwi aq ued suoneinuuad
Jayio ay) |l asneoaq o|qissod si sidwexa 8jbuis syl woy; uonezielsusy) uonejnuusd
uasoyd 8yl UM JuaISISuod Jauuew B ul sindur sexsidninw eyl o} sindino doy-dii-p syl
Bunoauuoo sasinbas Ajguaw siyl suq inoj jo uopeinuuad Aue aindwos yoym subisep sejiuns
aonpoid Aigeqosd pinos 1nao siy) jo uoiesado 8yl SPUBISIBPUN OUM 8J1A0U \ "S8UI| [0J1U0D
113Y) uo sanjeA AQ pauiuusisp Indino ue 0} syndul JNO JO BUO 8IN0I O} Pasn aJe siaxadynw
a8yl “uun awn suo Aq padejep indu; S)i 01 jenbs sI ININO SII 1BY) PUB UONBULIOUI JO 1IQ 8UO
8101 ued doy-dijj-p B 1Byl mouy isnw 8y ‘eidwexa 104 1N 8yl puyaq uonelado jo aididund
ay) spuejssapun ay papiaoid sidwexa siy) wouy Buizijesauab jo siqeded 8q pjnom adiA0u uBwNy
v CLXNW., Palede| 'ssaxa|diinw pue ', 44Q, pejaqge| 'sdoy-diyy edh-p Buisn paubisap usaq sey
unono sy ‘(2 ainbidg) auy ,JOYULINOD. 11q omi 8yl AQ pa|j0ucd aJe suoneledo ayy "uonessdo
-ou pue peoj ‘ya| aelos ‘Wbu elejos ‘suonessdo inoj jo sjqedes sI ddep siy) 4 ainbig
Ul umoys 1naad Jaisibals Yiys Jejnoud ay) Jepisuod ‘anbiuyda) syl BASN||l O} JapJO U|

CONTROL-CODE OPERATION
(0 0) No Operation
(0 1) Rotate Right
(1 0) Rotate Left
(1 1) Load

Figure 2: Control Codes for Circular Shift Register

about the operation of devices like multiplexers and d-flop-flops so that it can understand the
operation of the shift register. This knowledge takes the form of rules which can be used to
prove that the example design is correct. The original example is generalized into a schema
describing all circuits that can be verified using the same proof of correctness.

This research is similar in spirit to previous work on analytical methods of generalization.
These analytical approaches include “goal-directed learning” [Mitchell 83a), “explanatory
schema acquisition" [DedJong 83), “derivational analogy” [Carbonell 83] and “learning from
precedents” [Winston 83]. The research reported here is also related to the work on “circuit
redesign” reported in [Mitchell 83b]. The approach taken there involves designing a new circuit
by analogy with a previously designed circuit. Our work is different mainly in that it focuses on
generalization, rather than analogy. The technique of explanatory schema acquisition reported
in [Dedong 83] is similar to ours, although the domain of application is quite different. Our work
also differs by focusing on design problems and generalizing both designs and specifications.
Other related work includes [Minton 84; Mostow 83a; Mostow 83b; Salzberg 83; Silver 83].

The Learning Task

Our learning program is envisioned as a component of a complete system for designing
circuits according to explicit specifications. The problem solving module for such a system
would take circuit specifications as input and produce circuit designs as output. The learning
module deals with both specifications and designs. It is intended to take as input a pair (S.D)
consisting of specifications and a design which correctly implements the specifications. The
goal of the learning process is to produce a generalized design schema (S*,D*) consisting of
generalized specifications and a generalized design. The learning system must generalize the
original pair subject to the constraint that the general design correctly implements the general
specifications. The entire process has the following four steps.

1. A sample specification and design is obtained from a teacher.
2. A correctness proof is built to verify the design.

3. The proof is used to guide generalization of the example.
4. The generalized design schema is used 1o solve new problems.

We have chosen to focus on the third step which involves using the proof to facilitate
generalization. There are several reasons for concentrating on the generalization step. A great
deal remains unknown about precisely how causal reasoning may be used to enable
generalization. Furthermore, correctness proofs may take a variety of forms and the choice
may impact on the extent to which the proofs are a useful aid for generalization. This reasoning
suggests investigating the generalization process first and letting the proofs be designed to fit
the requirements of generalization. Our generalization program uses proofs built by hand as
input. The task of automatically building explanations has not yet been implemented. The task
of building proofs is similar to other understanding problems, and has been studied before. The
CRITTER system [Kelly 82], is an example.

The Circular Shift Register Example

The generalization program works by analyzing three pieces of information (S,D,P). Two
of the inputs are the specifications S and the design D as described above. The third input “P"
is a proof tree which verifies that the design correctly implements the specification. The
specifications for the circular shift register are shown in Figure 3. These specifications contain a
list of inputs and outputs, as well as clauses describing the behavior of each of the four output
lines. Each clause specifies the value of an output line at time “T" as a function of the values
on the input lines at an earlier time, “T - 1". The “Case” statement is used to specify the
circuit's behavior for each of the four states of the CONTROL lines. The design of the circular
shift register is represented by the data in Figure 4. This representation describes the electrical
components and the wire connections between their ports.

Proofs of correctness are represented as trees. Figure 5 shows a proof tree that verifies a
clause describing the behavior of one stage of the shift register. The leaves represent facts
about the design and the root contains the specification to be verified. Hence the tree
represents a derivation of the specification taking the design statements as assumptions. This
proof tree uses four derivation rules. Two of them, the “Dff-Rule”, and the “Mux-Rule” describe
the behavior of components. The Dff-Rule asserts that a d-flip-flop output signal at time “T" is
equal to the d-flip-flop input signal at time “T - 1". The Mux-Rule describes how a multiplexer
can be used to implement a case statement. The “Connect-Rule” asserts that two connected
wires have the same signal values at all times. (Ignoring propagation delay.) Finally, the
“Replace-Rule” allows equal quantities to be substituted for each other in expressions.

Declarations of Inputs and OQutputs

Wire Direction Width (Bits)
CONTROL Input 2
LOAD[0: 3] Input 1
OUTPUT([0: 3] Output 1

Description of Circuit Behavior

STAGE ZERO:

(Equals OUTPUT[0]. (T)
(Case CONTROL. (T - 1)
((0 0) OUTPUT[O0].(T - 1)) {No operation}
((0 1) OUTPUT[3].(T - 1)) {Rotate Right}
((1 0) OUTPUT[1].(T - 1)) {Rotate Left}
((1 1) LOAD([O0].(T - 1)))) {lLoad}

STAGE ONE:
STAGE TWO:

STAGE THREE:

Figure 3: Specifications for Circular Shift Register

Using the Proof to Guide Generalization

Our generalization procedure is intended to produce a schema (S*,D*) describing all
circuit designs that can be proven correct using the original correctness proof. The proof tree
contains information which may be used to identify constraints that must be preserved as the
example is generalized. For this purpose, the proof was designed to be processed in both
“torward" and “reverse” directions. Running in the forward direction, the tree takes a design at
the leaves and produces a specification at the root. In the reverse direction, the proof starts
with a specification and produces a design. This suggests that the proof tree could be used to
do circuit design by analogy, although that is not the direction taken here. (See {Carbonell 83].)
There are four major steps involved in this method of generalization:

Generalization Procedure

1. Generalize the specification.

2. Propagate the generalized specification through the tree.
3. Obtain constraints on the design at the leaves.

4. Apply problem independent constraints to the design.

Declarations of Clrcuit Components

DFF[0:3] {Four D-Flip-Flops.}
MOX[0:3] {Four Multiplexers.}

Wire Connections Between Components

STAGE-ZERO:

{Connect Multiplexers to D-Flip-Flops.}

(CONNECT DFF[0] .INPUT MUX[0] .OUTPUT)
{Connect Multiplexer Input[0]’'s for No-Operation.}
(CONNECT MUX([0].INPUT([O] DFF([0] .OUTPUT)
{Connect Multiplexer Input[l]’s for Rotate Right.}
(CONNECT MUX[O].INPUT[1] DFF[3] .OUTPUT)
{Connect Multiplexer Input[2]’'s for Rotate Left.}
(CONNECT MUX[0].INPUT[2] DFF[1] .OUTPUT)

STAGE-ONE:

STAGE-TWO:

STAGE-THREE:

Figure 4: Design Statements for Circular Shift Register

The first step involves systematically removing information from the specification. This is done
by changing constants appearing in the specification into variables. The result is shown in
Figure 6. The specification now has three types of free parameters. The indices associated with
the output wires have been generalized. The boolean control codes and the time values have
also been changed into variables. Only on the right hand side of the equality have constants
been generalized. The left side was left alone due to a requirement that all output lines have
their behavior specified by some clause. After all four clauses have been generalized, the
specifications can express arbitrary permutations of four bits. In fact, the specifications can
express movement of data other than permutations. They can also express arbitrary time
delays.

Some plausible generalizations have not been made. For example, it might be desirable
to generalize the length of the shift register or the number of different operations the device can
perform. These quantities do not appear explicitly in the specifications. They cannot be
generalized using the technique of changing constants to variables. Generalizing these
quantities would require a more complex representation for the specifications as well as a more
sophisticated procedure for generalizing the specifications.

SPECIFICATION CLAUSE

—

REPLACE
RULE

REPLACE

OFF RULE
RULE

REPLACE
RULE

CONNECT
RULE

REPLACE
RULE

CONNECT
RULE

REPLACE
RULE

CONNECT
RULE

MUX RULE CONNECT

/—/' DESIGN STATEMENTS

DESIGN STATEMENTS

Figure 5: A Portion of the Correctness Proof Tree

Once the specifications have been generalized, they can be propagated down through
the proof tree. This is achieved by having a procedure for each rule which computes the “pre-
conditions” for that rule. Given a “‘post-condition” on the resuit of a proof rule, the procedure
finds “‘pre-conditions” on the antecedents of the rule which guarantee that the post-condition will
be true. Each of the proof rules must be written in forward and backward versions. For
example, the "Replace Rule" involves eliminating variables when running in the forward
direction, and introducing variables when running in the backward direction. This method of
backward constraint propagation has been applied in other learning systems such as [Utgoff 83;
Minton 84), and the method is formalized in [Dijkstra 76]. After the specifications have

propagated through the tree, constraints on the circuit design are obtained at each of the
leaves.

Description of Circuit Behavior

STAGE-ZERO:

(Equals OUTPUT[O0]. (T)
(Casa CONTROL. (?TIME-01)
(?VALUE-01 OUTPUT[?INDEX-01]. (?TIME-02))
(?VALUE-02 OUTPUT[?INDEX-02]. (?TIME-03))
(?VALUE-03 OUTPUT[?INDEX-03]. (?TIME-04))
(?VALUE-04 LOAD[?INDEX-04]. (?TIME-05))))

STAGE-ONE:
STAGE-TWO:

STAGE-THREE:

Figure 6: Generalized Specifications

The final step involves applying some problem-independent constraints to the design
statements generated at the leaves of the proof tree. These constraints require that the circuit
design meet some general requirements that apply to all designs. For instance, one constraint
requires that no input wire be connected to more than one output from another device.

The Generalized Design

The final design schema is shown in Figure 7. One part of this schema is a list of
constraints on the parameters of the generalized specifications. The schema in Figure 7 lists
constraints on the time variables “?Time-01", “?Time-02", *?Time-03", etc. These constraints
assert that the general design can only implement a one unit time delay. When these variables
were first introduced, they allowed the specifications to express arbitrary time delays. Now it
turns out that the original specifications were over generalized. The time values were
constrained as they propagated through the proof tree. This is a consequence of the fact that
the proof tree does not represent a reasoning process sufficiently general for implementing
arbitrary delays.

The schema in Figure 7 also lists statements describing connections between inputs of a
multiplexer and outputs of d-flip-flops. These connections are not specified exactly. They
depend on the parameters “?Index-01", “?Index-02", “?index-03", “?Value-01", "?Value-02",
and “?Value-03" which appear in the generalized specifications. (The expression “(Number
?Value-01)" represents the integer corresponding to the two bit vector “?Value-01".) These
variables fell through the proof tree without having their values constrained. Therefore, the
multiplexer inputs may be connected to any of the d-flip-flop outputs. These degrees of freedom

allow the schema to implement an arbitrary permutation of the four bits, and an arbitrary choice
of control codes. The “Index" parameters determine which permutations can be computed. The
“Value” parameters determine the corresponding control codes. This design schema can also
be used to implement data rearrangement operations other than permutations.

Wire Connections Between Components

STAGE-ZERO:

(CONNECT MUX[0] .OUTPUT DFF[0] .INPUT)

(CONNECT DFF [?INDEX-01}].0QUTPUT MUX[0] .INPUT[(NUMBER ?VALUE-01)])
(CONNECT DFF [?INDEX-02].0UTPUT MUX[O0] .INPUT[(NUMBER ?VALUE-02)])
(CONNECT DFF [?INDEX-03].QUTPUT MUX[0] .INPUT[(NUMBER ?VALUE-03)])

STAGE-ONE:
STAGE-TWO:
STAGE-THRER:
Constraints on Generalized Variables
?TIME-01 =T - 1
?TIME-02 =T - 1
?TIME-03 =T - 1
?TIME-C4 =T - 1
?TIME-05 =T ~- 1
Figure 7: Generalized Design
Conclusion

It has been shown that domain knowledge can be used to enable an intelligent system to
generalize from a single example. In the area of design problems, a proof of correctness is a
useful vehicle for applying domain knowledge to the task of generalization. The proof enables
the generalizer to capture a chain of reasoning used to understand the original design. The
resulting generalization represents all designs which can be verified using the same proof of
correctness.

Acknowledgement

This paper and the work it reports have benefited greatly from numerous discussions with
Michae! Lebowitz.

10

References

[Carbonell 83] Carbonell, J. G. Derivational analogy in problem solving and knowledge
acquisition. Proceedings$ of the International Machine Learning Workshop, Champaign-Urbana,
Minois, 1983, pp. 12 - 18.

[Dedong 83] Dedong, G. F. Acquiring schemata through understanding and generalizing
plans. Proceedings of the Eighth International Joint Conference on Artificial Intelligence,
Karisruhe, West Germany, 1983.

[Dijkstra 76] Dijkstra, E., W. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Clifts, New Jersey, 1976.

[Kelly 82] Kelly, V., Steinberg, L., The CRITTER System: Analyzing Digital Circuits by
Propogating Behaviors and Specifications. Proceedings of the Second National Conference on
Artificial Intelligence, Pittsburgh, PA, 1982.

[Michalski 80] Michalski, R. S. “Pattern recognition as rule-guided inductive inference.” IEEE
Transactions on Pattern Analysis and Machine Intelligence 2, 4, 1980, pp. 349 - 361.

[Minton 84] Minton, S. Constraint-Based Generalization. Proceedings of the Fourth National
Conference on Artificial Intelligence, Austin, Texas, 1984.

[Mitchell 83a] Mitchell, T. M. Learning and problem solving. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983.

[Mitchell 83b] Mitchell, T. M., et al. An Intelligent Aid for Circuit Redesign. Proceedings of the
Third National Conference on Artificial Intelligence, Washington, DC, 1983.

[Mostow 83a] Mostow, J. Operationalizing advice: A problem-solving model. Proceedings of
the International Machine Learning Workshop, Champaign-Urbana, lilinois, 1983, pp. 110 - 116.

[Mostow 83b] Mostow, J. Program Transformation for VLSI. Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983.

[Salzberg 83] Salzberg, S. Generating Hypotheses to Explain Prediction Failures.
Proceedings of the Third National Conference on Artificial Intelligence, Washington, DC, 1983.

[Silver 83] Silver, B., Learning Equation Solving Methods from Worked Examples.
Proceedings of the International Machine Learning Workshop, Champaign-Urbana, lllinois,
1983, pp. 99 - 104.

[Utgoff 83] Utgoff, P. E. Adjusting Bias in Concept Learning. Proceedings of the International
Machine Learning Workshop, Champaign-Urbana, lliinois, 1983.

[Winston 72] Winston, P. H. Learning structural descriptions from examples. In
P. H. Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1972.

[Winston 83] Winston, P. H., Binford, T. O., Katz, B., Lowry, M. Learning Physical
Descriptions from Functional Definitions, Examples, and Precedents. Proceedings of the Third
National Conference on Artificial Intelligence, Washington, DC, 1983.

