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1 Introduction

This paper deals with the optimal solution of 2m-th order
regularly-elliptic boundary-value problems Lu = f with
£ ¢ HT (@), a E]RN. We consider the variational form of such
problems having homogeneous boundary conditions (see Section 2).
We wish to solve such problems using information of cardinality
at most n. (In this Introduction, we have to use words such as
information, cardinality, algorithm, etc., without definition;
they are defined rigorously in Section 3.)

In [10], we showed that the optimal energy-norm error of an

algorithm using information of cardinality n is @(n-(m+r)/N)

as n ~~D.* Moreover, this optimal error is achieved by a
finite-element method (FEM) using piecewise‘polynomials.of

deqrée k, where k > 2m -1 +r. Suppose that this inequality

is violated. For instance, suppose we have a program written
using piecewise-linear polynomials to solve a second-order problem
in a planar region Q. For £ € LZ(Q), this FEM has Hl-error

n-1/2

3 ( ), which is optimal. What happens when we use this program

to solve a problem with (say) £ € Hl(Q)? Does the error of the
FEM improve when £ has additional smoothness, and if not, is
there a method using the same information as the FEM, but with

better error?

*
Here and in what follows, we use the - and J-notations of
Knuth {5], as well as the usual O-notation. That is,

f =Q(g) if g = 0O(f)

and

£ =3(g) if £ =0(g) and £ = a(g).



In Section 4, we show that the error of the FEM is
sn™Yy as n -, where o =min(k + 1 - m,m + r), so that
Xk >2m - 1 + r 1is a necessary and sufficient condition for the
FEM to be asymptotically optimal. On the other hand, we analyze
the Traub-Wasilkowéki-Wozniakowski spline algorithm (see [9])
which uses the same information as the FEM. We show that the

-(m+r)/N) as n -,

error of the spline algorithm is @ (n
regardless of whether k > 2m - 1 + r; it is therefore always
asymptotically optimal. Moreover, unlike the FEM, the proof of
the error estimate for the spline algorithm doces not require the
“shift theorem"; hence, the spline algorithm is applicable to
a wider range of problems.
The optimality result mentioned above is for a worst-case
£. Also 6f in£erest is the-local error, i.e., the erfor fof any'
particular £. The spline algorithm is known to be strongly
optimal, that is, it enjoys optimal local efror. It is well-
known that the FEM is a Galerkin method. Furthermore, as we
show in Section 5, the spline algorithm is a generalized Galerkin
method. (Indeed, given the spline algorithm, we show how to
realize it as a generalized Galerkin method.) This motivates
our interest in the local error of generalized Galerkin methods.
The ratioc of the local error of an algorithm to the cptimal
local error is called the deviation of the algorithm. We pose
and solve the question of when a generalized Galerkin method has
finite deviation. We show the dgviation is finite if and only

if the generalized Galerkin method is the spline algorithm.




Do FEM's always have finite devia;ion? We show the answer
is no, by exhibiting an FEM which is not a spline algorithm.
We conjecture that no convergent FEM has finite deviation.

In Section 6, we discuss the complexity of obtaining ¢€-
approximations. We show that the penalty for using the FEM
when k < 2m - 1 + r is unbounded as ¢ - 0. Since this is
an asymptotic measure, it is useful to know whether the spline
algorithm has lower complexity than the FEM for moderate values
of €. We show that this is indeed the case, by exhibiting a
model problem for which the spline algorithm has lower complexity
than the FEM for any ¢ roughly less than one-half.

Finally, in Section 7, we briefly discuss implementation of

the spline algorithm, and ask whether it is practical to use.




2. [The Variaticnal Boundary-Value Problem

In what follows, we use the standard notations for Sobolev
spaces, inner products, and norms, multi-indices, etc. found in
Ciarlet (2]. Fractiocnal- and negative-order Sobolev spaces are
defined by Hilbert-space interpolation and duality, respectively;
see Chapter 2 of (1] and Chapter 4 of (6] for details.

Let O be a bounded C° region in :mN. Define the properly

elliptic operator'

la| @ 3

(2:1) Lv:= z (-1) '~'D (aGSD v)

lal,l3]<m

(with real coefficients a3 € C‘%ﬁ such that a .y = a3~) and
- Sate

a normal family of operators

(2.2) B.vi= £ b, 0% 0 <3 <m-1),
J Iq.|<q. J
=]
(with real coefficients bja € do(aﬂ)), where
(2.3) 0£qy £qy L-028 97 & 2m - 1,

which covers L on 23i. Setting

(2.4) m g min{j : a4y > m},

we additionally assume that

*
\

2. 30 T
(2.5) [q33]=0

1 (0,...,m - 1}.

"

U {om - 1 - q. 3¢t
J m

(See Chapter 3 of [l], Chapter 5 of (6] for further definitions

and illustrative examples.)



Let
»*

(2.6) Hg(@):= {v & g Q) Bjv =0 for 0<j<m - 1]

denote the space of H™(Q) -functions satisfying the essential

boundary conditions of order at moest g , . We define a symmetric,
m -1

continuous bilinear form B on H;(Q) by

a .D¥vD w.

(2.7) B(v,w):= 28

Z
lal,131<m Q

We additionally assume that B 1is Hg(ﬂ)—coercive, so that B

is an inner-product on HE(Q), yielding a norm | +; defined by

(2.8) Ivig:= B(v, v /2

m
E
We now define the wvariational boundary-value problem as

which is eqdivalen; to the norm H-Hm on H_(Q).

follows. Let r > -m. Given £ € HT(Q), find u = S € Hg(ﬁ)
satisfying |

(2.9) B(u,v) = (£,v), = £ £v ¥ v & Hg(n).

From the Lax-Milgram lemma, S is a Hilbert space isomorphism
of H ™(Q) onto H?(Q), so that S : H (Q) - Hg(ﬂ) is a bounded
linear operator. i

It is useful to recall the "shift theorem" (Chapter 3 of
(1], Chapter 5 of [(6]) which states that since f € HE(Q), we

have Sf € Hg(ﬂ) N H2m+r(0); moreover, there exists a positive

constant J, independent of £, such that



: -1 ' i PR N-Y-
(2.10) g~ TisEl < el & IS ypep

r > N/2, the shift theorem, Sobolev's embedding theorem, and

I

I

‘an m-£fold integration by parts yield that
3 -R satisfying

u = Sf is a classical

solution to the problem of finding u :

Lu = £ in Q

(2.11) .
Bju=0 on (0 j<&<m~=1).




3. Information angd Algorithms

In this'section, we define a number of the concepts mentioned
in the Introduction. Most of the terminology and results are
from [9]. As we state these definitions and results, we will
illustrate them for the finite element method and Galerkin informa-
tion.

Recall that we are trying to approximate the transformation
s : H (Q) - Hg(g) with r > -m., Since S 1is not of finite rank
and we wish to use finite algorithms, we are only allowed to
sample a finite amount of information about problem elements

£ € H'(Q). Here (linear) information of cardinality n is a

surjective linear mapping n : HT (Q) ~:mn, so that we may write

(3.1) af = (N (B) ..u A (81T vof e ET@)
where xl,...,xn are linearly independent linear functionals
on HT(). (See Chapter 7 of [9] for a discussion of why we

consider only linear information.)

Example 3.1. Let 8 be a subspace of Hg(ﬂ) of dimension

n and having basis {sl,...,sn}. Define g : gt Q) - R™ by

\fie T : r,
(3.2) nsf.— [(f,sl)o cee (f'sn)O] y £ € H (Q).

Then nS is linear information of cardinality n. (Conversely,
given any linear information a of cardinality n, one can show

that there exists a subspace § < H?(Q) of dimension n such

-

that n = ng if and only if 17 has an extension to all of
B ™(Q) which is bounded in the [|+|__ norm.) We call ng the

Galerkin information generated by §. |




In the remainder of this paper, for any Hilbert space H,

= )

-

we denote the unit ball of H by BH,

(3.2) BH:= {f ¢ H : dfﬂH

|~

l}'
In particular, we will let

(3.3) Gy:= BHT (Q) .

By an algorithm ¢ using n, we mean a (possibly nonlinear)
mapping ¢ : Q¢ < n(ao) - Hg(n). The (worst-case) error elp) of
$ 1is given by |

(3.4) e(p):= sup ||SE - p(nf)
EGEO

;lBI N
(The restriction to £ € 30, rather than considering the sup
over all £ € H'(Q), -is a normalization which is neéessary for

the error to be finite.) We use the nomm | :||; rather than the

equivalent norm H-ﬂm for technical reasons, as illustrated in

Example 3.1 (continued). Define the Galerkin method ¥g

using ng by

(3.5) ms(nsf):= ug

where ug € 8 satisfies

(3.6) B(ug,s) = (£,5) 4 Y s &8.
Then standard ;gsults ([1),02),(71) yield

(3.7) elpg) = sup inf |Sf - sﬁB.
fedo s€$



In particular, let § = Sn, where {Snf;;l is a regular

fa}

family of finite element subspaces of degree k, i.e., 38 is

an n-dimensional subspace of Hg(ﬁ) consisting of piecewise
polynomials of degree k over a triangulation Sﬁ of G. Here,
{Snfill is reqular in the sense of page 132 of (2], which
(roughly) means that the subregions do not become geometrically
degenerate, and that their diameters tend to zero as n -~ L. (Of
course, since lQ is dn, we must make an additional assumption
about boundary elements to guarantee that Sn = Hg(ﬂ); for
instance, we may decide to use curved elements as in (3].)

* *
For this case, we write 4 and n. rather than Pg and

*
A s calling P, the finite element method (FEM) using Sn.
Suppose now that [Snf§;1 is quasi-uniform (see pg. 272 of [6]),
which means that the ratio of the diameters of any two subregions
in J is bounded, independent of n. Then the standard results

n
((11,(2].06]) yield

-#/N)

*
(3.8) e(@n) = 0(n as n == b =min(k + 1 - m,m + r).

Moreover, results of Strang and Fix (8] imply that the "O" may

be changed to "8" when Hg(ﬂ) = H°(Q) (i.e., no essential boundary
conditions), the triangulations Jn are uniform, and k < 2m - 1 + r.
In Section 4 of this paper, we will remove these three restrictions,

so that the bound (3.8) is always sharp. |

Given information n of cardinality n, we wish to find the
minimum error of an algorithm $ wusing n. In order to do this,

let
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~t ,} 7'.' PO

(3.9) vE:=s (T € G, ¢ AT =af ¥ £ < G,

If P uses a, then knowing only af, it is impossible for 3

to determine which of the elements of the set
(3.10) Uf:= SVE
is being approximated, so that

(3.11) e(p) = sup elyp,£f)
£€3 4

where the local error el(p,f) is given by

(3.12) elp,f):= sup |[ST - @ (nf)g vEEF,.
Fev(£)

Define the local radius rad Uf by':

(3.13) rad Uf:= inf sup |a - éfus VEEGT,.
a€Hz (0) Tevs

As in Chapter 1 of [9], we have

(3.14) inf e(p,f) = rad Uf,
®
so that
(3.13) inf e(p) = r(n):= sup rad Uf,
) fEEo '

where r(n) is called the radius of information n. In our

Hilbert space setting, one can show that

(3.16) r(n) =  sup Iszilg

zé‘&o dkern
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(see Chapter 2 of (9]).

Example 3.1 (continued). In Section 4, we will show that for
i-uniform {3 g
quas Spdn=1’
* -
(3.17) r(n) =9(n (m+r) /Ny is n = o,

*
Hence the FEM ?, has (asymptotically) optimal error using nn

(as n - <) if and only if k > 2m - 1 + r. |

Remark 3.1. Now that we know the minimal local and worst-

case errors of algorithms using n, it’'is useful to find algorithms
achieving these minima. Let P : Hr(ﬂ) - Hr(Q) denote the

orthogonal projector onto (ker n)*. Define the (Praub-Wasilkowski-

WOfniakowski)spline algorithm ms (Chapter 4 of (9]) by

(3.18) 9% (nf) := SP£ VEEG,.

One may check that ms is well-defined, and that

(3.19) e(@®,f) = rad Uf T f €T,

which implies that ms is an optimal error algorithm, i.e., for

any % using n,
(3.20) e(®@®) =r(n) < elp).

Not only is @s an optimal error algorithm, but it is a strongly

optimal error algorithm, that is,

(3.21) e@®,£) < e, £) Y £ €3

We will discuss FEM's and spline algorithms more fully in

Section 5. |
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Just as we can ask which algorithm makes optimal use of
given information, one can ask which information of a given

cardinality is best. Let

(3.22) r(n):= inf{r(n) : n is of cardinality at most n}

denote the nth minimal radius of information; we say that a

of cardinality at most n is an nth optimal information if

(3.23) ) r(n) = r(n).
Then (Chapter 2 of [9])

_ ~ m
(3.24) r(n) = dn(s(co),Hé(Q)),

where the Kolmogorov n-width of a balanced subset X of a

Hilbert space H with nomm ||-[],, is given by
d_(X,H):=
(3.25) n
inf{sup inf {[x - yHH : A subspace of H, dim A ¢ nj.
XEX y€A

Example 3.1 (continued). Results from (10] yield that

-(r+m) /N

.

(3.26) r(n) =38 (n }) as n = <<,

*

Hence, the results in Section 4 will imply that A is

(asymptotically, as n = <) an nth optimal iqformation.
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4. ﬂQSEEiSEEE'Error.QS.EQS..EQ.EBQ.EQS.SDline Algorithm
In this section, we show that k > 2m - 1 + r is a’necessary
and sufficient condition for an FEM to have optimal error to
within a constant, independent of n. We also show that the
spline method is an optimal error algorithm using the nth
optimal (to within a constant) information n;, regardless of
whether k > 2m - 1 + r.
Recall that Sn is an n-dimensional sﬁbspace of Hgﬁﬂ)

consisting of piecewise polynomials of degree k from a triangula-

tion 5 of 3.0 We first show

Lemma 4.1. k > m.
Proof: Suppose on the contrary that k <{( m - 1. Since,

for any s €8_, s € BH™Q) and sl|, € C°(K) for each K € J

K n’
an obvious extension of Theorem 4.2.1 of Ciarlet [2] yields that

Sn < Cm—l(Q). Choose s € Sn. Let Kl,K2 be adjacent elements
in the triangulation, let

(4.1) F:= 3K, 01 3K

1 2
and let
(4.2) ;1= le. (L =1,2).
i
* * *
Let s ¢ Pk satisfy s = s, on Kl; that is, s is Sy

but treated as a polynomial over i rather than over K,. Pick

a point p on F, and draw a §-axis Gp perpendicular to F
N

through p. Hence there is an affine transformation FP : R - 1R

which is a bijection of IR onto Gp, such that p = Fp(O)-
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For i =1 and i = 2, define

(4.23) 51(%):= si(Fp(é))

so that

(4.4) ci(é) = si(x) for x = Fp(g).
Since .

(4.5) S5 € Pk and Fp is affine.

we see that
(4.6) ci(é) is a polynomial of degree at most k in 3.
On the other hand, since s € cm'l(Q), we must have

(4.7) a{3 (@ =93P (o) 0<3<m=1).

Using (4.6), (4.7), and k {( m - 1, we see that

(4.8) cl(é) = 02(5) ¥ § &R,
i.e.,
(4.9) sl(x) = sz(x) Y x € Gp a (K1 U Kz).

Since p € F is arbitrary, we let p vary along F to find

(4.10) sl(x) = sz(x) ¥ x € Kl v K2,
lL.e.,
i .
(4.11) le (x) = s (x) Y x € xlu LW i=1,2
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-~

Repeating this argument, we see that for any K € & _,

n
7
(4.12) sly = s lgo
*
and so s = s E'Pk' Thus s arbitrary in Sn yields
(4.13) énEPK’
so that
4 s . _ (kX + N
(4.14) n = dim $ < dim Pk = N ),

which is impossible, since k and N are fixed, while n 1is

an arbitrary positive integer. Hence k > m.

We are now able to establish the sharpness of the usual
*
estimate for this error of the FEM Pn generalizing the work

of Strang and Fix [8].

Theorem 4.1. Let r > -m, and define

(4.15) w =min(k + 1 - m,m + r).
Then
* -
(1) e@.) =am™M as n-
ard
. * - /N — . . ==
(i) elp,) =3(n ) as n - for quasi-uniform {$_J __;-
Proof: First note that (3.15), (3.22), (3.23), and (3.26)
yield

n-(r+m)/N

(4.16) e@) > r(n) =3 ).
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It remains to show

-(k+1l-m) /N

(4.17) e(¢;) = .(n ) as’ n - 3,

since (4.15), (4.16), and {(4.17) imply (i), while (i) and the
usual estimate (3.8) yield (ii).

In order to show (4.17), we will rely heavily on the notation
found in [2]. First, let i1° be the interior of a hypercube

such that Q°c W3,

(4.18) 32:= [k €5 : k< Q,

and

(4.19) ' := int U (K : K 533

For any element K.& Sn, let

(4.20) Pypi= sup{diam(S) : S a ball,S < K]
and

(4.21) hK:= diam K.

Then £3nfn

n=1 regular means that

(4.22) lim sup hK = 0
=<0 KéSn

and there is a constant < > 0 such that

5 1
(4.23) he £ 9Py VKes , yn>l.

Using (4.18), (4.19), (4.21), and (4.22), we f£ind that
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(4.24) | I <l 7n> 1,
but that
(4.25) lim vol(T) = vol(a®).
n—coS R
. . m 2m+r
We next choose u to be any function in HE(Q) N H (Q2)

such that

_ 1 k+1 . -0
(4.26) u(x) = R Xq vV x & .
Let K € Sg . We now claim that there is a constant C1 >0,
independent of K and n, such that
(4.27) inf Ju - s12 . > c2 voL(k)2tk+l-m/N + 1

m,K = 71
sEPk(K)

Pk(K) denoting polynomials of degree k over K. To show (4.27),

there is an affine bijection FK : % - K with

(4.28) F.% =B

where Q is a reference element independent of K, so that K

is the FK-image of a "reference element” R independent of n

and K. Then Theorem 3.1.2 of [2] yields the existence of a

constant c, = cl(k,m) > 0 such that
(4.29)  inf lu - sl? . > c.ldet B.| B, %™ inf 18 - %1%, ,
s€P, (K) m,K = "1 KR ) m, R
k 3ep, (B®) ’
where ||+|| is the Euclidean matrix norm and where, for any function
v : K~R, we define 0:?*111 by
(4.30) 3% := vix) for x = F R.
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On the other hand, one may check that the functionals

(4.31) § = 19
k+1,?
and
(4.32) ¢r»  ing 19 - 9§ 2
Sep, (R) m

are seminorms on Pk+l(ﬁ). Since k > m, we find that these two
seminorms have the same kernel, namely the space Pk(ﬁ). Since
Pk*l(ﬁ) is finite dimensional, there is a constant
Cy = cz(k,m,ﬁ) > 0 such that
(4.33) inf 1% -81_ . > c, 9 v 9epr ., R).

sﬁPk(ﬁ) !

Hence, we may use (4.27) and (4.33) with & replaced by G

to see that

. 2 2 | -2m; A, 2
inf |u - s| > ¢,c5ldet B, Il{B,i |
S€P (K) m,K = "172 K RKY k+1,R
(4.34)
2 ¢y — laly ik
\l BKIl

for cqy = c3(k,m) > 0 by Theorem 3.1.2 of (2]. Using (4.23)
and Theorem 3.1.3 of (2], we find that there exist C4:Cs > 0

such that

-1-1 -1
1 A h

iB

: B

v

(4.35) )
gl L Cshy



Since
(4.36) vol(K) £ J,h

. . N
where Iy is the volume of the unit ball in IR, we have

. 2 2 2 (k+1-m) /N 2
(4.37)  inf Ju - sly p > C] vol(K) lalyyr, g

. 1
P (K
sg€ k( )

where C1 = Cl(k,m) > 0. Finally, not that (4.26) yields

2 _ n .42 _ _
|k+l,K = z JID7ul® = | 1 = vol(K),

la|=k+1 X K

(4.38) | u

and so (4.27) now follows from (4.37) and (4.38).

~0 .
Hence, J < Jn yields
inf [u - sli > L inf Ju - S|; K
s€$ Kesg s€P, (K)
(4.39) , -
> Ci § vol(k)2(k+l-m}/N + 1
KE3 -
Since
(4.40) L vol(K) = vol(T ),
~0 n
. Keon
we may use calculus to find that
2(k+1-m) /N
vol({1))
(4.41) L vol(g) 2kti-m/N*l, ) __ n
Kez® #gn

n

From (4.24) and (4.25), there is an n, > 0 such that

19
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' - 1 ~Q - ..

(4.42) vol(u ) 2 3 vol(iT) ¥ n 2 ng.

Hence, (4.39), (4.41l), and (4.42) yield that there is a C2 > 0,
independent of n, for which

(4.43) inf |u - s|l_>C (#50) = lk+l-m) /N ¥nd>n

m< ~"2'"n =70
s€s
n
We now claim that there is a C3 > 0, independent cf n,

such that

(4.44) #3° < c.n

. n S C3n.

We first consider the case m = 0. In this case, the functions

(4.45) (xg : K € 37)

are linearly independent elements of Sn, X denoting the charac-

K

teristic function of XK. Since dim Sn = n, we have

-0
(4.486) #on

-~

= #{xg ¢+ K€ Jg} <n

for the case m = 0. We now assume that m > 1. Let § (0

denote the restrictions of functions in 8 to ﬁ; , so that

(4.47) dim Sn(ﬁn

}) ¢ dim §8_ = n.
- n

In the case N = 1, we may count free parameters to see that

) _ _ o s —
(4.48) k +1 + (#Sn - D)(k +1 m) dim Sn(hn),
so that

) n-m
(4.49) ¥Vl y T -m
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which implies (4.44) for the case N = 1. To establish the
case for N > 2, we first claim that there is a c6 > 0, in-

dependent of n, for which

(4.50) #s

g

where v(Sg) is the number of vertices in the triangulation og
. ¢ o .
Indeed, regularity of tdn}nzl (and hence [SH}nZI) yields that

there is a g > 0, independent of n, such that if v 1is a

vertex of Sg, then v can belong to at most Cg simplices in

83, which implies (4.50). We need only show that there is a

<5 >_0, independent of n, for which
~0 . —
(4.51) V("n) £ ¢y dim sn(nn)
(in the case m > 1, N > 2); (4.44) then follows from (4.50),

(4.51), and (4.47). Now 8_< C™ (@) (see proof of Lemma 4.1).
In the case N = 2, Theorem 1 of Eenigek {11] states that at

each vertex v of 32,
(4.52) @ » DY (v) for lal < 2(m - 1)

must be degrees of freedom, while the case for N > 2 may be
reduced to the case N = 2 by considering restrictions of functions
in Sn(ﬁ;) to 2-faces of simplices K C'Sg. Hence, (4.51) holds

N+ 2(m - 1)} -1

with c, = , which finally completes the proof
2(m - 1)
of (4.44).
As a result of (4.43) and (4.44), and |- > |-l , we see

+hat there is a C4 > 0, independent of n, and an no > 0,



22

such that

(4.53) inf Ju - S“m > C4n-(k+1-m)/N

s&3
n

Now let f = Lu. Since 0 # u g H2m+r(Q) N H;(Q), we see

that 0 # £ € H(Q). Let

(4.54) £ = £/] 2]
and
(4.55) w'i= s£ = w/llE] L

Recall that there exists a finite C. > 0 such that | < Coil -ilg
' *~|
on Hg(ﬁ). Since || £ lp < 1, we have

*
C.elp_ ) > sup inf |[SE - s
TR T g <1 ses i

. * * ,
inf |sf - sﬂm = inf {jlu - sil
sesn sESn

v

(4.56)

Hgﬂr 225 lu = sily (since 8 is a subspace)

Cy = (k+1-m) /N

> = ¥yn>n
= dfdr = Yo
which establishes (4.17) and the theorem. | ]

We now ask whether the FEM is asymptotically optimal using
*
the information nn. We find that this is the case if and only

if k>2m -1+ r from



23

Theorem 4.2.

(1) r(n;) = a(n- @ /Ny g -

. PO, . L
(ii) 1If L“n}n=l is quasi-uniform, then

n_ (r+m) /N)

(4.57) o) = r(n;) =3¢ as n - <o,

*

where $i' is the spline algorithm using the information nn.

Proof: Using (3.1S5), (3.22), (3.23), and (3.26), we £find

n-(r+m)/N

(4.58) r(n;) > r(n) = 3 ) as n =2,

*
establishing (i). To establish (ii), let 2z € &, 0 ker nn.

0
Then
k4
(4.59) z € ker nn = (z,s)0 = 0 ¥V s & Sn
and
(4.60) z €3,= 2z € B (Q) and |z ¢ 1.

0

From (2.8) and (2.9), we see that (4.59) yields

USzﬂg = B(Sz,Sz) = (z,52),

(4.61) = (z,Sz - s)0 ¥ s & Sn
< el sz - sil_, Ts €8 .
By Theorem 4.1.1 of (1] and the equivalence of H-HB and ﬂ-ﬂm,
there exists Sn € Sn' such that
' ' -:\/N ' 'X/Nu H
(4.62) sz - snﬂ_r < ¢yn iszil < c,n szl g

where C1 and C2 are positive constants independent of n,

and
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(4.63) A =mintk + 1 + r,m+ r) =m + r

by Lemma 4.1. Hence (4.61)~-(4.63) yield that

- (m+r) /N

(4.64) LISz;iB < Cyn 72z &3,0 ker a_,
and so (3.16) yields

- . - ' - (m+r) /N
(4.65) r(n ) = sup dSzﬂB < C,yn )

ze:;on ker'r&_
Using (4.58), (4.65), and (3.20), we £ind (ii). B

Hence, the information n; is (asymptotically) an nth
optimal information. 1In the case that k > 2m - 1 + r, the FEM
is (asymptotically) an optimal error algorithm using n;; when
this inequality no longer holds, the FEM is no longer an asymp-

totically optimal error algorithm.

Remark 4.1. In Section 2, some rather stringent assumptions

were made concerning the smoothness of the region and the coef-
ficient; appearing in the differential operators L’BO""’Bm-l'
If these smoothness assumptions are violated, the shift theorem
no longer holds; that is, although the second inequality in

(2.10) holds for all r > -m, the first inequality may only hold

for all r 1in some subinterval [—m,ro). Since the shift theorem
no longer holds for all r, the error of the FEM is now

—(m+r0)/N
ad(n ) as n - <2, nc matter how big r is, and no matter

how k 1is chosen. On the other hand, the proof of the error

estimate of the spline algorithm does not use the shift theorem.
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Hence, Theorem 4.2 holds, even if the smoothness conditions

imposed in Section 2 are drastically weakened.

As an example, we consider a problem with mixed Dirichlet-

Neumann boundary conditions. Let

(4.66) = fD 9] rN

be a partition of dau such that ID is of positive boundary

measure. Let
1 1
(4.67) Hp (Q) 1= (veH Q) :v=0o0n FD}.

For r > -1, we consider the problem of finding, for any f & Hr(Q),

a function u = Sf ¢ Hé(ﬂ) satisfying

(4.68) o Jurvv = [ fv v ve Hé(ﬂ).
V! 9!

This is the weak form of the problem

-Au = £ in Q
(4.69) u=20 on FD

A _ -

vl 0 on LN
d

(— denoting the normal derivative).
We wish to put (4.68) into the notation of Section 2.

Let X and XN denote the characteristic functicns of ?D

and rN, respectively. Define
Lv:= -AV

(4.70) Sv
BOV:= XpVY + XN v
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Then u = SE is the weak solution to

Lu = £ in 4
(4.71)

Bou =0 on il

However, the coefficients appearing in BO are discontinuous,
i.e., the smoothness assumptions of Section 2 are violated.
From results of Grisvard (4], the first inequality in (2.10)

holds only for r € [-l}%), i.e., r, = % above. Hence, the FEM

has error Q(n-B/(ZN)) as n -, while the spline algorithm has

-(m+r) /N

error 3(n ) as n = <.
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3. .ESSEQ,ESEQE.EEQ Generalized Galerkin Methods

In this section, we discuss generalized Galerkin methods
(i.e., with different spaces of test and trial functions) Efor
the variational boundary-value problem. We wish to determine
when such a method has local error which is bounded by a constant
multiple of the optimal local error. In particular, we will
exhibit a FEM which is (worst-case) asymptotically optimal,
yet whose local error is arbitrarily worse than the optimal
local error.

To measure the amount by whiéh the local error of an
algorithm varies from the optimal local error, Traub, Wasilkowski,
and WOihiakowski (Chapter 4 of [9]) introduced the concept of
"deviation." Let @ be an algorithm using n. Then the

deviation dev(p) of ¢ is defined to be

(5.1) dev(y) := sup ele.fl
0 :
Clearly-
(5.2) _ devip) > 1,
with
(5.3) dev(p) =1 1iff ¢ is strongly optimal error.

Moreover, Traub et al. showed that if 3 is homogeneous, i.e.,

(5.4) Dlay) = ap(y) Ya €R, y€RY

then (in our Hilbert space setting)
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s

(5.5) : devip) << iff 9 =g~.

So, the spline method is the only homogeneous algorithm having

finite deviation.

We wish to determine when the FEM has finite deviation.
Since the FEM is linear (and hence homogeneous), the FEM has
finite deviation if and only if the FEM is a spline algorithm.
Hence, we wish to investigate when the FEM is a spline algorithm.
In order to expedite this investigation, we now define generalized
Galerkin methods (which include standard Galerkin methods and
hence FEM's).

Let {si 231 and iti}?=l each be linearly indepehdent sets
of functions in Hg(ﬂ). .Let '

n

g = .n
i=1 and J: span{ti}i=1

(5.6) §:= spah{si}

denote the subspaces of test and trial functions (respectively).

We define the generalized Galerkin method P33 using S8 and 3
’

14

(5.7) %g g (Ngf) i= ug

1o

where uS,S € J satisfies
(558) B(uS,S’S) = (f,s)O ¥ s €8

and n is the Galerkin information (3.2) generated by' S.

8

Remark S5.1. The (standard) Galerkin method Pg is a
generalized Galerkin method with J = 8. The FEM is a generalized
Galerkin method with 5 =8 = Sn, with Sn an n-dimensional

subspace of Hﬂ(ﬂ) consisting of piecewise polynomials of

édegree k. |

by
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Remark 5.2. It is more common to use Galerkin methods

with different spaces of test and trial functions in the solution
of variational problems associated with a bilinear form on
W x iy, where U and Vy are different Hilbert spaces. See e.g.

pp. 217-220 in Section 6.3 of [l] for such a method. |

*
In what follows, we let § H;(O) - HT (Q) denote the
Hilbert space adjoint to S, remembering that Hg(ﬂ) is a Hilbert
space under the inner product given by the bilinear form B.

Hence (2.9) yields

* - r
(5.9) (g,v)0 = B(Sq,v) = (g,S v)r ¥y v € Hg(ﬂ), g € H (Q) .
We then have

N *
Lemma 5.1. ({ker h)” = S §.

Proof: Let s € §. Then for any h € ker n,
*
(5.10) (s s,h)r = B(Sh,s) = (h,s)o = 0.

* ¥
Hence S 8 < (ker n)*. Now S is a dense injection, so that S.

is an injection. So #n = n yields
*
(5.11) dim $8 = dim 8 = n = dim(ker n)*,
*
which, along with S 8§ < (ker ), yields the desired result. [ |

Lemma 5.2. Given n-dimensional subspaces & and <
. n n
of H:(Q), suppose that bases Lsi}i=l and [ti}i=1 of §

and 3, respectively, are chosen such that

»* *
(5.12) (s sj,S s{)p = 5ij (1 i, j £n)
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and
(3.13) B(tj,si) = sij (l'i 1, ] £ n).
Then
s - n *
(5.14) P (nsr) = L (f,si)oss s
i=1
and
n
(5.15) $3,3(hsf) = iil(f'si)oti'

*
Procf: Let fi = S ;- Then Lemma 3.1 yields fi g€ (ker nS)L.
*

In addition, (5.9) (with g =S§ Sy and v = sj) and (5.12)

yield

* w *
(5.186) (fi,sj)0 = (S si,sj)o = (S si,s sj)r = 5ij'

The representation formula (5.14) for the spline algorithm
»° now follows from (5.1) of Chapter 4 of [9].

To see (5.15), write us 3 in the form

n
(5.17) uS,J’ -Elajtj'
]—
Then (5.8) and (5.13) yield
) n
(5.18) (f,si)0 = B(uS,S'si) a jilajB(tj,si) =25

establishing (3.15).

We now give the main result of this section, which tells us

the unique choice of trial function space J (corresponding to
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the given test function space 8) for which the generalized
Galerkin method is the spline method, i.e., for which the

_generalized Galerkin method has finite deviation.

Theorem 5.1. Let $& and J§ be n-dimensional subspaces

of Hg(ﬂ). Then the following are equivalent:
(1) dev(@s’;) < =,
(1) g o = ®°.
*
(iii) 3§ = ss 8.
Proof: Since P33 is linear and thus homogeneous, (i)
and (ii) are equivalent by (5.5). We show that (ii) and (iii)
are equivalent. Let $ and J be n-dimensional subspaces of
Hg (@) ; choose a basis (s;}]_; for & such that (5.12) holds.
Suppose first that (ii) holds. Choosing a basis [ti}2=i
for 3‘ such that (5.13) holds, Lemma 5.1 yields (5.14) and

(5.15). Using (5.9), we -have

n * *
£y = jil‘s S;r85) %5 = 95,5 (NgS s;)
(5.19) .
s .. * n * * *
= @ (nSS si) = jil(S si,sj)OSS sj = S8 S

for 1 < i < n, so that (5.6) yields J SS 8. So, (ii)
implies (iii).

Now suppose that (iii) holds. Let

(5.20) t, = SS s, (1 < i< n).
i i -7 =

*
Then (iii) and the injectivity of SS show that {ti}2=l

L d

is a basis for 3. Using (5.9) and (5.12), we have (for
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1<i, j £n)

»* * *
(5.21) Bty s;) = B(SS sy,5;) = (Ss;,8 s;) =5,

so that (5.13) andv(5.14) hold. Using (5.13), (5.14), and (5.15),

we see that (ii) holds. Thus (iii) implies (ii). -

Hence, given any finite-dimensional subspace 8 of Hg(n)
we see how to choose the unique subspace J of Hg(ﬁ) with ‘
dim J = dim 8 such that ¢s = ¢g,3° On the other hand, the most
natural choice of subspace is to pick J =8, so that we get
the standard Galerkin method Py - When is dev(ws) finite, i.e.,

when is Py the spline method?

Theorem S.2. Let &8 be an n-dimensional subspace of

ag(n). Then the following conditions are equivalent:

(i) dev(p,) < =.
(ii) Pg = @s.
(iii) § = ss’'s.
(iv) 8 1is an eigenspace of SS*.
(v) 8 = S§, where & 1is an n-dimensional subspace of
HE(Q) such that 5 = S S3.

(vi) 8 = sS3, where & 1is an n-dimensional eigenspace of

Proof: From Theorem 5.1, we have (i), (ii), and (iii)
*
are equivalent. Suppose that (iii) holds. Then Ss : 8 - 8
is self-adjoint, so that & (being finite-dimensional) has a
* *

basis of eigenvectors of SS , i.e., 8 1is an eigenspace of Ss ,

i.e., (iii) implies (iv). On the other hand, an eigenspace
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of an operator is always invariant under that operator, i.e.,

(=]

* *
(iv) implies that SS 8 = §; the inclusion 8 < SS 3 follows
*
rom the injectivity of SS and the finite-dimensiocnality of

§. So (iii) and (iv) are equivalent.

—~

Suppose that (iv) holds. Let & =S 8. Using the equivalence

* * »*
of (iii) and (iv), we have S S& = S SS 3

s’s =3, while
injectivity of S* yields dim & = dim 8§ = n. Moreover,
S5 = S5'8 =8. So (iv) implies (v). If (v) holds, then

8§ =S5 = ss*ss = SS*S, so (v) implies (iii), which in turn
yields (iv). So (iv) and (v) are equivalent.

—~

%*
Finally, § = S S3 1if and only if & 1is an eigenspace of
%*
S S, the argument being similar to that in the preceding paragraph.

Hence (v) and (vi) are equivalent. )

We now consider two examples for which one of the conditions
in Theorem 5.2 holds, so that the Galerkin method and the spline

metheod are one and the same.

Example 5.1. Let r = -m. Then S is the Riesz map, which

is an isometric isomorphism of H "(Q) (under the norm iS-lig

which is equivalent to H-H_m) onto Hg(ﬂ) (under the norm |-[lg) .,
see Section 4.4 of [7]. Hence SS* = I, the identity map on

Hg(ﬂ), and so 8§ = SS*S for any subspace 8 of Hg(ﬂ). So

when r = -m, the standard GCalerkin method is the spline algorithm,
no matter what the choice of 8. Of course in this case, (3.26)
shows that 1lim r(n) # 0, i.e., there is no convergent seguence

o

of algorithms, each of which uses finite information; see also

Corollary 5.1 in Chapter 2 of [9]. B
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Example 5.2. Let r > -m. Then HY(Q) has a complete

%*
basis of eigenvectors for S S, i.e., there exists a basis

{ei}i;l for H®(Q) and real numbers \ >...> 0 with

1 2%
lim A, = 0, such that for any positive integers i and j,

1= i

(5.22) S Sei = xiei
and
(5.23) (ej,ei)r = 6ij'

Define the information nn : BT (Q) -~ R" by

.= T
(5.24) nnf.— [(f,el)r oo (f’en)r] .

Then #n_ =-n. Moreover, n, .is the nth optimal information,

and

-{r+m) /N
(5.25) r(nn) = r(n) = yxn+l =@ (n ) as n -~
(Theorem 5.3 of Chapter 2 of [9]). Letting
(5.26) F = span{el,...,en},
we-see that (vi) of Theorem 5.2 holds. Setting

(5.27) s = span{si,...,sn}, s;3= 7 Se; (1 < i< n),

we find nn = ns, since (4.27), (4.32), and (4.5) yield

*
S Sei *
(5.28) (f'ei)r = | £, Li . = (£,S Si)r = (f,si)

0 (1 < i< m).

dence the spline method and the standard Galerkin method coincide
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for the nth optimal information nn. Since

* *

’

r Aikj

. * * 1
(5.29) (5 s,,S8 s.)_ =
J 1
we see that the formula for the spline method and standard Galerkin

method is given by

*
(5.30) ms(nnf) = g (n_£) = (£,5;),85 s, =

1 g

hneMo
WMo

xi(f,ei)rSei

i 1

in this case. ]
%*
We now turn to an example 8§ # SS 8. This example is of
particular interest because it gives an instance of an FEM which

has optimal worst-case error (to within a constant, independent

of n), but has infinite deviation.

Example 5.3. We consider the Lz-approximation problem for

Hl-functions on the interval (0,1). Choose N =1, m=0, r -1,

and let S : H'(0,1) ~ L,(0,1) be the canonical injection
(5.31) Su:=u ¥ ueg Hl(O,l).

The variational form of the problem is to define
B : Lz(o,l) x Lz(o,l) - IR by
1

(5.32) B(u,v):= f uv ¥ u,v g L2(0,l).
0

Then for any £ € Hl(O,l), we wish to find u = Sf & L2(0,1)

such that
(5.33) B(u,v) = j fv ¥ v € L2(0,l).

(Of cocurse, u = f£.)
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We let Sd be an - n-dimensional subépace of Lz(O,l)

consisting of piecewise constants, so that k = 0. Let
(5.34) 0 = x, < %x; <...¢ X < x_ =1

be a partition of (0,1). Then Sn is the span of the functions

sl,‘..,sn where

(5.35) s;(x) = 5ij X5-1 < x < X (L <j<n, 1<ign.

Using an integration by parts, one can show that for any

x .
s € LZ(Q), w:= S§S s is the (weak) solution to

-w" + w =8 in (0,1)
(5.36)
w'(0) =w'(1l) =0
so that
P!
| s(§)cosh(l - 3)dg <
(5.37) wix) = ————— cosh x - J‘Os(g) sinh(x - §)d§.

®
Hence SS 8  is the span of [wl,...,wn}, where

(5.38) w,(x) = s_:;hl_f cosh x - j(l) s; (§) sinh(x - $)d3
K :
= ;IE%—T cosh x - [cosh(x - x;_,) = cosh(x - x;)]
and
L1
(5.39) &i = | si(§) cosh(l - 3)d€ = sinh(l - xi-l) - sinh(1l - xi).

0
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Since none of the W is piecewise constant on (0,1), we have
Wi g %“ so that SS*Sn # $.- .
Hence, the FEM is not the spline method in this case, and
thus has infinite Aeviation. This is interesting for the following
version. Suppose that {Snfi;l is quasi-uniform. Then the FEM
has worst-case error @(n-l), and is (to within a constant,
independent of n) an optimal-error algorithm. Hence, we have
an example of an almost optimal-error algorithm that has infinite

deviation, i.e., is not strongly optimal error. ]
Examples 5.1 and 5.3 suggest the following

Conjecture 5.1. Let r > -m and let Sn be a finite-

element subspace of Hg(ﬂ). Then the FEM using Sn has infinite

deviation. ' B

From the results of Section 4, it is clear that Conjecture
5.1 holds when k < 2m - 1 + r. Hence, it remains only to prove

the conjecture for the case k > 2m - 1 + r.
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g. Comolexitz'Analvsis

In this section, we discuss the complexity of finding
€-approximations to the solution of the variational boundary-
value problem, as well as the penalty for using the FEM when
k<2m -1+ r.

Let € > 0. An algorithm & using a furnishes an ¢€-

approximation to the problem if

(6.1) elp) ¢ <.

The complexity comp(p) of an algorithm ¢ wusing n is defined

in the model of computation discussed in Chapter S5 of (9].
(Informally, we assume that linear functionalg can be evaluated
in finite time and that the cost of an arithmetic operation is
unity.) It then turns out that for any algorithm ¢ wusing 0

of cardinality n,
(6.2) comp () > nc, +n - 1,

<, being the complexity of evaluating a linear functional,

while if ¢ is a linear function of the information used, then
(6.3) complp) < ne; + 2n - 1.

(See Section 2, Chapter 5 of [9] for further details.) We

then define, for € > 0, the €&€-complexity COMP(€) of the

problem to be

(6.4) COMP (€) := inf{comp(p) : e(p) < €},

the infimum being taken over all such % using information of

finite cardinality.
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Remark 6.1. Note that we distinguish between algorithmic

complexity and problem complexity. For an algorithm o,

comp (p) denotes the complexity of the algorithm %, while for

€ >0, COMP(£) denotes the (minimal) complexity of finding an
€¢-approximation. To tie these two concepts togehter, let € > 0.

*
Suppose that 9 is an algorithm with
*
(6.5) e{p ) < €&
and such that for any other algorithm ¢,
%*
(6.6) e(p) < € = compl(p) > comp(p ).

*
Then o is an optimal complexity algorithm for finding an

E—approximation, and
(6.7) COMP (€) = comp(p ) . n

Let {gnr§;1 be a quasi-uniform family of finite element

subspaces of Hg(ﬂ) consisting of piecewise polynoinials of degree

*
k. Let @n be the FEM based on the space Sn; that is, for £ € 30,

*
we let u, € Sn satisfy
* 3
(6.8) B(un,s) = (f,s)0 ¥ s € én,
and then set
* * k3
(6.9) @n(nnf).— u

We wish to measure the algorithmic complexity of using the FEM

to find <-approximations, i.e.,
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* *
(6.10) © FEM(€):= inf{comp(wn) el ) < g},
and compare FEM(€),
(6.11) SPLINE(€) := inf{comp(pl) : e(®>) < €]

(mi being the spline algorithm using the Galerkin information
. A

nn generated by Sn), and COMP(g).

Using (6.2), (6.4), and the results in Section 4, we find

(6.12) FEM(€) = 0(e™V¥) as € = o,
wherg

(6.13) o = ﬁin(k +1l-m m+ 1),
‘while

(6.14) SPLINE(€) = o eV )y o ¢ 1 g
and

(6.15) COMP (€) = @(e‘w‘m*r’) as € - 0.

This yields

Theorem 6.1.

(i) The spline algorithm is asymptotically optimal, i.e.,
SPLINE(€) = &(CoMP(€)) =0 (e W/ (™)) 45 ¢ - 0,

(ii) If k > 2m - 1 + r, the FEM is asymptotically optimal,

i.e.,
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~=N/ (m+r)

FEM(€) = 3 (COMP(&)) = 3 (& ) as € - 0.

(iii) If X < 2m - 1 + r, then

FEM(E)  _ [ __EEM(E) | _ (1 AN < -0
comp (e) ~ Z|spriNE(ey| - 2 \'€ as '
where
_ 1 1
A kKk+1-m m+Tr > 0,

so that

. FEM(E€) _ .. FEM(E) _

(6.16) éjrg COMP (€) é_lfg SPLINE(€) ~ -

Thus when k is too small for a given value of r, the
asymptotic peénalty for using the FEM instead of the spline
algorithm is infinite. Clearly (6.16)‘tells us that there

exists Eo > 0 for which

m
~
m

(6.17) SPLINE(€) < FEM(€) for 0 <

What is the value of 60? If ¢ is unreasonably small, it

0
may turn out that it is more reasonable to use the FEM for
"practical" values of €. We determine the value of eo for

a model problem in

Example 6.1. Let N =1, 3= (0,n), m=1, =1,

Hé(ﬁ) = Hé(O,n), and consider the bilinear form
B : Hé(o,n) x Hé(o,n) - R defined by
T

(6.18) B(v,w):= f viw!' ¥ v,w € Hé(O,w).
0
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Hence for £ G‘Hl(o,w), u = Sf is the variational soclution to

the problem

£(x) 0 < x < n

_uu (X)
(6.19)
u(d) = u(m) =20

We choose Sn to be a subspace of Hi(o,n) consisting of piece-

wise linear polynomials with nodes at xj = HiE_T (03 <n+1).

Hence k = 1l; moreover, since any function in Sn must vanish

at the endpoints of [0,nr], we see that dim Sn = n.

*
We first give a lower bound on e(w;), Pn being the nth

FEM. Let

1
(6.20) £(x):= =— .

X Ve
Then
(6.21) el =1
and Sf = u, where
(6.22) a(x):= 3 x(v'; - X
Yr

~ R - . o~ - .
Let u, be the Sn-Lnterpolate of u, i.e., u,  1is the unigue

function in Sn for which

(6.23) un(xj) = u(xj) (1 <3j <n).

Then using Newton's interpolation formula on each subinterval

[xj’xj+l

show that

] along with the fact that u" is a constant, one can
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T

(6.24) inf |lu - sl, = |lu-"T_Il, =
. s€s 1 Rl VIZ (n o+ 1)

Using (3.7), (6.21), (6.24), and u = Sf, we conclude that

o, B
(6.25) el®,) > = D

*
Now we can find a lower bound on FEM(€). Let e(mn) £ €.

Then (6.25) yields

-1

(6.26) n -1,

iy -

2 — &
Y12

which, along with (6.2), gives the lower bound

T =1
€

yiz

(6.27) FEM(E) > (c; + 1)

1

Next, we wish to give an upper bound on e(¢i), where

wi is the spline algorithm using n;. Since e(¢§) = r(n:),

it suffices to compute the radius of information. Let

z € ker n; N BHl. Let Pn denote the orthogonal projector of
L,(0,7) onto & . Using (2.8), (2.9), the fact that z € ker n

and properties of the orthogonal projector, we find

2 — — —1 -
HSz“B = B(Sz,Sz) = (z,Sz), = (z,S5z - P Sz),
= (z -Z_,Sz - P_Sz)
(6.28) o no 0
<llz =% flylsz - 2 szl
<z - Z_llalsz - (52)_||
- | n Ol nl 0
(where for v & Hé(O,n), Vn is the Sn—interpolate of v as

given by (6.23)). Since for any v € H,(0,7), Theorem 2.4 of

(7] states that
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’ i ~ 1 . ‘
(6.29) v "Vndo T Ivll,

(6.28) becomes

1

(6.30) szl ¢ (== 2lzl szl < (= Zszl,

where we have used z € BH® (so that lzl, < 1) and H-HB =11,
Hence

, 1 2 * 1
(6.31) Iszilg < (7 Y z € ker n_ N BH",
so that
s * 1 2

(6.32) e(mn) =) ¢ (7
by (3.186).

Using (6.32), we now find an upper bound on SPLINE(€).

Let

(6.33) a< e /2 _

Then (6.32) yields that e(¢§) < €. From (6.3), we find that

(6.34) SPLINE(€) < (e, + 2) (€712 - 1) - 1.

1

We now wish to £f£ind EO = Eo(clL such that (6.17) holds.
From (6.17), (6.27), and (6.34), we see that we may choose EO

to be the smallest positive solution of

+ "= el 1] = (e

viz O

(6.35) (e + 2)(&51/2 - 1).

1 1

Some algebra yields
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- -V 2 . T
(6.36) Eo(cl) = cy * 1 sz c, + 1) VTE (c1 + 1)

L
2

Some elementary calculus tells us that 60 is an increasing

function. Since c, 2 0, we thus have

(6.37) =0(c1) < 60(0) =|1-Yy1 - = 0.482853424.
Thus (6.17) holds for all € roughly less than one-half.

On the other hand, if we are willing to assume that evaluating
a linear functional is at least as hard as an arithmetic operation,

we have ¢; > 1 and so

: . . T 2 .

(6.38)  €,(cy) L €y(1) = (3 -yx - | = 0.7048360247.

(¥ v3
Of course, it is reasonable to suspect that c1 >> 1 (see e.gq.
pg. 85 of [9]). One may check that
"2
(6.39) lim Eo(cl) =13 = 0.8224670334,
C, =0
1
giving an estimate of Go(cl) for large values of - | |

Based on this example, it seems reasonable to conjecture
that for any regularly-elliptic boundary-value problem, (6.17)

will hold, where ¢ is sufficiently large to be of interest.

0
We suspect that such a result will be difficult to establish.
There are two reasons for this. The first reason is that

"sufficiently large" may be a subjective criterion. That is,
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e, = 1071000 obviously too small to be of practical interest,

0
while Eo = lO.l is not so absurdly small; where does one draw
the line separating the reasonable values of EO from the un-
reasonable values?

The second reason is perhaps more crucial. 1In order to
determine 60’ we have to change the order-of-magnitude estimates
in Theorems 4.1 and 4.2 to sharp bounds inveolving constants
whose values are explicitly known. Since the values of the
constants appearing in these theorems are not explicitly known
in general, we suspect that this task will be very difficult
for a general problem, making it very difficult to determine,

for a general problem, a value of EO such that (6.17) will

hold.
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1. Scome Practical Considerations

In this section, we discuss the implementation of the spline
algorithm. In particular, we ask when it is of practical use.

The main problem is that the spline algorithm is hard to
implement. This is mainly due to the presence of the adjoint S*
to the solution operator S. As we saw in Example 5.3, even for
very simple solution operators S and subspaces Sn of test
functions, the space SS'*Sn of trial functions can be very
complicated.

To a certain extent, this problem may be solved by pre-
conditioning. Generally speaking, the problem S, the class
§, of problem elements, and the family [Snfﬁ;l of subspaces of
test functions will be fixgd. Suppose, for a given € > 0, we

wish to'compute €-approximations to Sf for many f € & Then

0.
we may determine a fixed cardinality n, depending on &, such
that e(w;) < &€, i.e., the spline method wi yields ¢€-

approximations for any f € & Now, we may precondition:

0"
instead of finding ti = Ss*si, we find approximations '?i

tc ti for 1 ¢ i < n. (This may perhaps be done via an FEM.)
Moreover, we may use standard techniques (e.g., the Q - R
method) to biorthonormalize {si}2=l and fEi}2=l. Although

this may be a lot of work, it is independent of the choice of £.
Hence, if we wish to compute €-approximations to Sf £for many

different £ € & this may be a feasible technique. (But note

OI
that since this is a linear method which does not exactly coincide
with the spline algorithm, its deviation is infinite, no matter how

close T©. and t. arel)
i i



48

Oon the other hand, suppose we wish to compute a seguence

-~

of approximations to Sf for a fixed £ € o+ In this case,
the preconditioning will be prohibitively éxpensive, because as
€ changes, the value of n such that e(m;) £ € chénées,
which implies that the algorithm mi changes. Since Ss*si
(1 < i < n) cannot be explicitly computed for general S, it
appears that tﬁe spline method will not be practical in this
case. Using Theorem 4.1, it appears that the best advice is to
use an FEM of sufficiently high degree, unless the problems
involved in implementing such a method are so great (or €& is

so large) that one doesn't mind the penalty of @(E-XN) as

1. (m + r)-l, which will result

€ - 0, where A = (k + 1 -m)
from using an FEM of degree k < 2m - 1 + r.

In summary, we see that for the case of solving problems
Lu = £ with many different . £ ¢to within a fixed error criterion
€, the spline algorithm may be of practical interest. On the
other hand, we do not currently know how to efficiently implement

the spline algorithm when solving a single problem with greater

and greater accuracy.
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