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ABSTRACT

Hierarchies are pervasive. They are used to organize and describe many
artificial and natural phenomena. In general, humans are very good at
understanding them. [t therefore seems reasonable to give computers the
same ability if they are to be “intelligent’.

The integration of representation and generalization is necessary in order
to understand hierarchically structured objects. In this thesis we address
the issues tnvolved and present a scheme, MERGE, designed to be*used in
computer systems that understand and automatically classify instances of
hierarchies in a given domain.

The MERGE scheme uses a form of dynamic generalization-based memory
in order to achieve this integration. Representations of individual
hierarchies are stored in terms of how they vary from previously created
generalized concepts.  Memory i3 continually reorganized as new data
becomes avatlable to a MERGE-based system so that it accurately reflects
the known information. The overall effect of this scheme 1s that
representations of tndividual hierarchies are enhanced by the use of
in formation in the knowledge base. These representations are in turn
used to enhance the knowledge base by permitting more and better
generalizations to be made.

We have developed two MERGE-based computer systems that intelligently
understand hierarchies. CORPORATE-RESEARCHER {3 a program that
learns about upper-level corporate management hierarchies when it is fed
representations of corporate charts. RESEARCHER is a larger, natural
language processing program that reads and understands patent abstracts
about physical objects. Both programs serve as intelligent information
systems that automatically classify representations of instance hterarchies.
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The MERGE scheme of hierarchy wunderstanding is a form of
generalization-based memory that integrates representations of individual
ingtances with generalizations created from them. The result (s an
enhancement of both representation and generalization over schemes that
treat each process separately. The need to use MERGE to understand
hierarchies comes about because hierarchical systems are often too
compler for people to grasp in detatl and because there are domains with
large numbers of instances that must be understood (generalized). A
MERGE-based system can automatically classify large numbers of
hierarchies in an incremental fashion while learning about all sub-
hierarchies within the whole. An ezxample of MERGE is shown by
giving a brief demonstration of CORPORATE-RESEARCHER, a program
that understands corporate hierarchies. The originality of this research
13 clearly indicated, and a preview of the thesis is given.

1. Introduction

Representation and generalization have long been treated as separate problems in
Artifictal Intelligence (Al). It 1s our contention that representation and
generalization must be unified in order to build intelligent information systems (as
in [Lebowitz 83a]). In particular, we will show that a dynamic generalization-based
memory (GBM) scheme can be used to understand hierarchically structured objects.

Our scheme 1s an ntegration of a representation formalism with generalization
techniques for use 1n understanding hierarchically structured objects (tangible or
intangible). When objects are stored in terms of their similarities to, or differences
from, other objects or generalizations 1n memory, a dynamic memory system (in the
sense that 1t changes with the knowledge 1t stores, see [Schank 82]) can be realized.
Such a dynamic system uses generalization as a method to enhance representation,
chiefly by creating and changing a classification hierarchy as new data becomes
availlable. Furthermore, this classification hierarchy will dictate the way in which
objects analyzed by the system are represented. The overall effect 1s a unification
of representation and generalization into a GBM structure that we call Mutually
Enhanced Representation and GEneralization (MERGE).

1.1 Overview

The intent in developing the MERGE scheme 1s to use it as the heart of
intelligent information systems that understand hierarchically structured objects.
Much of what we perceive in the world around us is hierarchical. Physical objects,
river and road systems, library systems, family relations, and all kinds of taxonomies
are examples of common hierarchical phenomena. Humans seem adept at
understanding information presented as hierarchies. People even create abstract
hierarchically structured systems when entertaining themselves; most western music
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fits this form. [t seems logical that artificial intelligence programs should have a
similar capacity to comprehend hierarchies.

An intelligent information system that understands hierarchically structured objects
would be useful for two reasons. First, some hierarchies are extremely complex.
For example, an automobile can be viewed as a hierarchy of parts that range from
the entire car down to the screws that secure a gasket in the water pump of the
engine. Being able to simultaneously make comparisons of cars through all these
levels of detail is a difficult task for humans. An automated system would be ideal
for such a task.

The second reason to wuse an intelligent information system to wunderstand
hierarchies is to categorize instances in domains with many instances. For example,
a biological taxonomy classifies animals based upon each animal's structure (ire., a
hierarchy of body parts). A system that can automatically create a classification of
animals, based on their structure, could be a help to biological taxonomists. The
MERGE scheme offers a way to automatically create such a classification. (An
implementation of MERGE for zoological taxonomy would somehow have to capture
established classifications, 1nstead of creating its own classes, if it were to be really
useful.)

Building an automated system that understands hierarchies is a difficult task.
The difficulties arise from having to represent arbitrarily complex hierarchical
systems that may or may not be described in a canonical fashion. Furthermore, for
the understanding system to be useful for many real-world tasks it has to learn
incrementally.  That 1s, it must process data as it becomes available to the system.
It can not have the luxury of having all instance hierarchies available for analysis
at one time. On top of these difficulties, an automated, intelligent understander of
hierarchies must be able to successfully represent individual and generalized
hierarchies.

It 1s our contention that representation and generalization must be integrated in
order to achieve a true understanding system. The main reason (in this thesis) for
analyzing 1ssues 1n representation and generalization in 1solation 1is that the
complexity of the MERGE scheme makes 1t difficult to comprehend all at once.
Breaking it down into two parts makes a discussion of the scheme’s elements more
tractable. In addition, this separation facilitates referencing past research,
emphasizing where our work departs from 1t, and showing why an integration of
representation and generalization is needed for an understanding system.

After looking at generalization and representation, the details of the MERGE
scheme 1tself will be given. Two computer systems that employ MERGE as the
basis of their operation are discussed. CORPORATE-RESEARCHER is a program
that understands the information supplied by corporate charts (i.e., it learns about
upper-level corporate management structures, as demonstrated later in this chapter).
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It is used mostly as a means to demonstrate the features of MERGE.
RESEARCHER [Lebowitz 83b] 1s an intelligent information system that reads,
understands, and answers questions about patent abstracts. It learns about complex
physical objects, disc drives in particular. Both corporate charts and disc drives are
examples of hierarchically structured objects, which is what MERGE is designed to
understand.

1.1.1 Definitions

The word understand has been used to describe the actions of intelligent systems
without stating exactly what 1s meant by this term. When discussing hierarchies,
we will limit the meaning of the word ‘“‘understand” to the recognition of how
objects differ from (or are similar to) other objects or generalizations in the same
domain and the creation of new generalizations that embody these observations.
Specifically, this means structuring memory using generalizations of instance objects
and creating further generalizations upon these. In fact, a hierarchy of
generalizations (in essence a classification hierarchy) 1s what the understanding
process creates. Each generalization 1s a comparison made between at least two
instance objects (or other generalizations). The result of this comparison 1s a new
memory element that represents the information the objects have 1n common.

We use the term instance to refer to an object that 1s a specific example of
something in the real world. When two or more instance objects are compared and
a generalization of them is created 1t 1s called a generalized object. Generalized
objects have instance objects and/or other generalized objects as variants. That 1s,
an instance object is included in the class defined by the generalized object of
which 1t 1s a vanant.  Similarly, generalized objects may be included in a class
defined by another generalized object by making them variants of this ‘‘higher-
level”" concept.

A hierarchy describes a system in which each member of the system exists in
some partially ordered state relative to the other members. Usually a hierarchy
appears as a strict tree structure, with each member (node) of the hierarchy being
subservient to exactly one other node. This 1s the definition that will be used
throughout this thesis. However, a broader definition of a hierarchy will
occasionally be referred to. A tangled hierarchy or almost-hierarchy {Sussman and
Steele 80] is one in which each node may be subservient to more than one other
node.

Knowledge representation in Al is concerned with formal representation schemes
and the processing of knowledge within these schemes. Our work can be considered
to fall within the confines of this area. The MERGE scheme is a formal
representation scheme as well as a method for processing this information.
However, we will use the term representation specifically to refer to formal systems
with which knowledge 1s encoded, not how it is used.
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MERGE uses a fixed knowledge representation formalism (defined in Chapters 3
and 4) that is particularly well suited to hierarchy representation. It uses this
language to encode individual instance hierarchies and new generalizations in terms
of previously created generalizations. It dynamically modifies the data needed for
representation — it does not modify its knowledge representation language.

Generalization 1s the type of learning that MERGE carries out.  Specifically,
MERGE is designed to learn incrementally by modifying a knowledge base to
continually reflect the known state of the world. This is opposed to all-at-once
learning where information 1s amassed before 1t is analyzed.  Unless stated
otherwise, learning will refer to the incremental generalization process.

1.2 The need for hierarchy understanding systems

Hierarchies are pervasive. They are encountered in everyday situations as well as
in scientific pursuits  Since a goal of Al is to understand the same realm of
information as humans do, considerable attention must be paid to the
comprehension of hierarchies. The practical motivations for developing automated
hierarchy understanding systems have been mentioned above. The details of real-
world hierarchies are often difficult for people to grasp all at one time because of
their complexity. They may be able to understand a few levels in a hierarchy or a
few lineages, but entire hierarchical systems are often overwhelmingly complex.
Additionally, some domains have large numbers of instance hierarchies, too many
for any one person to understand.

We first look at several examples of hierarchical domains. Following this, the
usefulness of an automated understanding system for hierarchies will be discussed
further

1.2.1 Hierarchical domains

Figure 1-1 shows several examples of hierarchies in various domains. Two major
types of hierarchical systems are included (as distinguished by [Simon 81]); natural
hierarchies, those that nature has formed and that humans perceive as being
hierarchical; and artificial hierarchies, those that are purely human inventions.
There are a few hierarchies that are not clearly natural or artificial. For example,
atomic structure is actually a model of what people believe to be a hierarchy 1n
nature. (The model 1s an artificial hierarchy, but 1t purports to represent a natural
hierarchy) A domain can have examples of hierarchies from either or both of
these classes. Physical objects can be man-made (artificial) as are automobiles, disc
drives, and so on. Or they can be natural hierarchies, as is the case with trees
(e.g., Maple, Oak, etc.) [Rosch et al. 76, Hemenway and Tversky 84].

Some hierarchies are obvious. Governments, military establishments, and
corporations make charts describing their tree-like structures. Biological taxonomies



Hierarchical Domain Examples
Human Organizational Systems governments(a), corporations(a),

clubs(a), religious institutions(a)

Physical Objects plant and animal physiology(n),
atomic and cosmic structure,
automobiles(a), buildings(a)

Human Symbolic Systems writing(a), music(a),
library organizational systems(a)

Taxonomies biological taxonomies, sub-atomic
particle classification, chemical
classification

Genealogy family trees(n)

Road/River Systems highway location planning(a), rivers

and their tributaries(n)

Several examples of types of hierarchies in each domain are shown.
Both natural and artificia gman-made) hierarchies are given as examples
in

under some domains.  Artificial hierarchies are indicated by an ‘‘a’

parentheses after each example. Natural hierarchies are shown with an
‘n" following them = The examples that have an unidentified type are
described 1n the text

Figure 1-1:  Hierarchical domains.

and family trees are explicitly made to be hierarchical in form. Most forms of
writing are also hierarchical and an author usually tries to keep this in mind while
writing long documents (e.g., this thesis 1s a hierarchy of words, sentences,
paragraphs, sections, and chapters).

Other hierarchies are not so obvious. Musicologists describe compositions as being
hierarchies of notes, measures, phrases, themes, and higher level structures. The
process of deciding how to plan the routing of a highway is structured as a
hierarchical decision task [Manheim 66].  Even buildings are hierarchical in
structure; they have rooms, suites of rooms, floors, and clusters of floors (in some
large office buildings).

Figure 1-2 shows several examples of hierarchies that computer scientists use. The
right hand column shows an organizational concept for each type of hierarchy.
Hierarchical domains can have several ways to organize information. Thus, it is
necessary to specify which of these organizational concepts is being studied. We
will focus on this point when the fundamental relation (F-rel) of a hierarchy is
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discussed i1n Chapter 3.  Simply put, the F-rel is a formal characterization of a
hierarchy’s organizational concept.

Type of Hierarchy Organizational Concept
grammatical parse trees part of a phrase
structured programming one module calls another
communications protocols passes data up/down through levels
disc file management increasing/decreasing units of size
hardware organization in same subsystem as
circuit layout functionally part of

Some of the many examples of hierarchies found just in the computer
science domatin are listed. The organizational concept indicates what the
basis for each hierarchy 1s.

Figure 1-2:  Hierarchies within computer science.

1.2.2 Automatic classification

The wide variety of hierarchies 1n the real world makes the need for an
understanding of them important.  Although humans are able to recognize and
construct hierarchies, they are not particularly good at simultaneously understanding
all the levels of detail that a single, complex hierarchy can represent.

A hierarchy can be seen as a recursive structure.  That 1s, a hierarchy 1is
composed of a root node and other sub-hierarchies.  Each sub-hierarchy being
another hierarchy with one less level of detail than its predecessor. Representing
this recursive structure can be easily done on a computer  Since computers have
accurate memories they can ‘“‘remember” a lot of detail. Thus, a properly designed
program can represent hierarchies of arbitrary depth (level of detail).

Having such a representation scheme is only a prerequisite to understanding
hierarchies, not the method. Understanding has been defined to include
generalization 1in this thesis. Consequently, instance hierarchies can only be
understood 1n relation to other hierarchies; they can not be understood in isolation.
Some generalization-type processing must be done on representations of hierarchies
in order to understand them.

Throughout this thesis two kinds of hierarchies are discussed. Hierarchies that
represent a specific instance of a system or a generalization of a system are called
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F-trees. For example, a representation of John's 1984 Toyota, Mary’s corporation,
or a generalized modular computer program is an F-tree. (The origin of the term,
F-tree, is described in Chapter 3) The other type of hierarchy that will be
discussed is called a Generalization tree, or G-tree. A G-tree 1s composed of
generalized concepts and specific instances. Each node (concept) in a G-tree is an
F-tree. Thus, a G-tree is a hierarchy of generalizations of F-trees. The leaves of a
G-tree usually are specific F-trees (instance hierarchies). Higher levels in a G-tree
are generalized F-trees, with the most general F-tree situated at the root of the G-
tree.

Understanding involves creating and maintaining G-trees. For example, an
understanding of household furniture would necessitate the creation of concepts of
various classes, types, and kinds of furniture. There might be bedroom furniture
and living-room classes. Types of living-room furniture would be chairs, couches,
and tabless The kind of chair would be the next classification level (e.g., with or
without arms). At the lowest level of this hierarchy would be specific pieces of
furmture from a specific manufacturer.

When a domain such as household furniture has a large number of instances, an
intelligent understanding system also serves as a way to automatically classify
objectss  That 1s, the understanding process creates a hierarchy of generalized
concepts. These concepts are analogous to the classes, types, and kinds that are
needed to classify furniture. In general, a hierarchical categorization of objects can
have arbitrarily many levels.

MERGE-based systems are particularly useful for automatic classification of objects
in domains with many instances. It seems to use that people are often unable to
generalize about large numbers of similar objects and still recall the details of a
particular object  To compensate for this problem they resort to external means
(e g, database systems) to assist them in storing knowledge about such domains.
However, humans must make the generalizations (1.e., we are assuming that
databases, heretofore, cannot make generalizations). Thus, representations of objects
are separated from the generalizations about them. Although this separation may
allow a human to perform better at classifying objects, it is inflexible in that an
addition to the database may require human intervention to reclassify the
information. Our scheme allows large numbers of objects to be both represented
and generalized about within the same environment, eventually isading to an
integrated, automated, intelligent information system.

A MERGE-based system can automatically classify several objects simultaneously.
Since the objects being classified by MERGE are hierarchical in structure, several
categorization hierarchies can be created during the understanding process -- one
categorization hierarchy for each unique sub-part of an object. The MERGE
scheme enables the understanding of parts of objects during the process of
understanding the whole object. People commonly learn about objects within the
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context of other objects. For example, they might learn about random access
memory (RAM) and external memory (e.g., disc drives) while trying to understand
personal computers. We believe that intelligent information systems should
duplicate this type of learning if they are to be robust in their ability to process
varied input data.

1.3 MERGE-based systems

The MERGE scheme can be applied to the task of understanding in any domain
comprised of hierarchically structured objects. However, 1t is limited to use 1n one
area at a time (e g, computer disc drives within the physical object domain). An
implementation of MERGE must be focused on a specific area of a domain.

We have built two related programs that employ MERGE as the basis for
organizing memory to understand hierarchiess. = CORPORATE-RESEARCHER s
designed to learn about upper-level corporate management hierarchies. As such, the
objects 1t understands are corporate officers, divisions, or departments.
RESEARCHER 1s a system that reads patent abstracts about disc drives, thereby
learning about how they are structured. It understands hierarchies that describe
complex physical objects.

Aside from the fundamentally different objects that these programs represent and
generalize about, they have other differencess. RESEARCHER 1is a large natural
language processing system that obtains its data by parsing English language text
into MERGE’s representational formalism. CORPORATE-RESEARCHER gets its

input from hand encodings of corporate charts.

Both systems use 1nformation (relations) to supplement the basic hierarchical
representations  Although RESEARCHER and CORPORATE-RESEARCHER both
make use of relations they do so to different degreess. RESEARCHER has a
sophisticated method for representing physical relations among parts of an object
hierarchy  For example, a disc drive may have a read/write head ON-TOP-OF a
disc (with both being parts of the disc drive). The relations that CORPORATE-
RESEARCHER uses have to do with special interactions among various branches of
a corporation. For example, an acquisitions committee ADVISES the chairman of
the board. Relations are of 1mportance 1in augmenting a single tree-lke
representation of a hierarchy so that it more closely captures reality.

The fact that CORPORATE-RESEARCHER and RESEARCHER understand
significantly different domains with different input sources and relational information
1s mmportant. [f MERGE can successfully be used in these two programs then it
can likely be applied to a wide range of hierarchical domains. We will examine the

details of these programs in more depth in Chapter 6, but will look at a simple
example of how MERGE works here.



1.3.1 CORPORATE-RESEARCHER

We choose to briefly demonstrate MERGE with an example from CORPORATE-
RESEARCHER. (We will not show actual program output, but this example has
been processed by CORPORATE-RESEARCHER.) The hierarchies that this
program understands are very straightforward 1n that corporate management
structures are generally tree-like in form, as corporate charts show. In addition, the
rankings of members of a corporation are known to most people (e.g., a chairman is
above a president, a president 1s above a vice-president, etc.). These qualities make
for easy-to-understand examples. ‘

Three hypothetical corporate charts (representations) are shown in Figure 1-3.
The nodes 1n each F-tree represent officers of the corporation. The links
connecting the nodes are the fundamental relations (F-rels) that specify the structure
of the hierarchy These representations are fed directly to CORPORATE-
RESEARCHER, one at a time, so that the program can incrementally incorporate
them 1nto its knowledge base.

CHAIRMAN CHAIRMAN CgAIRlﬁl
/ \
PRESIDENT PR?SIDEIT EXEC-VP 7RESID§IT

\ / \ / \
VICE-PRES VICE-PRES SECRETARY  VICE-PRES TREASURER VICE-PRES SECRETARY
Corporation-A Corporation-B Corporation-C

The corI?orate hierarchies for three hypothetical corporations are shown.
All three F-trees show the fundamental relation that binds the members of
the hierarchy together.

Figure 1-3:  Three corporate charts.

Initially, Corporation-A’s F-tree 1s all that i1s available to the program. Since a
MERGE-based system learns only from information that it has gathered from
multiple instance F-trees, there are no possible generalizations that can be made
given a single instance. Thus, the initial knowledge base 1s just Corporation-A’s F-
tree

Upon receiving as input Corporation-B’s F-tree, CORPORATE-RESEARCHER
begins the process of generalizing, modifying representations, and incorporating the
new instance into its knowledge structures. Corporation-A and Corporation-B have
a chairman, president, and vice-president (VICE-PRES) in common.  Therefore,
generalizing them together will create a concept of a corporation that has these
members in the same ordered hierarchy. The original instances, Corporation-A and
Corporation-B, become variants of this generalized concept. Figure 1-4 shows this.
Each box contains an F-tree. The top box 1s a generalized F-tree, while the
bottom boxes are instance F-trees. The boxes themselves are nodes in the G-tree
that describes corporations. '
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The generalized concept of a corporation (the top box) contains the
common elements of Corporation-A and Corporation-B. ° The original
instances (lower boxes) are indexed as variants of the generalized concept.
Corporate members that have been inherited from the generalized concept
of a corporation are shown 1n parentheses.

Figure 1-4: The two corporation knowledge base.

There is no need to re-represent parts of a hierarchy that are in common between
a vanant node and its parent. In this example the chairman, president, and vice-
president have been inherited from the generalized concept of a corporation. (The .
tnherited data is shown 1n parentheses.) Inheritance of this information is used to
eliminate the repetition of common elements -- only differences need be stored.
MERGE makes heavy use of this operation and augments it with other operations
that allow for modification of inherited parts. They are too detailed to go into
here, but will be elaborated upon in Chapters 3 and 5.

We can see the use of a MERGE-based system as an automatic means for
classifying hierarchies when the representation of Corporation-C is incorporated into
the knowledge base. The structure of Corporation-C most closely matches that of
Corporation-A in that they both have a secretary and a vice-president below the
level of the president. CORPORATE-RESEARCHER recognizes this (ie, it finds
the closest matching instance or generalized concept to Corporation-C according to
a metric for matching trees that appears in Appendix A) and builds another
generalized concept (F-tree) of a corporation that i1s more specific than the first one
it created. It then indexes both Corporation-A and Corporation-C as variants of
this new concept. The new concept is in turn indexed as a variant of the first
generalized concept. This creates a G-tree that serves as a classification hierarchy
for the instances fed into the system. The resulting G-tree is shown in Figure 1-5.

Concurrent with the process of creating a generalization hierarchy that classifies
entire  corporations, CORPORATE-RESEARCHER also builds generalization
hierarchies that classify each sub-hierarchy that comprises a corporate structure.
This process 1s not an additional task, but rather a consequence of the way
MERGE works. Figure 1-6 shows the president G-tree that was created for the
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All three instance corporations are classified in this generalization
hierarchy. A new generalized concept has been created (middle left box)
which 1s a representation of a corporation that has the common elements
of Corporation-A and Corporation-C

Figure 1-5:  The three corporation knowledge base.

same three instance corporations. It has one less node than the generalization
hierarchy shown in Figure 1-5 because there 1s no difference between the president
in  Corporation-C and 1ts generalized concept. However, the chairman of
Corporation-C has an executive vice-president (EXEC-VP) that the generalized
concept does not have. In general, G-trees will have different structures depending
on the information that they classify.

In Figure 1-6 we can see that the concept of a president that has a vice-president
and a secretary reporting to him has bzen created This concept may be useful for
disambiguating future instance F-trees that are unclear as to who reports to the
president. The same can be said for the corporation as a whole. The concept that
a corporation has a chairman, president, and vice-president may help in determining
the correct ordering of corporate officers for some instance F-tree that does not use
the same names for executives that were used in these examples.

1.4 Originality of our work

This thesis 1s both a synthesis of several recent ideas in knowledge representation
and a step forward i1n hierarchy understanding. We posit a unification of formal
representation methods with generalization techniques 1n a generalization-based
memory scheme designed to understand hierarchically structured objects. Assertions



about the oniginality of this work fall into three areas: knowledge representation,
generalization, and hierarchy theory (i.e, the study of the nature and behavior of -
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This G-tree was created during the same process of incorporating
instances into memory as was the G-tree shown in Figure 1-5. It classifies
presidents 1n the same way the entire corporation is classified. A G-tree
1s created for each unique member of the instance hierarchies that have
children below them in their F-tree (i.e., non-leaf nodes).

Figure 1-8:  The president generalization hierarchy.

hierarchical systems).

The assertions to be made about knowledge representation and generalization are

the most significant i1n this thesis. The MERGE scheme and its implementation in

CORPORATE-RESEARCHER and RESEARCHER support these assertions.

assertions about the nature of hierarchies are more speculative
two sections we will enumerate these points in their order of importance as they

relate to this thesis

1.4.1 Knowledge representation and generalization

1

When representations of individual instance hierarchies are properly
integrated with generalizations of these instances, a mutual enhancement
of both representation and generalization can occur. The proper
integration 1s obtained by using a type of GBM scheme that we call
MERGE. In MERGE, representations of instance hierarchies are encoded
in terms of previously generalized instances allowing for the inference of
missing data, and disambiguation of contradictory information.  These
instances, in turn, improve the quality of the generahizations.  This
feedback between representation and generalization is the essence of the
MERGE scheme.

We will show exactly how this can be achieved by structuring memory

In the following
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as multiple hierarchies of generalizations (G-trees) based upon
representations of instance hierarchies. It will be argued that this
approach to organizing memory is cognitively accurate and results in an
improved method for understanding, compared to conventional methods
in which representation and generalization are treated as separate
processes.

Classically, a researcher might set out to builld an understanding system
by first choosing a representation formalism to capture the data at hand.
While working on generalization problems he may then find that his
imtial choice of representation formalism is not completely satisfactory for
making generalizations. The next step would be to refine the
representation scheme and try the generalization process again. This
test-refine-test strategy is an example of methodological feedback.

Methodological feedback 1s useful for determining a good formalism to
use.  However, once a formalism is decided upon the processes of
representation and generalization must function on their own.  The
results of a good generalization do not help in the representation of a
new 1instance

The feedback cycle in MERGE 1s different. A representational formalism
1s predetermined for a specific domain (actually, i1t 1s basically the same
for all hierarchical domains, only relations are domain dependent).
However, memory 1s structured such that instances and generalizations
are represented in terms of previously created generalizations.  The
feedback cycle consists of generalizations affecting the representations of
objects and representations used to create new generalizations. This 1s

an example of internal feedback -- not methodological feedback. A
MERGE-based system dynamically changes 1ts overall representation of
knowledge without human intervention. ~ However, the representation

language 1s kept constant

The MERGE scheme offers an effective way to create generalizations
about hierarchically structured objects Researchers have used hierarchies
of generalizations as knowledge structures for many tasks. However, the
data that their systems generalize about has generally been
non-structured (1e, 1t 1s a data set -- not a complex structured
hierarchy).

We will present a scheme for creating generalization hierarchies based
upon structured data. Specifically, the data 1s hierarchically structured
-- which we believe to be one of the most common forms of structured
data found in both natural and artificial systems. Thus, our scheme can
be used in Al systems that heretofore have been limited in the kinds of
information they can process.

13
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3.

Our approach to understanding objects is well-adapted to real-world
situations. Information usually presents itself over a period of time, not
all at once. Hence, an intelligent system must be able to learn
incrementally by continually reorganizing its memory. A MERGE-based
system is designed to make generalizations incrementally as new instance
hierarchies are brought into it. Because 1t 1s continually creating new
generalizations and modifying old ones, its memory scheme must be
dynamic. It can not (and need not) be known a priori how the
resultant generalization hierarchies will appear. The structure of
MERGE'’s knowledge base 1s solely dependent on the data it is fed and
the order in which 1t 1s presented.

Several other recent systems also make use of a dynamic memory that
works by creating generalizations incrementally. Of note are PP
[Lebowitz 80], CYRUS [Kolodner 80], and UNIMEM [Lebowitz 83c]. All
of these programs make generalizations of the data they receive as input.
MERGE-based systems are unique in that they dynamically reorganize
memory while incrementally learning about complex, hierarchically
structured objects. These other systems deal with less structured (in the
case of CYRUS) or non-structured information.

An automatic hierarchical classification of complex objects is achieved
by using the MERGE scheme. Each instance hierarchy that is input to
a MERGE-based system 1s encoded according to the fundamental relation
links joining 1its elements together, along with other information. These
representations of complex objects are then incorporated into a knowledge
base in which they become the leaves of generalization hierarchies (G-
trees). A generalization hierarchy exists for each unique object sub-
hierarchy in the instances. Thus, MERGE creates multiple classification
hierarchies (G-trees) depending on what objects are in the context of the
domain under study  This categorization is based on the fundamental
relation and other information that augments the descriptions of the
Instance objects.

Although classification hierarchies are commonly used in many areas of
Al they are almost always created by humans. The remaining ones do
not classify complex, hierarchically structured objects. Our scheme will
automatically (without human intervention) build classification hierarchies
of arbitrarily complex objects. Furthermore, these classifications are not

~ based on numerical data (as some automatic taxonomy systems use) but

rather on the structure of the objects (along with supplemental data),
which we believe is more cognitively accurate. The classification
hierarchies created can also be wused 1n conjunction with other
understanding tasks (e.g., language understanding or problem solving).



1.4.2 Hierarchy theory

1. Using hierarchies of generalizations 1s a powerful methoed for
understanding hierarchically structured objects. The major advantage to
using a hierarchy of generalizations as opposed to some other means of
comparing 1instance objects 1s that knowledge 1s grouped into small
“chunks’ [Miller 56, Rosenbloom and Newell 83]. Because each chunk of
knowledge 1s organized under a node in a hierarchy, this node represents
a generalized concept of the information it classifies. Comparisons of
new objects can be made against this generalized concept instead of
against all of the instances under it. This effectively minimizes the time
needed to learn new information.

Chunking of knowledge 1s a relatively old i1dea. However, the use of
multiple generalization hierarchies to chunk information encoded in
hierarchically structured objects 1s new.

1.5 Thesis preview

This section provides the reader with a map of the rest of this thesis.

Chapter 2 gives a synopsis of research related to our own. We show where this
work fits into the disciplines of Al, systems engineering, and cognitive psychology.
The three subject areas that the MERGE scheme bears on are knowledge
representation, generalization (learning), and hierarchy theory.

Chapter 3 serves as a technical introduction to the thesis. The basic concepts
behind MERGE's representational formalism and generahization techniques are
described.  Integrating representation with generalization 1s introduced by showing
how 1inhenitance and other operations are used to achieve a GBM. A compact
notational scheme 1s presented that will be used in later chapters to exemplify the
detalls of MERGE and 1n discussing various 1ssues n representation and
generalization.

Before giving a complete description of MERGE and demonstrating how 1t works,
several 1ssues in both representation and generalization are explored. Issues having
to do with representing 1individual hierarchies are investigated in Chapter 4,
including more about fundamental relations, non-fundamental relations, and other
data RESEARCHER's non-fundamental relation representation scheme 1s
demonstrated as an example of a sophisticated means of augmenting a hierarchy’s
representation.

Generahzation 1ssues are described in Chapter 5. Duifferent types of generalizations
are discussed, as 1s the usefulness of and problems with inheritance. Much of the
chapter 1s spent considering aspects of when to create generalizations and how to
use them. All of this is, of course, 1n the context of hierarchical object
understanding.
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The contents of Chapters 3, 4, and 5 come together in Chapter 6. The qualities
of an ideal MERGE-based system are described. Both the CORPORATE-

RESEARCHER and RESEARCHER programs are demonstrated with sample runs.
The chapter concludes with a critique of how well these implementations perform

relative to an ideal system.

In Chapter 7 we summarize the main points of the thesis and discuss directions
for future research.
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Although this research is properly classified in the area of knowledge
representation within Afl, it is related to work in other disciplines and
subject areas. The fields of cognitive psychology and systems
engineering, as well as Al have made contributions to hierarchy
understanding. The areas of knowledge representation, generalization
(learning), and hierarchy theory all bear on our work. Semantic nets
and frames are the two fundamental knowledge representation
formalisms that are appropriate to hierarchy understanding. We have
developed a high-level frame-based scheme similar to MOPs. Research in
generalization can be grouped into three overlapping classes: numertcal,
inductive, and conceptual. The MERGE form of generalization falls
mostly into this latter class. As such it allows for generalizations to be
made that appear to be ‘‘cognitively accurate”’ in human terms. The
major contribution from hierarchy theory to this thesis i3 the idea of
near-decomposability.  This concept states that the components of a
hierarchical system interact less strongly than the members within any
one component.

2. Related Work

2.1 Introduction

Our research 1s related to previous work spanning three disciplines and three
subject areas. As mentioned previously, we are seeking to integrate knowledge
representation and generalization into a unified approach to understanding
hierarchically structured objects. The three subject areas that are relevant to us
are knowledge representation, generalization (learning), and hierarchy theory. Three
disciplines that have made significant contributions 1n these subject areas are
artificial intelligence, systems engineering, and cognitive psychology.

This chapter 1s divided into three major sections. In these sections we present a
brief account of related work from each of the three subject areas. Within each of
these areas the contributions from the appropriate disciplines are discussed. Before
proceeding, we give an overview of where this thesis fits in among the related work
that will be surveyed.

The 1ssue of how to best represent knowledge has always been of paramount
importance in Al and consequently there 1s a large body of research that one can
refer to. Learning has also been widely studied by many Al workers. The type of
learning that we address, generalization, has been given much attention recently,
and so there exist some relatively new papers and programs related to our work.
Although several Al systems make use of hierarchies to represent knowledge, none
of them have focused on the question of understanding hierarchies per se. Since
this 1s exactly what we are investigating, there 1s little research to cite that s
similar to ours, but there 1s some related work.
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Figure 2-1 summarizes the quantity of available research in each of the nine
categories shown.  Our work spans all three subject areas within artificial
intelligence. Therefore, in the following mini-surveys, special consideration is given
to this endeavor. Somewhat less coverage is allotted to systems engineering, and
cursory attention is paid to cognitive psychology.

Discipline
Subject Artificial Systems
Area Intelligence Engineering Psychology
Krnowledge
Representation much n/a some
Generalization
(Learning) some some much
Hierarchy
Theory little little little

This table gives a qualitative indication of where research relevant to
that presented in this thesis has been done. Our work encompasses all
three areas within Al but we consider it to be primarily in the area of
knowledge representation.

Figure 2-1: Related research summary.

Although our work 1s in Al, we recognize that other fields within cognitive science
(much of Al being part of cognitive science) often contribute useful concepts that
an Al program can embody. The fields of hierarchy theory and cognitive
psychology are of particular relevance to this thesis. Ideas developed in the former
field can assist in the overall structuring of a hierarchy understanding system.
While the later field can provide insights into how humans understand hierarchies,
which can be incorporated into a program, hopefully improving its performance.

Hierarchy theory is properly considered a branch of systems engineering. It is the
study of the underlying principles of hierarchies. The goals of this discipline are to
develop theories that can explain and predict how hierarchical systems behave -- not
simply to enumerate or use hierarchies for representing systems. Even though it
has been around for a generation or more, most of the research to date consists of
speculative papers about the nature of hierarchies. Nevertheless, there are some
important and useful concepts that have been posited. Systems engineering has also
harbored the technique of numerical taxonomy or clustering, a way of automatically
categorizing data sets, which is a form of generalization.
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Human learning i1s one domain of study of cognitive psychologists. Researchers in
Al often point to theories in cognitive psychology for justification of their methods,
and several key ideas in knowledge representation have come from psychologists
(Miller’s ‘“chunking” theory [Miller 56], for example).  However, this school’s
contributions are somewhat peripheral to the issues addressed here and therefore
will mostly be referenced in support of other concepts described.

2.2 Knowledge representation

Knowledge representation comprises a wide range of ideas, theories and methods
for encoding information about objects and events. The focus of this investigation
will be on those schemes that have 1mportance to representing hierarchically
structured objects.  Our approach will be to first examine formal representation
systems, then specific systems that are geared toward representing objects in a
hierarchical form. The MERGE scheme i1s both a formal representation system and
one that deals with hierarchical object representations.

2.2.1 Formal representation schemes and systems

Two major formal representation schemes that lend themselves to representations
of structured objects are semantic networks [Quillian 68] and frames [Minsky 75|
Variations of these general schemes abound and the distinction between them is
often blurred. Nevertheless, one can usually 1dentify the roots of any of these
schemes and classify a given representation system as f{rame-based or semantic
network-based. Although our scheme is frame-based, there 1s much to be learned
from a study of semantic networks, as well as frames.

Semantic networks (or nets) were the first of these two representation formalisms
to be used in computer programs. An early, integrated natural language processing
(NLP) program, SHRDLU [Winograd 72|, used semantic nets .to encode declarative
knowledge about a blocks-world. (We will come back to this program later, as 1t
was a landmark program for representation techniques) Semantic nets are
arbitrarily complex networks in which nodes represent actions, ideas or, in the case
of SHRDLU, physical objects. Arcs connecting nodes represent relations among
them. For example, if there 1s a pyramid on top of a block, where the pyramid 1s
represented by a single node and so 1s the block, then an arc connecting them
would represent the relation SUPPORTED-BY.

IS-A links (arcs) are used to represent the concept that one node is an instance of
another. For example, ¢ dog IS-A mammal. All of the properties that a mammal
has can be inherited by the concept dog (unless overridden) Thus, if the network
had the fact that a mammal breaths air encoded in it, then 1t would be assumed
that a dog also breaths air. The word type refers to a concept used in a semantic
net (e g., mammal) while the term token 1s identified with an instance of a type
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(e.g., dog, if mammal 1s the type). Inheritance, modified by other operations, is a
crucial part of the MERGE scheme. Early semantic net-based systems made only
simple use of inheritance (1.e., a token would inherit all of the information in its
type). Recent schemes like KL/ONE [Brachman 79a] (described later in this
section) and MERGE do a great deal more with inheritance, as will be seen in
Chapters 3 and 5.

Any chosen relation can be represented by arcs in semantic nets. Aside from
static physical relations, hke SUPPORTED-BY, and classification relations, like IS-A,
more complex relations, like MUST-BE-SUPPORTED-BY and CAN-NOT-BE-A, are
possible.  Thus, @ mammal CAN-NOT-BE-A reptile. The deductive reasoning
procedures in SHRDLU make use of these relations. Such relations are similar to
the ones used to augment a hierarchy’s meaning in MERGE.

Much has been written about semantic nets (see [Woods 75, Barr and Feigenbaum
81], for example). They have been and perhaps still are the dominant knowledge
representation system used in Al.  SHRDLU exemplified the best points about
semantic networks, in addition to being an NLP demonstration program. The
simple node-arc formalism provides for easy representation of associations. They are
useful for encoding static factual knowledge and are versatile in that they permit a
wide range of data to be encrypted. Because of the limited domain of knowledge
needed to understand the blocks-world, {ew of the difficulties and limitations of this
scheme surfaced [Wilks 74|, which is one of the reasons why SHRDLU was so
successful. Among the shortcomings of classical semantic nets are: no universally
accepted semantic definitions for links; difficulty in representing time dependent
knowledge, little distinction of more important data (links) from lower-level
knowledge (1.e, all hinks have equal priority).

One way to overcome the inability of most semantic net representation systems to
deal effectively with large networks of data, i1s to chunk information into regions
within the network and treat these chunks as if they were individual nodes. Thus,
a large semantic net with 10,000 nodes could logically be reduced to a network of,
say, 200 chunks in which each of the 200 chunks would contain sub-networks of a
small size. This partitioning of a semantic network was proposed 1n [Hendrix 79].

The idea that humans chunk knowledge was first introduced in [Miller 56]. He
suggested that knowledge 1s organized as a hierarchy of chunks, each chunk serving
to index several other chunks, until some base-level 1s reached. More recent work
goes further than this, contending that most human learning not just knowledge
representation occurs via this chunking process [Rosenbloom and Newell 83]. We
believe a representation scheme intended for use in computer systems to be more
‘““cognitively accurate’ if it organizes its knowledge in terms of chunks. Partitioned
semantic nets are an example of such a scheme, as are [rames.

Several advantages over simple semantic nets are apparent in Hendrix’s scheme.
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By separating low-level knowledge from high-level knowledge, the encoding process
can represent more varied information. For example, the color, shape, and size of
an object could be linked together within a partition and the partition itself could
have links to other nodes or partitions (e g., indicating higher level facts about the
object’s purpose).  This hierarchical partitioning results in smaller numbers of
objects at any one level that need to be manipulated. In addition, such a scheme
comes closer to being cognitively accurate, in human terms.

Frames are another way of solving many of the same problems as partitioned
semantic nets. Frames are conceptual objects that are used to group pieces of
knowledge 1nto logically consistent blocks. They are most easily thought of as an
extension of semantic networks where each node is a comparatively large structure
that contains enough information to adequately describe an item at some level of
detaill While a node in a semantic net usually 1s simply the name of an item, a
frame can possess information about how to classify an item, how to use it, what
attributes it has, and virtually anything else that might be useful to know about an
event or object. Furthermore, the knowledge encoded in a frame need not be static
(declarative). It may be dynamic (procedural), or it can be a combination of these
[Winograd 75]. In either case, a frame should be viewed as “a specialist in a
small domain” [Kulpers 75].

If an airline reservation system (see [Bobrow et al. 77] for a description of such a
system) used a frame to represent each date on which a plane reservation was
made, 1t might have slots! in the frame as follows:

YEAR:
MONTH:

DAY-OF-MONTH:
DAY-0F-WEEK:

The YEAR, MONTH and DAY-OF-MONTH slots might be. filled with static data
(probably single numbers). The DAY-OF-WEEK slot might contain procedural
knowledge as follows: .

(If YEAR and MONTH and DAY-OF-MCNTH are filled
then (FIGURE-WEEKDAY))

Semantic nets, and particularly partitioned semantic nets, offer a possible
formalism for a hierarchy understanding system. However, we have chosen the
frame formalism for use in MERGE. In our view, it provides a cleaner and more
easily understood approach for building large scale memory organizational systems

IThe term slots refers to the “important elements” in a frame [Winograd 75].
Slot fillers can be thought of as references to other frames, which i1s what Minsky
originally proposed. In any particular application of a frame system, a considerable
atrlnoxllézt of thought must be given to how many slots should be used and what they
snould contain.
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than does partitioned semantic nets. The reasons for using frames are explored
more fully in Chapter 4.

One very important aspect of the use of frames as a knowledge representation
scheme is the default filling of slot values of token frames from type frames.
Default values for frame slots can be easily set up by placing them in a type (or
stereotype) frame and programming a system so that if no value for a particular
slot is specified, then it is inferred from the generic frame. For example, if the
YEAR was not explicitly given in the date frame (shown above) then it would be
reasonable to assume that the value of the slot should be the current year (as most
airline reservations are not booked too far in advance). (In this case, the stereotype
date frame would have to have its YEAR slot filled.) However, if the DAY-OF-
MONTH was not given, 1t would obviously be a mistake to assume some value
from a stereotype (assuming that only a few reservations are made on any given
day and that there is no good reason for choosing a particular default date).

In order to effectively use frames as a representation system, several other
operations, aside from default processing, are essential. These include: matching one
frame against another, allowing for inheritance of properties from higher level
frames, type checking the values that can fill a slot in order to ensure that only
valid ones are accepted, and general ahilities to manipulate a connected network of
frames. KRL [Bobrow and Winograd 77a), a language that was developed -
specifically to allow for knowledge representation in the form of frames, includes
facilities for these functions among others. Many of these functions, particularly
matching and inheritance, are of importance for use in systems that perform some
sort of generalization about their knowledge.

KL/ONE (Brachman 79a] and FRL [Roberts and Goldstein 77} are two systems
that are similar in purpose to KRL. But they go beyond 1t by imposing certain
structuring rules that make 1t easier for researchers to develop systems. In
particular, both KL/ONE and FRL embody the idea of inheritance hierarchies as
their very nature Inheritance hierarchies are equivalent to our G-trees. Object
hierarchies and generalization hierarchies can be represented in these systems.
Although we do not use either of these formalisms (because of our need to integrate
representation and generalization via feedback) they are worth taking note of here.

KL/ONE is both a language (embedded in LISP) and a methodology for
organizing partitioned semantic networks.  Objects represented in KL/ONE are
structured much like they are in a frame-based scheme. However, KL/ONE’s
structural formalism also provides a way of establishing inheritance hierarchies. A
distinction 1s made between stereotypical objects and instantiated ones. Thus, the
properties of an object can be attached either to a stereotype for that object or to
the object itself. Because of the hierarchical nature of KL/ONE, complex but well-
organized inheritance dependencies can be established. By using a limited set of
possible links, the semantics of the network are clearly defined.
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FRL 1s much like KL/ONE, but instead of imposing restrictions on the semantics
of links, it forces the network of frames to be hierarchically connected. All frames
must be joined together using INSTANCE and A-KIND-OF links. Therefore, the
representation tree (actually a tree-like network) has as its root the most general
frame and its leaves are the lowest level instances of whatever the network is
representing. For example, if one were representing car models, the root frame
might be all automobiles; below that, frames encoding General Motors, Ford, and
Toyota cars; at the bottom of the tree there would be Skylarks, Mustangs, Celicas,
and so forth. The A-KIND-OF links point backward, so that Buicks are A-KIND-
OF General Motors car. Unless otherwise specified, Buicks would inherit all the
properties that are in the General Motors frame.  This type of representation 1s
very helpful in forming and storing generalizations made about objects or events.

Frames or partitioned semantic nets linked together into hierarchical structures are
representational formalisms that lend themselves to generalization processing.
INSTANCE and IS-A (although we will call them VARIANT and VARIANT-OF
when wused in G-trees) links correspond to specialization and generalization,
respectively. Many representation/generalization schemes use this basic formalism in
constructing complex network descriptions of physical objects. Our work departs
from these schemes 1n that representation doesn’t ‘lend itself to generalization”
-- the representation that MERGE uses integrates generalization into the way
objects are encoded. In MERGE, after an object’s representation is incorporated
into memory the resulting generalization 1s used to modify other existing and future
representations.

The NETL scheme [Fahlman 79] deserves mention here. NETL is a formal
representation system that has a wide range of applications. Of particular interest
to us 1s its recognition of the importance of the interaction between representation
and generalization. Unfortunately, Fahlman's work does not describe how to
integrate these two processes, but he does present an example that i1s similar to
what we are working on using PART-OF and IS-A hierarchies to represent objects.

2.2.2 Hierarchical systems

In this section, we look at some specific systems that either make use of
hierarchies to represent data or are suitable for use in a system that does.

KL/ONE, FRL, and KRL have been used to implement various systems that use
hierarchical knowledge structures. Among them are GUS [Bobrow et al. 77|, a
program designed to provide information on airline flight schedules which served as
a testbed for the development of KRL. Lehnert’'s COIL [Bobrow and Winograd
77b; Lehnert 77] was another program written in KRL. It concerned itself with
drawing inferences about physical objects. Physical object representation 1s
particularly relevant to this thesis because RESEARCHER understands physical
objects by using the MERGE scheme.
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Another program, OPUS [Lehnert and Burstein 79] also deals with physical object
representation. It employs a scheme called Object Primitives [Lehnert 78] to encode
the functional aspects of an object. Although it is not in itself a hierarchical
system, it was designed to be an extension of Conceptual Dependency (CD) theory

[Schank 72]. CD is primarily a way to represent actions. However, the
methodology behind the theory 1s common to many advanced representation
systems. (RESEARCHER'’s scheme for representing physical relations among objects
1s functionally similar to CD, and is described at the end of Chapter 4) CD has
been used as the basis for truly hierarchical representation systems, in the form of
MOPs, as we will discuss.

CD works on the theory that actions (verbs) can be reduced in meaning to
canonical combinations of a small group of primitive ACTs. For each ACT, there
are a fixed number of arguments that accompany it. That 1s, an actor, recipient,
object, and other possible case slots must be filled for each ACT. For example,
‘“John gave Mary a gift” would have the representation:

(ATRAES
ACTOR: John
0BJECT: gift
FROM: John
T0: Mary)

ATRANS, one of the primitive ACTs, i1s used to represent the meaning of the
verb ‘“‘gave’’ and indicates Abstract TRANSfer (of possession) of an object.

CD 1s capable of representing a wide range of actions and situations. In addition
to the basic ACTs, both mental and physical states of a being or an object can be
encoded. The fact that an event may enable, disable, or cause a state, is also
representable within CD. Using these connectives, 1t 1s possible to represent the
meaning of a series of sentences that comprise a story with one complex CD
structure.

The major contribution of CD that is relevant to this thesis 1s the way it
integrates two very useful concepts: case grammars [Fillmore 68] and semantic
primitives. Case grammars were an outgrowth of both classical linguistics and
Chomsky’s transformational grammar [Chomsky 65]. They reflect classical linguistics
in the sense that they identify the various parts of a sentence such as the main
verb phrase and noun phrases. However, 1t 1s not the surface structure of the
sentence that is captured, but rather the verb's meaning. Thus, regardless of the
formal structure of the sentence the ‘‘case frame’ extracted by using case grammars
will be the same for sentences employing the same main verb  Structurally, the
case frame looks very much like what was presented in the CD example (above)
with actor (or agent), object, instrument and a few other slots available. Case
grammars classify verbs by the slots (cases) that must accompany a particular verb.
For example, if the verbs open and throw require the same slots (OBJECT,
AGENT, and INSTRUMENT) for their case frames then they would be grouped
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together. CD goes beyond case frames by defining a system of primitives and rules
to manipulate them that captures the meaning of a sentence, rather than having a
case frame for every verb.

The second building block of CD comes from both linguistic and psychological
research.  Semantic primitives are generally defined to be the lowest level of
symbolism in a representation system. In practice, an understanding/representation
system use: semantic primitives as a way of classifying a set of concepts, such as
actions or physical objects. For example, RESEARCHER’s relation representation
scheme [Wasserman and Lebowitz 83] uses a set of semantic primitives that are
designed to decompose physical relations. Five primitives, used in combination,
attempt to achieve for physical object relations what CD attempts to do for actions.

CD demonstrated the effectiveness of using a primitive-based representation scheme
in conjunction with frames. Many programs have been written that employ CD.
These 1include: MARGIE [Schank 75|, the earliest CD-based program; SAM
[Culhingford 78], which demonstrated the use of scripts in story understanding; and
PAM [Wilensky 78], which made use of plans and goals.

We are interested at looking at higher levels of knowledge representation because
that 1s what MERGE offers.  Scripts, plans, goals, and Memory Organizational
Packets (MOPs) [Schank 80; Schank 82] are successively more sophisticated
representational concepts. MERGE functions at the level of MOPs (it might even
be thought of as using MOPs), 1n that 1t dynamically reorganizes memory (which is
explained below).

Scripts are a way of organizing sequences of events (CD-forms) in memory. They
are static structures that are intended to mirror how humans carry out simple
activities. Plans offer a higher level of representation. Their purpose is to organize
memory such that previously unencountered situations can be understood in terms
of known events (1.e, scripts). Thus, a representation hierarchy with CD-forms as
the leaves of this hierarchy can be developed. The next step in this representation
formalism are MOPs.

MOPs are very high level representational structures that organize scenes, scripts,
and supplemental data into a coherent picture of an event. In this sense, MOPs
work much like plans, but are more powerful and allow for dynamic script building.
That is, MOPs, scenes, and scripts can be collected into a memory/processing
structure that fits a particular situation. They can be used in both predictive and
understanding modes. When used in a predictive mode, expectations can be made
about future events. If an expectation falls the memory structure can be
reorganized to account for it by modifying, deleting, or adding a scene, script, or
MOP

To get a better 1dea of what MOPs can represent, consider the MOP skeleton
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shown in Figure 2-2. Here we see that the M-AIRPLANE MOP is composed of
several scenes, which 1n turn contain scripts, which are complex CD descriptions of
a simple activity. (These scripts differ from those that SAM uses in that they are
instantiations of a scene -- they are not necessarily a rote memory structure.) That
is, scenes are at a higher level of representation than are scripts, and MOPs are at
a still higher level. This diagram shows only what the DRIVE-TO-AIRPORT scene
expands to. All of the other scenes have a script representation as well. Although
MOPs are a form of frame, they are far removed from something as simple as the
date frame shown earlier.

level of representation content of representation
MOP (M-AIRPLANE
scene PLAN mIP;
scene GET MONEY
scene CALL AIRLINE)
scene GET TICKETS)
scene DRIVE TO AIRPORT)
script {FIND KEYS}
script {PLAN ROUTE}
script {LOAD LUGGAGE}
CD-form <PTRANS
ACTOR: Jobkn
0BJECT: suitcase
FROM: closet
10: car>

This figure (adapted from E)Schank 82]) shows a representation hierarchy
running from CD-forms to MOPs.

Figure 2-2: MOP skeleton.

What has not been shown in Figure 2-2 is the dynamic nature of MOPs. MOPs
not only serve to organize static episodes in memory but also to allow memory to
be dynamically reorganized to better reflect the state of the world. For example,
the M-AIRPLANE MOP can be modified to account for the possibility of shuttle
flights. This might take place by reorganizing the scenes so that CALL AIRLINE
and GET TICKETS scenes do not havs to take place.

There are many programs that make use of hierarchies, in some form or another
to represent objects or events. Usually the knowledge structures embedded in these
programs are built by a human expert (in whatever domain 1s being studied) and
used by the system to either solve a problem or store additional information
according to previously established classification categories. They illustrate the need
for programs capable of creating hierarchical structures without human intervention.
MERGE-based systems, like CORPORATE-RESEARCHER and RESEARCHER,
offer this capability.

NOAH ([Sacerdoti 75] stored its knowledge about assembling physical objects in a
hierarchy of plans. SCHOLAR [Carbonell 70] used a semantic net-based hierarchy
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of geographic information on South America. TEXT [McKeown 82| served as a
natural language query system to a database about ships. [t used two hierarchies:
one to store generalized knowledge about physical objects (e.g., ships, submarines,
etc.), and another to encode attributes of ships according to topics (e.g., speed-
indices). A program in [Hayes 77| employed a categorization hierarchy that
classified animal body-part hierarchies. It used a generalization (IS-A) hierarchy and
PART-OF hierarchies that were built by a human expert in order to implement the
knowledge structures 1t needed.

2.2.3 Summary

Two fundamental approaches to knowledge representation, semantic nets and
frames, have been described. Frames are a more recent development and for our
purposes appear more capable of representing a large amount of information in a
hierarchical structure We have chosen to use frames in MERGE; however,
partitioned semantic nets offer equivalent power.

CD theory is a widely used example of a scheme based on semantic primitives in
conjunction with a framed-based memory encoding. This particular combination
forms the foundation upon which more elaborate schemes can be bwlt. It also
demonstrates how a useful semantic primitive scheme can be developed. MOPs, an
advanced form of knowledge representation, are constructed from a hierarchy of
sub-structures (scenes, scripts, CD-forms) and are readily reorganized so that MOP-
based memory 1s dynamic in nature.

2.3 Generalization

Generalization 1s usually thought of as a particular type of learning. It is the
process of recognizing commonalities within a set of input examples and building a
new concept (or concepts) containing this information. Several possible approaches
to carrying out this task are possible. Numerical taxonomy, inductive inference,
version space, and conceptual clustering are the names of some of the more formal
methods. Many other schemes are used by particular Al systems. In addition,
cognitive psychologists have suggested methods that humans use to make
generalizations.

This section discusses some of these generalization methods that have application
to hierarchy comprehension. =~ We begin with an overview of a few abstract
generalization systems. Next, some Al programs that have been successful in their
use of generalization are . discussed. Finally, a few comments about some
particularly important and relevant work 1n psychology are made.
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2.3.1 Abstract systems

Abstract generalization systems are those that are not particularly intended for use
in any specific application. They can be divided into three major, non-mutually
exclusive classes: numerical, inductive, and conceptual. Numerical taxonomy
(clustering, generalization, etc.) involves structuring 1nstance examples into a
hierarchy based upon some numerical measure of similarity, sometimes called a
distance measure [Ben-Bassat and Zaidenberg 84]. Schemes within the inductive
class use rules of inductive inference in a formal way to build conjunctive and/or
disjunctive hierarchies of sets. The conceptual class of systems includes any method
of generalization where the primary motivation is to develop a categorization system
that 1n some way mirrors human cognitive processes. QOur work lies within this
class. We use generalization as a means to learn about hierarchically structured
objects according to their structure.

In numerical clustering systems (see [Michalski and Stepp 83a], for example), some
a priori value i1s assigned to each property that an instance example has. These
values are used by a comparnson algorithm to determine which examples are closest
together (1.e., evaluate to be nearly numerically equivalent). Near neighbors become
variants of a common ancestor node in a classification hierarchy. Higher nodes in
the hierarchy group either instances or other generalized nodes according to how
similar their values are.

Usually this process 1s accomplished en masse. That is, all instances must be
present at once and the generalization algorithm builds the classification hierarchy
by performing many comparisons among the input examples. Real-world situations,
however, often provide data fncrementally  That is, instances become available to
a learning system over a period of time. Therefore, an incremental learning system
must continuously reorganize its knowledge base if it is to provide an ongoing
representation of the known data. (See [Lebowitz 83a] for a discussion of the needs
of real-world intelligent information systems).

Despite this shortcoming, numerical taxonomy is an effective way of categorizing a
large number of objects. The MERGE scheme is designed to be used in systems
that also operate in domains with many instances. Thus, a numerical taxonomy
can serve as a benchmark by which to measure the performance of new cognitively-
based generalization schemes, MERGE in particular.

Inductive inference techniques are a way of organizing data according to a strict
set of rules.! There has been a significant volume of research into inductive
processes and much of the mathematical machinery developed can be used to ease

IThere has been a great deal of work on inductive learning and a survey of it is
beyond the scope of this paper.  Therefore, the reader 1s referred to several
excellent surveys including: [Angluin and Smith 82; Dietterich and Michalski 81:
Michalski 83; Mitchell 82].
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the programming burden as well as speed up the processing of instance examples.
Thus, inductive inference has become a popular base on which to build
generalization systems. However, these techniques suffer from many of the same
problems that numerical taxonomy does. In particular, they do not necessarly
mirror the results of human cognitive processes.

Conceptual generalization methods are usually intended to model some aspect of a
theory of cognition. As such, they coincide better than other methods with the
types of generalizations that people make, but tend to be difficult to implement (as
compared to inductive 1nference). In general, conceptual generalization systems
work by using some means for comparing instances that are described in terms of
some bastc properties. The basic properties should have some correlation to human
perceptive levels. Generalized concepts are then created using combinations of basic
properties that have been found to be common to one or more instances.

To compare such a system with one using numerical taxonomy, consider the
problem of categorizing animals. A cognitive-type scheme might place whales and
dogs far away from each other in the generalization hierarchy because they don’t
seem very similar.  That 1s, their basic properties (as humans perceive them) are
sufficiently different, so that they have little in common (e g., whales are very large,
live in water, and are usually not kept as pets; while dogs are small, land-based,
and man's best friend). But a numerical approach might decide that they are
similar in that both whales and dogs are mammals with tails and large mouths
(relative to their body size). Of course weighting factors for these features would
have to be high for a numerical-based system to get these results.

2.3.2 Specific systems

Most generalization schemes are actually a combination of these three basic classes.
Here we examine a handful of such systems.

Conceptual clustering [Michalski and Stepp 83b] uses numerical taxonomy

combined with global optimization based on conceptual quality measures.  The
result is a system that provides more meaningful generalizations (clusters) than
would be arrived at by numerical clustering alone. An example from the

CLUSTER/2 program in [Michalski and Stepp 83a] demonstrates how conceptual
clustering offers advantages over standard numerical taxonomy in classifying brands
of personal computers (i.e., they use numerical taxonomy as a benchmark). The
CIUSTER/2 program produced various hierarchies in which the highest level
branching criteria was microprocessor type, the lower level branches distinguished
other factors such as display type, keyboards, and memory configurations. The
comparison NUMTAX program, which tried 18 different numerical methods,
developed less meaningful classifications for the same input data. (Memory
configuration or keyboards took priority over microprocessor type.)

-
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ARCH [Winston 72] was an early generalization program based on conceptual
techniques. Using semantic nets to represent the physical objects in a blocks-world,
learning about simple object structures (arches in particular) was carried out. An
arch may be represented by a simple semantic net. After presenting the ARCH
program with a correct example of an arch, subsequent nets were given to the
program along with external input declaring each example to be either correct or a
near-miss. From this data, the program updated the semantic net representation
for an arch. Specifically, the program compared the training examples 1t was given
and extracted the information common to the correct examples that did not
contradict what had been learned from the incorrect examples. The incorrect
examples that ARCH was fed were picked to be ‘‘near-misses’” so that its learning
was carefully focused.

The type of learning that we are interested in is different from that which ARCH
performed. The generalizations that ARCH made were carefully guided by a set of
training instances. It was easy to predict what ARCH would learn in advance.
MERGE-based systems also form concepts from the data that is fed to them.
However, they need not have ‘‘training instances’’; they will create generalized
concepts from whatever information is input. (Of course, they may not always be
the ‘‘correct’” concepts) In essence, MERGE, not the human systems builder,
decides what concepts should be created.

The objects generalized by ARCH were fairly simple compared to those in later
programs, such as [PP [Lebowitz 80; Lebowitz 83d]. IPP uses MOPs as long term
memory representations of stories it reads about terrorism. It scans stories from
wire services and newspapers and understands them in terms of what information 1t
has gathered from previous stories. The use of MOPs residing in memory for
understanding the current 1nput text is one of the important features of this
program.  [PP recognizes similarities and differences between events stored with
MOPs 1t has in memory and then uses this observational data to build other MOPs.
This particular arrangement is called generalization-based memory (GBM) [Lebowitz
80; Lebowitz 83c; Lebowitz 83d]. MERGE also uses a form of GBM to store its
knowledge.  Furthermore, MERGE is similar to [PP in that they both create
concepts without human intervention.

To exemplify this type of generalization, consider the following (taken from
[Lebowitz 80]):

UPl, 4 Aprnil 1980, Northern Ireland

““Terrorists believed to be from the Irish Republican Army
murdered a part-time policeman ........ "

UPI, 7 June 1980, Northern Ireland

“The outlawed Irish Republican Army shot dead a part-time
soldier in front of his 1l-year-old son in a village store Sunday.”
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From these stories, [PP made a generalization we can paraphrase as:

‘““Terrorist killings in Northern Ireland are carried out by
members of the Irish Republican Army.”

This generalization i1s made possible by a comparison of MOP slot fillers. The
stereotypical MOP for a terrorist killing event has slots for place and actor, among
others such as victim, method, etc. The program assumes that all facts it knows
about are relevant to compare. After forming this generalization, IPP will use it to
make inferences while reading other stories. Thus, If a new story about a terrorist
act 1n Northern Ireland came across the UPI wire, and no mention of who
committed the act was made, then [PP would assume that the Irish Republican
Army was responsible. This sort of assumption is an example of default processing
mentioned in the context of GUS, but carried out dynamically and at a higher level
of representation.

Lebowitz’s work 1s not the only recent research into using generalization processes
in conjunction with natural language understanding systems. (A survey of several
semantic-based natural language processing systems, that make use of generalization,
appears in [Wasserman 83]) CYRUS [Kolodner 80], a program developed
concurrently with IPP, uses a similar generalization process in order to understand
events concerning the activities of individuals (Cyrus Vance was the prototype)..
They differ 1n the way that they make use of knowledge gained through
generalization and the level of detail they include (CYRUS uses much more). I[PP
uses 1ts inferred knowledge in order to help itself in understanding further input
text, while CYRUS answers user questions by employing this knowledge to help 1t
reconstruct episodes in memory. These reconstructed episodes can be thought of as
a re-creation of the ““mental state’”’ that the understanding system had while reading
the original text.

[PP, CYRUS, and MERGE-based systems (CORPORATE-RESEARCHER and
RESEARCHER) have much 1n common, particularly in the way that memory 1s
organized. They all use some type of GBM approach in which their knowledge
base changes dynamically depending on the data that the instance examples provide.
MERGE differs from the other two 1n that it seeks to understand objects, not
events. In addition, the objects it understands are highly structured (1e., are
complex hierarchies) while the events the [PP and CYRUS process are less
structured.

Other systems that have made use of generalization hierarchies as a means for
learning 1include: ENHANCE [McCoy 82| and Meta-DENDRAL [Buchanan and
Mitchell 78]

The ENHANCE program uses generalization as a way to restructure an existing
database. It sub-divides entity classes in a database according to a set of world
knowledge axioms. These sub-classes form a structured hierarchy that is tailored to
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a particular use by the information contained within the axioms. The enhanced
database 1s then used by a text generation program to provide intelligent responses
to user queries. The work done by the generation program is simplified because
most of the inferencing it needs to perform has already been pre-computed by
ENHANCE. However, 1t i1s not a dynamic learning system in the sense that IPP
and CYRUS are.

Rule learning 1s the term that Mitchell applies to his notion of version space
[Mitchell 77]. Version space is a representation/generalization method for finding
the set of all possible rules that can account for the outcome of some particular
action given the results of this action. The representation it builds 1s a hierarchy
of rules extending from the most specific to the most general. They are used in a
program called Meta-DENDRAL which learns rules for use in the production system
that DENDRAL [Lindsay et al. 80| uses. Meta-DENDRAL uses a dual form of
generalization based on the version space method. It can produce production rules
that are as general as possible, but still fully account for the observed data, or it
can produce very specific rules, or both. Although the MERGE scheme always
produces the most specific generalizations that it can, version space suggests
interesting ways to expand upon MERGE in applications which may need
alternative generalizations.

2.3.3 Cognitive processes

There has been much work done in psychology in human cognitive modeling (see
[Kintsch 77| for an overview). As a consequence of this work, many different
ways of thinking about generalization have emerged. Some researchers believe that
all learning 1s in some way generalization, while others reserve the term
“generalization” for a specific cognitive process, such as building stereotypes from a
limited number of examples. This 1s essentially the definition that we have
adopted.

[Rosch et al. 76] have investigated the existence of fundamental classes of basic
objects. They present evidence which shows that there exist natural categories of
objects that people use while perceiving physical objects 1n the real world. Basic
objects are but one level in a hierarchy of perceptual levels. This level is the one
at which humans form cognitive pictures of the real world. For example, a car is
considered to be at a basic level in the hierarchy that has the following order:
vehicle - car - 4 door sedan.

In subsequent research, [Hemenway and Tversky 84] claim that part configuration
of objects (F-trees in our work) is the underlying reason for classifying an object as
basic or otherwise. They demonstrate that the basic object level is the one that
people describe 1n terms of components. For example, cars tend to be described by
their constituent parts (e.g., body, chassis, engine) more readily than a vehicle or a
4 door sedan i1s. From their studies, they conclude that part information is ‘“‘more
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salient 1n the minds of people when they think about entities at the basic leve] "
Thus, this work seems to support our use of part decompositions as the
fundamental means to understand hierarchies. Of course, this assumes that MERGE
will be used to understand objects at a basic level

The 1dea that semantic primitives or basic objects lie at the root of human
understanding 1s also brought out in the chunking theory of learning [Miller 56;
Rosenbloom and Newell 83|. Each chunk 1s composed of other chunks until some
base level (i.e., semantic primitive) i1s reached. Miller pointed out that there is a
size himit (seven, plus or minus 2) to the number of sub-chunks any one chunk in
human memory can contain. Thus, the issue of a limited span in human memory
hierarchies 1s raised. MERGE-based systems tend to have small span G-trees (see
the examples in Chapter 6) because new generalizations are created each time F-
trees are compared and found to have some elements in common. The idea of
span 1n a hierarchy i1s described in the next section.

We have mentioned the concept of chunking earlier in this chapter (when
partitioned semantic nets were described). A hierarchy can be thought of as a
manifestation of the chunking process, carried out repeatedly. Each node in a
hierarchy acts as a means to collect all the children of that mode into a chunk.
Each child in turn acts as a chunking device for its children, and so on. Since
MERGE employs both object hierarchies and generalization hierarchies this concept
1s important to our work. Many of the benefits of chunking information are
exploited in MERGE, as 1s described in later chapters. We believe that the ability
of MERGE-based systems to readily chunk data is akin to human cognitive
processing of hierarchies.

2.3.4 Summary

Generalization is a kind of learning that allows instance examples to be compared
and have their common information extracted.  Three classes of generalization
schemes exist, with most real systems being combinations of these.  Numerical
taxonomy 1s a way of organizing data according to assigned numerical values,
usually into a hierarchical categorization. Induction is a formal mathematical means
of structuring input examples in conjunctive and/or disjunctive hierarchies.
Conceptual generalization strives to capture elements of human cognitive processes.
Our scheme i1s an example of this later class.

Several important properties of generalization systems are: whether they work
incrementally or all-at-once: how they integrate with representation schemes (e.g.,
semantic nets, MOPs, etc), and whether they produce cognitively plausible
generalizations (in human terms) or not. The concepts of semantic primitives and
basic objects imply the existence of base levels of understanding from which humans
(or machines) construct generalization hierarchies.
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2.4 Hierarchy theory

We turn to hierarchy theory in an attempt to identify what a hierarchical
knowledge structure i1s all about. Over the past couple of decades, a handful of
researchers have given considerable thought as to why both natural and artificial
systems are hierarchically organized.

Although an integration of generalization with representation is a powerful
hierarchy understanding method (as we will show), it is useful for a systems
designer to have a thorough comprehension of the domain of application. First, a
brief look at some fundamental concepts of hierarchy theory, 1s taken.  The
concepts that we mention come from AI but most of the researchers cited would
probably describe themselves as cognitive scientists.  Next, the field of general
systems theory is discussed. This discipline has existed within systems engineering
for some time and has made a serious attempt at quantifying how complex systems,
including hierarchies, function.

2.4.1 Fundamental concepts

A well-known work on hierarchy theory within the disciplines comprising cognitive
science 1s a paper written by Simon called The Architecture of Complezity [Simon
81]. In this document and others ( [Simon 73|, for example) he posits that complex -
systems are usually hierarchical in nature and that they share certain common
properties. The fundamental goal of hierarchy theory is to discover and elaborate
upon these properties.

Simon 1dentifies one major property of hierarchies, that of near-decomposability.
A nearly-decomposable system 1s one in which the interaction among the
components that make up the system is weaker than the interactions that keep any
one component intact. The contention 1s that systems can evolve in complexity by
making use of this property and that a hierarchy 1s the natural form that a
complex system usually develops into.

What we call the fundamental relation (F-rel) of a hierarchy relates to the idea
of near-decomposability. F-rel links join the nodes of a hierarchy together
according to the order of subservience of nodes (more about this in Chapters 3 and
4). There are more F-rel links within any one sub-assembly than there are links
joining this sub-hierarchy to the entire hierarchy. Thus, each sub-hierarchy is a
more tightly bound unit than the whole. Hence, the hierarchy 1is nearly-
decomposable -- 1t would be completely-decomposable if no links existed joining sub-
hierarchies together. Other, non-fundamental relations also contribute to making a
hierarchy less decomposable.

To clanfy this concept, consider how large corporate structures may develop
Imtially, a company might start out with a president and a handful of employees
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reporting directly to him  As the business grows, it is found that too many people
need to talk with the president so that his productivity falls. Intermediaries (vice-
presidents) are interposed between the workers and the president thereby reducing
the presidents’ span-of-control by partitioning the corporate structure. The
company can be said to be nearly-decomposable in the sense that interaction within
a single department (created by this partitioning) is greater than the interactions
among different departments.

The notion of span-of-control, or simply span, 15 common to all hierarchies. It
refers to the branching factor out of a node in the hierarchy. Some hierarchies are
flat 1n that they have a broad span (many branches) and little depth, while others
are more deep than wide (e g., family trees). As mentioned previously, the G-trees
the MERGE creates have a small span  This is due to the fact that when F-trees
are compared they usually have something in common causing a new generalization
to be built. The constant building of generalizations 1s analogous to interposing
intermediaries 1n a corporate structure. The result 1s a deeper, rather than wider,
hierarchy.  This seems to correlate well with models of human cognition (e.g.,
chunking). It 1s an important consideration and will be discussed further in later
chapters.

Most researchers who have written about hierarchy theory acknowledge this
concept of near-decomposability. An extension of this property of hierarchies has
been 1dentified by several workers [Sussman and Steele 80; Fahlman 79; Shlichta
69]. Variously termed almost-hierarchies and tangled hierarchies, the 1dea 1s that
some complex systems are not strict hierarchies (i.e, trees). They are actually a
superimposition of several trees in which a node can appear in more than one tree
(e.g., directed acychc graphs). For example, a cylinder of a car's engine might be
considered a part in the automobile's structural hierarchy (ie., part of the engine-
block which 1s part of the motor, etc.), while at the same time being a component
in the functional hierarchy describing how a car converts chemical energy into
motion.  The near-decomposability of both the structural and the functional
hierarchies remains intact. That is, the cylinder’'s parts (e g., the piston rings and
cylinder-head) interact more strongly than the cylinder does with, say, the
windshield wiper.

We recognize the existence of tangled hierarchies in complex systems. However,
for many applications of MERGE describing a hierarchy with a single F-rel is
sufficient. Information that would otherwise be carried by tangled hierarchies can
be embodied in the single hierarchy by using non-fundamental relations among
arbitrary nodes in the single F-rel representation.
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2.4.2 General systems theory

Several ambitious attempts at developing a rigorous theory of hierarchies come
from general systems theory, a branch of systems engineering. As Its name
indicates, this discipline seeks to arrive at a theory that provides a basis for
building more specific theories. These specific theories might apply to unrelated
fields, however the general theory would embody deep principles common to all
systems. Hierarchies, being a frequent form that complex systems take on, could be
understood by such a general systems theory.

Several approaches to obtain a general system theory have been tried. [Mesarovic
64] gives a mathematical definition based on set-theoretic principles to which any
general systems theory must adhere. Although the details are not immediately
relevant to our goals here, the 1dea that a mathematical basis to a theory of
hierarchies exists 1s certainly intriguing. Perhaps more useful is an axiomatic
formulation of a general systems theory [Churchman 64].

Briefly, Churchman's ‘‘axioms’ are: (1) systems are designed and developed; (2)
systems are composed of components; (3) these components can be systems in and
of themselves; (4) systems evolve in a direction of increasing stability (this is also a
point that Simon makes); (5) a general system is the ultimate in stability. The
remaining axioms are somewhat esoteric and less useful: (6) there exists only one
general system; (7) the (general) system is optimal; (8) general systems theory is the
search for this single, optimal theory; (9) the search gets increasingly more difficult

with time, and 1t never ends.

The motivation, in MERGE, for maintaining generalization hierarchies, for each
unique object in the instance hierarchies, i1s stated in axioms 2 and 3. In other
words, if a hierarchy of generalizations can be used to understand a particular type
of object, then generalization hierarchies can also be used to understand the parts
of an object.

Churchman’'s last axiom not withstanding, most researchers feel that there are
principles common to all complex systems systems and that they can be discovered
and formalized. Unfortunately, no one has yet been successful in coming up with a
theory of hierarchies much less a general systems theory. We hope our research
will contribute to developing a theory of hierarchies, and therefore help in
developing a general systems theory.

2.4.3 Summary

The nature of hierarchies is only beginning to be understood. It is believed that
complex systems often take the form of hierarchies and that all such systems share
certain common properties. The most clearly identified property is that of near-
decomposability. Other concepts, such as span-of-control, are important
considerations in describing and understanding hierarchies.
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Some researchers state that hierarchies are not necessarily limited to being simple
trees; they suggest that tangled hierarchies are the natural way to capture this
concept. ~ We recognize that hierarchies are not simple trees, but believe that
relations among arbitrary members of a hierarchy is a reasonable way to
approximately capture partial decompositions of a system. Thus, we will represent
a hierarchical system by a single tree-like structure based on one F-rel with other
relations superimposed on 1t

2.5 Summary

In the above surveys of representation, generalization, and hierarchy theory we
have discussed several schemes and methods that have contributed to cognitive
science's repertoire of intelligent understanding tools. Most of the work done to
date has concentrated on one particular aspect of the task we have before us.
Typically, a researcher devises a representation scheme or a generalization technique
to solve some particular problem. This 1s often used as the backbone of an Al
program to explore one or more, usually narrow, domains.

A few scholars have gone as far as implementing integrated generalization and
representation schemes, but they are not completely suitable for hierarchy
understanding for a number of reasons. A hierarchy understanding system that 1s
to be wused for real-world knowledge acquisition should have the ability to:
automatically build representations without human intervention, incrementally
construct generalizations, dynamically reorganize memory to better reflect learned
knowledge, make use of the near-decomposability of hierarchies to store information
in a compact form, recognize and explowt the inter-relationship of the representation
language with the generalization method. Some of the systems in existence have
one of more of these characteristics, but none of them meet all the requirements.

We have set the stage for describing the MERGE scheme and related issues in
representation and generalization. MERGE borrows 1deas from many of the works
that have been discussed in this chapter Most prominent among these are: [PP
- for the concept of a GBM, CD - for the basis of RESEARCHER's relation
representation scheme, and frames - for the overall knowledge encoding scheme of
MERGE. Other research has had a less tangible influence on our work. In
particular, the ideas of memory chunking and near-decomposability have been
important to us.
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A hierarchy is defined by one or more partial orderings of nodes
connected by fundamental relation (F-rel) links. The F-rel is a formal
characterization of the organizational concept behind a hierarchical
system. The representation of a hierarchy by using F-rel links is called
an F-tree. MERGE uses a single F-tree augmented by relations as a
pragmatic means for representing hierarchical systems. Non-
fundamental relations are superitmposed on an F-tree allowing a more
complete description of a hierarchy to be captured. A generalization tree
(G-tree) is used to organize inslance F-trees by creating a hierarchy of
generalized F-trees (concepts). Several G-trees exist in memory, each one
serving to classify a unique sub-tree (object) within the tnstance F-trees.
The entire combination of F-trees and G-trees is called a wunified
memory structure. [t is the heart of the MERGE scheme. A compact
notational formalism s introduced in order to easily encode unified

memory structures for the purposes of analyzing and demonstrating the
detatls of MERGE.

3. Principles of Hierarchy Understanding

3.1 Introduction

Understanding of hierarchies 1s a difficult task for an automated system Such a
system must be able to both represent a single instance of a hierarchy and to
generalize many representations into a knowledge base. In addition, we hope 1n
some way to model human learming of hierarchical phenomena. Humans do not
appear to delineate representation f{rom generalization -- they are part of an
integrated process. As such, one of our primary goals i1s to unify representations of
hierarchies with generahizations of the same. In this thesis, we address these
matters and present a form of generalization-based memory scheme designed
specifically for hierarchy understanding, MERGE.

MERGE (Mutually Enhanced Representation and GEneralization) is a scheme for
organizing memory to be used as the knowledge base in an intelligent information
system. As its name indicates, MERGE unifies representations of single instances of
hierarchies with generalizations of them. There is a mutually beneficial interaction
between the way in which single instances are encoded and the way generalizations
are captured. Before describing this interaction, and how 1t is used to understand
hierarchies, several major 1ssues must be discussed.

The first of these issues is the identification of the concepts needed to understand
hierarchies, and the formalism necessary to present the MERGE scheme. There are
many issues involved in representing single hierarchies that can be discussed outside
of the MERGE scheme. Similarly, generalization issues that have to do with
understanding hierarchically structured objects can be described in isolation.
Chapters 4 and 5 discuss issues in representation and generalization, respectively.
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This chapter deals with the basic principles of hierarchy understanding and presents
the requisite formalism and definitions needed to describe representation 1ssues,
generalization issues, and the MERGE scheme.

In order to develop a hierarchy understanding system one must first 1dentify
exactly what we mean by a hierarchy. One dictionary definition of a hierarchy is:
“a group of persons or things arranged in order of rank, grade, class, etc.”
There must be a relation between members of a hierarchy that determines this
ordering. We call this the fundamental relation, or F-rel, of a hierarchy. We
take the F-rel to be a partial ordering, allowing multiple members of a hierarchy to
be subservient to the same member. The F-rel of a hierarchy allows nodes to be
built 1nto a tree-hke structure.

3.2 Fundamental relations and trees

A hierarchical system can be characterized by more than one F-rel. Such a
system 1s called a tangled hierarchy. Because of this possibility, it 1s necessary to
specify what organizational concept is being captured by a particular F-rel. Figure
3-1 shows some sample domains/organizational concepts and their corresponding F-
rels. An organizational concept in a hierarchical domain is a generalized notion of
how members of a hierarchy relate to one another

Although we do not dispute the existence (or validity) of tangled hierarchies,
throughout the remainder of this thesis we will usually view a hierarchy as having
one predominant decomposition based on a single F-rel. Aside from pragmatic
aspects (e g., single F-rel hierarchical systems are easier to discuss, and write
programs to understand), applications of MERGE (eg, RESEARCHER and
CORPORATE-RESEARCHER) need only use single F-rel decompositions to achieve
their goal of understanding hierarchies. A MERGE-based system is designed to
understand a specific domain. Furthermore, there is likely to be one preferential
way of viewing this domain (although, not always). This view, or organizational
concept, 1s the one of most interest and would be the F-rel used by the program.
We will show how information captured by multiple F-rel decompositions can be
included in a single F-rel representation. (This 1s done later in this section.)

A hierarchy 1s built by joining nodes (members of a system) with F-rel links. For
example, the IS-A link (see Chapter 2 for a more complete description of IS-A links
in semantic nets) serves to indicate that one node is an instance of another node,
and hence 1is subservient to it We would say that General  Motors IS-A
manu facturer, indicating that manufacturer 1s higher in the (corporation) IS-A
hierarchy than General Motors. Both General Motors and manufacturer are nodes
in this hierarchy, the IS-A link connecting them is an instantiation (particular

IFrom Webster's New Twentieth Century Dictionary, second edition.
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Domain Organizational F-rel
Concept

human organizational
systems chain-of-command REPORTS-TO
(e g, government,

corporations)
physical objects sub-assemblies PART-OF
(» g., cars, disc drives)
genealogy birth CHILD-OF
(e.g. family trees)
road/river systems tributaries FEEDS-INTO
(e g, interstate highways)
human symbolic units of meaning PART-OF
systems

(e g., music, books)

taxonomies classification [S-A
(e g., biological taxonomies,

subatomic particle

classification)

These examples show that a hierarchical domain has a particular F-rel
(fundamental relation) that forms the backbone of its structure

Figure 3-1:  F-rels of hierarchical domains.

instance) of an F-rel. PART-OF is another commonly used F-rel. (See [Winograd
72| for examples of this F-rel in the blocks world.) Here the relation denotes that
one object 1s physically included within another. A third example, from the
business community, 1s the REPORTS-TO F-rel This relation 1s used by
corporations to build an organizational hierarchy.

A few additional definitions are needed before continuing. An F-rel always
describes the relation between two nodes in a specific order. That 1s, if node X 1s
subservient to node Y then the relation reads “X F-rel Y" (eg., X 1s PART-OF Y,
X REPORTS-TO Y, etc.). The term F-child (Fundamental relation child) refers to
a specific instance that has an F-rel link to its F-parent. We would say that “X is
an F-child of Y, or “Y is the F-parent of X"

An F-tree (Fundamental relation tree) is simply the hierarchy formed by
connecting nodes using F-rel links. These hierarchies are tree-like in appearance
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and hence the term F-tree. Such a tree describes a single instance of a hierarchy.
Figure 3-2 shows a partial F-tree for this thesis using the PART-OF F-rel.
Although other relations may exist within an F-tree (which we then call an
augmented F-tree) it must use only one F-rel to form its basic structure.

| I | | | I
chap-1 chap-2 chap-3 chap-4 chap-5 chap-8 chap-7

Ve ——- PRy Y ket Ve mmrma— B ittt 2 boemmm e ————— -
intro. F-trees relations G-trees generalization notation
P m———-— *

tangled hierarchies parallel G-trees purpose creation

This 1s a partial picture of the F-tree of this thesis The F-rel for this
example 15 PART-OF  The levels of this F-tree are: document (thesis),
chapter, section, sub-section.

Figure 3-2: Partial thesis F-tree.

Although the F-rel constitutes the main connecting link among nodes in the
structure, other relations among arbitrary nodes also exist in any real-world
hierarchy. For the purposes of this thesis, a hierarchy will be defined by a single
F-rel imposing a partial ordering on the nodes that comprise 1t along with other
relations that augment this structure. For example, channels of communication
between members of a corporation other than REPORTS-TO exist, but are
considered non-fundamental relations. The F-rel i1s of primary importance as 1t
determines the structure of the hierarchy.

3.2.1 Tangled hierarchies

The reason why we discuss tangled hierarchies is to show how the information
contained 1n alternate decompositions of a system can be captured by non-
fundamental relations. To see how a tangled hierarchy might look, consider the
two F-trees shown in Figure 3-3. The F-tree based on the PART-OF F-rel (Figure
3-3(a)) gives a partial decomposition of a car according to its physical construction.
The same four leaf node components (i.e., the radio, the engine, the drive-wheels,
and the transmission) also have a decomposition based on their function. The F-
rel for the F-tree shown in Figure 3-3(b) is FUNCTIONS-AS-PART-OF.  For
simplicity, we have not drawn these two F-trees as a single tangled hierarchy.
However, they could easily be drawn as such by allowing both F-trees to share the
same four leaf nodes. ‘

The functional F-tree contains information that could be partially captured by
overlaying relations among various nodes in the PART-OF F-tree. We demonstrate
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CAR CAR
// \\ // \\
body chassis loiolotion pleaTure
/ / l \ / \ radio
/ / \ pover pover-feed

radio trans. engine drive-wheels
engine /

drive-vheels transaission

(a) (b)

Diagram l:(‘a) shows the component decomposition of a CAR using the
PART-OF F-rel The transmission (trans) engine and drive-wheels are
PART-OF the chassis; while the radio 1s AR’[’ZOF the body. The F-rel
implicit in diagram (b) 15 FUNCTIONS-AS-PART-OF  That is, the engine
15 .2 functional part of the locomotion process, the transmission “and
drive-wheels are a functional part of the power-feed system and the radio
1s used for pleasure.

Figure 3-3: Two automobile F-trees.

this 1n the next section. However, this would be counterproductive if 1t were
neceszary to describe a hierarchy according to how 1t works as opposed to how 1t is
structured.  Thus, if an intelligent information system were designed to understand
both the composition and function of automobiles, 1t would need to be able to
represent and generalize about these two types of F-trees simultaneously. As we
will present it, a single MERGE-based system is designed to work with a single F-
rel.  One must choose which F-rel to use for a particular application. However,
one could simply use two separate MERGE-based systems if it were desirable to
understand hierarchies according to both function and part decompositions, for
example.

3.3 Other relations

Relations other than the fundamental one are important 1n forming a complete
representation of a hierarchy. They are used in MERGE to capture what other
researchers would try to do with tangled hierarchies. The degree to which non-
fundamental relations affect a representation depends on the domain of study. In
some domains (corporate hierarchies, for example) most of the hierarchy’s meaning
1s carried by the basic F-tree (based on the REPORTS-TO F-rel). To be sure,
there are many other relations 1n a corporate structure, but when companies
“chart’’ themselves they usually don't include too many of these, indicating that
they are of secondary importance. In other domains, non-fundamental relations can
be very important. For example, modular programming stresses that subroutines
should be hierarchically organized as far as flow-of-control goes, but they often pass
data back and forth through more complex pathways. These relations between
subroutines are crucial to a program’s working and must be included in any
representation of its structure.
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How can information that might come from these non-fundamental relations be
incorporated into an object’s representation? In particular, our goal is to capture
the relational data that would otherwise be encoded by other F-trees or by
arbitrary relations among nodes in a single F-tree. For example, the functional F-
rel information encoded 1n Figure 3-3(b) can be overlayed in the PARTS-OF F-tree
(Figure 3-3(2)) by using additional relations. Figure 3-4 demonstrates how relations
can be used to supplement the basic component F-tree of Figure 3-3(a). Here, most
of the data from the functional F-tree nas been incorporated into the component F-
tree, forming an augmented F-tree.

PLEASURE LOCOMOTION
L L L Dt >CAR¢-~~=-=mercmccna -+
/ \
/ \
body chassis¢------- -
/ /
/ / \
/ / \
// // \

+---->radio engine trans. drive-vheels

The simple PART-OF F-tree from Figure 3-3 (a) has_been augmented
by relations that appeared as F-rel links in the F-tree in Figure 3-3(b).

Figure 3-4: F-tree with relations.

Some relations derived from the F-rel links in the functional F-tree have been
used in Figure 3-4. We have represented them as having meanings more specific
than FUNCTIONS-AS-PART-OF, each relation expressing the exact nature of each
components function (e.g., the radio 1s used for PLEASURE). Relations are used in
MERGE to afford such specificity for representing complex objects. Although the
chassis does not explicitly appear in Figure 3-3(b), the LOCOMOTION function
untquely involves all the components of the chassis and therefore we have placed
the LOCOMOTION function between the car and the chassis. As shown, non-
fundamental relations can occur among arbitrary nodes in an F-tree -- the nodes
involved 1n a relation need not be at the same level in the F-tree.

Figure 3-5 illustrates some of the possible relations that can be used to augment
F-trees in various domains. Both classes of relations and specific examples are
shown.

Each domain/area has a particular set of relations. In general, it 1s much harder
to uncover all possible relations than it is to determine F-rels for a domain. It 1s
quite clear that human organizational systems (governments, corporations, etc.)
devise their hierarchical structure based upon chain-of-command (i.e., the
REPORTS-TO F-rel). However, the intricacies of other relations existing within a
bureaucracy are virtually impossible to spell out. Even if one could formulate a
closed set of possible relations that exist among members of such a hierarchy (eg.,
advises, assists, 1s-located-near, doesn't-speak-to, etc.), it would be astonishing 1f
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Domain

(F-rel) Relation Classes Examples
physical objects positional left, above
(PART-OF) purposes supports
corporate hierarchies personnel advises, 1s-friends-with
(REPORTS-TO) physical in-same-region
road systems routings short-cut, intersects

(FEEDS-INTO)

structured programming 1diosyncrasies goto statement
(CALLED-FROM) data flow common areas,
side effects

Shown are some sample relations for various hierarchical domains that
can be used to augment an F-tree in a particular domain.

Figure 3-5:  Other relations of hierarchical domains.

every instance of these relations could be identified. If every instance could be
captured, we claim one would have a complete representation of the hierarchy, but
pragmatics dictates that this 1s unlikely for real-world hierarchies. Relations other
than the F-rel act as a refinement to the hierarchy's representation, but usually
cannot completely capture all the information the hierarchy embodies, because they
cannot all be identified.

The ‘‘usually’”’ quahfier in the above sentence was put in so that some artificial
hierarchies would not be excluded -- hierarchies tiat are created in the abstract so
that they may be completely understood in terms of a fixed number of relations.
For example, biological taxonomies classify all specifies of animals according to a
seven level F-tree. Each level 1s named and the sequence is' kingdom, phylum,
class, order, family, genus, and species. There exists a set of rules (periodically
updated) that biologists follow in order to make classifications. Therefore, relations
between nodes in this particular F-tree should be enumerable according to this set
of rules. This is a narrow example of a domain (only one full F-tree 1s used) but
other artificial domains with many F-trees have similar properties.

Writings of various types are hierarchical in form. There also exist other relations
among pleces of text. For example, this sentence (which can be viewed as a node
in the PART-OF F-tree of this thesis) refers to Section 3.2 where a partial F-tree
for this thesis is presented. It is possible to enumerate all such relations among
pleces of text 1n a document because they have been put there intentionally (e.g.,
the previous sentence is an intentional reference to Section 3.2). Thus, writing 1s a
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domain in which artificial hierarchies have an identifiable set of non-fundamental
relations (excluding nebulous relations such as motifs, style, etc.).

The number of relations employed In augmenting an F-tree varies greatly from
domain to domain and from instance to instance. In general, the more evolution a
hierarchy undergoes, the more supplemental relations it will acquire. For example,
governmental structures often start life in the form prescribed by a constitution.
As legislation is written that creates new checks and balances, as well as new
departments, the hierarchy becomes more complex. Although the F-rel remains the
same (REPORTS-TO), more relations are added, hence creating a bureaucracy.
Similarly, large computer programs are usually built in a clean, modular form. But
as new features are added, it 1s common practice to end up with the need for
arbitrary modules to pass data back and forth. Each code patch of this form adds
another relation to the F-tree At some point, the number of added non-
fundamental relations can get out of control. This may be a signal that the
hierarchy has to be restructured. (Programmers are quite familiar with this
phenomena when working on large systems.)

Although relations are secondary in importance to F-rel links, they still play a
major role in a MERGE-based system.  Aside from augmenting an instance
hierarchy’s meaning, they are also used in generalization. Relations, in addition to
F-children, are used to determine which nodes should correspond when matching F- -
trees against one another. They are an integral part of the generalization process.
This means that they must be compared and their commonalities and/or differences
recognized.  Because relations are usually more complex than F-rels, they need
special representation schemes in order to encode them and generalize about them.
This 1ssue will be explored further in Chapters 4 and 5.

3.4 Generalization principles

Individual instances of hierarchies can be represented by augmented F-trees.
However, our goal of building a hierarchy understanding system requires that
instances be generalized and indexed into a unified knowledge base in order to
capture the similarities among examples. That 1s, a generalization-based memory
(GBM) of the sort used in earlier work [Lebowitz 80; Lebowitz 83c| is needed. A
MERGE-based system uses two types of hierarchies, F-trees and generalization
hierarchies. A generalization hierarchy ties together individual F-trees of whatever
domain is under investigation into a hierarchy of generalized concepts. In doing so,
the instance F-trees are modified to emphasize how they vary from the generalized
F-trees created within the system. The generalizations created, of course, depend
on what data the instance F-trees contain. Thus, F-trees become inexorably linked
with the generalization hierarchy.

We call a generalization hierarchy a G-tree (Generalization tree). The name given
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to it 1s indicative of the structural similanty it has to an F-tree. In fact, it is an
F-tree with the special F-rel, VARIANT-OF. The term wvariant-of has essentially
the same meaning as ts-a but 1s used by us specifically to refer to links in G-trees.

In this section we will motivate the reasons for generalizing and explain roughly
how the process 1s carried out. The details of generalization in MERGE are
discussed i1n the next section and in Chapters 5 and 6.

3.4.1 The purpose of generalizing

Humans learn 1n many ways. When they are presented with a large number of
examples of a phenomena, probably the most wuseful form of learning s
generalization. We distinguish three purposes behind generalizing (for both humans
and intelligent information systems). Generalizations are used: 1- to categorize
instances into logically organized groups, 2- to emphasize similarities and differences
among 1nstances, 3- to help in understanding future input through the use of
prototypes.

Organizing 1nstances 1nto categories 15 an obvious application for generalization.
People constantly do this when confronted with a domain that has many instances.
For example, household furniture can be grouped according to what room it belongs
in, what function 1t serves, how much 1t costs, etc. We create concepts such as:
“low-cost table and chair sets”, and ‘‘expensive antique desks”. Without such
concepts 1t would be difficult to imagine how we could walk through a furniture
show room and not be totally confused.

These concepts can be built into a tree-like structure that acts as a discrimination
network. If chairs are one category of furnmiture then it may be sub-categorized
into expensive chairs and inexpensive chairs. The expensive chairs category may be
further subdivided into those with arms and those without arms. This branching
continues until individual instances of chairs are reached at the leaf nodes of this
generalization tree.

The second purpose for generalizing is to show how similar or different instances
(or generalized concepts) might be from one another. The use of tnheritance in a
generalization hierarchy makes clear both what instances have in common and what
they don’t. Inheritance is the process of acquiring data that is absent (from the
physical representation) in an 1nstance but present in the generalized concept of
which the instance is a variant. The lowest common ancestor of nodes in a
generalization tree contains the information common to all its variants (instances).
The differences between two instances are found by juxtaposing these two leaves of
the G-tree. Since inheritance will factor out any similar data only the differences
remain stored in these nodes

Finally, generalized concepts serve as prototypes. A prototype is simply an old
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instance or, more likely, a generalized concept that is used as a comparison
standard for new instances Prototypes are useful as a model with which previously
unencountered instances can be compared. If new instances are incomplete or
ambiguous, the previously established concepts can be used to fill in missing data or
establish a norm for ambiguous data.  Thus, generalization can be helpful in
understanding future input. Once a new instance is incorporated into memory,
inheritance 1s used to factor out commonalities and allow the differences to stand

out.

3.4.2 Creating generalizations

In the real world, learning takes place incrementally over time. Humans are
exposed to instances of phenomena in pieces -- not all at once. A generalization
scheme must be able to work in an incremental mode 1if it hopes to understand
hierarchies 1n a real-time situation. Incremental generalization 1s necessary in order
to provide an ongoing representation of what the system knows. The alternative
would be to wait until all (or several) instances were known before generalizing
about them. This may not be acceptable performance in a real-time intelligent
information system.

The basic 1dea of incremental generalization is that a single instance is
incorporated 1nto an existing knowledge base by making minor updates. In
MERGE, this means that each F-tree is incorporated into one or more G-trees by
making 1t a variant of some existing generalization or creating a new one.
Addition, subtraction, and substitution operations are used to augment the standard
inheritance process, when necessary

Usually a new F-tree 1s incorporated into the existing knowledge base when its
representation is complete. However, depending on the domain in which MERGE 1s
applied, 1t 1s possible to start incorporating an instance into G-trees before its
representation s completely formed. When a partial F-tree i1s created, from either
a bottom-up or top-down description, it can be incorporated into a G-tree. Each
G-tree categorizes a different type of F-tree. Thus, the entire F-tree need not be
described before a generalization can be made.  For example, when reading a
patent abstract about a disc drive (as RESEARCHER does), if the drive motor
assembly 1s described first, its F-tree can be incorporated into the G-tree that
categorizes motors before the entire patent abstract is read. In this way, a system
can avoid having to process too much at once while locating where in its knowledge
structures the description of the current instance fits in. Knowing this location
early on during the knowledge acquisition process is useful because the information
stored in the concepts around this point may help in disambiguating the rest of the
description.

In addition to disambiguation, information missing in new instance representations
can be filled in in accordance with the prototypes in the knowledge base. When a
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new instance hierarchy 1s found to closely match some generalized concept, data
that 1s absent in this instance, but present in the generalization, can be assumed.
The circumstances governing when this should take place are discussed in Chapter

J.

3.5 Generalization trees

We have described the principles behind generalization but not the details. G-
trees are the second major data type in MERGE, F-trees being the other. In this
section we introduce the concepts needed to create and manipulate G-trees. The
previous section only mentioned these concepts which include inheritance, addition,
subtraction, substitution, and the use of multiple G-trees. Here we clanfy them and
exemplify how MERGE represents and processes G-trees.

3.5.1 Inheritance and modifications to it

F-tree representations are incorporated into a G-tree structure mainly through the
inheritance operation and variations of it. Members of one instance F-tree that are
the same as members of a different F-tree are factored out and stored 1n
generalized F-trees (1e, generalized concepts). These common elements are then
removed f{rom the representations of the instance F-trees so that they do not-
explicitly appear there Instead, they are inherited from the generalized F-tree, thus
accentuating what the instances have in common and what their differences are.

Consider the simple corporate F-trees shown in Figure 3-6. The F-rel of these
trees 1s REPORTS-TO If they were the only two instances of a presidential
structure they would generalize to be the F-tree in Figure 3-7. This type of
generalization, where only common elements are recognized, 1s called a conjunctive
generalization. By inspection of this generalized concept of a president
(president-#), it 1s 1mmediately clear what its variants (president-a and president-b)
have in common. If one looks at what remains (1e. 1s not inherited) in the
variants of this generalized concept, then the differences between president-a and
president-b are apparent.

The complete G-tree, using this generalization, 1s shown in Figure 3-8. Here,
inheritance has been used so that president-a and president-b will get copies of both
the finance department and the sales department representations. Inheritance
occurs along the VARIANT-OF links in the G-tree (indicated by the v’'s).

Closer inspection of this miniature knowledge structure reveals that what has been
represented is a concept of a president (president-#) who has control of a finance
department and a sales department. There are also two variations of this
stereotypical president: one (president-a) adds a manufacturing department to 1its
span-of-control (see Section 2.4), while the other adds a planning department.




PRESIDENT-A P?ESIDEIT-B

\
/ll\\ / \
/ \ / \
finance sales manufacturing finance sales zl:nning
departments departaents
(a) (b)

Two simple corporate F-trees, based on the REPORTS-TO F-rel, are
shown. Note that both president-a and president-b control finance and
sales departments and tgat. they differ in that president-a also has a
manu facturing department while president-b oversees a planning
department.

Figure 3-8: Simple corporate F-trees

PRESIDENT-#
/ \

\
finance sales
departments

This F-tree represents the result of generalizing president-a and
president-b shown i1n Figure 3-6.

Figure 3-7:  Simple generalized president.

financs
/ b ¢
PRESIDENT-#--<
/ \ \
/ \ \f
//v v\ sales

+f / \ «f
manufacturing----- PRESIDENT-A  PRESIDENT-B----- planning

The F-trees from Figure 3-6 are indexed as VARIANTS-OF president-#.
The f symbols represent F-rel links while the v's indicate the G-tree
omnters (1e. VARIANT-OF links) A G-tree 1s an F-tree that has
ARIANT-OF as its F-rel.  President-a and president-b inhenit the
representation of both the sales department and finance department from
the generalized concept of a president (presidenf-#). The “+” symbols
indicate that this 1s an added F-rel link.

Figure 3-8:  G-tree using added-inheritance.

The concept of added-inheritance is used to distinguish specializations of a
generalized object. It correlates to the phrase “X is just like Y only it also has a
Z". The converse situation, “Y 1s just hke X only 1t's missing 2", 1s also possible
using the subtraction operation. If, for example, the generalization that a president
has a finance department, a sales department, a planning department, and a
manu facturing department had been made (which 1is not a conjunctive
generalization) then subtraction could be used to modify inheritance so that certain
F-children are deleted after the inheritance. We call this deletion of inherited F-




children deleted-inheritance. Figure 3-9 shows how deleted-inheritance is used to
represent the same information as Figure 3-8 does for added-inheritance.

finance
t

/ f manufactuoring
PRESIDEET-#--<~--<

/ \ ? planni
VAR S

/v v\ sales

/

planning--~--- PRESIDENT-A  PRESIDENT-B----- manufacturing

Assuming that the generalization mentioned in the text is adopted, then
the G-tree will appear as shown in this diagram.  Notice that the
subtraction operation (-) 1s needed to permit delefed-inheritance.

Figure 3-9:  G-tree using deleted-inheritance.

In Figure 3-9 we have assumed that the generalized concept of a president
(president-#) 1s one that has four F-chidren. It has been formed by the union of
the F-children from president-a and president-b, as opposed to the intersection of
the same data, which appears in Figure 3-8

Although the representations (1.e, the G-tree and F-trees) shown in Figure 3-8 and
Figure 3-9 are different in form, they encode exactly the same information. The
choice of one representation over another 1s dependent on the current state of the
knowledge base and what new instances are to be incorporated into it  Generally
speaking, one (a MERGE-based system) would choose the representation that
minimizes the total size of the representation, while maintaining cognitive accuracy.
For example, if 2 knowledge base contains many instances of tables with four legs
and a new instance of a table with three legs 1s presented, the best generalization
would 1include four legs in 1ts encoding.  Deleted-inheritance (i.e., the subtraction
operation) would be used to capture the fact that the new instance has one less leg.
The question of which generalization to make 1s taken up further in Chapter 5.

A third operation, substitution, combines both subtraction and addition to allow
for the replacement of one member in a generalized F-tree by another, more
specific, element from an instance F-tree. It 1s used in representing concepts such
as “X 1s just like Y but 1t has P instead of Q. Using the corporate president
examples in Figure 3-6, one could represent president-b as a VARIANT-OF
president-a with the substitution of the planning department for the manufacturing
department.

The substitution operation must be used sparingly. The purpose of using the
substitution operation 1s to emphasize that i1ts two arguments (old node and new
node) are similar in structure and should be thought of as variants of the same
concept. Limiting 1ts usage helps prevent unreasonable knowledge representations
such as “a telephone is just like a calculator, only you subtract everything but the
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key-pad and add a handset, cord, bell, etc.”” from being created. A guideline for
restricting its usage might be to only allow a small percentage of a concept’s F-
children to be substituted for in any one variant of that concept. Thus, if a
generalized F-tree had four F-children (and we arbitranly take this percentage to be
259%%) then only one F-child would be permitted to have a substitution, otherwise a
new generalization would have to be built. .

It 1s also possible to make a disjunctive generalization about president-a and
president-b and produce an F-tree that has the structure shown in Figure 3-10
Actually, this generalization 1s a combination of conjunction and disjunction. The
two 1nstance examples (president-a and president-b) support the fact that a
generalized president has both a finance department and a sales department. It
also has either a manufacturing department or a planning department, but not
both.  Disjunctive generalization, alone, 1s simply the generalization formed by
taking the logical disjunctions of the F-children in the variant nodes of a concept.
(The president-# F-tree shown in Figure 3-9 1s an example of a purely disjunctive
generalization.)  Although the use of conjunctive and disjunctive generalizations
simultaneously 1s a powerful technique, we will continue to only use the former type
for our purposes However, in Chapter 5 we will discuss disjunctive generalization
further, and why we should or should not use it

PRESIDENT-#
/1N
/1A

{inance + sales
Jor\

manufacturing planning

I[f disjunctions are allowed, the generahized president (president-#) can
be represented as having control of a finance department, a sales
department, and either a manufacturing department or a planning
department, but not both.

Figure 3-10: Disjunctive/conjunctive generalization tree.

3.5.2 Parallel generalization trees

In an intelligent system that understands hierarchies, it is desirable to have the
system generalize about all of the sub-hierarchies that exist within the whole FEach
sub-hierarchy of an object 1s itself an object which might appear in other contexts
(e.g., the drive-motor assembly of a disc drive) The MERGE scheme builds many
G-trees simultaneously, and consequently learns about objects that are part of the
top-level object 1n the domain as well as the top-level object itself (eg., 1t would
learn about drive-motor assemblies as well as disc drives). Thus, the range of
knowledge the system can handle is broadened, which is a desirable effect in almost
any application.

Paralle] G-trees coexist in such a manner as to organize F-tree data at different
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levels 1n the F-rel hierarchies. These G-trees do not have any nodes 1n common
with each other; they are independent indices into the F-tree forest. Usually there
are as many parallel G-trees as there are unique members in the F-trees being
generalized about. Of course, not all F-trees in a given domain have the same
number of unique nodes, so this should be treated as a general notion. (We will
discuss how F-trees with varying depths and numbers of nodes can be generalized
about in Chapters 5 and 6)

Parallel G-trees allow MERGE to extend its knowledge base without doing much
additional work. In the process of comparing two hierarchical F-trees, their sub-
hierarchies (sub-F-trees) must be compared. All that needs to be done in order to
builld multiple G-trees 1s to save the results of this comparison in the form of a
generalized concept  Thus, MERGE learns about objects in whatever domain 1t 1s
employed in, as well as any sub-objects (hierarchies) that exist within the complete
instance hierarchies 1t processes. [Each G-tree, therefore, is a knowledge structure
that classifies a different kind of object.

To see how parallel G-trees come about, consider upper level corporate
management hierarchies A G-tree that serves to categorize F-trees in this domain
would, of course, store generalizations about corporate structures in total If all the
sample corporations had a chairman of the board at the head of the company
followed by a president, followed by an executive vice president, then the
generalized corporation would also have a chairman, president, and executive vice
president

There 15, however, more information that can be extracted from a comparison of
instance hierarchies.  Specifically, one can make generalizations about each level 1n
the F-trees. In the upper level corporate management domain, this means that
representations of a generalized president, executive vice president, and other officers
can be made  FEach generalization exists in parallel with the others.  Figure
3-11 1llustrates these points. Here, the complete F-tree for chairman-of-the-board-#
1s shown along with three G-trees that have been created from a comparison of
chairman-of-the-board-a and chairman-of-the-board-b The details of added-
inheritance (the only operation needed for this representation) are not shown. Note
that generalized concepts of the chairman-of-the-board-#, president-#, and
erec-vp-# have been created. Also consider that each of the three G-trees classifies
different nodes in the instance F-trees The details of parallel G-trees are discussed
fully 1n Chapter 5.

3.6 Notational formalism

Up to this point we have been diagramming very simple hierarchies to be used as
examples to describe some fundamental principles. Real-world instances, as well as
more complex hypothetical examples, would be difficult to diagram in this way (ie,,
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chairman-of-the-board-a chairman-of-the-board-b
preci%ent-a pr7lid£nb-? \vp-chniuitionn
vp-finance-a exec-vp(a vp-planning vp-finance-db o7ec-vp§b
vp-production vp-marketing-s vp-marketing-b vp-service
(a) (®)

—-——

chairsan-of-the-board-a

v G-tree
chsirlxn-of—the-bo;rd-t(\ 1
+-- v
president-a b4 chairman-of-the-board-b
G-tree \v -
2 >president-#
AN
resident- exec-vp-a
.t / Vo TR Getree
vp-finance-#¢ exec-vp-8<\ 3
v
b4 exec-vp-b

=

vp-marketing-#
(e)

Trees (%L and (b) represent two hypothetical corporate structures (F-
trees). e generalization of these two structures appears 1n (¢) as
chairman-of-the-board-#. Note that this 1s a somewhat different diagram
than appears in Figure 3-8 and Flg\t}re 3-9 Here, the generalized F-tree 1s
shown as the main structure with VARIANT links off to the sides. Three
G-trees (1,2,3) are shown, they serve to classify the chairman, presidents,
and executive vice-presidents, respectively.

Figure 3-11: Parallel generalization trees.

as inverted tree structures). In particular, multi-level F-trees embedded in multi-
level G-trees are difficult to draw and comprehend. To alleviate this problem and
provide a convenient way to proceed with further discussions of the issues of
generalization, representation, and their interaction, we introduce a notational
formalism

In order to facilitate our presentation of F-trees, G-trees, and their interrelations,
we need a concise notation. The essential facts which include: given any node,
what are its immediate descendants in the F-tree (1.e., F-children), and what are 1ts
immediate G-tree variants (i.e., instances and/or other generalizations) must be
made apparent by a good notational scheme. Furthermore, such a scheme should
be flexible enough to allow us to add new operators into it.

Figure 3-12 introduces the basic notational scheme we have chosen to accomplish
the goals outlined above. The name given to identifiers can be abstract single
letter codes, abbreviations, or more descriptive names. To put the abstract
structure described in this figure into perspective, assume that the F-rel in this
example 1s PART-OF. Then, this structure defines two objects, a computer and a




Encoding Meaning

COMPUTER: disc-drive, cpu the computer has F-children
disc-drive and cpu.
DISC-DRIVE: disc, >floppy-disc-drive the disc-drive
has an F-child, dise, and
G-tree vanant, floppy-disc-drive.

DISC. magnetic-coating the disc has an F-child,
magnetic-coating.
CPU: the cpu has no F-children nor

G-tree vanants.
FLOPPY-DISC-DRIVE: +drive-door the floppy-disc-drive

has an F-child, drive-door, in

addition to the ones it inherits

from dise-drive.

Each node in an F-tree or G-tree that has children is represented by 1ts
name followed by a list of its descendants, a colon delineates the parent
from the children  G-tree variants are prefixed by a “>" to distinguish
them from the F-children. A ‘“+" symbol prefixed before an F-tree
descendant indicates that it is an added F-child (in addition to those that
it itnherits from 1its parent(s)g. The F-rel of the hierarchy is implicit here
and must be stated outside the context of the encoding.

Figure 3-12: Notation for a unified memory structure.

floppy-disc-drive.  The computer has parts disc-drive and cpu; the disc-drive in
turn has a part, disc, while the cpu has no parts. Furthermore, the disc has a
magnetic-coating as a part  The second object. floppy-disc-drive, 1s actually a
VARIANT-OF the disc-drive.  Thus, 1t inherits all the parts (F-children) that
disc-drive contains (1e, the disc). It also has an additional part that the disc-drive
does not have namely the drive-door In total, the floppy-disc-drive has a disc
and a drive-door as immediate parts

We call this combination of F-trees and G-trees a untfied memory structure It
ts a merging of F-trees and G-trees into a single representation. All the nodes of
importance (1.e., that have either F-tree or G-tree descendants) in this structure are
enumerated. Each node listed 1s in exactly one F-tree (although copies of a node
can be inherited), and possibly one or more G-trees (as indicated by the “">”
prefix)

The subtraction operator, -, is used in the same way as the addition operator
(+) It specifies that an F-child is to be deleted from the list of inhented F-
children. Substitution 1s similar to doing both a subtraction of the original F-child
followed by an addition of the new F-child. Thus, the notation used to symbolize
substitution, “‘~+", has been chosen to make this property clear.

To gamn an appreciation of the economy that this notation affords, consider the
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representation of the president G-tree described in the previous section. Figure

3-13 shows how the unified memory structure in Figure 3-8 is encoded using our
compact notational scheme.

PRESIDENT-#: finance, sales, >president-a, >president-b
PRESIDENT-A: +manufacturing
PRESIDENT-B: +planning

This 1s the same unified memory structure as shown in Figure 3-8 using
our notational scheme.

Figure 3-13: Unified memory structure using added-inheritance.

The unified memory structure using deleted-inheritance (shown in Figure 3-9) has
an equivalent representation using this formalism, and i1s diagrammed in Figure 3-14.
Notice that this encoding requires a few more symbols to represent compared to the
G-tree using added-inheritance. However, this discrepancy disappears when more
than two objects are generalized, or the objects are more complex. Consider the
case of having nine 1dentical F-trees, each composed of several components, and a
tenth object tree that lacks just one of these parts. Using deleted-inheritance, the
missing component can be accounted for with a single additional symbol in the
representation. Added-inhenitance requires that the nine identical objects all have
the “missing” part added, and that the generalized concept (two-level F-tree) not
have 1t n 1ts representation. Therefore, the use of subtraction can prove to be
economical and often cognitively accurate

PRESIDENT-#: finance, sales, manufacturing, planning,
> president-a, >president-b

PRESIDENT-A: -planning

PRESIDENT-B: -manufacturing

Deleted-inheritance can also be represented in this notational formalism.
The “-~" symbol indicates the subtraction property.

Figure 3-14: Unified memory structure using deleted-inheritance.

The substitution operator can be used to represent president-a as a VARIANT-OF
president-b. Figure 3-15 shows this encoding.

The way in which a unified memory structure is written makes it easy to identify
F-children and G-tree variants. However, F-parents and parents of nodes in the G-
tree can also be seen in this structure. Thus, all four pointer types in MERGE are
encoded (in some manner). Cognitively, some links are stronger than others in the
sense that a person can enumerate them more readily. In particular, VARIANT-OF
links are more easily enumerated than are VARIANT links (the reverse of
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PRESIDENT-A: finance, sales, manufacturing,
> president-b
PRESIDENT-B: manufacturing-+planning

President-b 1s shown as a VARIANT-OF president-a. The substitution
operator (“-+") 1s used to indicate that the manufacturing department is
dropped and the planning department 1s added in its place.

Figure 3-15: Example of the substitution operation.

VARIANT-OF links). For example, one can tell that an object is a piece of
furniture faster than he can list all pieces of a certain type of furniture. (This
discussion 1s taken up further in the next chapter)

Relations are included in this notational system by specifying them separately
using standard functional form. Thus, the NEAR relations in Figure 3-4 would be:
NEAR(transmission drive-wheels), NEAR(engine transmission), etc. Although these
relations are binary, n-ary relations are represented 1n a similar manner. In
Chapter 4, representations of relations are discussed further.

3.7 Summary

The most 1mportant factor in hierarchy representation is the F-rel. An F-tree 1s
formed by using F-rel links to connect individual nodes in a partial ordering
Although such a structure contains most of the information about a hierarchy, 1t
can be supplemented through the use of additional relations among arbitrary nodes

A generalization tree (G-tree) 1s an F-tree based on the VARIANT-OF F-rel. It 1s
used to organize instance F-trees and other generalizations 1n memory. Through
the operation of inheritance, modified by addition, subtraction, and substitution, F-
trees are incorporated into G-trees. Several G-trees exist in parallel, each one
serving to categorize concepts and instances about a unique object in the instance
F-trees

The G-trees depend on the F-trees for their structure. Furthermore the F-trees
are modified by the existence of the G-trees. This integration forms the basis for
the MERGE scheme of hierarchy understanding.  That s, there 1s a mutually
beneficial interaction between these two types of knowledge structures making them
appear as a single entity.

The complexity of these representations makes necessary the adoption of a concise

notational formalism. The scheme presented 1is extensible and permits the
investigation of the 1ssues relating to representation, generalization, and their
integration.  The representation of F-trees and G-trees concurrently we call a
unified memory structure.




A single F-tree i3 represented using a frame-based formalism. Each
node in a hierarchy is encoded as a memette which stores information
about the node's parent in the F-tree, children in the F-tree (i.e., its
parts), parent in the G-tree, structure-independent and structure-dependent
information. Structure-independent information is applicable only to the
immediate memette;, the properties of an object s an erample of it.
Structure-dependent information i3 that which references multiple nodes
in the F-tree; it is tantamount to non-fundamental relations among
arbitrary memettes. The use of non-fundamental relations i3 variable
from domain to domain. In compler domains, it is desirable to have a
primitive-based canonical scheme for encoding relations. The scheme
that RESEARCHER employs t1s described as an example of such a
scheme.

4. Representation Issues

4.1 Introduction

The MERGE scheme of hierarchy understanding 1s designed to combine
representation and generalization 1n an integrated fashion. However, 1t is possible
to distinguish certain issues as representational and others as relating to
generalization. This chapter discusses representation issues, specifically those that
have relevance to the MERGE scheme. Chapter 5 does the same for issues In
generalization.

As a practical matter, we need an operational definition of the term
“representation’”.  The entire knowledge base built by the use of MERGE 1s a
representation, 1n some sense. It includes representations of single 1nstance
hierarchies as, well as generalized hierarchies For the purposes of this chapter and
the next one, we will consider representation to be only what 1s necessary to
capture the information contained in a single instance hierarchy (i.e, encoding) and
generalization to be whatever is involved in comparing and joining together
muitiple instance hierarchies into an intelligent knowledge structure {1e, processing)
Representation deals with F-trees while generalization deals with G-trees.  Of
course, the MERGE scheme emphasizes that representation and generalization must
be intimately linked together in order to achieve hierarchy understanding.

There are four areas of particular 1mportance 1in representing hierarchies:
1- selecting a representational formalism and determining what data 1t should
capture, 2- deciding how levels in an F-tree are to be structured, 3- examining the
nature of non-fundamental relations used to augment an F-tree, 4- using information
other than F-rels and non-fundamental relations.

The first of these issues, choosing a representational formalism, pertains to any
knowledge-based system. Since MERGE 1s designed to represent complex
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hierarchies, it has particular requirements that must be met by whatever formalism
is picked. These requirements will be discussed in the next section. F-trees are the
means of encoding hierarchies in MERGE. Thus, another important issue in
representation is how the levels in an F-tree are structured (i.e, how an F-rel
decomposes a hierarchy). A complete representation of a real-world hierarchical
system requires both relations that augment an F-tree and miscellaneous data that
captures properties of members of the system. Therefore, the third and fourth
areas of interest In representing hierarchies are how to encode these types of
information.

We will present each of these areas in the following four sections. Problems and
issues common to all hierarchical domains will be discussed. Section 4.6 describes
the physical object representation scheme used in RESEARCHER. We present this
as an example of a sophisticated relation scheme that demonstrates solutions to
many of the problems discussed. It should be noted that in this chapter and the
next, i1ssues of relevance to an tdeal MERGE-based system will be discussed. We
are not describing how our implementations work, which 1s done i1n Chapter 6.
CORPORATE-RESEARCHER and RESEARCHER are somewhat less than 1deal
systems; however they embody the essential 1deas of the MERGE scheme.

4.2 F-tree frame formalism

As described in Chapter 2, there are two basic representation formalisms that
dominate work in Al. Both semantic networks and frames offer enough expressive
power to encode an F-tree structure. However, we have chosen a frame-based
approach to represent hierarchies.

The goals driving our choice of a basic representational formalism are relatively
straightforward.  Hierarchies of arbitrary depth must be easily represented. The
capability to capture relations among nodes and property data for any one node has
to be present. Provisions must exist for building these single instance
representations into G-trees. Finally, 1t 1s desirable for the representational
formalism to closely correspond with models of human cognition (specifically, the
“chunking’’ theory of memory)

At first glance, semantic networks seem to be a logical choice. Their node-arc
formalism maps well into a hierarchy’'s representation, without having the added
baggage of a frame structure. F-trees could be encoded simply by using the
hierarchy’s F-rel as the links connecting each member of the hierarchy to 1its
superior node. Unfortunately, there are several drawbacks to using' a semantic net-
based representation scheme. The use of a frame-based system 1s preferable for
both cognitive and pragmatic reasons.

The reasons for preferring frames over semantic nets have already been examined
in Chapter 2. We summarize them here.
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Semantic nets do not easlly allow for grouping of information. Properties or
features associated with a particular node appear no different than members of the
hierarchy, making the programmer’s job more difficult. Frames permit the location
of property data within the object’s (node's) individual representation. Another
problem with the use of semantic networks is their inability to capture the concept
of knowledge ‘‘chunking’. People are able to remember larger amounts of
information by using a hierarchical memory structure in which each node is of a
small size any amount of data can be retained. Frames provide exactly this
capability.
Memettes! are the name that we have given to the frames 1n our system. The
term 1s indicative of our intention to represent a small chunk of memory. A
memette can represent an entire hierarchy (when it is the root of an F-tree) or it
can stand for a single unitary (indivisible) object. A memette, therefore, represents
an object at some level of detail in the hierarchy being encoded. Being able to
either differentiate between levels of representation or treat them the same 1s an
important element in hierarchy understanding. This issue will be discussed in detail
in the next section and in Chapter 5. But it i1s another advantage that frame-
based schemes offer over semantic network-based approaches.

Partitioned semantic networks [Hendrix 79| might be a practical alternative to
standard semantic nets They group data much like frames do and therefore can
model the concept of chunking more accurately than un-partitioned semantic
networks. Our choice of frames (memettes) over partitioned semantic nets is largely
based on our preferential answer to the following question: Is memory (human or
otherwise) best modeled by a large collection of links and nodes along with some
grouping operation or rather by a system of somewhat larger nodes of information
with fewer links between them? Obviously, this 1s a subtle question that can be
debated endlessly. Without answering this, we merely state the we have opted for
the frame solution (the later one) and refer the reader to [Schank 82| for further
justification

4.2.1 Memettes

Given that MERGE represents F-trees as memette structures, we next address the
issue of what goes into a memette frame. As a reference point, a memette 1s
equivalent to one line 1n a umified memory structure (i.e., our notational formalism)
Figure 4-1 shows a simplified memette structure and its corresponding notational
form.

The most important slot in a memette is the one that contains the F-rel pointers.
In Figure 4-1 the slot is the only one shown; 1t has the name F-CHILDREN. It is

1Term due to Michael Lebowitz
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On the left side of this diagram a simplified memette structure 1is
shown. The rnight side shows the equivalent notation for the structure.
Note that a memette corresponds to an 1dentifier (e.g., A:) along with
pointers to its F-children and any other data that accompanies it.

Figure 4-1:  Correspondence of memettes and notation.

simply a list of all the F-children of the current memette. The identifier for a
memette 1s not significant. It may be a descriptive name, but the MERGE scheme
only requires that it be unique. However, it is useful to have more descriptive
names for examples, as 1s often used in this thesis.

Memettes can contaln other slots. These are divided into two classes; those that
contaln  structure-dependent  data and those  that are  filled  with
structure-independent data. By structure-dependent, we mean the information
involved refers to nodes in the F-tree. For example, relations among arbitrary
nodes are structure-dependent; 1if the structure of the F-tree changes then any
relations involving the effected node(s) would also have to change. Data that is
independent of the existence of other nodes in the hierarchy’'s representation 1s
structure-independent. Properties that are associated with a single memette, such as
color or melting point, are examples of structure-independent data.

The distinction between structure-dependent data and structure-independent data is
particularly important 1n generalizing hierarchies. Several difficult problems crop up
when structure-dependent data is generalized within the context of F-trees. Our
solutions to some of these problems are key elements in distinguishing this research
from other work in generalization. The problems and solutions are described in
Chapter 5.

Many of the slots that a memette has, other than F-CHILDREN, vary from
domain to domain. For example, a physical PROPERTIES slot 1is useful for
representing physical object hierarchies, but not for corporate structures. There are,
however, a few other slots that are common to memettes in any domain. These
have to do with how memettes are incorporated into G-trees and the reverse F-rel
link (1.e., F-parent) Figure 4-2 shows the requisite minimum number of slots a
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A more typical memette frame, essentially the one used in

RESEARCHER, 1s diagrammed in Figure 4-3.

slot name

description of slot fillers

MEMETTE-ID:
F-PARENT:
F-CHILDREN:
VARIANT-OF:
VARIANTS:

unique memette identifier
forward (up) F-rel link
reverse (down) F-rel links
forward (up) G-tree link
reverse (down) G-tree links

Only the required slots that any memette must have are shown here.
The names of the F-CHILDREN ‘and F-PARENT slots may be changed

for any particular domain so that they are more readable considering the
‘ VARIANTS ' St

F-rel "of the The

domain.

slot 1s not a theoretical

requirement, but may be practical in many implementations of MERGE.

Figure 4-2:
RESEARCHER siot

Basic memette slots.

description

MEMETTE-ID:
I'YPE:

COMPONENTS:
COMPONENT-OF:
VARIANTS.
VARIANT-OF:
RELATIONS.

PROPERTIES.

PURPOSES:

either unitary for F-tree leaf
memettes or composite otherwise
same as F-CHILDREN

same as F-PARENT

a list of relation records,
structure-dependent

(see Section 4 4)
structure-independent
(see Section 4 53)

list of purpose records
structure-dependent

Most of the slots used by memettes in RESEARCHER are shown here.

Figure 4-3:

Full memette frame.

RESEARCHER and CORPORATE-RESEARCHER use four slots in each memette

frame to connect 1t into the knowledge base.
VARIANT-OF slot seem to make sense from a cognitive perspective.

The use of the F-CHILDREN and
It seems to

us that people can usually list the parts of an object and also determine what an

object 1s an instance of (variant of) with relative ease.
to say what an object 1s an F-rel of (ie, accessing the F-PARENT slot).

In addition, 1t 1s often easy
For

example, a leg 1s a part of a chair, and a vice-president reports to the president.
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However, it is usually not easy to list F-rel links for objects that occur in many
subparts of complex objects, like screws. It is even more difficult to list all types
of furniture, or all corporate officers. This translates to having not so easy access
to the VARIANTS slot filler, in a MERGE-based system. In general, slots
containing long lists of fillers are more difficult to access (find all fillers) than those

with shorter lists.

If cognitive accuracy (with respect to humans) is the only concern in a MERGE-
based system, these slots should vary in importance. Perhaps the VARIANTS slot
should not exist at all within a memette frame. However, the VARIANTS slot 1s
needed for pragmatic reasons in both RESEARCHER and CORPORATE-
RESEARCHER, and probably most any other implementation of MERGE. In an
1deal MERGE-based system, about the only use for this slot would be to allow the
system to rapidly access instance representations. This would be a useful feature if
a system is to act as a database. However, the VARIANTS slot is not needed in
order to integrate representation with generalization.  The primary integration
mechanism, inheritance, along with modification operations (1e, addition,
subtraction, and substitution), need only have the VARIANT-OF slot to work. (It
should also be clear that inheritance does not operate along either the F-children
link or the F-parent link.) Thus, the VARIANT-OF slot, the F-CHILDREN slot,
and the F-PARENT slot are the only theoretical requirements for a memette in
MERGE

4.3 F-rel decompositions

The F-rel decomposition of a hierarchy is an important factor in the MERGE
scheme. In this section, we point out the consequences and meaning of such a
decomposition.  The structure of the F-tree is explored further as well as the
significance of levels in the F-tree.

4.3.1 F-tree structure

The concept of near-decomposability of hierarchies [Simon 81| indicates that each
node of a hierarchy 1s a more tightly bound unit than are sub-hierarchies in the
system. This concept further implies that each subtree of a hierarchy forms a more
cohesive structure than do groups of subtrees.  From our perspective, near-
decomposability (as opposed to complete-decomposability) comes about from two
sources, F-rel links and other relations.

F-rel links act as a sort of glue that holds hierarchical systems together. They
are the major cause of near-decomposability (i.e, they prevent complete-
decomposability), but non-fundamental relations also contribute. There are usually
more relations among members of a sub-hierarchy than there are among a group of
sub-hierarchies. In other words, relations reference nodes in the hierarchy that are
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“close’” to each other.  This, in effect, adds more bonds to a sub-hierarchy,
reinforcing the F-rel structure.

The 1dea of relative distance within a hierarchy seems fairly straightforward.
There are two measures of a hierarchy’s structure, span and depth (see Section 2.4).
Span 1s an indication of how many nodes are subservient to a single parent, while
depth measures how many generation (parent-child) relationships exist along a single
lineage. Nodes are close 1if they are either in the same span or in the same
lineage, but not too many levels apart.

There is no limit to the complexity of structure that an F-tree can model. The
span or depth of a representation can grow arbitrarily large. Of course, there are
practical limits in the real-world. When the span of a corporate hierarchy becomes
too wide, intermediaries (e.g., vice-presidents, managers, etc.) are interposed between
the subordinates and their superior. Thus, the depth of the hierarchy is increased
at the expense of the span. Similarly, if the chain-of-command is too lengthy
corporate communications can be adversely effected. The solution is to decrease the
path length by removing intermediaries and increasing the span-of-control.
Corporations try to strike a balance between the span and the depth of their
structure [Webber 73], An 1deal MERGE-based system, designed to understand
corporate hierarchies, would capture this notion in its generalizations. It may have
to explicitly generalize about span and depth to do this. (CORPORATE-
RESEARCHER, as yet, makes no attempt to generalize in this way. However, 1t
does represent the interplay between span and depth implicitly -- simply by creating
generalizations of entire corporate structures.)

We are interested in the concept of near-decomposability and the measures of
span and depth because they indicate how an intelligent information system should
process hierarchical systems. Near-decomposability points out that parts of systems
are difficult to divide and thus should be processed as if they are autonomous units.
A study of span and depth can give insight into the important aspects of instance
hierarchies, in a particular domain. These insights can be taken into account when
comparing instances and building generalized concepts of them. A simple way of
doing this would be to create generalizations based on the number of F-children
that a node has as well as the F-children themselves.

Complex hierarchically structured objects are representable using a single F-tree
Each subtree, of this F-tree, is itself a representation of some other hierarchy.
According to [Churchman 64|, components of systems can be systems themselves.
This feature of the F-rel structure is synonymous with the 1dea of near-
decomposability, and can be useful for creating more intelligent information systems.
Generalization can be performed on all of the sub-hierarchies within the whole
-- not just on the entire object. An understanding system can learn about each
unique sub-hierarchy represented in the F-tree, thereby increasing the range of
knowledge a system has.
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4.3.2 Hierarchical levels

As mentioned previously, the ability to distinguish levels in a hierarchy or 1its F-
tree 1s important. Here, we investigate the possible benefits of knowing what levels
are the most important in understanding a hierarchy. Because G-trees are simply
F-trees with the special F-rel of VARIANT-OF, it is appropriate to study the
significance of levels in G-trees as well as F-trees.

Although the same F-rel is used to join together any two adjacent levels in a

hierarchy, the significance of each level can va.ry.1 For example, levels in a
corporate hierarchy signify not just the degree of control a member has over
subordinates but also determines whether an employee is considered part of
management or labor. Going back to the automobile example in the previous
chapter, the level of detail might distinguish how parts inventories are kept.
Subassemblies of a small size (few constituent parts) might be stored in parts bins,
while complex objects (those comprising many parts) may not be stored at all
-- they would be built as needed.

Psychologists have given attention to the 1dea of natural or basic levels of
perception in humans ( [Rosch et al. 76], for example). Their work demonstrates
that there 1s often some preferred level in a hierarchy, at which understanding of
that hierarchy i1s focused. For example, in a biological taxonomy classifying trees it
was found that tree families were the basic level.  Thus, in the hierarchical
sequence, Tree - Maple - Silver Maple, Maple is the basic level.

As this example indicates, basic levels (or objects) have particular significance for
F-trees based on IS-A or VARIANT-OF F-rels (i.e, G-trees in MERGE). The
existence of a basic level might imply that the bulk of generalizations made in a
domain should center around this level. Increasingly fewer generalizations should be
created for other levels in a hierarchy as their distance increases away from the
basic level. -Thus, 1f complex physical objects are being generalized, complete items
might have little 1n common (ie., few generalizations are possible) and it would be
senseless to generalize about the nuts and bolts (i.e., extremely low-level detail) that
virtually all complex objects have. However, at some level in the hierarchy (the
basic level) there could likely be common subassemblies that objects share, and that
the generalization process should focus on. The notion that basic levels are rooted
1n part-wise decompositions of objects is posited in [Hemenway and Tversky 84]

The domain of household appliances provides an example of this phenomena.

ISimon’'s work su gests that hierarchies can have different F-rels joining together
levels 1n the same F-tree. We have defined a hierarchy such that it must use the
same F-rel throughout. This dlspant%r can be reconciled if the meaning given to
the F-rel is sufficiently general so that it encompasses several more specilic notions
that may be used to join various levels. Refinements to the F-rel’s meaning can be
accomplished by using non-fundamental relations.
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Toasters and refrigerators seem to be be incomparable. All appliances (toasters and
refrigerators, included) have screws, nuts, and so forth connecting their major parts.
Generalizations based on these low-level parts would be uninteresting. (It is a little
like saying “all physical objects are composed of matter’’.) However, generalizations
at higher levels can be interesting. Both toasters and refrigerators (along with a
few other appliances, but not all) share a similar electrical system: a
thermostatically controlled switch is at the heart of these devices. A generalization
system that “‘thinks’ that electrical switches are at a basic level could focus on this
fact.  Although electric switches may not be a perceptual basic level for most
laymen, an engineer might indeed think this way. Generalizing about such
subassemblies could prove useful, particularly if one wanted to cannibalize a toaster
to fix a refrigerator.

The point to be made here is that identifying the levels of description of an
object can have a sigmficant impact on how hierarchies are understood. Although
it 1s possible to make generalizations without a particular focus point much time
and effort can be saved by concentrating only on the levels at which interesting
generalizations are likely to occur (e.g, the level of electrical assemblies, in the
example above). An i1deal MERGE-based system would implement this idea. At
present, CORPORATE-RESEARCHER and RESEARCHER do not (because we do
not know how to accomplish this yet), they make generalizations at all levels in the -
F-trees. In effect, they assume that all objects are equally important. (Actually,
they do distinguish the top-level F-tree nodes from all the rest. This is described
in Chapter 6)

4.4 Non-fundamental relations

Relations within a hierarchy, other than the fundamental ones, can carry a great
deal of information. They are composed of a characteristic along with a list of
arguments.  The characteristic 1s the defimtion of the relation which may be
complex. The arguments are a list of nodes (memettes) in the F-tree that are
involved In the relation. Because relations reference memettes, they are a form of
structure-dependent data.

The characteristic of a relation is the basic determinant of its meaning. However,
there are other factors affecting the use of relations. These include: how arguments
should be organized, and how many arguments are needed in a single relation. We
discuss these points before describing characteristics.

4.4.1 Some basic observations

Depending on the domain, the characteristics of relations can be complex and
obscure a description of the nature of relations.  Therefore, we will use an
augmented F-tree that employs relations with simple characteristics to exemplify
these points
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Figure 4-4 shows a corporate F-tree along with a few relations among 1ts
members. The F-rel of REPORTS-TO defines the F-tree and therefore the
fundamental relations among the nine memettes, but 1t does not capture all the
information necessary to accurately represent corporation-a’s structure.

E-tree
CORPORATION-A: chairman
CHAIRMAN: president, manufacturing
PRESIDENT: executive-vp, general-vp
EXECUTIVE-VP: marketing, research, production
MANUFACTURING:
GENERAL-VP:
MARKETING:
RESEARCH:
PRODUCTION:

Relations

SUBSIDIARY/(corporation-a, manufacturing)
ADVISES(executive-vp, general-vp)
DIVISION-GROUP(executive-vp, marketing, production)

A nine memette F-tree 1s represented here along with three relations.
The relations cause various memettes to be associated with a characteristic
that defines each relation. The relations used in this example are the

same as the ones used in CORPORATE-RESEARCHER. The F-rel for
this example i1s REPORTS-TO (the usual one for corporate hierarchies).

Figure 4-4:  Augmented corporate F-tree.

The three sample relations demonstrate several facts about the nature of relations.
Assume that each relation’s characteristic has been defined so that we need not be
concerned with 1t; we can take each definition at face value. (DIVISION-GROUP
simply indicates that some members of the corporation comprise a division.)

The first item to note is the number and order of a relation’s arguments. In the
case of the SUBSIDIARY relation, the first argument indicates the parent
corporation while the second argument references the subsidiary company. (In this
case, the manufacturing division is set up as a SUBSIDIARY of corporation-a.)
The ADVISES characteristic also has two arguments -- the advisee is first followed
by the advisor. DIVISION-GROUP can take any number of arguments. The first,
however, 1s unique and points to the lowest common ancestor (corporate superior)
that the members of the group report to. The remainder of the arguments form
an unordered set that comprises the division group.

Almost all relations are binary in nature. That is, either two objects are related
or there 1s a relation between one object and an arbitrary group of mutually
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equivalent objects. We have observed that this is essentially true independent of
the domamn. Even relations like DIVISION-GROUP are principally a Juxtaposition
of two objects (the superior and its subordinates). The observation that most
relations are binary is helpful in formulating canonical schemes for encoding
characteristics, as will be described later. (A common exception to this rule is the
between relation, and other semantic equivalents, that require three ordered
arguments.)

4.4.2 Relation characteristics

In any particular domain, non-fundamental relations are difficult or impossible to
completely enumerate. Furthermore, no two domains have exactly the same set of
relations, although they may have many in common. An additional concern is the
source of relations. That 1s, 1n what way are relations made available to an
understanding system, through natural language input, hand coded by an expert, or
via intuition” These factors make clear that deriving a system of characteristic
representations for relations i1s a formidable task. We briefly discuss these factors
in an effort to demonstrate the problems that must be solved in developing a
relation characteristic representation scheme. In section 4.6 we present an example
of such a scheme developed for RESEARCHER.

Given that relation characteristics are both domain dependent and subject to the
input data form, one can only suggest general techniques for developing a scheme.
The basic principle on which to base a useful system is semantic primitives (see
Chapter 2). Their use often results in a canonical encoding of varied input data
such that different descriptions of the same real-world relation have the same
characteristic encoding.

The relations of a particular domain may be so varied that a simple semantic
primitive reduction (1e., using a set of semantic primitives that have no underlying
structure) of them 1s still unwieldy. If the number of simple primitives required to
characterize relations 1n a domain 1s too large, then lttle useful functionality 1s
obtained by employing that scheme. Some extension to simple semantic primitives
1s needed in such domains.

One possible solution is to use a small set of primitives that can be combined to
represent a characteristic instead of the usual one to many mapping. Consider the
task of developing a system to describe color If one uses a set of simple primitives
(e, only one primitive can be used as the description) there would have to be
many primitives in order to get an accurate description of any color. The
alternative would be to use just a few primitives (e g., red, blue, and yellow) in
combination. Each of these primitive colors could be assigned a weight. Weighted
sums of these three primitives would be used to capture a specific color. (We
know that this works from color theory) Although relation characteristics are quite
different from colors, this 1s essentially the same concept as 1is used 1n
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RESEARCHER's relation representation scheme. It uses 5 primitives in combination
to span all possible physical relations among objects. Section 4.5 d.esc‘:r‘ibes Ait in
more detail. Thus, a scheme based on combinations of semantic primitives 1s an
appropriate representation system for domains that would otherwise require large
numbers of simple primitives.

Characteristic descriptors can contain more than just primitives. They may have
modifiers that affect an individual instance of a primitive or all primitives used in
the characteristic taken as a group. In general, a characteristic representation
scheme should use whatever is needed to provide sufficient capabilities to capture a
relation's meaning, keeping in mind that relations are only an augmentation to a
hierarchy’s representation. That 1s, a relation characteristic scheme shouldn’t be
overly complex just to capture a few pathological cases.

In order to develop a relation characteristic representation scheme, the human
system creator must consider the source of input data to the MERGE-based system.
The system designer must be able to identify relations in the domain in which
MERGE s being applied. Some sources of input data facilitate the creation of a
relation representation scheme, while others hinder 1t. For example, corporations
often publish organizational charts that show some relations among departments and
executives. If these are the only relations that need to be captured, it is a
relatively straight forward task to reduce them to a small set of possibilities. On
the other hand, natural language input sources can have a nearly infinite number of
ways of describing relations.  Since the system builder can not anticipate all of

them, a canonical primitive-based scheme 1s necessitated. (This is the case in
RESEARCHER, as will be described later.)

After a reasonable number of relations in a domain have been identified, they
must be scrutinized in order to develop a set of primitives. In some cases outside
knowledge of what primitives to expect is helpful. The fact that most relations are
binary in nature can also be an asset in characterizing the sample relations. All in
all, building a complete characteristic representation scheme can be hard, but a
nearly complete scheme is often adequate and attainable with a modest effort.

4.5 Other information

Relations are the primary means for augmenting an F-tree representation of a
hierarchy. There are, however, other types of data that need to be present in any
representational form for it to be more complete. Two basic types of information,
structure-dependent and structure-independent have been distinguished.

We have defined relations to be general enough that they encompass virtually any
kind of structure-dependent information. Purposes of an object's use and positional
information are examples of relations according to our formalism. That is, any
assoclation among a group of objects (memettes) and some characteristic is
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considered to be a relation. Structure-independent data is what will be discussed
here.

Figure 4-3 shows that most of the slots in a memette are used as a means to
connect 1t with other memettes in both the F-tree and G-trees of which it is part.
The PROPERTIES slot, however, is intended to hold information specific to only
the immediate memette. The structure-independent data that fills 1t is used to
describe the memette in 1solation, if the memette is unitary. If a memette is not
unitary (e, 1s not a leaf node in an F-tree), the PROPERTIES slot filler applies
to a collection of memettes The collection is defined as the sub-hierarchy below
the memette which has its PROPERTIES slot filled. For example, instead of
having a plain vanilla disc drive, one could specify a blue titanium disc drive by
filing the PROPERTIES slot accordingly. In this case, both ““blue” and “titanium’
apply to the color and construction of the disc drive, respectively.

Color, size, material, and other properties are encoded as structure-independent
data. Note that none of these needs to reference any other object in the F-tree.
Typically, they can be encoded as type-token pairs (eg., color-blue,
matenal-titantum) In this manner, a single slot can be used to store a variety of
data types

An ad hoc system that creates property types and tokens as needed may be -
adequate for some purposes. More likely, it would be useful to have a fixed set of
types that are appropriate for a given domain. It may also be possible to create a
system of semantic primitives to reduce the set of tokens in some cases. Our
previous example of primitives to describe color could be used, perhaps. Numerical
data can be grouped into ranges (as 1s done for UNIMEM in [Lebowitz 83c]), and
material composition information might be expressed as a chemical formulation.

The variety of structure-independent data is large. Almost any technique can be
used for the purpose of encoding it because 1t stands apart from the F-rel structure
and 1s thus unaffected by a reorgamization of the F-tree (which takes place during
generalization in MERGE).  Generalizations based on this type of data are the
norm 1n most Al work. The MERGE scheme offers a way for generalizing on the
structure-dependent data as well. The details of generalizing on structure-dependent
data are given in the next chapter.

4.6 RESEARCHER'’s representation scheme

Because of the importance of non-fundamental relations to the representation of a
hierarchy, we present an example of a sophisticated relation representation scheme
that can serve as a paradigm for developing other such schemes.

RESEARCHER parses patent abstracts into a memette-based F-trees, among other
processing.  Descriptions of physical relations encountered in the text provide
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information for creating and augmenting the basic F-tree. The nature of these
relations are sufficiently complex that a robust primitive-based canonical scheme 1s
needed to capture them. The relation encoding scheme used demonstrates much of
what was discussed in the preceding sections. Here, we give an abbreviated account
of the system developed. A more complete description can be found in [Wasserman
and Lebowitz 83].

In reading over this synopsis, the reader should bear in mind that the physical
objects that RESEARCHER processes are very complex. Thus, 1t is our goal to
represent them as a reasonable approximation of reality -- we do not claim that
this scheme is complete. In addition, the input is a somewhat unnatural natural
language. Patent abstracts are written in legalese and hence have fewer ambiguities
than conversational language, but also have a more explicit means for expressing
simple 1deas.

In this section, we will try to convey some of the methodology that went into
developing RESEARCHER's relation representation scheme. Since each domain of
application of MERGE requires a unique scheme for representing relations, the best
we can hope to do 1s to demonstrate a paradigm for creating such schemes. By
noting our methodology, another researcher should pick up some clues on how to
proceed 1n a new domain. We begin by giving an overview of the scheme and
RESEARCHER's domain. Following this, a description of the relation characteristic
encoding, the heart of the relation representation scheme, is described.

4.86.1 Overview

A study of the domain of application 1s the first step in creating a relation
representation scheme. Although our goal in developing RESEARCHER's scheme
was to capture any English language description of relations among physical objects,
our examples come from patent abstracts. A sample of such an abstract follows:

Enclosed Disc Drive having Combination Filter Assembly

“A combination filter system for an enclosed dise drive in
which a breather filter is provided in a central position in the
disc drive cover and a recirculating air filter is concentrically
positioned about the breather filter.”

Before showing how this text 1s represented in RESEARCHER, we must first
describe the abbreviated memette frame that will be used as the basis for this
encoding. Figure 4-5 shows the frame slots that are used in the next example.
They are a subset of those shown in Figure 4-3. The MEMETTE-ID is simply the
name of the physical object being described, if it is known. The TYPE slot
indicates whether this 1s a single indivisible structure (unttary) or a conglomeration
of pieces (composite). The RELATIONS slot contains a set of relation records, 1f
the memette has any relations stored in it. (In this example, relations are stored in
the lowest common ancestor memette.)
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MEMETTE-ID: <name-of-object>
TYPE: unitary or composite
COMPONENTS: a list of memettes if composite
RELATIONS: a list of <relation records>

Figure 4-56: Simplified memette frame.

The memette structure for the patent abstract shown above appears in Figure 4-6.
(An equivalent representation using our compact notation is shown in Figure 4-7.)
Note that some of the information encoded here is not stated explicitly in the text.
For example, the case 1s TYPEd as a unitary memette; since virtually nothing was
said about the enclosure, this information was assumed by the reader. Likewise,
the disc-drive 1tself 1s considered to be composite, although this information would
have had to be acquired outside the context of this example.

The RELATIONS slot stores a list of relations among individual memettes that
make up the F-tree. Each relation comprises a relation frame (which is that name
given to a relation's characteristic in RESEARCHER) and a list of relation
arguments. As was mentioned earlier, relation characteristics (frames) can have
modifiers associated with them. Here, relation modifiers appear in square brackets -
immediately following the frame name. At present RESEARCHER has no
consistent system for describing relation modifiers. They are simply extracted from
the text and mapped, via a dictionary, into a smaller set of modifiers. However, a
primitive-based scheme can be of use in encoding these as well.

The major feature that becomes apparent when looking at relations in this
domain, is that they are binary in nature. In English, relations are usually
described by either a subject-relation-object ordering or an object-relation-subject
ordering. RESEARCHER’s parser determines which order 1s correct based on
dictionary entries for each relation word. It then creates a relation record, placing
the subject and object in their proper places in the representation (i.e., subject
before object). There are some exceptions to this type of processing (eg., the
between relation and relations having multiple objects) but this is principally how
the overall relation representation schems works.

Our main focus, however, is on relation frames. They have been given descriptive
names in this example, but there is a sophisticated primitive-based scheme behind
them. Each relation word maps into a particular relation f{rame defined 1n
RESEARCHER. Of course, several words that mean the same thing get mapped to
the same frame, even if their subject-object ordering is different. We present a
short description of this scheme next.



(MEMETTE-ID: enclosed-disc-drive
I'YPE: composite
COMPONENTS: disc-drive, enclosure
RELATIONS: ((INSIDE-OF disc-drive enclosure)))
(MEMETTE-ID: enclosure
TYPE: composite
COMPONENTS: cover, case
RELATIONS: ((ON-TOP-OF cover case)))
(MEMETTE-ID: case
TYPE: unitary)
(MEMETTE-ID: disc-drive
TYPE: composite)
(MEMETTE-ID: cover
TYPE: composite
COMPONENTS: breather-filter, cover, recirculating-air-filter
RELATIONS: ((INSIDE-OF|centrally| breather-filter cover)
(SURROUNDED-BY/{centrally] breather-filter
recirculating-air-filter)))
(MEMETTE-ID: breather-filter
TYPE: unknown)
(MEMETTE-ID: recirculating-air-filter
TYPE: unknown)

This shows the encodin
above
modifier

of the partial patent abstract that appears
Note that two of the relation frames are effected by the centrally
Relations are stored in their lowest common ancestor memette.

Figure 4-8: Sample memette encoding.

4.6.2 Researcher’'s relation frames

The process of developing this relation characteristic (frame) representation scheme
started by manually listing many dozens of relation description words culled from
sample patent abstracts. This list was then divided and subdivided until some
“‘natural’’ categorization became apparent. These categories seemed to make sense
according to some intuition that we had. It i1s difficult to say exactly why these
categories made sense.  Nonetheless, the words were categorized and the search
began to find some underlying physical basis that distinguished these categories.
(This process 1s both domain dependent and subjective. We have no systematized
approach to categorizing relations in an arbitrary domain.)
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memettes
ENCLOSED-DISC-DRIVE. disc-drive, enclosure
ENCLOSURE: cover, case
CASE:
DISC-DRIVE.:
COVER: breather-filter, recirculating-air-filter
BREATHER-FILTER:
RECIRCULATING-AIR-FILTER:

relations

INSIDE-OF (disc-drive, enclosure)
ON-TOP-OF(cover, case)
INSIDE-OF[centrally](breather-filter, cover)
SURROUNDED-BY]centrally|(breather-filter,

recirculating-air-filter)

This representation encodes the same information as Figure 4-6 does.
Note that the relations are grouped separately, however they could have
been stored in a particular memette.

Figure 4-7: Compact encoding.

One goal of a primitive-based system 1s that each primitive, itself, makes sense
(e, i1s a physical relation in this case) We found five primitives that suffice to
provide a relation frame representation for a wide range of physical relations.
These five primitives are outlined in Figure 4-8.  They form the basis of a
combinatorial primitive scheme.

Before a description of each of these primitives and examples of their use are
given, a few points about this representation scheme should be noted First, not
every relation frame has all of these five primitives. In fact most frames are
adequately described by one or two of these primitives. Secondly, the fact that a
relation has a particular primitive 1s often more important to consider than the
value that this primitive takes on. In particular, the scale values for the contact
and distance primitives are rather arbitrary. However, relative scale values have
meaning.

A system similar to ours is presented in [Kuipers 77). He uses a variable size
frame structure to describe motion i1n 2-dimensional space. Some of our f{ive
primitives are analogous to the ones he uses for spatial orientation and location in
his TOUR model. His work helped in deciding which primitives were needed for
this scheme.

Distance 1s probably the simplest of the five primitives listed. It 1s used to
indicate that two objects are separated from each other by some length. Because




primitive description value(s)
distance used for relations that a single integer
refer to disjoint objects. from 0 to 10.
(e.g., near, remote) 0 - close, 10 - far
contact describes the degree a single integer
to which objects are in from -10 to +10.
contact with each other. -10 = strongly forced
(e.g., touching, affixed) together
+10 = touching, but
being forced apart
location indicates in which a 2D or 3D angular
direction an object is 1dentification along
located relative to another. with a reference
(e g., above, left) frame indication.
orientation describes the relative a 2D or 3D angular
orientation of two objects. 1dentification.
(e.g., parallel, perpendicular)
enclosure used for relations which Sfull or partial

describe objects, where one
1s either fully or partially
enclosed by another.

(e g., encircled, cornered)

plus a shape
description of the
interface between
the enclosed and the
enclosing objects.

The example words given above have been chosen to illustrate the role
of each primitive and are not necessanly f{ully described by that one
primitive alone.

Figure 4-8: Primitives of relation frames.

there seems to be an unlimited number of ways (in English) to describe distances,
some method of reducing this range is needed. By forcing all distance descriptions
onto a limited scale, distance relations become more manageable. In some cases,
particularly in technical prose, the actual distance with some specific measurement
unit (e.g., inches or meters) might be given. When this is important data, the slot

values for the distance primitive can be expanded to allow for this information to
be explicitly inserted.

A zero valued distance primitive would be used to indicate a relation such as
“microscopically close to””. On the other extreme, ‘‘astronomically far from” would
certainly be a 10. A more mundane word, like ‘“‘nearby”’, would register a 4,
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perhaps  (Again, 1t 1s worth repeating that we are more interested in relative
values than the actual numbers)

The contact primitive 1s much like the distance primitive in that they both
describe relative degrees of closeness by using a scale It would be extremely
unusual if a single binary relation required both contact and distance primitives to
characterize 1t (1e, they are usuvally mutually exclusive primitives of a
characteristic).

Contact values arbitrarily range between -10 and +10. Positive values indicate
that two objects are in contact but are being forced apart; the more positive the
argument the stronger the force. For example, trying to pull your fingers apart,
after they have been glued together, would be represented by CONTACT=+9.
Negative numbers are used to indicate that the objects are in contact and are being
forced together. The bond formed between two oppositely polarized magnets could
possibly be valued as CONTACT=-9, while a good quality record turntable has
CONTACT=-1 between the tonearm and the record (while it is being played). As
with positive numbers, the larger the magnitude of the argument (ie., more
negative value), the more force i1s being exerted to force the objects together.

The location primitive 1s used to define relations which describe objects in
everyday settings Phrases like, “it’s the building on the left, when you face the
school” and ‘“‘write your name on top of the paper’ are good examples of the use
of this primitive. In the first example, both the relative direction (“left”’) and the
reference frame (“facing the school’”) are explicitly given. The second phrase has
implicit 1n 1t that the student has a piece of paper with the normal orientation
placed 1n front of him.

The appropriate values for a location primitive are a reference frame along with
an angle (“‘left” would be 180 degrees, ‘‘top”’ would be 90 degrees). The frame of
reference 1s 1mportant because a perscn standing at the school’s front door and
looking out would find the building to the right (0 degrees). Angular values, in 2-
dimensions, can be any number from 0 to 360 degrees. Thus phrases like ‘“below
and to the right of' might imply an angle of 315 degrees, depending on the
reference frame.

In the example, “‘write your name on top of the paper’, it was mentioned that
normal orientation of the piece of paper was implicit. The orientation primitive
refers to the rotational disposition of an object about its own axis, relative to
another object. What this means is that if we are talking about .railroads and use
the phrase, “‘the tracks are perpendicular to the ties”, the orientation primitive of
this relation would get a value of 90 degrees.

The orientation primitive is not used much in day-to-day language, but 1s quite
useful in specifying relations in technical prose. For example, a phrase such as,



78

“the barrier strip running alongside the transformer” would use an orientation value
of 0 degrees to express the parallelism. As with the location primitive, orientation
values can be any angle between 0 degrees and 360 degrees. 3-dimensional values
are also possible, but not common in natural language descriptions.

The remaining primitive, enclosure, 1s different from the other four in that its
value is a shape-descriptor. A shape-descriptor is used to specify the shape of the
boundary between the enclosed and the enclosing objects. For example, if “the tire
encircles the wheel” then a shape-descriptor of a circle would be the appropriate
value for the enclosure primitive. The reader is referred to the full description of
this scheme [Wasserman and Lebowitz 83] for a discussion of shape-descriptors
which are also used to describe the shape of unitary objects (memettes). Another
piece of information provided is whether the enclosure 1s a full one or only a
partial enclosure, as in the case of “‘a hand grasping a baseball”. Although the full
versus partial information can be inferred from the shape-descriptor, it is handy to
have this fact readily avallable so that the nature of the enclosure can be easily
found.

To help see how the primitives described here fit together into a relation frame,
we consider several examples.

Figure 4-6 shows the use of the relation INSIDE-OF.  “Inside” can take on
several possible meanings, but in the context of this patent abstract the reader
knows that the disc-drive 1s inside of the enclosure.  Furthermore, from our
stereotypical knowledge of disc drives, we can conclude that the disc-drive is
probably not in direct contact with the enclosure, but is connected to it by some
spacing device (which will be ignored here). - Figure 4-9 shows how this relation
frame 1s represented using just two primitives.

(REL-NAME: inside-of
ENCLOSURE: (full unknown)
DISTANCE: unknown

Relation _ characteristics are encoded in a frame format in
RESEARCHER. Each primitive is given its own slot.  Only the
primitives that are needed to encode a particular relation frame are used.

Figure 4-9: INSIDE-OF relation frame.

(REL-NAME: on-top-of
CONTACT: unknown
LOCATION: (side-view 90 degrees)

Figure 4-10: ON-TOP-OF relation frame.

Another relation used in Figure 4-6, ON-TOP-OF, requires the use of two
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different relation frame primitives. The information embodied in the ON-TOP-OF
relation frame (shown in Figure 4-10) 1s a good example of implicit knowledge.
There 1s no data in the sample text to help in processing what ON-TOP-OF means.
[n fact, the relation ON-TOP-OF was only implied by the use of a cover and was
not explicitly mentioned. This kind of processing is possible in RESEARCHER by
having an object word (cover) automatically trigger the processing of a relation
word (ON-TOP-OF) It seems quite natural to think of one object being on top of
another when looking from a side-view. However, the frame of reference used in
the LOCATION slot could have been from another perspective (e g., lying down).

Note that in both of these relation frame representations a value of “unknown”
was used  As stated before, the existence of the primitive is often of greater
importance than its value In each of these cases, since no reference to the
measure of distance, the shape of the enclosure, or the degree of contact was made,
“unknown’ was used instead of picking an arbitrary value to quantify these
primitives

The conclusion that we have reached from using this scheme is that it generally
works well.  The major shortcoming of this scheme is that it has no provisions for
encoding dynamic relations, only static relations can be represented. We believe
that the addition of a few primitives might allow simple dynamic relations to be
represented, but have not yet determined which ones are needed.

The methodology that we have adopted in developing this scheme has also worked
in CORPORATE-RESEARCHER. That 1s, the process of listing examples, finding
a categorization, and determining primitives. But CORPORATE-RESEARCHER's
relations are very simple and do not constitute a good test of this approach.
Nevertheless, we believe that this paradigm has application to many domains with a
need for a complex relation representation scheme, and has undoubtedly been used
by many Al researchers in the past.

4.7 Summary

The major 1ssues that need consideration when choosing a representation system
for hierarchies we believe are capturing levels of detail 1n a hierarchy, encoding
both structure-dependent and structure-independent data, and determining an
appropriate formalism  MERGE uses a frame formalism i1n which memettes store
information about each node in the F-tree as well as how 1t interrelates to other F-
tree and G-tree nodes. The memette formalism offers the ability to distinguish
among levels in a hierarchy while capturing the concept of memory chunking.

Relations are a form of structure-dependent data in that they refer to multiple
memettes 1n the F-tree. They are delined by a characteristic based on semantic
primitives. The intent of using semantic primitives 1s to obtain an 1nput
independent canonical encoding of relations.  Structure-independent data can be
captured by almost any scheme that lends itself to simple generalization.
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RESEARCHER's scheme uses five primitives 1n combinations to achieve a natural
language independent characterization of relations among physical objects. The
primitives carry 2a scaled value in order to refine their meaning This scheme
provides a paradigm for developing 2 relation representation scheme for use in other
\ERGE-based systems.
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Generalization 18 the process of recognizing similarities and /or
differences among a set of instances and creating concepts that embody
these commonalities. [t is used as the basis for organizing memory in
MERGE. G-trees are used to classify entire instance F-trees and all
sub-trees within the instances. This reflects the fact that parts of
systems are themselves systems. G-trees must continually be
restructured as new instances are incrementally brought into a MERGE-
based system so that they will form accurate generalizations of the data.
Inheritance modified by the addition, subtraction, and substitution
operations 13 used as a means to improve both computational efficiency
and cognitive accuracy.  However, due to computationally intractable
problems data for one memette can only be inherited from non-
conflicting G-tree sources (usually this means just one). Because most
descriptions of hierarchies in the real world are not standardized, the
abtlity to recognize that varying levels should correspond is needed. A
MERGE-based system can achieve this via level-hopping.

5. Generalization Issues

5.1 Introduction

Generalization provides the framework for organizing memory so that
understanding of hierarchies can take place. It is essential to the MERGE scheme
Given that individual hierarchies can be represented as demonstrated in Chapter 4,
generalization 1s the process used to join these together in an intelligent manner.

It 15 possible to single out generalization 1ssues in MERGE as was done with
representational issues 1n the previous chapter. The main issues relate to the fact
that the objects being generalized about are hierarchically structured. Other issues
in generalization that are independent of the representation formalism include: the
availability of data to be generalized (ie., 1s it spread out over time, or available
all at once), and when and how data should be inhernted.

Several interesting and difficult problems arise while studying how to make
generalizations about hierarchically structured objects that do not occur in other
generalization research (see [Michalski 83] for an overview) The main causes of
these difficulties are 1- objects are represented by a recursive method that can
extend to arbitrary depth; 2- generalizations need to be created at each level in the
recursive object structure, not just on the structure as a whole. Although not
unique to hierarchy understanding, an important third source of difficulty 1s that
MERGE generalizes incrementally as opposed to doing all-at-once type
generalizations, and does this for a large number of instance objects.

The information that MERGE is intended to generalize about 1s made available in
a piecewise fashion. The data for individual hierarchies are acquired in an
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arbitrary sequence (1.e, not 1n a training sequence) and the integrated knowledge
structure continually changes to reflect new information. Thus, generalization in
MERGE must work incrementally. In some sense, incremental generalization is the
main type of generalization that humans perform. Nature usually forces them to
study one example at a time. (Of course, it could be argued that vision processing
is an example of simultaneous processing of many instances) Therefore, 1t 1s
reasonable to focus on this process given that one of our goals 15 to try to
understand hierarchies the way people do.

This chapter covers those 1ssues 1in generalization that are affected by the
peculiarities of hierarchies and incremental knowledge acquisition.  The topics
include the types of generalization that need to be carried out (e.g., on structure-
dependent and structure-independent data), the implications that inherited data has
on generalizing, the question of when should generalization be performed ({eg,
should all possible generalizations always be made?), and other issues that will not
be explored in as great a depth. We will partially describe a few algorithms which
are used in RESEARCHER and CORPORATE-RESEARCHER in this chapter. In
Appendix A, a detailled description of the basic F-tree matching algorithm used in
these programs 1s given.

To put this chapter in perspective, consider that the previous one described issues
and answers relating to the F-tree of a single hierarchy. This chapter describes
problems that exist 1n constructing the G-trees that connect many instance
hierarchies together  The next chapter will focus on the MERGE scheme that
comes about from the interaction of the F-trees with the G-trees.

5.2 Types of generalization

Before describing the generalization issues in more detail, it is important to
identify exactly the types of generalization that are used in MERGE. We
distinguish  three  criteria:  structure-dependent  versus  structure-independent,
conjunctive versus disjunctive, and incremental versus all-at-once generalizations.
The major form of generalization performed in our hierarchy understanding scheme
1s incremental, conjunctive, and structure-dependent.

5.2.1 Structure-dependent generalization

Structure-dependent generalizations are those that rely on structure-dependent data
(e.g., F-rel links and non-fundamental relations) as their basis. Structure-
independent generalizations are based on structure-independent information such as
the properties of an object. The vast majority of research in generalization has
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been done using what we call structure-independent data.l That 1s, instance objects
are not structured such that one member of an object (assuming that it s
composite) references other members -- each member is independent of the others
(at least 1n a structural sense) MERGE creates generalizations of both structure-
independent and structure-dependent data. However, structure-independent data 1s
not an essential element of the scheme (as 1t is in systems hke UNIMEM [Lebowitz
83¢c|) as 1t 1s only used on property slot values, therefore we will not explore it
further  Structure-dependent information 1s of primary importance in MERGE -- 1t
would not be possible to represent hierarchies without 1t. Therefore, generalizations
based on 1t are of central importance 1in hierarchy understanding.

Hierarchies are nearly-decomposable, not completely-decomposable (as described in
Chapter 4) This means that members of a hierarchy, to some degree, depend on
other members -- they are structurally linked together Therefore, 1t 1s necessary to
use a generalization method that accounts for the structure of the data.
Furthermore, as was mentioned 1n the previous chapter, parts of hierarchical
systems are themselves hierarchical systems. Therefore a MERGE-based
understander should capture this fact in the generalizations it creates, by using
multiple G-trees.

There are two main complications in generalizing hierarchically structured data
versus structure-independent data. The first i1s the creation of generalizations at
each level 1n the hierarchy -- not just at the root level. The second i1s to maintain
the integrity of the hierarchical levels even though the instances may not have
exactly corresponding levels. That is, two instance hierarchies that do not match
exactly as far as the number of levels each one has may still correspond closely

The first of these problems has been described before (in Chapter 3 and 4). It
simply means that generalizations are made about many levels in the hierarchies,
perhaps concentrating on the basic or natural levels. For example, if two cars are
found to have a generalized concept that includes an engine, body, and chassis,
then a generalized concept of their common engine parts would also be created as
would a concept of what comprises an ignition system (being a part of the engine).
A MERGE-based system would build and maintain a G-tree for each unique object
in the instances that is composite (i.e, has an F-tree structure below 1t). In this
example, there would be one G-tree that serves to classify cars, another for engines,
and yet another for ignition systems. Of course, the body, chassis, and their parts
would also have G-trees. The result is that domains with complex hierarchically
structured objects need many G-trees to organize their data. This complexity is
largely alleviated by applying whatever basic generalization method is used in a

.1This 1s an observation based upon a survey of the available generalization
literature. Several pa;‘%ers have been wntten which classify research 1n
%neralizatlon [Michalski 83; Angluin and Smith 82; Dietterich and Michalski 81].
None of these cite work in generalization about structured objects.
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recursive manner to all levels in the hierarchy. Examples of this type of multi-G-
tree creation will be given 1n Chapter 6.

The second complication arising from the hierarchical structure of the data to be
generalized is interesting because 1t is not simply an extension of generalizing
structure-independent data to multiple levels.  The level-hopping problem is as
follows if two hierarchies are to be compared and one or more levels are missing
from either instance, then these levels must somehow be hopped in the
generalization process.  Consider, for example, the F-trees for corporation-a and
corporation-b that are shown i1n Figure 5-1. A generalization algorithm must
recognize that the three managers the president, and the chairman should match
up tn both companies. The generalized concept of a corporation would have to
represent the i1dea that an executive vice-president may or may not be present in a
stereotypical company. Of course, 1t may be best to assume that the executive
vice-president was missing from the encoding of corporation-b and that it should be
inherited from the generalized concept that has it. (We will take this matter up in
a later section.)

CORPORATION-A
CHAIRMAN: president
PRESIDENT: executive-vice-president
EXECUTIVE-VICE-PRESIDENT: manager-1, manager-2, manager-3

CORPORATION-B
CHAIRMAN: president
PRESIDENT' manager-1, manager-2, manager-3

F-trees for two similar corporations are shown. They would match
exactly 1if corporation-b had an executive-vice-president 1ntegposed between
the president and the managers. Level-hopping can be used to allow this
match to occur.

Figure 5-1:  F-trees in need of level-hopping to match.

The level-hopping problem can be a difficult one to solve. Ambiguities sometime
arise as to which 1s the correct generalization to make when level-hopping is
allowed.  The diagrams shown in Figure 5-2 demonstrate that although level-
hopping can lead to finding F-tree matches that would otherwise not be found, it
can also create impossibly hard generalization problems. (It turns out to be
combinatorially explosive.) The method for representing a possible missing level in
a generalized hierarchy 1s important and will be described in Chapter 6. The basic
algorithm for level hopping appears in Appendix A.
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CORPORATION-C
PRESIDENT. executive-vice-president
general-vice-president

EXECUTIVE-VICE-PRESIDENT: manager

1

CORPORATION-D
PRESIDENT: executive-vice-president, manager
EXECUTIVE-VICE-PRESIDENT: general-vice-president

CORPORATION-#1
PRESIDENT. executive-vice-president, -1
-1 2.2

CORPORATION-#2
PRESIDENT. ?-3, ?-4
’-3: manager
’-4- general-vice-president

The top two diagrams show corporate F-trees that are somewhat similar.
If they are generalized without the use of level-h pping the result 1s the
F-tree shown as corporatzon-#lA Memettes ?-1 and 7-2 represent corporate
officers that have been matched in corporation-c and corporation-d but are
not of the same type If level-hopping 1s allowed, the resultant generalized
corporation (corporation-#2) has a diiferent structure than corporation-#1.
The ?-3 and ?-4 memettes represent corporate officers that may or may
not really exist Note that level-hoppm% allows more data to be matched
exactly, but 1t 1s not clear that it gives the best result.

Figure 5-2:  Generalization with and without level-hopping.

5.2.2 Conjunctive generalization

The type of generalizations that a MERGE-based system makes are of the
conjunctive variety  All of the variants of a generalized concept must include the
data that the generalized concept contains (modulo the subtraction and substitution
operations). A generalized concept 1s the logical intersection of its variant concepts
and instances. This 1mposes certain constraints on the way information 1s
represented in the G-trees (e g, there 1s no way to represent an alternate choice)
Therefore, 1t is 1mportant to wunderstand what 1s possible using conjunctive
generalizations versus other methods.

The obvious alternative to conjunctive generalization is disjunctive generalization.
We have defined disjunctive generalization to be the formation of a concept that
includes all the data in the union of its variant concepts and instances. (Actually,
“disjunctive generalization’’ 1s somewhat of a misnomer because a disjunction (union)
does not find commonalities or differences within a set of data, while the word
“generalizatian” implies exactly this.) This method, by itself, would also impose an
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equivalent number of constraints on the G-tree representations. By using both
conjunctive and disjunctive generalizations simultaneously these constraints would be

hfted.

[t seems self-evident that people make both conjunctive and disjunctive
generalizations. For example, a typical generalization might be “‘a disc drive has a
motor, a read/write head, and either a floppy disc or a hard disc”. But now
suppose that a new data storage media 1s invented, called a semi-hard disc
Should the generalization become: ““a disc drive has a motor, a read/write head,
and either a floppy, a hard, or a semi-hard disc”, or should 1t simply be: “a disc
drive has a motor, a read/write head, and some kind of disc’? (It Is interesting to
note that ‘‘some kind of disc”’ requires the ability to generalize about pieces of an
object. MERGE allows this to be done because of 1ts recursive method of
generalization down through the levels in an F-tree.) The answer is not clear; these
two alternatives appear equally valid in this context. However, as the number of
different instances of disc media grows, the generalization should probably become
the simpler one But how many different possible instances must be known first?

The problem of which generalization to make arises because of the lack of
constraints provided by combining conjunctive and disjunctive generalization. If
only conjunctive generalization were permitted, for example, there would be no
choice of generalization to make. Humans appear to be able to handle this choice
and probably pick the ‘‘best” generalization for a given application. We do not use
both conjunctive and disjunctive generalizations in MERGE mainly because of the
increased complexity of having to choose among alternate correct generalizations.
(There 1s also some motivation for constraining the types of generalization permitted
based upon principles from hierarchy theory [Sussman and Steele 80; Pattee 73
Simon 73]. Removing these constraints can cause hierarchical growth to be
retarded unless there is some other, higher level organizing structure)

Allowing only conjunctive generalizations to be created can be too constraining if
not modified shightly. If a large number of instances have a particular part in
common and only one or two instances don’t have it, then the generalized concept
could not 1include this part. By permitting deleted-inheritance (1.e., the subtraction
operation) this part can be included in the generalization and can be deleted from
the counter example instances. Similarly, the substitution operation can help 1n
allowing conjunctive generalizations to capture a wider class of concepts.

5.2.3 Incremental generalization

Incremental generalization 1s the mode in which MERGE functions. It 1s
instructive to investigate the nature of this type of generalization versus the all-at-
once approach because incremental generalization is a major source of difficulty and
complexity in creating intelligent information systems.
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In the all-at-once approach, all instance F-trees are compared simultaneously and a
resultant hierarchy classifying them is created. Generalizing by incremental amounts
1s a second possibility. Incremental generalization is the process by which each new
instance F-tree i1s compared against the current G-trees. Each F-tree node then
becomes a variant of some pre-existing G-tree node or it may be used to produce a
new generalization under which it 1s stored.

The distinction between all-at-once type generalization and incremental
generalization 1s not specific to the problem of hierarchy understanding. The choice
of method of generalization used in any situation 1s usually heavily dependent on
the domain being investigated. The most obvious reason for choosing one or the
other method depends on whether the instance data 1s available all at one time or
15 supphed piecemeal to the system. Obviously, if a state description (generalization
hierarchy) of the currently known data i1s needed on 2 continual basis and the data
1s trickling into the system over a period of time, then incremental generalization
must be used. On the other hand, if a system’s task is to classify a given set of
instances such as the various types of personal computers on the market at this
moment, then an all-at-once type generalization process might be best [Michalski
and Stepp 833

Most hierarchical phenomena that humans perceive daily are realized piece-by-
piece  Over a pertod of time people are able to develop pictures of what a
hypothetical hierarchy might look like from analyzing instances of these hierarchies
For example, a person might be overwhelmed by trying to figure out the
information presented by a large corporation’s organizational chart, if this were his
first experience in understanding corporate structures  But after seeing a few of
these (or having heard about a few different companies) he would realize that most
of them have a very similar structure This 1s possible because he creates a picture
of a generalized corporate hierarchy. Thus, 1t seems natural to use incremental
generalization for understanding hierarchies 1n real-world domains.

Virtually all of the examples of hierarchies mentioned in the this paper are open-
ended domains. That 1s, they are continually being expanded by new instances that
are not yet known. Furthermore, the real world (and our own mental limitations)
usually allow us to view only one example of a hierarchy at a time. It is for these
reasons that we focus our attention on incremental generalization rather than the
all-at-once generalization process. There are several problems that surface by using
Incremental generalization as opposed to the all-at-once approach.

The most obvious of these problems is that a system may have to reorganize its
stored knowledge each time a new instance is encountered. To see how this is
possible, assume that we have a memory structure as shown in Figure 5-3.

Next, a new description of a corporate president 1s introduced. President-c has
control of a sales department and an acquisitions department. Assuming that our



PRESIDENT-#1: finance, sales, manufacturing,
>president-a, > president-b

PRESIDENT-A: +legal

PRESIDENT-B: +planning

The concept president—#l has been created by generalizing president-a
and president-b. (All ol the F-children in both the president-a and
presifent-b F-trees are corporate departments.)

Figure 5-3: Incremental generalization (initial memory).

goal 1s to make the maximal number of generalizations (i.e, recognize all
commonalities), using only one VARIANT-OF link per memette, then a new concept
must be created

PRESIDENT-#2: sales, >president-#1, > president-c

PRESIDENT-#1: +finance, +manufacturing, > president-a,
> president-b

PRESIDENT-A: +legal

PRESIDENT-B: +planning

PRESIDENT-C. +acquisitions

A new concept, president-#2 has been created to capture the fact that
all three instances have a sales department. Because president-#1 15 a
VARIANT-OF president-#2 1t inherits the sales department and thus its
structure must be changed to reflect this. This change could not have
been anticipated until the existence of president-c was made known.

Figure 5-4: Incremental generalization (after memory reorganization).

Figure 5-4 shows how memory appears after the incorporation of president-c.
Note that the concept of president-#1 has been modified to become a3 VARIANT-
OF president-#2 thus adding an another level to the G-tree. If all three instances
of presidents had been known to the generalizer simultaneously there would have
been no need to restructure memory -- it would have been built correctly the first
time  All-at-once type generalizations are routinely done in numerical taxonomy
(see [Ben-Bassat and Zaidenberg 84] for an interesting example using semi-structured
objects). A MERGE-based system must potentially go through the process of
memory reorganization each time a new instance is incorporated.

Another problem caused by the use of incremental generalization 1s the possibility
for making erroneous generalizations. It 1s not hard to imagine how a system (or
person) can be misled into making incorrect generalizations because of only having a
limited selection of instances available for analysis. The result of this 1s often a
system that has built a bad classification hierarchy; one that has unreasonable
concepts 1n it so that 1t will mis-classify all subsequent incoming data. This is an
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area which has particular importance to a MERGE-based system that is fed
instances tn an arbitrary order. We do not address this problem directly because it
1s somewhat peripheral to this thesis and requires a great deal of study (1e, a
thesis within itself)  However, the reader is referred to work done by other
researchers, most notably in {Lebowitz 82].

The final problem stemming from the use of incremental generalization that we
will mention 1s intimately tied to arother issue in generalization. Incremental
generalization contributes to the complexity of inheritance, which is the subject of
the next section.

5.3 Generalization and inheritance

Once a generalization 1s created, the question of how to store this learned
knowledge presents itself Ideally, a representation scheme should allow this
knowledge to be encoded so that 1t need not be regenerated at a later time.
Having to perform the generalization process each time this piece of knowledge is
required would be too time consuming In an intelligent system. Inheritance is a
way of avording having to reproduce a generalization by arranging memory so that
the results of a generalization are apparent. It also has the additional benefit of
being memory efficient  Inheritance 1s certainly not a new idea, it has been used
by countlessly many Al researchers both past and present (see [Winston 72;
Fahlman 79, Brachman 79a] for example). Nevertheless, it has major significance in
integrating representation and generalization.

Without some sort of inheritance scheme, a G-tree would serve only as a device
to index F-trees Each F-tree, embedded in the G-trees that comprise the
knowledge base, would have to contain all the information needed to fully describe
the concept or instance hierarchy. That is, an F-tree would be represented exactly
the same when 1t 1s incorporated into the G-trees as 1t would in isolation. In
addition, in order to determine what 1s unique about a particular F-tree 1t would
have to be compared to all its ancestors in the G-trees.

Given that we need to implement some form of inheritance scheme, the following
questions surface what information should be generalized and inherited, where
should it be inherited from (ie, should there be multiple sources for inheritance),
and are there any spectal requirements for an inheritance scheme for hierarchies?
We address these three questions in order.

5.3.1 Inherited information

Obviously there can be no inheritance of information that has not been captured
by a generalization first. There must be some generalized concept created so that
information can be inherited from it. Therefore, we will examine how inheritance 1s
performed for each of the three types of generalized concepts that can be created in
MERGE. These are the same as described in Section 5.2.
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In MERGE, F-rel links are the most important form of information to generalize
and inherit via the VARIANT-OF links of the G-tree. F-children at all levels 1n
the F-tree are inherited. For example, If a concept of a disc drive contains a
power supply, which is a complex object requiring a multi-level F-tree to represent,
then all its variants would inherit the entire sub-structure that represents the power
supply. It is possible (even likely) that all variants of a disc drive would not have
exactly the same power supply. In such cases, it is desirable to have some method
for permitting minor modifications to the inherited parts. The addition, subtraction,
and substitution operations serve this function. By using these operators, the range
of possible generalizations 1s increased because instances can become variants of
generalized concepts that are not exactly the logical conjunction of the data stored
in their vanants For example, a gerneralized concept of a disc drive may have a
particular power supply included in it because most of its variants (instances) have
that same power supply. However, the substitution operator can be used to allow
one or two instances to have different power supplies yet still remain vanants of
the same generalized concept. This is discussed in more detail later in this section.

Relation information 1s the next most crucial in the representation of hierarchies.
Inheritance of relations 1s somewhat more complicated than inheritance of F-
children.  Both the arguments and the characteristic of the relations can be
generalized and, therefore, inherited. Generalizing and inheriting relation arguments-
is straightforward and similar to F-children inheritance  Characteristics can be
generalized either by a simple matching of their names or by comparing their

primitive representations. If a primitive comparison 1s used, then generalized
relation characteristics can take on meanings that are not exactly the same as their
vanant characteristics This may be desirable in some complex relation

representation systems (as 1s the case in RESEARCHER).

To see how relations can be generalized, consider the following sample relations as
shown 1n Figure 5-5 If we have the RESEARCHER relations ABOVE(disc, motor)
and ON-TOP-OF(disc, spindle) they would generalize to be R(disc, x). In this case
r 15 a place holder variable and R represents a relation characteristic with the
primitive common to the ABOVE and ON-TOP-OF characteristics, namely the
location 90 degrees primitive. The ABOVE relation could inherit the location
primitive from the R relation as well as inheriting the disc argument. It would
substitute the motor argument for the r argument and add the distance primitive
to complete the characteristic description. The combination of inheritance,
substitution, and addition results in the correct encoding of the ABOVE relation.
(Note that the ABOVE characteristic requires both the location and distance
primitives to be represented.) The ON-TOP-OF relation would be encoded in a
similar manner using inheritance modified by substitution and addition.

In this example, 1t i1s not clear that using inheritance buys anything in terms of
effictency. But one could imagine that relations in other domains contain more
information. In such cases, inheritance of relations would be space efficient.
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(REL-NAME: above
LOCATION: (side-view 90 degrees)
DISTANCE: unknown

(REL-NAME. on-top-of
CONTACT: unknown
LOCATION: (side-view 90 degrees)

- Two relation frames are shown. They have the LOCATION primitive
in common, therefore a generalization of them would also have this
primitive.

Figure 5-6: Relation frames.

However, the usefulness of inheritance as a means of determining similarities and/or
differences rtemains, regardless of the amount of information 1n the relations
themselves.

The remaining basic information type in MERGE 1s structure-independent data.
In this case, generalization and inheritance is very easy, although not particularly -
interesting  Properties of an object such as color, melting point, and size are
simple to generalize if only an exact match of vanants 1s permitted. (This is
largely what other Al systems have done (see [Winston 72; Lebowitz 83c; Michalski
and Stepp 83a], for example.) It 1s shghtly more difficult to generalize if
approximate matching 1s used by means of primitive classes (color might have the
classes” red, blue, and yellow, for example) or ranges of data (for melting point
temperature) Inheritance of this generalized data can proceed in the same way as
relation characteristics are handled. Modifications via the substitution operator can
specify a color shade or narrow a data range to a specific value

5.3.2 Multi-source inheritance

A basic rule of inhenitance in MERGE 1s that memettes can inhent data from
multiple parents (1.e, can have multiple VARIANT-OF links) only if the data being
inherited has no chance of conflicting with each other  Without this restriction, 1t
1s possible that ambiguities can be created that would require a major
reorganization of the memory structure to circumvent. Just determining 1if a
reorganization 1s needed turns out to be an intractable problem if a large knowledge
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base is used. We call this the multi-source inheritance problem.!

To look at the multi-source inheritance problem we will use an example from the
corporate world adapted from [Wasserman 84]. Four very simple (two level)
hierarchies are used. Figure 5-6 describes the structure of these four companies’
vice-presidents.

job title symbolic F-tree
v.p.-company-1 VP-1: dp, ds, dm
v.p.-company-2 VP-2. da, ds, dm
v.p.-company-38 VP-3. dp, da, ds, dm
v.p.-company-4 VP-4. dp, da, dm
director-public-relations DP:
director-advertising DA:

director-sales DS:
director-market-research DM:

Four F-trees are represented here, one for each vice-president that will
be used i1n our examples. Short mnemonics are assigned to each job title
to condense the representations. Nodes vp-1, vp-2, vp-8 and uvp-§4 comprise
the instances for the example followed in the next 4 figures.

Figure 5-8: Summarized data on four companies.

We start with the generalization structure built by comparing wvp-1 with vp-2

Next, vp-8 will be added into the generalization hierarchy.  Finally, the full
magnitude of the problem will surface when vp-4 1s added.
Figure 5-7 shows how both wvp-1 and vp-2 can be represented as variants of a
generahzed object (vp-z) which has the F-children ds and dm A new G-tree node
has been created that captures the data that its two variant nodes have 1n
common [t 15 helpful to think of the representation shown as factoring out what
vp-1 and vp-2 have i1n common and storing it in node vp-z. With this in mind
consider what happens when company-3's F-tree 1s added into the G-tree

The new G-tree node, vp-8, shown in Figure 53-8 demonstrates how its data can be
encoded by using inheritance from two sources. (These two sources are actually

LThe problems associated with inheritance from multiple sources have been
addressed to some extent before [Brachman 79bj. The solution presented by
Brachman 1s to use special modi fication links to connect nodes that might cause
conflicting data to be inherited from multiple sources. We have a similar solution
via the subtraction and substitution operators. However, our focus 1s on the more
theoretical problem of how to inherit from multiple sources without resorting to
modifications. In particular, we want to know 1if multi-source inheritance can be
permitted when incrementally generalizing about a large number of hierarchically
structured objects.
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i P2 ds, da

-4. ds, , dvp-1, >vp-2
/ \ VP-1: +dp P P
VP-1 VP-2 VP-2: +da

Company-1's vice-president (vp-1) and company-2’s vice-president (vp-2)
have been generalized, creating a new G-tree node (vp-r) that contains the
information that wvp-1 and wvp-2 have in common. i’l‘he left side of this
diagram, and the next three that follow, shows the basic G-tree structure
in the unified memory structure. We provide this as an aid in helping
the reader understand the multi-source inheritance problem.)

Figure 5-7:  Generalization of company-1 and company-2.

part of the same global G-tree but can be equivalently thought of as independent
G-trees.)  There 1s also no ambiguity as to what node wvp-8 should inhent.
Obviously it should only have one F-rel link to ds and one F-rel link to dm. Since
it 1nherits these links from the same ultimate source (namely uvp-z), there 1s no
problem i1n determining if i1t should have two copiles of ds and dm or one copy.
This can be done by following the VARIANT-OF links in the unified memory
structure until an 1intersection in the G-trees 1s found. Unfortunately, this this is
not always straightforward.

M X 4
-X: ds, dm, >vp-1, >vp-2
/ \ VP-1: +dp, >vp-3 P
VP-1 VP-2 VP-2: +da, >vp-3
\ / yP-3:
\ /
vP-3

This G-tree representation now includes company-3’s vice-president.
Since _node vp-8 1s just the union of the data in nodes vp-1 and vp-2 no
new F-children have been added to vp-8s F-tree. This 1s an example of
tnheritance from two sources that causes no problems.

Figure 5-8:  Addition of company-3 into the G-tree

In Figure 5-9 we have attempted to incorporate vp-4 into the G-tree. Two new
G-tree nodes have been created. Vp-y and vp-z represent objects that have F-
children dp, dm. and da, dm, respectively Node vp-{ 1s a VARIANT-OF both vp-y
and vp-z in that 1t has F-children dp, da, and dm  Aside from having the problem
of determining 1if vp-4 should have dm as an F-child once or twice, this memory
reorganization has also created problems with the representations of the other three
vice-presidents. The problem that arises here is. what F-children do nodes vp-1.
vp-2, vp-8, and vp-4 really contain?

The solution is found by keeping in mind that we would like to factor out the
common elements in G-tree nodes. To accomplish this we factor out the dm node
from vp-y and vp-z then node vp-4 will not have any ambiguities (ie, vp-§4 will
inherit only one F-rel link to node dm) Recognizing that node vp-r contains dm
as a factor, we also take 1t out by making vp-z a VARIANT-OF a new node, vp-f,
which contains only dm as an F-child Next we make vp-y and vp-z variants of
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A A W VP-X: ds, da
-X: ds, , >vp-1, >vp-2
\\_ /N S VP-T: dp, da. >vp-1, >vp-4
\ V-1 VP-2/ VP-Z: da, dm, >vp-2, >vp-4
\ \ / / VP-1: >vp-3
N\ N/ VP-2: >vp-3
\ VP-3 / VP-3
\ / VP-4
\
VP-4

A first attempt at incorporating vp-{4 into the G-tree shown in Figure
5-8. It fails because of multi-source inheritance ambiguities. For example,
it 15 unclear if vp-4 has one or two F-rel links to dm.

Figure 5-9: A first try at incorporating company-4 into the G-tree.

vp-t, as well.  This will result in a structure that has only a single node that
contains dm, wherein all other nodes that need this as an F-child will inherit dm
from this ultimate source. Figure 5-10 demonstrates exactly this.

P
/1 N\

/ I \ VP-T: dm, >vp-x, >vp-y, >vp-z
VP-Y vP-X Vp-2 VP-X: +ds, :gp-l, ;gp-ﬁ P
A A / \ // VP-T: +dp, >vp-1, >vp-4

\\ /N /] VP-Z: +da, >vp-2, >vp-4
\ VP-1  VP-2 / VP-1: >vp-3
\ o\ /1 VP-2: >vp-3
\ \/ / VP-3:
\ V-3 / VP-4
\ /
\ /
VP-4

Finally all the ambiguities have been eliminated. By factoring out dm
from nodes vp-r, vp-y, and vp-z, node vp-t has become the only source of
dm for all of the nodes (vice-presidents) that have dm in_ their F-tree
Eernploy) The key concept 1s: all common factors must be singled out to
orm multi-source inheritance hierarchies that are ambiguity-free.

Figure 5-10: Final G-tree representation of all four companies.

Left to explain 1s how we determined that dm had to be factored out from vp-z
to fix the problem? Furthermore, how did we even know that we had to check
nodes vp-1, vp-2, and vp-8 for potential problems? The answer 1s we didn't. With
a little bit of thought one can reach the conclusion that each time a new
generalization 1s made 1t 1s possible that this factoring problem might cause some
previously represented node to become mis-represented (or at least ambiguous in
meaning). To state this more precisely: 1f a new generalization 1s built that breaks
up some previously existing group of factors (1.e, the F-children in a generalized
concept), then 1t 1s possible that one or more nodes 1n the representation will
inhenit the same F-children from more than one ultimate source.

The consequence of this finding is that MERGE-based systems cannot allow for
inheritance from multiple sources where the potential for ambiguity exists. From a
human cognition perspective, it may seem acceptable (perhaps even necessary) to
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permit this kind of inheritance. However, it becomes computationally intractable in
any reasonably large knowledge base. There are various compromises that can be
made to allow for certain aspects of multi-source inheritance to be performed while
still maintaining rapid processing speed. They are discussed in [Wasserman 84]
RESEARCHER and CORPORATE-RESEARCHER simply take the approach that
multi-source inheritance i1s not allowed in any form.

5.3.3 Hierarchical inheritance

We have already touched on the significance of inheritance to an intelligent
information system. Our particular type of intelligent information system (MERGE)
1s designed to understand hierarchies. It is therefore useful to identify what aspects
of inheritance are important when applied to generalizing hierarchies.

A prominent feature of a hierarchical domain with many instances 1s that its
individual hierarchies usually have much in common. This is particularly true of
man-made hierarchies. Complex physical objects such as automobiles, disc drives,
and stereo receivers have the property that most of the instances of each item have
the same components regardless of the manufacturer or model of the item. An
examination of a couple of floppy disc drives would show that many of the
subassemblies are exactly the same. Other man-made hierarchical systems have this
property. Corporations often borrow organizational arrangements from other
companles, for example.

The reason why man-made hierarchies tend to have many common sub-hierarchies
seems obvious. The basic philosophy involved 1s the mathematician's paradigm of
“reducing a problem to one that has already been solved” An engineer designing
a disc drive might be faced with the problem of how to position the read/write
head on the disc Using this paradigm he would immediately solve his problem if
he had previously designed such a mechanism. If not, he cculd break his task into
smaller sub-problems and see if any of these had been solved before, otherwise he
could look for someone else’'s solution.

The key ingredient in creating an inheritance scheme for hierarchy generalization,
therefore, 1s to allow for common subassemblies to be stored in generalized concepts
and to permit minor modifications to them. We have described how the
substitution operation can accomplish this but we have not looked at 1t in detall
The following example should make this process clear.

Assume that we have two F-trees each describing a floppy disc drive as shown 1n
Figure 5-11.  (In this example we explicitly identify each memette according to
what F-tree 1t 1s mmtially a part of (eg., motor-2 1s 1n floppy-disc-drive-2.  This
allows us to carefully follow the results of the generalization process.)  Therr
generalization is a floppy disc drive that is conceptually identical to
floppy-disc-drive-1  The only difference between the two 1s that floppy-disc-drive-2
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has an extra col 1n 1ts motor. Figure 5-12 shows the generalized concept,
floppy-disc-drive-#, with 1ts variants as a unified memory structure.

FLOPPY-DISC-DRIVE-1: drive-assembly-1, r/w-assembly-1
R/W-ASSEMBLY-1: carriage-1, r/w-head-1
DRIVE-ASSEMBLY-1: motor-1, spindle-1
MOTOR-1: coil-1

FLOPPY-DISC-DRIVE-2: drive-assembly-2, r/w-assembly-2
R/W-ASSEMBLY-2: carriage-2, r/w-head-2
DRIVE-ASSEMBLY-2: motor-2, spindle-2
MOTOR-2: coil-2a, coil-2b

The F-trees of two floppy disc drives are shown. The only difference
between them 1s that floppy-disc-drive-2 has an extra coil in its motor.

Figure 8-11: Two similar floppy disc drives.

FLOPPY-DISC-DRIVE-#: drive-assembly-#, r/w-assembly-#,
>floppy-disc-drive-1, >floppy-disc-drive-2
R/W-ASSEMBLY-#: carriage-#, r/w-head-#
DRIVE-ASSEMBLY-#: motor-#, spindle-#, >drive-assembly-2
MOTOR-# coll-#, >motor-2
FLOPPY-DISC-DRIVE-1.
FLOPPY-DISC-DRIVE-2: drive-assembly-#-+drive-assembly-2
DRIVE-ASSEMBLY-2: motor-#-+motor-2
MOTOR-2: +-coil-2b

F'Iop;:{q-disc-dn’ve# 1s the generalization of floppy-disc-drive-1 and
floppy-disc-drive-2. ~ The differences that floppy-disc-drive-2 has from its
parent are encoded by use of the addition operator (at the lowest level)
and the substitution operator (at higher levels).

Figure 5-12:  The generalized floppy disc drive.

This knowledge structure has captured the fact that both instances have an
identical read/write assembly and so inherit r/w-assembly-# intact. The extra coll
(coil-2b) 1n floppy-disc-drive-2 1s shown as an additional F-child of motor-2 As a
consequence of this, drive-assembly-2 must differ somewhat from drive-assembly-#
[t 1s made a varniant of the generalized drive-assembly (drive-assembly-#) with the
substitution of motor-2 for motor-#. Note that, although drive-assembly-2 modfies
motor-# 1t inherits spindle-# as 1s. In addition, floppy-disc-drive-2 must use the
substitution operation to replace drive-agssembly-# with drive-assembly-2.
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The overall effect of inheritance with the substitution operator in a hierarchical
domain 1s to represent the 1dea that: If an object differs from a standard at a low

level of detall then 1t must also be different at all levels above that (but only the
differences at each level are recorded).

5.4 When and where to generalize

We have described our method for representing generalizations of hierarchies
Although a formalism for representation and generalization has been presented, we
have yet to determine how often to create generalizations. The matter of where a
new Instance hierarchy should be incorporated into a G-tree also has to be
addressed. In this section, we discuss several issues relating to when and where to
generalize within the G-tree

The MERGE scheme 1s primarily intended as a large scale orgamizational
mechanism for memory. Our main focus in developing MERGE is in the interplay
between representations of single hierarchies and generalizations based upon them.
The concepts and heuristics needed to achieve this overall knowledge structure are
certainly 1important. However, the details of an algorithm for a specific
implementation of MERGE are not of central importance, here. The reader should
consider what follows to be an overview of concepts dealing with when to create
new generalizations and where to place them in the G-tree.

The issues presented here are. how incomplete information 1n instances should be
processed, when to make new generalizations, and how to locate the best place In
memory to store generalizations.

5.4.1 Incomplete information

In the real world, most descriptions of complex objects are incomplete Sources of
data that describe instances of hierarchies do not wusually contain sufficient
information to detail all members of a structure  (This 1s particularly true for
natural language 1nput sources, as 1s the case in RESEARCHER.) A single
description usually concentrates on specifying either a few levels in a hierarchy or a
particular sub-hierarchy. For example, corporate charts often show only the upper
level management organization, and disc drive patents usually only give a detailed
description of subassemblies that make the device patentable For this reason, it 1s
necessary to design an understanding system to be robust and intelligent in order to
account for missing information.

The basic dilemma faced 1s whether to assume that non-specified information
actually exists (and was not included in the description) or simply does not exist.
If a particular instance is incompletely described and the missing data 1s contained
in a previously created generalized concept then 1t can be inherited from that
concept. Of course, 1t 1s possible to create an erroneous representation 1if such
default inheritance 1s done.
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In some cases, the inheritance of a default value for missing information seems
correct. For example, if a natural language description of a television set failed to
mention a picture tube, it would almost certainly be correct to assume that one
was there. The reason this assumption 1s valid is because we have seen and read
about many instances of televisions and have built the generalization that all
televisions have a picture tube. Furthermore, every instance of a television set we
have encountered has had a picture tube (except for some very recent LCD sets)
making this a strong generalization -- one that has an impressive number of
instances that support 1t.

A weak generalization has fewer variants backing 1t, or it Is supported by
instances with incomplete information. An example of one such generalization
might be: ‘‘large corporations have an acquisitions department’”. One may know of
some corporations with acquisitions departments, and have few, if any, known
counter examples (i.e, know that a company explicitly does not have an acquisitions
department) It 1s likely that the above generalization would have been made based
on instances where the presence of an acquisitions department has been assumed.
Inheniting defaults from weak generalizations is not necessarily a good 1dea as it can
produce wrong results (see [Abelson 73; Carbonell 81] for a further discussion of the
use of weak generalizations).

With no other information about a domain, the heuristic for deciding whether or
not to inherit missing data should be based on the strength of the parent
generalization. If 1t 1s a strong generalization with a large number of variants
(according to some cognitive criteria) then default inheritance should be allowed.
This would work well with G-trees that have broad spans because there would be
the possibility of having a high degree of confidence in the generalization (see work
on UNIMEM [Lebowitz 83c| for a discussion of confidence)  Unfortunately, this
approach 1s problematic for narrower span G-trees, especially when few instances are
present 1n the G-tree, as is the case when starting up a new system. (The problem
of instance example ordering, when starting up a new system, is discussed later in
this section) If, for example, there is only one other known instance of a hierarchy
then there 1s insufficient reason to believe that a new instance should conform to it
by allowing default inheritance. In fact, it should mean that the missing part 1s
equally likely to be present or not in that hierarchy In this particular case, since
MERGE can not directly represent disjunctions, 1t would use the subtraction
operation to represent missing information.

5.4.2 When to make generalizations

[n Section 5.2, we discussed the types of data that MERGE generalizes and how
inheritance 1s used for each type. Throughout that section, and in others, we have
skirted the question of how much generalization should be done. Do we want to
make all possible generalizations or only some, and which ones should be made?
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We have, 1n some sense, already answered this question. Since MERGE allows
memettes to be variants 1n only one G-tree per F-rel type, all possible
generalizations are not made (ie, we do not allow multi-source inheritance).
However, it i3 permissible to have memettes classified in multiple G-trees based on
different F-rels (a G-tree based on a FUNCTIONAL F-rel, for example). In this
case, the question of which generalizations to make is still open.

There 1s also the question of whether to create a new generalization if a group of
F-trees have very few differences among them. This too is an open question, but
its answer 1s mostly affected by the particular application for MERGE.

A good principle to use 1n order to find solutions to these questions i1s to examine
a few examples of how humans generalize. When people see a new car model it
appears that they make few, if any, new generalizations unless there is something
unique about the car.  The first time someone sees a hologram that person
probably has a difficult time making any sense out of it because it i1s unlike most
other objects that he has encountered. Personal computer systems are still in a
period of rapid change and people have to update their generalizations about them
each time they see or read about a new one (unless, for example, it's claimed to be
IBM-PC compatible). These examples demonstrate that a rule for how much to
generalize seems to be something hke: “If I know a large amount about a class of
objects (or know very lttle about them) then the less I need to (or can) generalize
about a new instance in this class’.

MERGE implicitly embodies this principle  The first instance brought into a
MERGE-based scheme cannot be generalized against anything. As more instances
are incorporated i1nto the knowledge structure, there are increasingly more possible
generalizations that can be made. At some point, however, the number of possible
generaiizations starts to decrease. The reason for this is that the likelihood of the
needed generalizations having already been made increases with each new instance.
(This assumes that the state of the world knowledge that a system 1s trying to
perceive 1s static) Since complex objects tend to have common sub-hierarchies, the
chances of finding a specific sub-hierarchy 1s greater as the knowledge base grows.
The problem of how much to generalize, then, is shifted to one of locating where 1n
the G-tree the needed generalizations have already been created. This, too, 1s a
difficult problem, but we give one possible solution below.

5.4.3 Locating generalizations

In a MERGE-based system, many G-trees exist; each one serving to classify a
different object (1.2, sub-hierarchy). Usually the system will be used to understand
the root object that the input F-trees describe. In other words, the top-level
memette 1n an F-tree 1s the most important one. When generalizing, it 1s this
memette that 1s used as the key 1n locating the proper place to store a
generalization. Thus, the generalization location process need only look at the G-
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tree that classifies this key memette. In the following description, it is this G-tree
that 1s being referred to.

The G-tree is a structure that is built up incrementally as each new F-tree is
brought into the system. As such, it dynamically changes over time. The concepts
it embodies are continually changed to reflect the current knowledge state. Each
new 1nstance must be indexed somewhere in this structure. There are potentially
many locations where a new F-tree can be stored in the G-tree. Finding the
“best”” place 1s dependent on the criteria for deciding how good a generalization 1s.
A metric for determining how good a generalization 1s described in the next section
when F-tree matching 1s discussed.

Although we will not discuss optimal algorithms for finding the “best’” place to
store an instance hierarchy, we will need some algorithm to demonstrate how a G-
tree 1s incrementally created. A simple, but useful, algorithm is to start at the root
of the G-tree and follow the variant link to the F-tree that gives the ‘‘best”
generalization (locally). This continues, recursively, until no better generalization is
found. At this point, a new concept Is built, if necessary, using the addition,
subtraction, and substitution operators. (This 1s the algorithm that RESEARCHER
and CORPORATE-RESEARCHER currently use.)

Consider the F-tree representations shown in Figure 5-13. (We have used F-trees
similar to those used to demonstrate the multi-source inheritance problem, although
these 1ssues are unrelated.) We begin this demonstration of the generalization
location process by imitializing the knowledge base with the generalization of vp-I
and vp-2, as shown in Figure 5-14(a). The generalized concept, vp-z, has been
created, and both vp-I and uvp-2 have been indexed as variants of it.

When vp-8 1s incorporated into the G-tree, the location determining algorithm
finds that 1t most closely corresponds with vp-2 and so creates a new concept, vp-y,
that captures the common elements of vp-2 and vp-3, as shown in Figure 5-14(b).
The algorithm was able to find this by first comparing vp-8 against the G-tree root,
vp-r. It then tried to match vp-3 against each variant of vp-z. Finding that vp-2
gave the better match, it then was able to build vp-y into the G-tree at the correct
location.  The F-tree for vp-4 can be incorporated into the G-tree without any
added generalizations; concept vp-y is already the most specific generalization for 1t
in the context of vp-1, vp-2, and vp-8 Figure 5-14(c) shows that F-tree wvp-4 1s
simply indexed as a variant of vp-y.

This demonstrates the point that fewer generalizations are’ needed as the
knowledge base grows and that finding the correct place in the G-tree is equivalent
to determining how much generalization needs to be done  Specifically, once the
correct place i1s found, all the work for generalization has already been done

In the real world, one cannot usually pick and choose the order in which instances
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VP-1: dp, ds, dm
VP-2. ds, dm, da
VP-3: dm, da, df
VP-4. dm, da, dl

Four simple F-trees are shown. Each contains a set of three directors
that will be used in the next two examples. These are similar to the F-
trees used in Figures 5-6 through 5-10, but comprise an unrelated example.
.—\dgléector-of-ﬁnance (df) and a director-of-legal-services (dl) have also been
added.

Figure 5-13: Data for incremental location examples.

VP-X: ds, dm, >vp-1, >vp-2

VP-1. +dp
VP-2: +da
(a)

VP-X: ds, dm, >vp-1, >vp-y
VP-Y: ds-+da, >vp-2, >vp-3

VP-1: +dp

VP-2: +ds

VP-3: +df
(b)

VP-X: ds, dm, >vp-1, >vp-y
VP-Y: ds-+da, >vp-2, >vp-3, >vp-4

VP-1: +dp

VP-2: +ds

VP-3: +df

VP-4: +dl
()

F-trees gp-l and wvp-2 have been generalized creating concept wvp-z
shown 1n diagram (a)). Instance vp-8 1s found to be most similar to vp-2
hus necessitating a new generalization, vp-y, as shown in (bg. F-tree vp-

can be stored as a variant of vp-y without any new concepts, as depicte

in (¢). In the process of locating where up-4 should be stored 1t was
determined that no new generalizations would be needed.

Figure 5-14: Locating and storing new F-trees in the G-tree.

become available to an understanding system. It 1s, therefore, desirable that a
system be able to give satisfactory results regardless of the instance ordering 1t 1s
presented with.

We can use this example to demonstrate the effect of instance ordering when
incremental generalization 1s performed. Instead of feeding the generalization
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algorithm the F-trees in the order vp-I, vp-2, vp-8, vp-§, we use the order vp-2
vp-9, vp-4, vp-1. The results of doing so are shown in Figure 5-15. Note that the
final G-tree in this figure (Figure 5-15(c)), rooted at vp-p, and the one with root
vp-z (Figure 5-14(c)) are equally valid, but organize the same information
differently.  They differ because they have been ‘‘forced” to create concepts
incrementally instead of waiting for all instance F-trees to be available  The
concepts created early on will affect the way a system learns subsequent
information.

VP-P: dm, da, >vp-2, VP-P: dm, da, >vp-2,

>vp-3 >vp-3, >vp-4
VP-2: +ds VP-2: +ds
VP-3: +df VP-3: +df
VP-4: +dl
(a) (b)

VP-P: dm, da, >vp-3, >vp-4, >vpq
VP-Q: da-+ds, >vp-1, >vp-2

VP-1: +dp

VP-2: +da

VP-3: +df

VP-4. +dl
(c)

The same F-trees are used here as in Figure 5-14, however, they have
been generalized in a different order. As a result different concepts have
been created.

Figure 5-15:  Instance order sensitivity in G-tree formation.

The sensitivity of the G-tree structure to the order of F-tree instances is greater
when a system 1s first starting up than it 1s at a later time. This 1s because a
larger percentage of information is reorganized for each new instance when there
are less data in the G-tree. If this imtial order sensitivity 1s a problem in a given
domain, two simple solutions can be applied.  The first is to have a human
“expert” build up the initial G-tree himself. The second would be to have someone
choose a particular order of instance hierarchies to feed into the system as a
training set.

5.5 Other issues

We have covered most of the major considerations pertinent to the MERGE form
of hierarchy generalization. However, there still remain several other issues to
investigate.  Depending on the domain in which MERGE 1is used, these vary in
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importance. In this section we discuss three concerns that are common to almost
any domain, but are less crucial than the ones posited in the previous sections.

5.5.1 Identifying G-tree roots

The presence of several G-trees in a MERGE-based system has been mentioned.
Each G-tree serves to classify a different sub-hierarchy in the instance F-trees. The
question that naturally arises 1s which G-trees are needed for a particular domain.
This question must be answered in order to create a useful system.

A hierarchy understanding system based on the MERGE scheme needs very little
initial information. It 1s designed to incrementally build its own knowledge base by
comparing tncoming instances. However, 1t does need a small initial set of data so
that instance hierarchies can be encoded in terms of comparable concepts. For
example, CORPORATE-RESEARCHER has the initial concepts of a chairman-of-
the-board, president, vice-president, and the like encoded in it. Each new F-tree is
specified by temporanly making each memette 1n 1t a variant of one of these
executive position memettes. When a new instance F-tree 1s matched against a
concept or instance F-tree, embedded in G-trees, these initial concepts serve as a
means for comparison -- vice-presidents would match other vice-presidents, presidents
would match presidents, etc. CORPORATE-RESEARCHER needs as many initial
concepts as there are executive positions in the union (mathematical set union) of
all the corporate charts 1t i1s expected to understand.

It 1s 1mportant to point out that this matching 1s only used for a first
approximation to get the matching process started. In the case of CORPORATE-
RESEARCHER, 1t 1s possible to have a president in one company match to a vice-
president in another  This would happen, for example, if each corporate officer
(1e, the president 1n one company, and the vice-president in the other) had a
similar sub-hierarchy of members that report to him. (We describe how this type
of matching proceeds in more detail below)

In CORPORATE-RESEARCHER, 1t 1s relatively easy to determine the necessary
initial concepts. In domains with more complex objects, there can be very many
tnitial concepts. The disc drive patent abstracts that RESEARCHER 1is intended to
understand describe many different physical objects.  Consequently, around 200
object concepts are included in 1its 1nitial knowledge structure.  These are all
potential parts of a disc drive such as a motor, spindle, read/write head, housing,
bearings, etc.

The natural language input to RESEARCHER 1s not systematized -- there is not
a consistent terminology used to describe objects. This necessitates a dictionary
that maps several words into a single concept as part of a conceptual analysis
system (see [Lebowitz 83b] for an explanation of RESEARCHER's text
understanding process). In the process of creating this dictionary (done manually)
the initial object concepts (for the G-trees) are created as well.
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An initial concept is usually just an empty memette, but it can be more complex,
representing anything up to a complete F-tree.  The advantage of using well
described initial concepts 1s that the system will have better generalizations for the
first few F-trees it processes. The knowledge stored in initial concepts 1s equivalent
to that which would have been gathered from generalizing several instance F-trees.
The disadvantage in using large initial concepts is that 1t creates more work for the
human systems builder and forces assumptions about generalized concepts that may
be misleading into the system.

5.5.2 Matching F-trees

The generalization process can be broken down into three parts: matching one F-
tree against another, locating the correct place in the G-tree using this matching
procedure, and incorporating a new concept into the G-tree at the proper location
in accordance with the inheritance formalism. In previous sections, we have dealt
with the later two of these sub-processes.  Obviously, they cannot take place
without first having some way of matching two F-trees.

The goal of an algorithm that matches one F-tree against another in MERGE is
to produce the ‘‘best” correspondence between memettes comprising the trees. In
order to achieve the best matching it may be necessary to level-hop so the
algorithm chosen must be capable of this function. We have already described
level-hopping and will see examples of it in Chapter 6.

The definition of a best match must be based on some metric for how similar two
memettes are and how important their relative positions i1n their respective F-trees
are. (We will 1gnore relations among memettes and structure-independent data for
the purpose of this discussion, but they must be included in a complete matching
algorithm.) There are several heuristics that can be used to derive these criteria,
some are domain specific while others are universal to all domains.

Distinguishing levels in the F-tree is an important factor in the matching process.
Higher levels should be given more significance than lower levels. This captures the
idea that the whole of a hierarchy 1s more important than any of the sub-
hierarchies it encompasses. (Of course this assumes that a goal of MERGE 1s to
preferentially classify the higher level objects it processes rather than their parts)

When two memette frames are compared in isolation they should be considered
most similar if they are variants of the same parent memette. They are
increasingly less similar if their lowest common ancestor i1s higher in the G-tree in
which they are indexed. If they have no common ancestor in the G-tree, then they
are least similar. In addition, other memette features (e.g., the contents of the
PROPERTIES slot) can also be accounted for when comparing two frames. For
example, both objects being made of the same material may be important in some
physical object domains.
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Organizing these individual heuristics (depth in the F-tree, intersection depth in
the G-tree, feature similarities, and others) can be done effectively by using a point
assignment grading scheme  (See [Winston 80] for another such scheme, and
[Tversky 77] for work on similarity measures.) Using such a scheme, it is possible
to match memettes that have no common G-tree ancestor but do have several
common F-children. This 1s largely a pragmatic approach. It is difficult to argue
that humans use a mathematical point assignment scheme i1n comparing objects, but
it 1s common practice 1n Al work, nonetheless.

When two F-trees are compared, {irst their leaf memettes are compared and points
are assigned for each match of memettes with common ancestors. The memette
pairing that gives the highest sum of these points i1s chosen. Then the parents of
these leaf memettes are compared. Their score 1s found by adding their own match
score to the sum of their children’s scores. If these parent memettes have no
common ancestor in the G-tree, they can still have a high score (and thus a high
correlation) if a match of their children results in a high score. (The determination
of a cniteria for allowing parent nodes to match when enough of their children do
15 specific to each implementation of MERGE.) This scoring process continues,
recursively, up the F-trees. Each successively higher level is weighted more strongly
than the levels below it, thus emphasizing the importance of matching an entire
hierarchy. A more complete description of this algorithm 1s given in Appendix A.

The process terminates when the root memette 1s reached. The final score is then
used as the basis for comparing a new instance F-tree against generalized concept
F-trees that reside in the G-tree. This 1s done 1n order to locate the correct place
to 1ndex an instance or create a new generalization. The final process of
incorporating a new instance 1nto the G-tree is straightforward but messy to
program. Inheritance, modified by addition, subtraction, and substitution, must be
taken care of The results of any needed level-hops must be reconciled. Relations,
properties, and other data must also be processed, if they have not already been so
during the matching process.

5.5.3 Reorganizing memory

The examples shown above demonstrate that memory 1s continually being
reorganized as new instances of hierarchies are brought into MERGE. This 1s
intended to mirror, in some sense, the way humans perform incremental learning.
Unfortunately, if instances are fed into a MERGE-based system in varying orders 1t
15 possible to create very different knowledge structures -- some may be much
“better” than others (according to the F-tree matching metric being used). Humans
seem to have some way of recognizing when memory is in need of a gross (large
scale) reorganization. They do, on occasion, have an insight as to how things relate
to each other and then restructure the way they think about them. This 1s
sometimes called the aha response. ‘
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MERGE has the capability to reorganize the variant links that comprise the G-
tree.  This 1s evident 1n the way it incrementally reorganizes memory  The
problem that remains is how to recognize when a major reorganization is necessary.

One possible way to recognize when reorganization is needed would be to have a
system re-process all the instances 1t has already seen in the context of the existing
knowledge base If few changes to memory take place during this re-processing, it
1s an indication that memory 1s well structured. This would be true because each
re-processed instance would find the same location to be stored in the G-tree as 1t
did the first pass through the system. Otherwise, ‘‘better’’ places (those that give
better F-tree matches) 1n the G-tree would most likely be found, where the
instances could be stored the second time around. (Of course, each instance must
be removed from its original place in memory on the second pass -- instances are
stored 1n just one place in memory.) Memory could then be restructured so that it
stores each 1nstance -- in the location found during the second pass. The major
drawback to this approach is that the instances must be saved in their original
form for an indefinite period of time.  While this may be possible 1n some
computer implementations, in general it 1s not a good solution.

Undoubtedly, there are other possible solutions to this problem, but we have not
explored them. In Chapter 6, examples will be given demonstrating learning -
without resorting to a massive reorganization of memory.

5.6 Summary

Generahizing hierarchically structured objects 1s a difficult task. ~ The major
complications stem from three sources: arbitrarily deep F-tree representations,
generalizing memettes at each level in the F-trees, and only having data available
incrementally as opposed to all at one time.  This necessitates a generalization
scheme that incorporates the constituent memettes of an instance F-tree into several
G-trees. The F-tree sub-hierarchy that each memette i1s the root of gets classified
into a different G-tree. The G-trees are continually modified by small changes
needed to incorporate this new information.

Inheritance is used to capture the commonalities and differences among the
variants of a concept in a G-tree. Because of potential ambiguities that can arise if
a memette 1s made a variant of more than one concept, inheritance from multiple
conflicting sources 1s not allowed.

The addition, subtraction, and substitution operators modify the inheritance set up
by vanant links. If an instance F-tree differs from its generalized concept only in
one memette at a particular level then all levels above this must necessarily be
different.  The substitution operator is used to encode this type of variation by
allowing all other, non-changed, data to be inherited from the concept memette.
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Most descriptions of hierarchies in the real-world are incomplete.  The major
obstacle posed by incomplete data 1s that one or more levels may be left out of an
F-tree representation. Level-hopping 1s therefore necessary in a matching algorithm
in order to find correspondences between representations. This algorithm is used in
locating where in the G-tree an instance F-tree should be stored.

The process of generalizing takes place 1n three phases: 1- matching a new
instance F-tree against those already 1n memory, 2- locating the ‘“‘best” place 1n the
G-tree to store this new instance (using the result from the matching process),
3- incorporating the new F-tree into memory using inheritance modified by addition,
subtraction, and substitution.

MERGE  primarily  creates incremental,  conjunctive, structure-dependent
generalizations  Learning 1s carried out by making small changes in the knowledge
base. On occasion 1t may be necessary to do a massive reorganization of some
parts of memory -- somewhat akin to the human aha response.
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An ideal MERGE-based system embodies many principles and features
that make it useful as an intelligent information system. However,
most real systems need only use a subset of them. The basic qualities
that a MERGE system must have include: structuring memory in terms
of generalizations, dynamically reorganizing these generalizations while
incrementally learning, creating parallel G-trees, and the ability to
automatically classify many instances in a large domain. We have built
two programs that wuse a better than basic. but less then ideal,
implementation of MERGE. CORPORATE-RESEARCHER understands
upper-level corporate management hierarchies. RESEARCHER reads and
understands patent abstracts about physical objects (disc drives). Both
gystems add the ability to level-hop to the list of basic features of
MERGE. In addition, RESEARCHER uses its knowledge base to assist

in processing further input. Detatled demonstrations of these programs
are given tn this chapter.

6. MERGE - A Scheme for Understanding

Hierarchies

6.1 Introduction

So far we have described issues having to do with representing individual
hierarchies and using generalization to organize them in memory In the process,
the 1interaction between representation and generalization has not been examined
closely. The MERGE scheme of hierarchy understanding focuses on this interaction
by uniiying representation and generalization in a way that enhances the functioning
of each.

In order to comprehend how MERGE works 1t 1s necessary to fully understand
this mutual enhancement. Our scheme 1s a form of generalization-based memory.
It stores representations of individual objects i1n terms of how they vary from
instances and generalized concepts already in memory. Thus, the instantaneous
state of memory will affect how an unknown object i1s perceived (because we are
incrementally  generalizing);  hence, previous generahizations influence  the
representation of an object. The converse of this statement is self-evident -- the
representation of an object influences what generalizations can be made about it.
By structuring memory correctly, these influences can be made beneficial to the
system, thus producing the desired effect of mutual enhancement of both
representation and generalization.

Although we have described both parts of this feedback process to some extent
(1.e., how representation influences generalization and vice-versa), we have not shown
how the entire process operates, nor exactly what 1s gained through this type of
processing. The purpose of this chapter is to do so. Our presentation will begin
with a complete description of the ideal MERGE scheme. It will be followed by a
description of two systems that use MERGE to understand hierarchies.
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A description of the i1deal MERGE scheme is given in order to provide the reader
with the theoretical underpinnings of this scheme. The representation/generalization
feedback cycle 1s explained in detail along with extensions that make this a

practical understanding scheme for hierarchies

CORPORATE-RESEARCHER and RESEARCHER are hierarchy understanding
systems that use MERGE. Each of these is described in an attempt to demonstrate
both how MERGE is implemented for a specific application, and that the MERGE
scheme can be applied to many hierarchical domains.

CORPORATE-RESEARCHER 1s used to builld a knowledge base that classifies
corporate hierarchical structures. It gets its input from corporate charts along with
some supplemental relation 1nformation from textual descriptions. The data 1s
hand-coded by humans who are not necessarily expert at understanding corporate
hierarchies, but who are familiar with the representation formahsm. RESEARCHER
reads and processes information from patent abstracts that describe complex physical
objects [Lebowitz 83b].  (Currently, RESEARCHER reads about computer disc
drives and related devices) The data is automatically parsed into representations of
single patents (see [Wasserman and Lebowitz 83] for a full description of the
representation scheme). These representations are then incorporated into memory
which can then be used to answer questions, classify objects, and help disambiguate
further input.

The same basic MERGE scheme 1s used in both systems However, CORPORATE-
RESEARCHER and RESEARCHER process data in very different hierarchical
domains, with different input sources. In addition, these domains have elements of
both artifictal and naturally occurring hierarchies. The complex physical objects
that RESEARCHER reads about are man-made artifacts (eg., disc drives)
Corporate structures are man-made, but seem to take shape naturally. For these

reasons, we believe that these systems demonstrate the wide-ranging applicability of
MERGE-based understanding.

6.2 MERGE

The basic question to be asked about the MERGE scheme is: exactly how do
representation and generalization alfect each other, and what is the benefit of their
integration? To answer this, we first explain the basic representation/generalization
feedback cycle, then some extensions to the basic scheme, and finally we enumerate
the features of the ideal MERGE scheme. Throughout this section we will point
out the advantages of using a combined representation/generalization scheme as
opposed to the more conventional way of treating these as separate processes.
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8.2.1 Basic MERGE

The basic representation/generalization feedback cycle in MERGE is best
illustrated with an example  Because corporate hierarchies are relatively easily
understood (by people) and are obviously hterarchical in form, we will use an
example from this domain.

MERGE 1s generally intended for use in domains with large numbers of instance
hierarchies. Therefore, we are usually integrating a new instance representation into
a large memory structure, one that already classifies many other instances
Demonstrating all the details of MERGE with such a large memory structure would
be extremely complicated, so we will use a simplified example with only three
instance hierarchies.

Our sample run of a MERGE-based system (actually CORPORATE-
RESEARCHER, but without using program output) starts off with two complete F-
trees representing different corporations, as shown in Figure 6-1  The first step in
the cycle 1s the generalization of these F-trees to form G-trees that categorize each
element 1n the representations. Generalizations require the comparison of individual
memettes, which 1s made possible because each member of these two corporations
has been defined in terms of an initial concept. The initial concepts that are
needed 1n this example are: chairman, president, vice-president, treasurer, and
manager We have not shown these initial concepts. However, the reader should
assume that the names given to each member of these F-trees indicate that they
are variants of these initial concepts.

CHAIRMAN-1-1: president-1-1
PRESIDENT-1-1. vice-president-1-1
VICE-PRESIDENT-1-1: manager-1-1

CHAIRMAN-2-1: president-2-1
PRESIDENT-2-1: vice-president-2-1. vice-president-2-2,
vice-president-2-3

The top F-tree represents corporation-1, while the bottom figure 1s for
corporation-2. The names gtlven to each memette are indicative of what
they are initially variants of. The numbering scheme used in this, and
the next few diagrams, first indicates the corporation which the memette
is a part of, fo%lowea by a unique 1dentification number within each
corporation. Thus, wvice-president-2-8 is the third vice-president in
corporation-2.

Figure 8-1: Two corporate F-trees.

Figure 6-2 shows the unified memory structure after generalizing corporation-1 and
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corporation-2.  (The naming scheme that we are using is described in the captions
of this figure and the previous one.) The generalizations produced serve to indicate
the similarities of the two corporations. What they have in common is that the
chairman (chairman-#-1) has a president (president-#-1) followed by a vice-
president (vice-president-#-1). (Note that wvice-president-1-1 was matched to
vice-president-2-1 as opposed to either of the other two vice-presidents. All three of
these vice-presidents match equally well to wvice-president-1-1, thus the program
made an arbitrary choice.) So far, we have seen no additional benefits (other than
generalization of hierarchies) from the use of MERGE.  The next step will
exemplify the feedback process.

CHAIRMAN-#-1 president-#-1, >chairman-1-1,
>chairman-2-1
CHAIRMAN-1-1. president-#-1-+president-1-1
CHAIRMAN-2-1. president-#-1-+president-2-1
PRESIDENT-#-1: vice-president-#-1, >president-1-1,
> president-2-1
PRESIDENT-1-1: vice-president-#-1-+vice-president-1-1
PRESIDENT-2-1. +vice-president-2-2, +vice-president-2-3
VICE-PRESIDENT-1-1. +manager-1-1

This 1s the memory structure formed by the generalization of the two
F-trees diagrammed i1n Figure 6-1. The "generalized concepts that have
been created are given “#é' symbols to indicate that they are not part of
an instance corporation. The number after the “#" symbol 15 a sequence
number to allow for multiple generalized concepts.

Figure 6-2:  Unified memory structure for two corporations.

Consider the incomplete F-tree shown in Figure 6-3. It represents 2 corporate
structure with two vice-presidents (vice-president-8-1 and vice-president-8-2) and a
treasurer (treasurer-3-1) that report to some unspecified intermediary (z-3-1)) One
can 1magine that this description came f{rom a mangled corporate chart or, more
hikely, from a natural language description that failed to mention what position this
intermediary holds. The hypothetical MERGE-based system tries to incorporate this
new F-tree into its unified memory structure. Using an algorithm similar to the
one described in Sections 5.4 and 5.5, the system finds that corporation-3's structure
most closely matches that of corporation-2, even though 1t must match z-8-1 against
president-2.

At this point, the system 1s about to take its first “intelligent” step. It will make
z-8-1 a vanlant of a president when it builds the F-tree into its knowledge
structure. Thus, 1t will use the results of a previous generalization to enhance a
new representation. The generalization is that '‘all corporations (seen so far) have a
chairman, president, and at least one vice-president.” Since corporation-3 explicitly
has the first and last memettes in this chain of three, and the middle member is
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CHAIRMAN-3-1: x-3-1
X-3-1: vice-president-3-1, vice-president-3-2,
treasurer-3-1

Corporation-3's F-tree 1s depicted here. X-3-1 1s known to exist, but 1t
1s not known what position 1t corrasponds with (e.g., chairman, president,
vice-president, etc)

Figure 8-3: Corporation-3's representation.

undefined, 1t fits this generahization if z-8-1 1s a president. The MERGE-based
system has used inheritance (modified by addition and substitution) from a concept
it has created to fill 1n missing information. Figure 6-4 shows the resulting unified
memory structure, which assumes z-8-1 1s a president.

CHAIRMAN-#-1- president-#-1, >chairman-#-2,
>chairman-1-1
CHAIRMAN-#-2. president-#-1-+president-#-2,
>chairman-2-1, >chairman-3-1
CHAIRMAN-1-1. president-#-1-+president-1-1
CHAIRMANS-2-1. president-#-2-+president-2-1
CHAIRMAN-3-1- president-#-2-+x-3-1
PRESIDENT-#-1: vice-president-#-1, >president-#-2,
> president-1-1
PRESIDENT-#-2 +vice-president-#-2, > president-2-1,
>x-31
PRESIDENT-1-1: vice-president-#-1-+vice-president-1-1
PRESIDENT-2-1. +vice-president-2-3
~ X-3-1 (president). +treasurer-3-1
VICE-PRESIDENT-1-1: +manager-1-1

Corporation-3 has been generalized into memory = During the process 1t
was found that z-8-1 should be a variant of a president. Its incorporation
into memory has caused new concepts to be built. President-#-2 and
chasrman-#-2 represent a corporation with two vice-presidents.

Figure 6-4:  Unified memory structure for three corporations.

The next step, completing the feedback cycle, has already been taken by the
formation of the most recent generalization. Chairman-#-2 represents a corporation
with a chairman, president, and two vice-presidents.  Thus, the concept of a
corporation with two vice-presidents has been created. Corporation-3’s
representation was responsible for the need to make this generalization. Hence, the
representation (of a single corporation) has enhanced the generalization structure.
The next company’s F-tree, to be incorporated into this unified memory structure,
will now have more concepts to be compared against. It will have a better chance
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of having any missing or ambiguous information filled in (ie., 1t has a better
chance of being understood more completely). It, in turn, may contribute to the
concepts formed by the system, allowing for even more improvement in the system's
ability to understand future input. Each run of this generalization/representation
cvele has the potential to enhance the system’s knowledge organization while at the
same time improving the representation of the latest instance.

The integration of representation with generalization has several advantages that
could not have been achieved otherwise. First, there would have been no way to
determine that z-8-1 should be a president unless corporation-3’s F-tree was
compared against other F-trees.  Second, 1f r-8-1 were only compared against
isolated F-trees 1t would be hard to have confidence 1n believing that 1t 15 a
president By making comparisons against generalized concepts this confidence level
1s 1ncreased  Third, once the proper (1.e, best) match i1s found, the F-tree for
corporation-3 can be modified accordingly. ~ This newly modified F-tree 1s then
incorporated into the appropriate G-trees for use in later processing. I 1t were
kept separate from other instance F-trees, it would be of little help in processing
future input.

From this example we can conclude the following: integrating representation with
generalization can be used as the basis of a useful understanding system. The
feedback that this relationship permits enhances both the representation of
individual hierarchies and generalizations built from these representations. This
enhancement i1s made possible because an object’s representation 1s intertwined with
the generalizations that it is included in, and that generalizations are automatically
created when a new instance representation 1s incorporated into memory.

8.2.2 The MERGE cycle

The basic MERGE cycle demonstrated above can be viewed as a three stage
process as diagrammed 1n Figure 6-5. The basic cycle proceeds as follows: 1- a new
instance F-tree is created from an input data source, 2- this F-tree is compared
against concepts in memory by searching down a G-tree (of the top-level F-tree
memette) until a “best” match 1s found, 3- this F-tree is incorporated into the
knowledge base by creating a generalized concept (if needed) at the location that
gives the best match.

Two common enhancements to this basic cycle are also shown in Figure 6-5. The
augmented MERGE cycle 1s used to help the F-tree builder to form correct
representations. Information from the knowledge base can be used to disambiguate
input data, as 1s done in RESEARCHER when it parses patent abstracts. The
other enhancement 1s level-hopping (described in Section 5.2) that is done during
the matching of one F-tree to another. '
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A block diagram of the major components of a MERGE-based system
are shown. he basic MERGE cycle 1s an essential part of MERGE.
The augmented MERGE cycle 1s used when programs need to make use
of the knowledge base to assist in processing further input.

Figure 8-8: The MERGE cycle.

6.2.3 Beyond basic MERGE

The example given 1n section 62.1 demonstrates only the essential parts of an
ideal MERGE-based system. There are many other features that are necessary for
a real-world application of MERGE  We will discuss several of these that are
common to all hierarchical domains.

We start by noticing that z-3-1 in corporation-3 was stated to be “unspecified’” in
the input. It seems more likely that 1t would be missing entirely (1.e., the
description of corporation-3 completely neglected to mention 1t). If this were the
case, the matching algorithm in MERGE must be able to level-hop 1n order to find
the chairman-2-1/chairman-8-1, vice-president-2-1/vice-president-3-1, and wvice-
president-2-2/vice-president-8-2 correspondences. Level-hopping 1s an important
feature of MERGE, particularly when used 1n domains with many incomplete
descriptions of hierarchies.

MERGE represents a level-hop by using a null memette. A null memette is one
that serves a dual purpose. It acts as a place holder for an F-child that has been
specified in an instance F-tree. In addition, it can also act as nothing. That 1s, 1t
represents a memette that should really not be there at all. To determine which of
these roles a null memette 1s serving, an extra slot is added to a memette frame.
We call this the ALTERNATE-VARIANT-OF slot, indicating that it is much like
the VARIANT-OF slot. :
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The ALTERNATE-VARIANT-OF slot is in some sense a means for inheriting non-
conflicting data from two sources. If the ALTERNATE-VARIANT-OF slot of a
particular memette 1s filled, then the memette will inhenit its identity (ie., what it
1s an instance of) from the parent memette that is indicated in the ALTERNATE-
VARIANT-OF slot  However, it will inherit any F-children (ie, its structural
information) from the NULL# memette that fills the VARIANT-OF slot. This does
not violate any of the constraints that were mentioned 1n Section 53 because the
data 1nherited from these sources 1s of a completely different nature. The
ALTERNATE-VARIANT-OF slot only allows for structure-independent data to be
inherited while the VARIANT-OF slot i1s used to allow for inheritance of structure-
dependent data.

Figures 6-6(a) and 6-6(b) show two simple F-trees. The names given to each
memette indicate what they are imtially variants of When they are generalized, a
level-hop 1s required 1n order to find the correspondence of vice-president-1 to
vice-president-2. The resulting unified memory structure is shown in Figure 6-6(c).
A null memette (null-#) has been 1nserted between chairman-# and
vice-president-# 1n the generalized concept.  Note that chairman-# has both
chatrman-1 and chairman-2 as variants and that chairman-2's F-tree is exactly the
same as the generalized F-tree. In order for president-1 to inherit a vice-president
from the generalized F-tree, it 1s made a vanant of null-#  Unfortunately, it will
lose 1ts 1dentity (1e., being a variant of a president) unless its original VARIANT-
OF link 1s kept somewhere. The ALTERNATE-VARIANT-OF slot serves this
purpose.

A memette which 1s a vanant of a null memette represents nothing if its
ALTERNATE-VARIANT-OF slot 1s empty. Thus, chairman-2 still represents a
corporate structure with no president since it inherits a memette that is a variant
of null-# -(actually, 1t i1s a copy of null-#) and that memette has an empty
ALTERNATE-VARIANT-OF slot. :

As was mentioned in previous chapters, a MERGE-based system should ideally
represent and generalize about other information, aside from the F-children of a
hierarchy. Most hierarchical domains have at least some structure-dependent data
(relations) as well as some structure-independent data (e.g., properties). Both of
these forms of data are included in the ideal MERGE scheme.

Relations that are absent in the representation of an instance hierarchy can be

inferred from generalized concepts of similar hierarchies that have them. The
feedback cycle processes relations in the same way as it does F-children.
Representations of relations are enhanced by previously made generalizations of
similar relations, and these newly encoded representations are then used to form
more extensive and detalled generalizations.

For example, if corporation-1 and corporation-2 (in Figures 6-1 through 6-4) each



CHAIRMAN-1: president-1
PRESIDENT-1: vice-president-1
VICE-PRESIDENT-1:

(a)

CHAIRMAN-2: vice-president-2
VICE-PRESIDENT-2:
(b)

CHAIRMAN-#: null-#, >chairman-1, >chairman-2
CHAIRMAN-1: null-#-+president-1
CHAIRMAN:-2:
NULL-# vice-president-#, >president-1
PRESIDENT-1: (ALTERNATE-VARIANT-OF.
presitdent)
(¢)

Diagrams (a) and (b) are two corporate F-trees. The unified memory
structure shown 1n diagram (c) 1s the generahization of these two F-trees.
A level-hop 1s required so that the best match is found. Consequently the

ALTERNATE-VARIANT-OF slot 1s needed so that president-1 can retain
1ts original 1dentity.

Figure 8-6: The ALTERNATE-VARIANT-OF slot.

have the relation that the president meets frequently with the chairman, then the
generalized concept of a corporation (headed by chatrman-#-1) would have the
relation MEET-OFTEN(president-#t-1, chairman-#-1). Assuming that the
description of corporation-3 said something about meetings among the top-level
executives, but did not specify whom, MERGE would assume that the participants
are r-8-1 and chairman-8-1.  Similarly, corporation-3 might contribute to the
relation information stored 1n the chairman-#-2 concept.  Whatever relations
corporation-2 and corporation-3 have in common (or their common relation parts)
would be captured.

Structure-independent data (properties) are treated in much the same way. Their
processing 1s somewhat easier because it can be done without regard to how the
remainder of the F-trees match (1.e, structure-independent data 1s local to a
memette). This 1s not so for relations. In the example above, MERGE first had to
know that z-8-1 matched with president-2-1 before 1t could assume any of the
relation data that pertains to z-8-1. Thus, MERGE must be <able to process
relations 1n conjunction with F-children processing.

A few other extensions to MERGE are also possible in an idealized
implementation. These ideas have not been implemented in either CORPORATE-
RESEARCHER or RESEARCHER. We present them as suggestions for future
research.



118

Most of the issues that were discussed in Chapter 5 could be applied in an
idealized MERGE-based system. The capability to do a massive reorganization of
memory when 1t becomes too ‘‘unreasonable’” (ie., too many generalized concepts
that do not give a good idea of the known data have been created) would be a
useful feature of such a system, although 1t may not be necessary.  Allowing
information to be inherited from multiple sources would be desirable in many
applications.  Unfortunately, we know that if there is a possibility for conflicting
data to be inherited then the disambiguation of this data becomes an intractable
problem  However, non-conflicting data can be inherited from multiple sources.

It 1s also possible to extend the basic MERGE scheme along the lines of how 1t
represents data. We have stated that it is difficult to create a complete relation
representation scheme for some domains (although a fairly good partial scheme 1s
not too difficult to develop). The ideal MERGE-based system would have some
mechanism for dynamically altering the way it encodes relation characteristics.

8.2.4 Ideal MERGE

Here, we have described the features that an ideal MERGE-based system would
have  We are about to study two examples of hierarchy understanding systems
that use MERGE, but before doing so a summary of what the i1deal MERGE
scheme includes 1s in  order Neither CORPORATE-RESEARCHER nor
RESEARCHER 1s 1deal; there are gaps in each system that will be described in
Section 65 By enumerating the features of an 1deal system we give the
specifications that another researcher would need to build a MERGE-based system,
while at the same time providing a comparison standard for our own
implementations

The following list of features is numbtered for reference purposes (see Section 6.5).

Features of MERGE:

1 Generahzation-based memory - Generalizations are used as the basis for
large scale memory organization, with instances stored in terms of
generalizations.

2 Dynamic memory - Memory i1s continually reorganized in small sections
at a time by changing old generalizations and creating new ones.

3. Framed-based representations - Memettes are used to describe both real
and generalized objects. A memette structure can represent any level of
detail in an object.

4. Parallel generalizations - Multiple G-trees exist in parallel. They each
are a knowledge structure that categorizes a different object.
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10.

11.

13.

Inheritance - Inheritance allows for easily recognized similarities and/or
differences among 1instances and generalized concepts of hierarchies.

- Automatic classification - The G-trees built by MERGE serve as a way

of automatically categorizing instance hierarchies.

Incremental learning - Incremental generalization means that a system
learns each time a new instance 1s presented. Thus, a MERGE-based
system continuously tracks data from the real world.

Large domains - MERGE 1s designed to process a very large number of
instances. [t 1s, therefore, suitable for understanding domains that would
be difficult for a human to grasp.

Massive reorganization/error correcting - The memory structure should be
reorganized when it s found to become unwieldy, or bad representations
have led to incorrect generalizations to be made. That 1s, the G-trees
become awkward and don't seem to be a good classification of the
instances fed into the system.

Process varied data - Relations and properties of almost any type can be
included 1n object descriptions. Relation characteristic encodings can be
complex or simple The relation scheme may even use dynamic
primitives to represent characteristics

Multiple inheritance - Information can be inherited from multiple sources
if the data cannot become contradictory.

Level-hopping - a MERGE-based system can deal with incomplete
representations or non-standardized hierarchies by using its level-hopping
mechanism

Accessible knowledge structure - The umfied memory structure in
MERGE 1s accessible for use in other parts of an understanding system.
For example, a natural language processing system can use the knowledge
base in MERGE to help disambiguate future input.

6.3 CORPORATE-RESEARCHER

A concrete example of a MERGE-based hierarchy understanding system is the best

way to demonstrate how a real implementation of MERGE works.

119

To this end, we

describe  CORPORATE-RESEARCHER, a program that automatically categorizes
representations of hierarchical corporate organizations.

We

choose to describe CORPORATE-RESEARCHER  before describing
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RESEARCHER, a more sophisticated understanding system, because CORPORATE-
RESEARCHER's domain 1s more clear-cut.  Upper-level corporate structures are
obvious hierarchies with well defined F-children (at least on paper). In addition,
there are usually only a small number of supplemental relations overlayed on the F-
trees. This permits us to focus the discussion on the basic MERGE cycle. The
input to CORPORATE-RESEARCHER comes from complete F-tree representations.
They are created by hand and have few inconsistencies or omissions.

We will show the basic MERGE scheme, how level-hopping appears, simple
relation generalization, and how the theories we have presented tie 1n with an
application = CORPORATE-RESEARCHER was primarily built for the purpose of
experimenting with generalization techniques and demonstrating MERGE.

With this in mind, we begin by explaining the basics of the domain and how
hierarchies are represented  Following this, we demonstrate an actual run of
CORPORATE-RESEARCHER. We then evaluate the program’s performance.
Throughout this section we use examples from real corporate charts as well as some
smaller, hypothetical ones.

6.3.1 The corporate chart

A corporation prepares a chart of its structure for a number of reasons [Webber
73] including: to help in reorganizing a company, to inform employees and outsiders
about a company's general structure, to improve channels of communication among
employees, to establish reporting pathways, to establish authority and responsibility,
and to help 1n solving internal corporate problems Regardless of the reason that a
company goes through the process of “charting’ 1tself, they are always concerned
with two fundamental concepts: chatn-of-command and span-of-control. Chain-of-
command 1s the pathway through which responsibility is passed. Span-of-control
refers to the number of subordinates that a superior supervises.

The F-rel that captures the 1dea of chain-of-command we call REPORTS-TO.
The concept of span-of-control 1s imphcit 1n any F-tree that represents a
corporation, but 1s of primary importance when studying corporate charts. One of
the key factors in 3 company's structure 1s span-of-control versus the length of
chain-of-command.  Basic business theory emphasizes the need to keep these in
balance [Webber 79].

Most corporate charts are very straightforward, showing only chain-of-command F-
rel links. However, there 1s often other information of interest shown in corporate
charts. The most obvious of this is the grouping of F-children according to some
specialization criteria.  These criteria can be based on geographic location, function,
products, and other aspects of a division or office within a company. For example,
a president might have a total of ten vice-presidents reporting to him, which are
broken into five groups of two  Each group corresponds to a different region in
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the United States (eg., Northeast, South, West, Central and possessions and
territories). Five REGION-GROUP relations could be used to augment a company's
F-tree in order to capture this information.

Other relations among arbitrary corporate members appear scattered about 1n
some charts. These include relations such as: ADVISES (e g., a consultant advises
the president), and SUBSIDIARY (e.g., cne division is a subsidiary of another, even
though they both report to the same person). Certainly there are many other
relations within any real corporation. But companies are unlikely to put some of
these on their charts. IS-THE-BROTHER-IN-LAW-OF and DOESN'T-SPEAK-TO
would not be favorites of the stockholders.

For simpheity's sake, we have chosen to use only a handful of relations in our
representations  There are four relations (ADVISES, REGION-GROUP, DIVISION-
GROUP, and SUBSIDIARY) that are used along with the REPORTS-TO F-rel.
We find that these are sufficient to demonstrate the salient features of MERGE 1n
CORPORATE-RESEARCHER. However, other relations are very easy to add to

the system.

The source of corporate charts that are used here i1s a compendium found 1n
[White 63]. They have been encoded by hand into the memette-based F-trees that
CORPORATE-RESEARCHER uses. In some cases they have been edited. This
editing was necessary for two reasons. The first 1s because corporate charts are
sometimes specified at very different levels of detail. That 1s, larger corporations
tend to show only their upper-level management positions, while small companies
describe their structures down to the blus-collar level. The second reason 1s simply
to keep the sizes of representations practical, as they are being hand-coded.

Throughout this section, and the next, we will refrain from using our compact
notation for unified memory structures. Instead, we will use tree diagrams that are
automatically output from the program. Both F-tree representations and G-trees
are presented Unfortunately, there i1s a loss of information in using tree diagrams
over displaying the complete wunified memory structure. Specifically, the
substitution, subtraction, and addition operations can not be seen. However, the
end results of using these operations are apparent through inheritance, which 1s
shown.

8.3.2 Some real examples

Figure 6-7 shows the F-tree for the upper-level management of the Lockheed
Corporation, as 1t appeared in the 1950’s. We use this as an example to explain
CORPORATE-RESEARCHER's notation that will used in the remainder of this

section.



—
o
(8]

-------- 22 22=CONTROLLER
-------- 24 23=FINANCE
------ 4-23 24=TREASURER
25=PRESIDENT
26=COUNSEL
------ A-26 27=DEVELOPNENT
...... A-27 28=MANUFACTURING
...... A-25 --------28 29=EXEC-VP
-------- 30 30=MARKETIEG
________ 41]|--------38 -eeme---209}----~~---31 31=GROUP-VP-1
-------- 32 32=GROUP-VP-2
33=ENGINEERING
...... A-33 34=PUBLIC-RELATIONS
------ A-34 35=ADMINISTRATION
------ A-35 36=C-0-B
37=SEN-VP-1
........ 37 38=PLANNING
-------- 39]--------38 39=SEN-VP-2
........ 40 40=DIVERS-DIRECTOR
41=LOCKHEED

4322623833 983988%
Subject: Relation: Object:

[&RELO/A] ANFM25 {DIVISION-GROUP}  &MEM35
&NFM34
ANFM33
RNEN27
RNFM26
RMFM23

The F-tree uses memettes to 1dentify the nodes i1n the tree. At the
right 1s a cross reference to the name given to each memette that
represents a node in the corporate chart. = The letter “A" that occurs
along some of the F-rel Links refers to a relation described in the bottom
diagram It corresponds to the relation, &RELO

Figure 8-7:  Lockheed Corporation’s F-tree.

The most obvious difference between this F-tree and a real corporate chart 1s that
numbers appear as the F-children instead of the name of the division, group, or
person in the company These numbers are given to each memette frame so that
they can be uniquely identified. We will use the prefix “"&MEM’ when discussing
individual memette frames Along the right hand side of Figure 6-7 1s a list of the
memette frames used 1n the F-tree, followed by the name of the memette. This
name 1s what actually appears on the company’'s chart The only other feature to
note, 1s the letter “A’" that appears along some F-rel links. It indicates that the F-
child 1s involved 1n relation “A’. The bottom of this figure shows that relation
“A" (&RELO) 1s a DIVISION-GROUP relation where &MEM25 (the president) heads
a group composed of &MEM23 &MEM26, &MEM?27 &MEM33, &MEM34, and
EMEM35.

Figure 6-8 provides information to supplement this F-tree. A description of all
the memette frames in the F-tree is shown, here. The column labeled Function is
a classification of the function that that F-child (subordinate) serves in the
corporation. (It 1s NIL 1if it was not specified in the company's chart.) We include
functions here only to give the reader some more information as to what the real
chart looks like At present, CORPORATE-RESEARCHER does not use this data,
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although 1t could be used in the generalization process; it 1s an example of
structure-independent data, and therefore 1s easily generalized. The Variant-Of
column shows the G-tree parent of each memette frame  As was stated earlier,
each memette must be a variant of some t¢nitial memette so that it can be
compared against other memettes during generalization. The names given to each
of the imtial memettes are self-explanatory

Memette: Hame: Function: VYariant-01:
AMEM22 (CONTROLLER) CONTROLLER CONTROLLER®
&MEM23 FINAKCE) FINANCE V-PRES®
EMFEM24 TREASURER) TREASURER TREASURER®
RMEM2S PRESIDENT) NIL PRES#
RMEM28 COUNSEL) LEGAL ATIORNEYS
AMEM27 DEVELOPMENT) DEVELOPMERT V-PRES#
AMEN28 MANUFACTURING) MANUFACTURING V-PRES#
&MEN29 EXEC-VP) NIL V-PRES®
&MEM30 MARKETING) MARKETING V-PRES#
&MEN31 GROUP-VP-1) OPERATICES V-PRESS
AMEM32 GROUP-VP-2) OPERATIONS V-PRES#
SMFM33 ENGINEERING) ENGINEERING V-PRESS
RMEM34 PUBLIC-RELATIONS) PUBLIC-RELATIONS V-PRES#
&MEM35 ADMINISTRATION) ADMINISTRATION V-PRES#
AMEM38 §C-0-B) BIL CHAIRMANS
EMEM37 SE]-VP-I; IIL V-PRES®
EMEM38 (PLANNING PLANNIXG DIRECTOR#
KMEM39 (SEN-VP-2) NIL V-PRESS
SMEM40 EDIVERSIFICATIOI-DIRECTOR) PLANNING DIRECTOR#
ANEN41 LOCKHEED) ¥IL CORP#

‘This table describes the memette frames used in the F-tree (shown 1n
Figure 6-7) 1n more detall

Figure 8-8: Detalls for the Lockheed F-tree

The one remaining point to be made about the F-trees used in CORPORATE-
RESEARCHER 1s the top-level memette  Notice that in this case 1t 1s named
“LOCKHEED"” and 1s a variant of CORP# Although the C-O-B (chairman-of-the-
board) doesn’t REPORT-TO the corporation as a whole (as the president
REPORTS-TO the C-O-B), we need it in order to get a handle on the ephemeral
entity called a corporation. (It also makes i1t easy to talk about the F-trees since
they have meaningful names.)

Two more F-trees, taken from the charts of the Babcock & Wilcox Company
(&MEM36) and from the Yale & Towne Manufacturing Company (&MEM49), are
shown 1n Figure 6-9  (The hst of relation descriptions appears in Figure 6-10.)
They are somewhat simpler hierarchies than the previous one, and will be used to
demonstrate CORPORATE-RESEARCHER's generalization process
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Memette:
&MEM22
&NFN23
SMEM24
RMFM25
RMFM26
AMFM27
RNEN28
ENFM29
ENEN30
EMEM31
SMEM32
&MFEM33
AMEM34
&MEM35
SMEN38
&NEM3T7
EMEN38
&MFEM39
EMFM40
RMEM4 1
&MEM42
AMEM43
RMEM44
AMEM4S
&MEU48
SWEM47
&MEN48
ANFNA49

SEEEREIRNSRAIEREBOEAS

(2222 22222222222 228}

Hame:
(CONSULTANTS)
PRESIDENT)
SECRETARY)
FI¥-DIV)
(RES-DIV)
(STAFF-DIV)
(BAILEY-METER)
DIAMOND-POWER)
LOCKETT)
AE-DIV)
BOIL-DIV)
REFRACT-DIV)
TUB-DIV)

IREASUREng
(PRESIDENT
(PERSONNEL)
SECRETARY)

PATENT)

PUB-REL)

LOCXS)
INTERNATIONAL)
YALE-MAT-HAND-DIV)
AUTO-TRANS-DIV)
TROJAN-DIV)

B-0-D)

YALE-TOYEE)

22=CONSULTANTS
23=PRESIDENT
24=SECRETARY
25=FIB-DIV
28=RES-DIV
27=STAFF-DIV
28=BAILEY-NETER
29=DIAMOND-POVER

30=L0CKETIT
31=AE-DIV
32=BOIL-DIV
33=REFRACTI-DIV
34=TUB-DIV
35=B-0-D
36=Ba¥
-------- D-37 37=TREASURER
-------- D-39 38=PRESIDENT
-------- D-40 39=PERSONNEL
-------- D-41 40=SECRETARY
-------- D-42 41=PATENT
-------- E-43 42=PUB-REL
-------- E-44 43=L0CXS
-------- E-45 44=TNTERNATIONAL
-------- E-48 45=YALE-MAY-HAND-DIV
-------- E-47 48=AUTO-TRANS-DIV
47=TROJAN-DIV
48=B-0-D
49=YALE-TOVNE
Function: Variant-0f:
WIL CONSULTANTS
NIL PRES®
BIL CORP-SEC#
FINANRCE V-PRES#
RESEARCH V-PRES#
ADMINISTRATION V-PRES#
NIL PRES#
1IL PRES#
¥IL PRES#
OPERATIONS V-PRES#
OPERATIONS V-PRES#
OPERATIONS V-PRES#
OPERATIONS V-PRES$
NIL B-0-D¢
NIL CORP#
TREASURER TREASURER#
¥IL PRES#
PERSONNEL V-PRES#
ADMINISTRATION CORP-SEC#
LEGAL ATTORNET#
PUBLIC-RELATICNS DIRECTOR#
OPERATIONS V-PRES#
NIL V-PRESS
OPERATIONS V-PRES#
OPERATIONS MANAGER#
OPERATIONS MANAGER#
§IL B-0-D¢
NIL CORP#

The F-trees for the Babcock & Wilcox Company (&MEM36) and Yale &

Towne Manufacturing Company (&MEM49)
Below them 1s the

figure

Figure 8-9:

/ appear at the top of this
escription of their memette frames

Babcock & Wilcox and Yale & Towne corporations.



Subject: Relation: Object:

[&RELO/A) &NFM36 {SUBSIDIARY} &MFM30
ANEN29
&NFH28

(8REL1/B]  &MEM23 {DIVISION-GROUP}  AMEM27
RMEN28
RMEN25

{aREL2/C] KNFM23 {DIVISION-GROUP}  &MEM31
RNFM32
&MFXM33
&MFM34

(XREL3/D] SNFM38 {DIVISION-GROUP}  AMEM42
&MFN41
&MEM40
AMEM3Q
RNFM37

[RREL4/E] &NFN38 {DIVISION-GROUP}  AWEM47
&MFNA8
SMEM45
ANFM44
&MEM43

These relations (A - E) are used in the F-trees for Babcock & Wilcox
and Yale & Towne (A, B, and C in Babcock & Wilcox).

Figure 8-10: Relations for Figure 6-9.

During the generalization process, the memettes in the F-tree for Yale & Towne
will be matched against those in the F-tree for Babcock & Wilcox. The two basic
factors that determine which memettes will be matched are: 1- what fills the
VARIANT-OF slot (e g, i1s the memette a vice-president (V-PRES#), etc), 2- what,
if any, relations are the memettes involved in. The more heavily weighted of these
two factors 1s the first. If there i1s more than one match that gives equivalent
results then the relations that the memettes are involved in are considered (The
actual algorithm 1s more complex, but this i1s correct for this example.) Memettes
in simular relations will match better than memettes 1n different relations, or not 1n
any relations at all.

Figure 6-11 shows the resultant F-trees after generalization  The F-tree 1n the
middle figure represents the concept of a corporation created by generalizing the
two F-trees 1n Figure 6-9 This seems to correlate well with our intuition of what
a typical corporation looks like It has a chairman, followed by a president,
followed by some number of vice-presidents (four, 1n this case) and a corporate
secretary  There 1s also a generalized relation among three of the vice-presidents
and the president The bottom part of Figure 6-11 shows that relation “F' 1s a
DIVISION-GROUP relation and was generalized from the “C" and “E"” relations
found 1n Babcock & Wilcox and Yale & Towne, respectively. This 1s apparent
from the fact that memettes &MEMI154, &MEMI155, and &MEMI156 have been
inherited from the generalized concept (&MEM153) and that relations “C” and “E”
apply to this set of memettes. '



Subject:
AMEX153

[&RELS/F)

The to

SEEEBRERLLERS

152]-=-==-- F-153

388838

------- F-164

(22222222222 RR222 22 R

Relation:
{DIVISION-GROUP}

22=COYSULTANTS
33=PRESIDENT
25=FIN-DIV
28=RES-DIV
27=STAFF-DIV
28=BAILEY-METER
29=DIAMO¥D-POWER
30=LOCKETT
35=8-0-D

368=B&Y¥
154=V-PRES#
166=V-PRES#
158=V-PRES#
157=CORP-SEC#
158=V-PRES#

37=TREASURER
38=PRESIDENT
41=PATENT
42=PUB-REL
48=AUT0-TRANS-DIV
47=TROJAR-DIV
48=B-0-D
49=YALE-TOVEE
154=V-PRES#
1565=V-PRES#
156=V-PRES#
167=CORP-SEC#
168=V-PRES#

161=CORP#
162=B-0-D#
163=PRES#
164=V-PRES#
165=Y-PRES®#
1656=V-PRES#
157=CORP-SEC#
158=V-PRES$

Object:

&NEN154
SMEM155
&WFN158

figures show the F-trees for Babcock & ‘Wilcox and Yale &

Towne after they have been generalized. It includes the F-children that
are inherited from the generalized corporation shown in the middle figure
Relation “F’’, shown "in the bottom figure, 1s formed durlngF the
%enera 1zation process and belongs to the generalized corporation’s F-tree

|
&MEM151).

‘ Figure 6-11:  Stereotypical corporation.

The main feature of the F-trees shown in Figure 6-11 1s the inheritance of
generalized F-children. For example, Babcock & Wilcox's F-tree (&MEM36) now
has the same structure as 1t did imtially, but inherits four vice-presidents (V-
PRES#) and a corporate secretary (CORP-SEC#) from the generalized concept of a
corporation (&MEM151) instead of being re-represented.  This captures the idea
that Babcock & Wilcox's corporate structure is similar to the generalized concept of
a corporation but adds another seven subordinates to the president’s span-of-control.
We

So far we have only seen the generalized F-tree. have not looked at the
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underlying G-trees. There must be a G-tree, for instance, that represents &MEM23
and &MEM38 as vaniants of &MEMI53 for this inheritance to take place. There
1s, but 1t's not too interesting. To add more interest to the G-trees, two more F-
trees will be incrementally generalized into the unified memory structure.

Figure 6-12 shows F-trees for Con Edison (&MEM70) and Ohio Oil (&MEMSS)
There 1s nothing new to take note of here.

______ 50 50=PRODUCTION
______ 52 51=EXEC-V-P
...... 53 §2=ACCOUNTING
------ 65|------54 63=FINANCE
54=ENGINEERING

------ 56 55=SEN-VP-1
------ 58 58=IND-REL

------ 67|------59 §7=SEN-VP-2
£8=CONSTRUCTION
59=TRANSPORT

------ 70|------69|------88----F-51 "nTTee81|7mToo60  80=SALES
------ 62 61=SEN-VP-3

------ 83 82=VEST-SI-0PS

------ 84 63=DIST-0PS

----F-85 84=PURCHASE

----F-68 85=SECRETARY

----F-67 88=TREASURER
87=GEN-ATTORNEY
68=PRESIDENT
89=C-0-B
70=C0X-ED

-------- 71 71=SECRETARY
-------- 73 72=PRESIDENT
-------- 74 73=ASSISTANT
-------- 75 74=0FFICE-NANAGER
----- BJ-78 75=WASHINGTON-REP
----- BJ-77 76=ADMIN-SERVICES
----- 1J-78 77=LAN
----- BJ-79 78=RESEARCH
----- BJ-80 79=FINANCE
------ G-89|--------88|--------87|----B1J-72|-~------81 B80=ACCOUNTING
-------- 82 81=DOMESTIC-PROD
-------- 83 82=INT-PRODUCTION
-------- 84 83=SUPPLY
-------- 85 B84=REFINING
------ G-86 85=MARKETING
86=AURORA
87=8-0-D
88=SHAREHOLDERS
89=0HI0-0IL

Two more F-trees are shown here, Con Edison (&MEM70) and Ohio Oil
(&MEMS89).  They should be considered to be in sequence (consecutive
memette frame numbers) after the two F-trees shown in Figure 6-9.

Figure 8-12: Con Edison and Ohio Oil corporations.

Figure 6-13 shows the G-trees (after incrementally generalizing all four F-trees) for
the concept of a corporation (CORP#), a president (PRES-#), and a vice-president
(V-PRES#) G-trees appear similar 1n form to F-trees in the output of the
program, but can be easily distinguished by noting that an “M" prefixes the
memette number 1n the G-trees. The corporation G-tree shows that Yale & Towne
(£MEM49) 1s most similar to Con Edison (&MEM70), and that Babcock & Wilcox
(&MEM36) 1s most similar to Ohio Ol (&MEMS9).
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--------- M49 M38=BaY
--------- N9B|---------M70 M4Q=TALE-TOWNE
¥70=CON-ED
------- CORP#|---------U90 ¥89=0HI0-0IL
--------- uoa|~--------uaa ¥90=
--------- K89 uge=
¥98=
CORP#=

--------- 28 M23=PRESIDENT
--------- 29 M28=BAILEY-METER
......... ¥30 M29=DIAMOND-POWER
| --------- M38 M30=LOCKEIT
--------- u97|---------N68 M38=PRESIDENT
_______ PRES# WB88=PRESIDENT
......... N9t ---------KQOI---------l23 M72=PRESIDENT
--------- N72 M91=
MQ7=
N99=
PRES#=

M50=PRODUCTION
W54=ENGINEERING
W55=SEN-VP-1
M58=IND-REL
W57=SEN-VP-2
¥58=CONSTRUCTION
W59=TRANSPORT
NB0=SALES
B1=SEN-VP-3
WB82=WEST-SI-0PS
H92=

¥93=
--------------- N4 WO4=
--------------- 05 M95=
-------------- ¥100 N100=
-------------- 101 M101=
-------------- M102 M102=

V-PRES#=

----------- Y-PRES#

All four corporations (Babcock & Wilcox, Yale & Towne, Con Edison,
and Ohio Oil) have been incrementally generalized (in this order). These
three G-trees show the result of these generalizations. The top G-tree
shows how the corporations, as a whole, have been categorized.  The
middle figure shows how the presidents have been categorized. The vice-
president G-tree appears at the bottom of this figure

Figure 8-13:  G-trees for four corporations.

The president G-tree shows equivalert results. This 1s because each instance F-
tree has most of 1ts ‘‘structure’” below the level of the president. By this we mean
that the only difference between the top-level memette (CORP#) in the F-trees and
the PRES# memette 1s that a couple of levels are interposed  Hence, any
memettes above the level of the president must have a similar G-tree arrangement.
This 1s due to the point raised in Chapter 5. “if an object varies at a low level of
detail then 1t must also vary at all levels above that” ~What we have observed in
this example is° the structure of the F-trees are crucial in determining the structure
of the G-tree. This 1s to be expected from the integration of representation and
generalization.
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The remaining three presidents that appear indexed under the PRES# G-tree
(&MEM28, &MEM29, and &MEM30) have no subordinates in their F-trees.
Therefore, they are not similar to the other presidents, and get categorized as
anomalies near the top of the G-tree. The vice-president G-tree shows that all the
vice-presidents are categorized on the same level. Again, this is indicative of the
fact that they have no F-tree structure below them (i.e., they have no F-children),
and that no other means of distinguishing memettes have been used (ie, relations
or structure-independent data).

8.3.3 A sample run

It 1s instructive to follow a run of CORPORATE-RESEARCHER through its
incremental learning process. In the next ten figures a sample run is demonstrated
using output from the system. Because F-trees of real corporations tend to be
large, hypothetical corporations with very small F-trees will be used. Seven
corporations (CORP-A through CORP-G) are included in this run, the largest of
which has eight memettes. All the essential features of CORPORATE-
RESEARCHER are demonstrated in this example.

Figure 6-14 shows the F-trees of all seven corporations. We have not used any
function 1nformation nor relations in these representations i1n order to be able to
clearly make our points. Only four initial memettes are required to establish a
basis for comparison of the F-children in this example. These four memettes are
shown i1n Figure 6-15 as the roots of four G-trees. Imitially, each G-tree classifies
memettes that are variants of the root memette In this way, the initial G-trees
serve as a cross-reference listing of the memettes comprising the F-trees. During
the course of this program run, the G-trees will continually undergo structural
changes resulting 1n a hierarchical categorization of the memettes that begin as
single-level hierarchies.
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------------ 24

23=PRES-A
24=VP-A2
25=CORP-A

26=VP-B1
27=PRES-B
28=VP-B2
29=CHAIR-B
30=CORP-B

31=VP-Ct
32=PRES-C
33=VP-C2
34=VYP-C3
35=CHAIR-C
38=CORP-C

37=vP-D1
38=PRES-D
39=VP-D2
40=VP-D3
41=CHAIR-D1
42=CORP-D
43=VYP-D4
44=CHAIR-D2

45=VP-E1
46=CHAIR-E
47=CORP-E
48=VP-E2
49=PRES-E
50=VP-E3
51=VP-E4

52=VP-F1
53=PRES-F
64=VP-F2
55=VP-F3
58=VP-F4
57=CHAIR-F
58=CORP-F

69=VP-G1
60=CHAIR-G

681=VP-G2
62=CORP-G

The F-trees of seven corporations are shown. The names given to each
memette indicate what they are vanants of (CORP--corporation, CHAIR
chairman-of-the-board, PRES--president, and --vice-president).

Figure 8-14:  Seven hypothetical corporations
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charrman would be Notice that all F-children below this point have been inherited
by both CORP-A and CORP-B, indicating the strong similarity between these two
corporations. The reason that CORP-A and &MEM65 both appear, even though
they are essentially identical, is that we purposely keep all top-level memettes in
the knowledge base. This allows the CORP# G-tree to act as a true categorization
device (1e., 1t can be used to determine how similar or different corporations are,
by inspection). The bottom diagram in Figure 6-16 shows how the CORP# G-tree
(the one of most Interest) appears so far.

CHAIR-B (&MEM29) was made a variant of NULL# (&MEMS66) as a consequence
of generalization. In order to keep its identity, the ALTERNATE-VARIANT-OF
slot 1s needed. In this case, the ALTERNATE-VARIANT-OF slot in CHAIR-B was
filled with CHAIR#, indicating that this memette 1s an instance of a chairman,
despite the fact that it is structurally a VARIANT-OF NULL#.

+ (GEX B)
Matching RMEM30 against EMEM25 ....
Best match is:

78

(76 (étlElZS . 8!5!30;
(NULL#® . RMEM29
((ANEM23 . AMEM27) ((RMEM24 . KMEM28)) ((RMEM22 . &MEM26))))))
Incorporating into g-tree ...
Jev generalization created: AMENE5
with variants: (RNEM30 &MFM25)
SEASLEEEIBISTISAR0S
--------- 88 25=CORP-A
--------- 690 68=NULL#
--------- 25|---~-----68}|----=-=--87 87=PRES#
88=V-PRES#
69=V-PRES#
--------- 88 20=CHAIR-B
--------- 69 30=CORP-B
--------- 30|====="-=-29|-=-=-m----87 87=PRES#
88=V-PRES#
689=V-PRES#
--------- 68 85=CORP#
--------- 60 86=NULL#
--------- 86|---=---=--868]=-=-=----87 87=PRES#
88=V-PRES#
89=V-PRES#
SESESISIBILRSLESES
----------- 25 M25=CORP-A
--------- CORP#|----~~--=--¥B5|-=---------N30 M30=CORP-B
M85=
CORP#=

The top diagram shows the results of the matching process, after the
GEN function 1s called. B in matched against CORP-A with a
result of 76 points. The ‘‘best match’” i1s a LISP structure that shows the
memette frame correspondence found. Note that NULL# was inserted in
order to achieve a best match. The middle diagram shows the resultant
F-trees for CORP-A, CORP-B, and the newly created concept, &MEMS5.
At the bottom, the CORP# G-tree is shown, without including the other
corporations yet to be generalized.

Figure 6-18: First of six incremental generalizations.
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CORP-C is the next F-tree to be added into the unified memory structure It 1s
found to most closely match CORP-B (they are exactly the same, except CORP-C
has an extra vice-president) A new concept must be created with their common F-
children (&MEM71). Figure 6-17 shows the results of this match and the CORP#
G-tree after generalizing. All three memettes in the G-tree, prior to forming the
generalization, were tried as possible matches. The score passed back from the F-
tree matching algorithm (described in Chapter 5) 1s given after each attempted
match. The match with the highest score is chosen as the G-tree node at which to
index the new F-tree.

s (GEX C)

Matching RMEM36 against BMEMB5 .... 87
Matching AMEM38 against RMENM30 .... 103
Matching ANEM38 against KMEM25 .... 87

Best match is:
(103 (ém-:nso . AMFM386)
5&!El29 . &MEN35)
(AMEMB7 . AMEM32) ((AMEM68 . AMFM34)) ((AMEMGO . &MFM33))))))
Incorporating into g-tree ...
Tev generalization created: AMFN71
vith variants: (AMEM368 &MEM30)

[ RS 22RRR 22222222 )

-------- ¥25 M25=CORP-A
-------- M30 N¥30=CORP-B
------ CORP#|--------NB5|--------¥71]--------N38 M3B=CORP-C
ues=
M7=
CORP#=

The top diagram shows the process of determining the ‘‘correct’” place
to locate CORP-C in the CORP# G-tree. The algorithm first compares
CORP-C with the root of the G-tree, then to all of 1ts varnants. any
variant results in a better match, then that branch of the G-tree is
followed. If there is a tie score, the root node is used.

Figure 8-17: CORP-C is added into memory.

Figure 6-18 shows similar output for incrementally generalizing CORP-D into
memory [t was found to match most closely with a generalized concept, &MEM65
(which becomes &MEM77).  Furthermore, there was no need to create a new
concept memette because the intersection of the three F-trees, &MEM42, &MEM25,
and &MEMT71 1s equivalent to the intersection of just &MEM?25 and &MEM71.
The reader may notice that a score of 52 was found in all three attempted
matches. When this occurs, the program chooses the location that i1s highest in the
G-tree as the place to index the new instance F-tree. There 1s no reason to make
more specific generalizations than the data warrants.
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s (GEX D)

Matching AMFM42 against AMEMGS .... 52
Matching ANEM42 against &MEM71 .... B2
Matching ANFM42 against BMEM2S5 .... 52
Best match is:

(53 (gzuznes . RMFM42)
RMEMGS . AMFM41)
(RMEMSB7 . AMFM38) ((AMEMBS . AMEM40)) ((RMEMSY . &MEN39))))))
Incorggg;bing into g-tree ...
42 a variant of &NEM77

Made
$39S80L8S889838208 4

-------- M25 M26=CORP-A
-------- 42 M30=CORP-B
-------- M30 M38=CORP-C
...... CORP#|--------WT77|--=~~=~~NT71]~=-=-=----U38 MN42=CORP-D

W71=

M77=

CORP#=

In this case there was a tie score, so the comparison of CORP-D against
&MEM65 was used for incorporation into memorz. (The text describes
why.) Note that, althou_;h a new concept was not formed, &MEM65 was
eliminated and &MEMT77 took its place.  This i1s an artifact of the
program, and is not at all significant.

Figure 6-18: Incorporating CORP-D into the G-trees.

In the next cycle of the program, we can see that level-hopping was needed again,
and that the scoring mechanism can be used to indicate the degree of similarity of
two representations. The top diagram 1in Figure 6-19 illustrates that CORP-E
(&MEM47) matches CORP-D (&MEM42) much better than any of the others that
were tried (a score of 139 verses 39). Consequently it was generalized against it
forming a new concept (&MEMS84). Although these two corporations are virtually
identical, 1t was necessary to insert a null memette between the top-level of CORP-
E and its president in order to get the best result. (Although the level-hop caused
the matching algonithm to find a better overall match (1.e., a higher score), the
insertion of a NULL# memette actually decreases the score returned by the
matcher. The negative scoring effect is intended to limit the use of level-hopping
so that too many levels are not inserted. See Appendix A for the details of scoring
level-hops.)  This indicates that there may be a chairman missing from the
representation of CORP-E, but there is not enough evidence in the data seen so far
to assume 1t should be there.




s (GEX E)
Matching RMEMA7 againat AMFM77 .... 36
Matching AMFMA7 against RMFM25 .... 38
Matching RMFMA7 against ENEM71 .... 38
Matching AMEMA7 against RWEM42 .... 139
Best match is:
(139 ((RMEM42 . &MFMN47)
ANFN44 . RMEX46) ((RMEM43 . RMF)A4S)))
AMFN41 . NULL®)
EMEM38 . AMEN49)
(AMEM37 . ARNEMS!
§xuznso . RNEM50
AMFIMB81 . RNEN48))))))
Incorporating into g-tree ...
Nev generalization created: AMEMB4
vith variants: (RMEMA7 RWFN42)
(2222122222222 2222 2R
--------- 80 41=CHAIR-D1
--------- 81 42=CORP-D
--------- 41|---------88|---------80 B0O=V-PRES#
81=V-PRES#
85=CHAIRMANS
--------- 86|---------88 86=V-PRES#
88=PRES#
89=V-PRES#
--------- 86(---------88 47=CORP-E
80=V-PRES#
--------- 80 81=V-PRES#
--------- 47|---------87|---------88|---------81 85=CHAIRMAN#
--------- 89 88=V-PRES#
87-NULL#
88=PRES#
89=V-PRES#
(2222222222222 R 2222
-------- M25 M25=CORP-A
-------- 30 M30=CORP-B
-------- ¥71|--------M38 WK38=CORP-C
M42=CORP-D
ORP#|-------- N77 M47=CORP-E
-------- M84|--------H42 WT7i=
R W47 M77=
N84=
CORP#=

very stron% match was found between CORP-E
A level hop was needed in order to achieve such a high
The bottom diagram shows

A
(&MEM4?),

score, as 1S sh

the CORP# G-tree

Figure 6-19:

own in the middle diagrams.
1s beginning to attain some structure.

The fourth corporation to be generalized 1nto memory

and CORP-D

135

We can see the algorithm that locates the correct location in the G-tree at work

in Figure 6-20.

most closely match CORP-C (&MEM36).

save for the addition of one vice-president.

Here, CORP-F 1s being incorporated into memory, and 1s found to
CORP-F 1s exactly the same as CORP-C,
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s (GEX F)

Matching RMEMES against SMEM77 .... 68

Matching BMEME8 against &NFM84 .... 68

Matching RMEM58 against SMEM25 .... 68

Matching BMEM58 against &MEM71 .... 66

Matching EMEMG58 against RMEM3S .... 117
Matching RMEM58 against EMEM30 .... 94

Best match is:
(117 (EIHEHSG . AMEM58)
gzuzxss . SMEMST7)
gl!EISQ . &MEMS53)
Egt!Elsl . KMEM58

RMFM80 . RMEMSS 2

RMFMS1 . AWENS4))))))
Incorporating into g-tree ...
Nev generalization created: AMEN93
vith variants: (RMEM58 RWFN38)

(222222222 2222222220

------- ¥25 M25=CORP-A
------- 30 M30=CORP-B
------- M38 M36=CORP-C
------- ¥93|-------458 W42=CORP-D
M47=CORP-E
----- CORP#|-------¥77 M58=CORP-F
------- W42 M71=
------- MB4|-~---~-N4T7 K77=
u84=
K93=
CORP#=

The location algorithm looks at 6 of the 8 members of the G-tree to
find the best place for CORP-F. It 1s found at the deepest level. In
general, if the G-tree 1s N levels deep with a branching factor of M the
lalgonthm we currently use would look at a maximum of M*(N-1)
ocations.

Figure 8-20: CORP-F’s incorporation into the knowledge base.

The last of the seven F-trees, CORP-G, 1s incorporated into the knowledge base
as shown in Figure 6-21. Of particular interest, 1s the fact that the president, that
was missing 1n the original F-Tree (ses Figure 6-14), has been assumed (see Figure
6-22)  This was made possible because of an increased confidence level in the
generalization that: “‘all chairman have a president below them'.  Thus, level-
hopping was used not just to get a better match grade, but also to allow for the
incorporation of missing data.
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s (GEX G)

Matching &MFM62 against &MEMT7 .... 49
Matching AMEMB2 against &MEMB4 .... 49
Matching &MFM62 against EMEM25 .... 49
Matching RNEM6B2 against RMEM7! .... 57
Matching &MFNB2 against &MEMG3 .... 20
Matching RMFMB2 against EMEM30 .... 85
Best match is:

(85 ((&MEM30 . &NFMB2)
((AMEM29 . XMEN60)
((AMEM79 . NULL#) ((RMEN8O . AMFMAB1)) ((AMEMS1 . RMFN59))))))
Incorporating into g-tree ...
Tev generalization created: &MEN101
vith variants: (ANFN62 EMFM30)

CORP-G s brought into memory and found to match CORP-B
E}&ME.\BO) most closely. A level-hop 1s needed where the president should
e, During the process of incorporation into the G-tree, the null memette
from the level-hop was made a vanant of PRES# (see Figure 6-22).

Figure 8-21: The final generalization of this run.

Figure 6-22 shows the seven corporate F-trees after they have all been
incorporated into memory  Notice that the only structural changes that have been
made occur where level-hopping was used  However, almost all of the original
lower-level F-children have been eliminated and are now inherited from generalized
concepts (not shown) In particular, all seven corporations inherit two of their vice-
presidents from the same source (&MEM80 and &MEMS81).
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- -

26=CORP-A
78=NULL#
79=PRES#
80=V-PRES$
81=V-PRES#

29=CHAIR-B
30=CORP-B
79=PRESS
80=V-PRES#
81=V-PRES#

35=CHAIR-C
38=CORP-C
80=V-PRES#
81=V-PRES#
95=PRES#
96=V-PRES#

41=CHAIR-D1
42=CORP-D
80=V-PRES#
81=V-PRES#
85=CHAIRMANS
88=V-PRES#
88=PRESS#
89=V-PRES#

47=CORP-E
80=V-PRES#
81=V-PRES#
85=CHAIRMANS
88=V-PRES#
87=NULL#
88=PRES#
89=V-PRES#

52=VP-F1
53=PRES-F
57=CHAIR-F
58=CORP-F
80=V-PRES#
81=V-PRES#
96=V-PRES#

80=CHAIR-G
82=CORP-G
79=PRES#
80=V-PRES#
81=V-PRES$

This diagram shows the F-trees of all seven corporations after the
unified memory structure has been built Any memettes with a number
greater than 62 have been inherited from generalized concepts.

Figure 8-22: The final instance F-trees.

The final G-tree structures are shown in Figure 6-23 The CORP# G-tree has a
great deal of structure that categorizes the input F-trees. It looks somewhat binary
in nature, but this i1s just a consequence of the data 1t was fed and the order in
which 1t was processed. The way it has categorized the instance corporations seems
to correspond with how a person might do 1t.
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68.3.4 Performance evaluation

From studying this sample run and several others involving much larger F-trees,
we have found CORPORATE-RESEARCHER's performance to be as expected. Its
behavior i1s predictable and in accordance with our design goals. Since the input to
the program is tightly controlled by having to hand-code the instance F-trees, one
would anticipate entirely predictable behavior. On occasion, it makes some
generalizations that one would not expect by looking at the corporate charts
-- some are good, others bad. The cause of these ‘“bad’ generalizations is due to
the incorrect determination of the location in the G-tree where an F-tree should be
incorporated. The algorithm currently in use 1s essentially a ‘‘greedy’’ method and
can be misled. If all nodes 1n the G-tree were considered, CORPORATE-
RESEARCHER would perform better 1n some cases, but would become
computationally infeasible.

The program 1s memory efficient, because 1t removes unneeded memettes and
makes heavy use of inheritance. However, 1t 1s not very time efficient. It spends
most of 1ts time matching one F-tree against another. In order to achieve level-
hopping at any level, and possibly at several levels simultaneous, CORPORATE-
RESEARCHER tries to insert null memettes above and below each real memette in
both F-trees. The process of matching two 4-level, single-lineage F-trees requires 36
companisons of trees  There may be a faster algorithm to perform this type of
matching, but one solution may be to simply limit the amount of level-hopping
permitted

CORPORATE-RESEARCHER's hmited types of data to generalize about cause it
to produce predictable generalizations. However, this constraint also makes 1t a
good program with which to demonstrate the principles of MERGE.

6.4 RESEARCHER

RESEARCHER 1s a large natural language processing system designed to read and
understand patent abstracts. It uses the MERGE scheme to achieve this
“understanding’’, but much of the program 1s concerned with parsing the textual
input into F-tree representations

The purpose of the RESEARCHER system is to form an intelligent database for a
particular class of complex physical objects. At present, RESEARCHER's primary
domain 1s computer disc drives. The database 1s intended to automatically
categorize instances directly from the input text (1.e., without human intervention,
as was needed in CORPORATE-RESEARCHER). It is also used as the knowledge
source for an intelligent question answering system [Paris 84]

The program has the potential to be useful for patent searching by indexing
patents according to their content. Current computerized patent searching systems
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use a keyword-based retrieval which is not intelligent. RESEARCHER can also
serve as an engineering knowledge system about how physical objects in one domain
differ from others in the same domain. It could also be used in conjunction with a
question answering module designed to instruct users on how disc drives are
constructed and how they work.

One of the main difficulties in RESEARCHER s the correct parsing of the input
text into an F-tree.  Although the complex physical objects described by patent
abstracts are hierarchical i1n nature (ie., objects are described as parts with
subparts, etc), the English language descriptions of them may not be tree-like 1n
structure, and are usually incomplete.  Thus, another use of RESEARCHER's
memory 15 to help in processing future input (see [Lebowitz 84]).

The basic difference between the use of MERGE in RESEARCHER and in
CORPORATE-RESEARCHER 1s that CORPORATE-RESEARCHER was built to
demonstrate how a MERGE-based system operates, while RESEARCHER was a
large system 1n need of some way to organize its knowledge intelligently
Consequently, RESEARCHER and the MERGE scheme have been developed
sitmultaneously  This section 1s included 1n the thesis to show a real-world use for a
MERGE-based understander system -- not to demonstrate how MERGE works in
detail, as was done in the previous section.

8.4.1 RESEARCHER's domain

Patent abstracts are short summaries of full patents issued by the U S Patent
Office. The abstracts that RESEARCHER reads are about physical objects. They
account for a large percentage of all the patents issued. (Others types include:
process patents, design patents, agriculture patents, and chemical patents) They
are difficult to read, mostly because they are written in a form of legalese. As a
consequence. 1t 1s a painful experience for a layman to read through many of them
trying to determine how to generalize about what they are describing.  Thus,
RESEARCHER, being a run on a machine, has the potential to perform better than
humans do when processing many patents

The basic premise behind using a MERGE-based understanding scheme 1n
RESEARCHER 1s that complex physical objects are often hierarchically structured.
That 1s, the PART-OF F-rel can be used to represent that one component Is
included within another. Of course, physical objects are additionally described in
terms of the relations among their components. Thus, RESEARCHER makes heavy
use of relations, using the representation scheme described 1n Section 4.5.

Although patent abstracts are precisely worded (for the most part), their
descriptions are often incomplete. Because they are abstracts, they do not
necessarily describe all the components that comprise an entire object. The focus
of the text tends to be on the patentable part of a particular object. For example,
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a patent abstract for an ultra-high speed disc drive would most likely describe the
aspects of the invention that allow 1t to operate at a high speed -- not how the
disc drive is constructed in its entirety. Consequently, RESEARCHER needs the
ability to level-hop, and to assume missing data when necessary, as MERGE
provides.

In this section, some sample patent abstracts will be presented in order to show
how an augmented F-tree representation of them is obtained. Following this, a
short run of the program will be shown in which aspects of MERGE that are
particularly important in RESEARCHER will be emphasized.

8.4.2 Patent abstracts and F-trees

RESEARCHER parses patent abstracts into F-tree representations that are
subsequently incorporated into its unified memory structure. The parsing process 1s
driven by reading each word in the input, looking 1t up in a dictionary, applying
its  defimition, and constructing whatever memettes, relations, and modifiers
(described below) are needed for the correct representation (see [Lebowitz 80;
Birnbaum and Selfridge 81] for descriptions of RESEARCHER-like text processing).
The result of this processing 1s one or more augmented F-trees.

In Figure 6-24, a typical patent abstract for a disc drnive i1s shown along with the -
output produced while parsing the first dozen words. (This abstract is taken from
a real U S patent) It i1s largely self-explanatory, but a few notes are in order.
RESEARCHER allows a phrasal lexicon. This permits phrases like “at least” to be
processed without having to understand the words separately. An MP is a memory
pointer word that points to a memette frame.

[n addition to physical relations among objects, functional or purpose relations are
also processed.  (Purpose relations are distinguished by the “‘P-" prefix, while
physical relations have the “R-" prefix.) Purpose relations work just like physical
relations (1e., they have a characteristic and arguments), but there 1s, as yet, no
underlying canonical scheme for classifying them. RESEARCHER also processes
properties of memettes. This memette slot 1s used to capture a diverse range of
features including: quantity, size, shape, color, etc Most modifiers (usually
adjectives) get placed 1into this slot. (There are other word classes that are
processed but not shown in these examples))
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Patent: P7

(A DISC DRIVE INCLUDING AT LEAST ONE DISC sCOMMAs MEANS FOR MOUNTING SAID
DISC sSEMI» WEANS FOR DRIVING SAID NOUNTING MEANS TO ROTATE THE DISC sCOLONs
AT LEAST ONE TRANSDUCER COOPERATING WITH THE SURFACE OF SAID DISC T0 READ
AND WRITE INFORMATION ON THE SURFACE «COMMA® MOUNTING MEANS FOR MOUNTING
SAID TRANSDUCER FOR COOPERATION WITH THE DISC sSEMIe A CARRIAGE FOR SAID
TRANSDUCER MOUNTING MEANS sCOLONe THREE SPACED BEARINGS HAVING GROOVED OUTER
SURFACES MOUNTED QN SAID CARRIAGE sSEMIs A FIXED CYLINDRICAL TRACK ADAPTED
I0 RECEIVE TWO OF SAID BEARINGS TO GUIDE THE CARRIAGE sSEMIs A SPRING-LOADED
CTYLINDRICAL TRACK ADAPTED TQ ENGAGE THE OTHER BEARING AND URGE SAID TWO
BEARINGS AGAINST THE FIXED TRACKS WHEREBY THE BEARINGS ARE CENTERED QN SAID
TRACKS FOR MOVEMENT THEREALONG AND MEANS FOR DRIVING THE CARRIAGE T0 MOVE
THE CARRIAGE ALONG SAID TRACKS SO THAT THE TRANSDUCERS ARE MOVED RADIALLY
ALONG THE DISC SURFACE sSIOPs)

Processing:

A : Jev instance vord -- skip

DISC DRIVE : Phrase

-> DISC-DRIVE : MP word -- memette DISC-DRIVES
¥ew DISC-DRIVE# instance (&MEN15)

INCLUDING : Parts of BMEM15 (DISC-DRIVES) to follow
AT LEAST : Phrase

-> AT-LEAST : Modifier modifier -- save and akip

ONE : Memette modifier; save and skip

DIsC : MP word -- memette DISC#

Yev DISCR instance (ANEX18)
Augmenting RWEM18 (DISC#) with feature: NUMBER = GE
Asguming EHEHIB (DISC#) is part of RWEM15 (DISC-DRIVES)
sCOMMA® (+COMMA®1)
: Break word -- skip
NEANS : MP word -- memette UNKNOVE-THINGS
Nev UNKNOWN-THING# instance (RMEM17)
AssulinglllEH17 (UNKNOWN-THING#® -- ‘NEANS') is part of AMFEK1S (DISC-DRIVES)

FOR (FOR1) : Purpose indicator -- skip
MOUNTIRG . Purpose vord -- save and skip
SAID : Antecedent word -- gki

DISC : P wvord -- memette DISC#

Reference for DISC#: ARMEM16

Establishing P-SUPPORTS relation; SUBJECT: &MFM17 (UNKNOWE-THINGS --
‘MEANS'); OBJECT: &MEM18 (DISC#) [&REL1]

sSEMI» : Break word -- skip

The text of a disc drive ig)atent 15 shown at the top of this figure. The
first several words that RESEARCHER has processed are shown below 1it,
along with the running comments that the program outputs

Figure 8-24: Parsing a patent

The focus of MERGE 1s primarily on F-trees augmented by relations, so we will
continue to only explain this aspect of the sample output from RESEARCHER
Figure 6-25 shows the augmented F-tree produced from a complete parse of Patent
P7 The top diagram and lst of relations 1s syntactically the same as 1n
CORPORATE-RESEARCHER. The large number of relations indicated along the
F-rel links 1s due to the fact that patents describe many more relations than do
corporate charts, and that purpose relzstions are included in this diagram. Only
three of the 23 relations (letters A through W) are shown below the F-tree in
Figure 6-25. The column to the right of the tree shows the text name of each
memette along with a left-truncated list of memette modifiers.  For example
memette &MEM24 represents ‘‘three spaced bearings”, and 1s shown in detail (1e.
the memette frame with all its slots) at the bottom of the figure.
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Text Representation:

----ACEFJ-18|----DGHVY-20
------ ABC-17
-------- B-18
----D1JV¥-19
------ EFG-21
------- HI-22|-----LSTU-23|-====v=--
---------- 15
---------- 25
---------- 24| ----XLNOP-27
------- ¥3-29
-------- x-26
---NOPQRU-28
------ QRS-30
A list of relations:
Subject: Relation:
[AREL1/A) &MEM17 ('MEANS') {P-SUPPORTS)
(RREL4/D] AMEM19 (TRANSDUCER#) {R-ADJACENT-TO}
AMEN21 (DATAS#) {R-0N-TOP-0F}

(&REL7/G)

(I3 2121222222222 )

Memetts Frame: AWEM24

REC-TYPE

&MEM

15=DISC-DRIVE
18=DISC
17=MEANS
18=MEANS
19=TRANSDUCER
20=SURFACE
21=INFCRMATION

24=SEPARATE BEARINGS
25=EXTERIOR SURFACES
268=CYLINDRICAL TRACK
27=2 1 BEARINGS
28=TRACKS TRACK

29=1 1 BEARING
30=KEARS

Object:

AMEMN168 (DISC#)
AMFN20 (SURFACE#®)
ANFM20 (SURFACE#)

ID = 1D46971
VARIAIT-OF = BEARING#
CLASS = 10UR
TYPE = COMPOSITE
TEXT-NAME = (BEARINGS)
PROPERTIES = ((WUMBER 3) (DISTANCE SEPARATE))
COMPONENTS = (AMEM29 KMEM27 RMFM25)
The top part of this

for Patent PT.

contains

diagram shows the F-tree, built by RESEARCHER,

A partial list of relation descriptions 1s given below that.
The bottom figure i1s an exploded view of what a memette 1n the program

NAME slot, and the COMPONENTS slot

Figure 8-25:

Of “particular interest are the PROPERTIES slot, the T

The F-tree for Patent P7

T-

Figure 6-26 shows the text and F-tree representation of another patent, P32
(shightly modified from the original to accentuate the generalization process).
have not presented the lList of relations nor any of the output from the parsing

process.

This F-tree will be generalized with the one for Patent P7.

We
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(GEN ’RMEM15]
Matching BMEM15 against AMEM2 .... 228
Best match is:
(228 ((RMEM2 . BMEM15)
SMFM7 . RMEM28
AMFM3 . &MEM21
&MFN1

. AMEM18
ANFMS . &MEM22) ((RMEMG . BMEM23)))
KMFM4 . RMFN19))))
Incorporating into g-tree ...
Nev generalization created: BMEM32
vith variants: (RMEM15 &MNFM2)

123113112222 E2 2222 bRt

............ 33 32=M31 DISC-DRIVE#
............ 34 33=M32 TRACKS
............ 35 34=M33 DATAS$

............ 32|---=-----=--38|~~-w===-==-=37 35s=434 DISC#
............ 28 368=¥35 UNKEOVE#

37=M38 CARRIAGE#
38=M37 TRANSDUCER#

The top diagram shows the process of generalization, the matching, and
the incorporation into memory. The bottom figure shows the resultant
generalized concept of a disc drive.

Figure 8-27: The generalization of Patents P7 and P32.

8.4.3 A sample run

As in the previous section, we will examine a sample run of RESEARCHER here.
We use only four abstracts to illustrate how the program works, because much of
its functioning is identical to CORPORATE-RESEARCHER's.

Instead of using real patents, textual descriptions of disc drives that are patent-
like 1n language will be used. This method allows for a more focused discussion of
the 1ssues, as well as providing examples that will be correctly parsed. The chances
of finding a set of four patent abstracts that are similar enough for our illustrations
1s extremely small  Therefore, we have written the four examples about to be
presented.

In the following figures, only the output from RESEARCHER that is pertinent to
the discussion will be shown. The basic cycle 1s. parse - generalize - parse. Thus,
this sample run differs from that of CORPORATE-RESEARCHER 1n that it is
more like the real world; one does not usually know all the data to be generalized
about 1n advance, but rather, incrementally.

Figure 6-28 shows the text and its F-tree representation for sample Patent T1
(&MEM1).  The three relations involved in the F-tree are shown at the bottom of
the diagram.
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Patent: T1

(A DISC DRIVE COMPRISING AN ENCLOSURE SURROUNDING THE DISC DRIVE ¢COMMAs
SAID DISC DRIVE INCLUDES A SPINNING ASSEMBLY A DISC AND A READWRITE HEAD
sCOMMA® SAID SPINNING ASSEMBLY INCLUDES A SPINDLE CONNECTED T0 A MOTOR
sCOMMA® SAID ENCLOSURE COMPRISING A COVER ON TOP OF A SUPPORT MEMBER)

Text Representation:

----------- C-8  1=DISC-DRIVE
........... A-2|-----------C-9  2=ENCLOSURE
3=ROTATION ASSEMBLY
4=DISC
........... A-1 ----------B-8  B=WRITE-HEAD
............. 3|-----------B-7  8=SPINDLE
7=MOTOR
------------- 4 8=COVER
............. 5 9=MEMBER

A 1list of relations:
Subject: Relation: Object:

AREL1/A] A&MEM1 (DISC-DRIVE#)  {R-SURROUNDED-BY} &MEM2 (ENCLOSURES)
kREL2/B] &MEMS (DRIVE-SHAFT#) {R-CONNECTED-I0} &MEM7 (MOTOR#)
AREL3/C] ARMEM8 (COVER®) {R-0K-TOP-OF} &NFMO (‘MEMBER')

The text for a hypothetical patent abstract (Patent T1) is shown alon
this 1ts F-tree, afte em%1 parsed. The bottom of this figure shows a lis
of the relations used in the augmented F-tree.

Figure 6-28:  The first of four sample abstracts.

When Patent T2 (&MEMI10) is parsed and incorporated into the unified memory
structure, the need for level-hopping 15 apparent. The top of Figure 6-29 shows
that Patent T2 1s just lLke Patent T1 except that the DISC is part of a
MAGNETIC ASSEMBLY. Patent T1 has the DISC directly as part of the DISC-
DRIVE. If the discs in both patents are to be matched, there must be some
method of dealing with 1t. Level-hopping is the solution. The results of the GEN
function are shown in the middle diagram. A NULL# memette was inserted in
order to achieve a good match. EMEM?22 1s the concept formed by the
generalization of Patent T1 and Patent T2, it shows that NULL# has been
included 1n the F-tree.
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Patent: 12

(A DISC DRIVE COMPRISING AN ENCLOSURE SURROUNDING THE DISC DRIVE sCOMMAs
SAID DISC DRIVE INCLUDES A SPINNING ASSEMBLY A MAGNETIC ASSEMBLY AND A
READWRITE HEAD sCOMMAs SAID SPINWING ASSEMBLY INCLUDES A SPINDLE CONNECTED
TO A MOTOR sCOMMAe SAID MAGWETIC ASSEMBLY COMPRISING A DISC sCOMMAs SAID
ENCLOSURE COMPRISING A COVER ON TOP OF A SUPPORT MEMBER)

Text, Representation:

---------- F-18 10=DISC-DRIVE

---------- D-11|----------F-19 11=ENCLOSURE
12=ROTATION ASSEMBLY
13=MAGNETISM ASSEMBLY

.......... D-10 |----------E-15 14=WRITE-HEAD
------------ 12|--~-------E-168 16=SPINDLE
18=M0TOR
------------ 13|---=-=-=~-----17 17=DISC
------------ 14 18=COVER
19=MEMBER
(21 23 222222222220
(GEN ’&NEN10]
Matching AMEM10 against RMEM1 .... 170

Best match is:

(170 ((AMEM1 . AMEM10)
(AMFM5 . RNEM14))
zmu . SMEM13) ((BMEM4 . xmmg;)
g AMFM3 . AMEM12 (gtHEl7 . BNEN18
(SMEM2 . BMEM11) ((AMEM9 . KMFM19))

Incorporating into g-tree ...

Nev generalization created: AMEM22

vith variants: (RMEMI10 &MENM1)

(2222222 RERRRRR2 222 L]

------------ 23 22=DISC-DRIVE#
------------ 24|------------25 23=TRANSDUCER$
24=JULLS$
---------- B-27 25=DISC#
---------- 1-22|------------26|----------H-28 26=UNKNOWN-ASSEMBLT#
27=M0TOR®
---------- I-29|----------G-30 28=DRIVE-SHAFT#
e G-31 29=ENCLOSURE#
30=UNKNOVE- THING#
31=COVER#

(ChEXe | BEN180)9))

The top diagram _shows the text and F-tree for a patent abstract that is
similar to Patent T1 but with an extra level added above the DISC. A
NULL# memette 1s 1inserted durm% generalization, shown 1n the middle
figure. The bottom diagram shows the generalized F-tree.

Figure 8-29: Level-hopping in RESEARCHER.

Relations play a much more important role 1n RESEARCHER than n
CORPORATE-RESEARCHER. Therefore, we examine three types of simple
relation generalization 1n the next example, shown in Figure 6-30. Patent T3
differs from Patent T1 (which 1t ultimately gets matched against) in that: 1- the
word encircling 1s used instead of surrounding, 2- an azle 1s used in place of a
spindle, 3- the cover 1s ABOVE the support member -- not ON-TOP-OF it.

In the first case, the words are defined in terms of the same relation, so that
encircling and surrounding both use the R-SURROUNDED-BY relation definition.
This leads to a canonical representation that lends itself to generalization. Spindle
and azle have different meanings, so, 1n the next case, the memettes have no
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common generalization and they are not included in the concept F-tree, &MEM42.
Therefore, the relation generalization can not include a memette in the subject slot
The third type of relation generalization illustrated is that the arguments of the
relations are the same but the characteristics don't compare. Because ABOVE and
ON-TOP-OF are not the same, their generalization is NIL. Of course, they have
something in common (1e., they both indicate a vertical direction) but the matching
criteria that we are using in this example 1s that they must match completely.
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The fourth and final patent will demonstrate how two different objects can be
matched together because they have the same parts.

Patent: I3

(A DISC DRIVE COMPRISING AN ENCLOSURE ENCIRCLING THE DISC DRIVE +COMMAs SAID
DISC DRIVE TNCLUDES A SPINNING ASSEMBLY A DISC AND A READWRITE HEAD sCOMMAs
SAID SPINNING ASSEMBLY INCLUDES AN AYLE CONNECTED T0 A MOTOR sCOMMA® SAID
ENCLOSURE COMPRISING A COVER ABOVE A SUPPORT MEMBER)

Text Representation:

---------- L-39 32=DISC-DRIVE
---------- J-33{-~=-------L-40 33=ENCLOSURE
34=ROTATION ASSEMBLY
35=DISC
---------- J-32 -====----~-K-37 38=VRITE-HEAD
------------ 34)--~-~-----K-38 37=AXLE
38=M0TOR
------------ 35 39=COVER
------------ 36 40=NEMBFR
A list of relations:
Subject: Relation: Object:
&REL10/J] RMEM32 (DISC-DRIVE#) {R-SURROUNDED-BY} AMEM33 EECLOSURE#)
AREL11/K| RWFM37 (AYLES) {R-CONNECTED-T0}  AMEM38 (MOTOR#)
AREL12/L) &MFM39 (COVER#) {R-ABOVE} &MEM40 (‘MEMBER')
S85459382585888399
(GEX '&MEM32]
Matching EMEN32 against RMEM22 .... 118
Matching AMEM32 against AMEM10 .... 102
Matching AMEM32 against &MFM1 . ... 118

Best match is:

(118 ((EMEM1 . RMFM32)
2!HE123 . &MEM38))
ANEM26 . AMEM34 gEIIE127 . tuznsa;;)
(RMEM29 . RMEM33 AMEM30 . RMEN40)) ((RMEM31 . RMFN39)))))

Incorporating into g-tree ...

Nev generalization created: ANEM42

vith variants: (&MEM32 SMEM1)

SE83353358338300083889

------------ 23 23=TRANSDUCER#
------------ 24|----~-------25 24=JULL#
25=DISC#
27=MOTORS
__________ 0-42]------------43|~==-------7-27 29=EICLOSURE#
30=UNKNOVN-THINGS
---------- 0-29|--~-------K-30 31=COVER#
---------- M-31 42=DISC-DRIVES
43=UNKNOWN-ASSEMBLY#

A list of relations:

Subject: Relation: Object:
&REL13/M] KNEM31 {¥IL} AMFM30
AREL14/3 {R-CONNECTED-T0}  &MEN27
&REL15/0) A&NEM43 {R-SURROUNDED-BY} &MEM29

Patent T3 differs from Patent T1 mainly In the way it uses relations.
Of particular importance 1s the list of relations shown in the bottom
diagram.  Notice that some of the data is missing 1n these generalized
relations. The text explains why.

Figure 8-30: Relation generalization.

This process may need to
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occur when generalizing about real patent descriptions for several reasons including:
parts are named differently by different inventors, one or both of the definitions is
missing from RESEARCHER's vocabulary, some text was parsed incorrectly, and so
forth.

In Figure 6-31 Patent T4 1s shown to be identical to Patent T1 with one minor
exception. A WIDGET 1s used to replace the ENCLOSURE 1n Patent T1. During
the generahzation process, the WIDGET s found to correspond to the
ENCLOSURE because they both have the same parts (the COVER and the
MEMBER)  Thus, the generalized concept (&MEMS9) uses an UNKNOWN#
memette (&MEMS64). Notice that the variant F-trees (ZMEM22 and &MEM49)
have not been altered by this generalization.

An UNKNOWN# memette 1s one that gets created as the result of generalizing
two memettes that are ultimately variants of different concepts. They have been
matched up because their F-tree structures are similar and/or because of other
information that matches closely (e.g., relations, properties, etc.). Since they have
no common ancestor in a G-tree, there 1s no common name that can be given to
their generalization  Hence, their generalized concept becomes a variant of (and
gets 1ts name from) the UNKNOWN# memette.

An UNKNOWN# memette signifies that its variants are real memettes but they -
were not 1imtially variants of the same concepts. The presence of a NULL#
memette means that at least one of its variants was not included in the initial F-
tree used to make the generalization, and therefore may or may not actually exist.




Patent: T4

(A DISC DRIVE COMPRISING A WIDGET SURROUNDING TRE DISC DRIVE #COMMAs SAID
DISC DRIVE INCLUDES A SPINNING ASSEMBLY A DISC AND A READWRITE HEAD sCOMMAs
SAID SPINNING ASSEMBLY INCLUDES A SPINDLE CONNECTED TO A MOTOR sCOMMAs SAID

VIDGET COMPRISING A COVER 0N TOP OF A SUPPORT MEMBER)

Text Representation:

---------- U-68
---------- §-50|-=--~~----0-57
---------- 5-49 ----=-=-=---T-54
------------ 51|-===-~----T-65
------------ 52
------------ 53
Y832383983388883283%8
(GEN ' aWFN49]
Matching &MEM49 against AMEM22 .... 121
Matching AMEM49 against AMFM42 .... 121
Matching &MEM49 against RMEM10O .... 84

Best match is:

49=DISC-DRIVE
50=WIDGET
51=ROTATION ASSEMBLY
52=DISC
53=YRITE-HEAD
54=SPINDLE

55=M0TOR

568=COVER

57=NEMBER

(121 ((ANEM22 . &MEM49)
((RMFM23 . BMFMW53))
é(k!t!26 . BMEMS51) ((AMEM27 . &MEM55)) ((AMFM28 . RMFMS54)))
(RMEM29 . RMENS50) ((BMEM30 . &MFM57)) ((RMEM31 . &MEN58)))))

Incorporating into g-tree ...
Nev generalization created: EMEMS59

vith variants: (RMEM49 ARMEM22)
$888880288582808082

------------ 24|---=--------35
---------- R-85
---------- P-29|----------R-86
---------- P-22
------------ 80
------------ 61'----------q-62
---------- q-83
---------- U-86
---------- §-50|-----~----0-68
---------- S-49|---=--------52
------------ 80
------------ 61|---------«r-62
---------- 1-63
------------ 80
I ---------- ¥-62
------------ 61]----------¥-83
------------ 59
------------ e4|----------v-es
---------- V-88
The_ to diaﬁram shows Patent T4 which
the ENCLOSU

virtue of the fact that 1ts components are identical ottc
as the newly created generalization.

shows the variant F-trees as wel
Figure 8-31:

E. However, it still can match to the ENCLOS

22=DISC-DRIVE#
24=NULL#$
35=DISC#
29=ENCLOSURE#
60=TRANSDUCER#
81=UNKNOWN-ASSEMBLY#
62=MOTOR#
63=DRIVE-SHAFT#
65=UNKNOVE-THINGS
=COVER#

49=DISC-DRIVE
50=VIDGET

52=DISC
80=TRANSDUCER#
61=UNKNOWB-ASSENBLY#
82=N0TOR#®
83=DRIVE-SHAFT#
85=UNKNOVE-TRING#
86=COVER®#

59=DISC-DRIVE#
80=TRANSDUCER#
81=UNKNOWN-ASSEMBLY#
82=M0TOR®
83=DRIVE-SHAFT#
64=UNKNOWE#
85=UNKNCWN-THING#
68=COVER#

uses a3 WIDGET in

Matching dissimilar memettes.

ﬁ%%ce of
E by
The bottom figure
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8.4.4 Performance evaluation

RESEARCHER performs adequately when it is given simple text to process The
four examples shown above were easy to come up with and clearly demonstrate the
workings of the program  Level-hopping works, as do the basic operations of
inheritance, addition, subtraction, and substitution. Relation generalizing works, and
13 being extended to make compansons of characteristics at the primitive level
This allows RESEARCHER to capture the similarity of ON-TOP-OF and ABOVE,

for example.

Thers are some technical problems with RESEARCHER's text processing
However, the real difficulty lies in the fact that the abstracts are not describing the
same kinds of objects.  Typically, one patent that is about a disc drive will
describe how the read/write head carriage is moved around, while another disc
drive patent will concentrate on how the disc 1s inserted into the drive. The
problem that this poses is severe in the context of MERGE, because MERGE s
designed to categorize many F-trees about similar objects. Since RESEARCHER s
not bound to read only about disc drives, the solution seems to be to broaden 1its
knowledge base so that it can deal with a wide variety of physical objects that
might occur 1n conjunction with disc drives. This would take a substantial effort,
but would result in a more robust program.

6.5 What’s missing in CORPORATE-RESEARCHER and
RESEARCHER

Having presented the CORPORATE-RESEARCHER and RESEARCHER programs,
we next compare their implementations of MERGE against the ideal scheme. In
doing so, a better analysis of these programs’ performance can be made. In
addition, the more crucial aspects of MERGE that bear on these programs will be
determined . It 1s unlikely that a researcher would need to implement all the
features of the 1deal MERGE scheme described 1n Section 62 for a particular
application. Reviewing CORPORATE-RESEARCHER's and RESEARCHER's use of
MERGE can serve as a case study on what parts of MERGE are needed for a
given domain.

8.5.1 A review of the implementations of MERGE

Much of the program code having to do with MERGE is shared by both
CORPORATE-RESEARCHER and RESEARCHER. However, they each benefit

from different aspects of it to greater or lesser extents.

CORPORATE-RESEARCHER's domain is well organized and the data provided to
it i1s very complete, so it makes limited use of MERGE’s ability to fill in missing
information. However, level-hopping is quite important because corporations tend to
have different chain-of-command lengths in their hierarchies. Thus, in order to
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recognize common sub-hierarchies in various corporations, level-hopping 1s essential.
An F-tree in CORPORATE-RESEARCHER s itself equivalent to a chart; in most
cases, few relations are needed to augment the F-tree because corporations don't
usually include them on their charts. Although relations exist within corporations,
they are either too complex or too subtle to chart, so CORPORATE-
RESEARCHER doesn't really need MERGE’s relation processing components to a
great extent.

RESEARCHER, on the other hand, uses many relations in representing complex
physical objects. It therefore needs, and has, a sophisticated relation representation
scheme. Generalizations of relations are important and should be extended down to
the primitive level of relation characteristics, as was described in Section 53
Level-hopping and the assumption of missing information are also important 1in
RESEARCHER, because the textual data supplied to the system is incomplete and
inconsistent.  In general, RESEARCHER needs a lot more out of MERGE than
does CORPORATE-RESEARCHER due to its natural language input and more

complex domain of understanding.

6.5.2 Comparison to ideal MERGE

Here, we compare our two implementations of MERGE-based systems to the ideal
scheme presented earlier 1n this chapter. The numbers used correspond to those
used 1n Section 62

Features of CORPORATE-RESEARCHER and RESEARCHER:

1 Generalization-based memory - Obviously, RESEARCHER,
CORPORATE-RESEARCHER, and any other system using MERGE

necessarily have this feature.

o

Dynamic memory - RESEARCHER and CORPORATE-RESEARCHER
do this incremental reorganization very well. Most other MERGE-based
systems would also need this feature. The only exception would be in a
system that could carefully order its input so that reorganization is not
needed (1.e., the subtraction and substitution operations are not needed,
only the addition operation).

3 Framed-based representations - The memettes used in RESEARCHER
and CORPORATE-RESEARCHER are somewhat different. The domain
in which MERGE 1s used determines the required frame slots.

4. Parallel generalizations - This i1s done very effectively in both programs.
Any implementation of MERGE would want to do this if learning about

objects on multiple levels 1n the F-tree i1s important.

5. Inheritance - This is essential to any implementation of MERGE. It 1s




-1

10.

11.

13.

one of the primary ingredients 1in unifying representation and
generalization.

. Automatic classification - In both programs, only the top level memettes

in the F-trees are kept around when not needed so that they are
categorized by the system. It 1s possible to keep any number of
memettes at any level around, or none at all. The requirements of the
application should determine this.

Incremental learning - An automatic benefit of using MERGE.

Large domains - RESEARCHER 1s a particularly good example of this.
There are over 4 million patents, hundreds on disc drives alone.
Unfortunately, they don’t all describe complete disc drives

Massive reorganmization/error correcting - Neither program does this,
although 1t 1s possible given MERGE's formalism. The problem 1s in
determining when a major reorganization is needed. It 1s important 1n
domains with a large number of instances. The ability to correct errors
via reorganization could be useful in both programs, particularly in
RESEARCHER as 1ts input tends to produce erroneous F-tree
representations and, therefore, G-trees.

Process varied data - Relations are generalized in both programs  We
are  currently extending RESEARCHER'’s relation generalization
capabilities to break down relation characteristics into primitives. We
are also adding function generalization to CORPORATE-RESEARCHER,
and property generalization to RESEARCHER. The need for such
generalizations are largely dependent on the apphcation domain.

Multiple inheritance - Neither RESEARCHER nor CORPORATE-
RESEARCHER allow this at present (with the possible exception of
ALTERNATE-VARIANT-OF slot usage) If it 1s known that inherited
data will not conflict, then this could be added to a system by simply
allowing a hist of memettes to {ill the VARIANT-OF slot, and changing
the inheritance functions.

. Level-hopping - The level-hopping mechanism in both programs 1s good.

It is only needed in domains that describe hierarchies without using a
standardized means for representing levels.

Accessible knowledge structure - RESEARCHER makes some use of the
unified  memory  structure in  disambiguating  further  input.
CORPORATE-RESEARCH has no need to do this, since its input 1s
unambiguously hand coded. RESEARCHER also uses its knowledge base
In 3 question answering sub-sy:tem.
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6.6 Summary

The main principle of MERGE 1s that the representation of hierarchies influences
the generalizations that are made about them, and that these generalizations, in
turn, influence future representations. This is made possible by arranging memory
in terms of a hierarchy of generalizations and dynamically reorganizing it when
needed.

Basic MERGE functions on a represent - generalize - represent feedback cycle,
potentially increasing its knowledge base on each cycle.  Using this method,
generalizations are created that both categorize instance F-trees and allow missing
or incomplete information to be assumed. An ideal MERGE-based system would
have many more features. These include: level-hopping, the ability to correct
erroneous generalizations and/or representations, massive memory reorganization
when needed, and others.

CORPORATE-RESEARCHER uses a less than ideal, but better than basic,
implementation of MERGE, i1n a system designed to understand corporate charts.
[t serves as a demonstration program that makes clear how MERGE works
RESEARCHER 1s a program that reads patent abstracts about complex physical
objects using a similar version of MERGE to organize its memory. It is a natural
language processing system that processes large amounts of real-world information,
and thus demonstrates how various aspects of MERGE can be wuseful 1n
understanding incomplete and ambiguous hierarchies.
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This chapter concludes the thesis by citing directions for future
research and summarizing the main points brought out tn the previous
chapters.

7. Conclusion

7.1 Future research

The basic principles of the MERGE scheme have been developed, at least to the
point of being able to use them in functioning programs. However there are
several avenues along which this work can be extended.

The most obvious first step would be to apply MERGE-based understanding to

other hierarchical domains. We have found some pluses and minuses that
CORPORATE-RESEARCHER and RESEARCHER have in common. It would be
useful to know how universal these findings are. In addition, some of the

difficulties that RESEARCHER has in forming representations may suggest solutions
when compared with similar natural language processing applications of MERGE.

We have suggested a few possible areas where a MERGE-based understanding
system might be useful Zoological taxonomies based on animal body part
hierarchies seem to be an interesting and instructive domain. Input could come
from textual descriptions, manual encodings, visual data from anatomical drawings,
or a combination of these. The resulting knowledge structures could be compared
against existing taxonomies, providing a metric to analyze MERGE’s performance
by

Several issues 1n generalization deserve further consideration. The idea of focusing
generalizations around a particular object level in the instance hierarchies has been
mentioned. Applying the concept of ‘“‘basic objects” to MERGE's
representation/generalization interaction would make 1t more cognitively accurate.

1y

Another aspect of human cognition, the ‘‘aha” response, corresponds to an
insightful large scale reorganmization of memory in MERGE. On occasion, the G-
trees that are created in a MERGE-based system can become inefficient in the
sense that the branching factor 1s too large or too small. They may also not be
the best classification of the instance objects, in that they do not closely match
people’s conceptions of the same objects. In addition, there may be problems that
arise due to the input order dependence that MERGE-based systems have. In any
of these cases, a massive reorganization of memory (as opposed to the small scale,
incremental reorganization that MERGE usually performs) would solve these
problems. The difficult part of doing this reorganization is recogmzing when 1t 1s
needed. Further research could shed some light on how to give MERGE the “aha”
response.

ol
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The MERGE scheme goes a long way toward automating the intelligent
understanding of hierarchies. However, some intelligence must still reside with the
human system builder. In particular, a person must determine what the F-rel of a
hierarchy is and develop a relation representation scheme for each new domain.
Can this process be automated as well? One possible approach to solving this
problem might be to buwld a meta-level MERGE-based system that would
understand how hierarchical systems, in general, are put together.

Directions for future work also lead to basic object representation questions. We
have assumed that only systems of objects structured as strict trees will be
processed by a MERGE-based system. But what if this restriction is relaxed, and
arbitrary networks permitted? Can MERGE be suitably modified to process such
systems? If it can be, then the domains opened to application of our scheme would
be increased. We believe that 1t can be, and that much of what has been
presented 1n unifying representation and generalization has a more universal
application.

7.2 Thesis summary

We have shown that when representations of hierarchies are stored in a GBM, the
result 1s an enhancement of both the individual representations and the-
generalizations bult upon them. The particular scheme wused to attain this
feedback, MERGE, 1s designed to incrementally learn by continually restructuring its
knowledge base The unification of representation and generalization in a dynamic
hierarchy understanding system 1s the main contribution of this research.

The ubiquity of hierarchies in the real world makes this research particularly
useful. MERGE provides a way to automatically classify hierarchically structured
objects according to their internal organization as opposed to some artificial
measure  Multiple classification hierarchies are constructed simultaneously, one for
each unique sub-hierarchy in the instance objects. Thus, learning is carried out on
several different objects that are part of the top-level one. Because a MERGE-
based system has the capacity to capture detall to an arbitrary depth, 1t can
potentially perform better than humans at classifying complex objeets. Furthermore,
since. MERGE-based systems are designed to process large numbers of instances,
they are suitable for use as intelligent databases.

We have used a single F-tree decomposition of a hierarchy in this thesis.
Decomposing a system using one F-rel has been done mostly for pragmatic reasons,
but 1t has not severely .limited the domains that MERGE can understand.
Information that 1s not captured by F-rel links is superimposed on the hierarchy’s
representation using relations. This allows partial, alternate decompositions of a
hierarchical system to be captured, if necessary, along with any other data
dependent on the structure of the system. Information that 1s independent of a
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hierarchy’s structure, such as properties and features, can also be included in its
representation and subsequent generalizations. If necessary, two or more
independent MERGE-based systems can be used for understanding a particular
domain that has several equally important decompositions of its hierarchies.

Two implementations of the MERGE scheme have been developed and
demonstrated. CORPORATE-RESEARCHER 1s a program that understands upper-
level corporate organizational structures by analyzing corporate charts
RESEARCHER 1s a larger, natural language processing system that reads and
understands patent abstracts about complex physical objects (disc drives) Taken
together, they exemplify the range of hierarchical object understanding that MERGE
1s capable of

The performance of these two programs is as expected. That is, CORPORATE-
RESEARCHER creates generalized concepts of corporations that are similar to what
people might create when shown the same charts that it processes. RESEARCHER
has some difficulty producing interesting generalizations because the patent abstracts
it reads vary widely in what they describe. The solution seems to lie in broadening
RESEARCHER's domain of understanding so that it will find similarities among
different objects related to disc drives. However, the program does a fairly good
Jjob of representing patent abstracts as augmented F-trees.

Real world implementations bring out some of the details necessary to build
hierarchy understanding systems. The ability to level-hop turns out to be crucial in
both systems we have bullt, and in any other implementation that must process
incomplete or non-standardized instance objects representations Creating a
canonical scheme for representing non-fundamental relations 1s another important
aspect of implementing a hierarchy understanding system in domains that consist of
complex hierarchiess. RESEARCHER's scheme for representing physical relations
among parts of complex objects 1s an example of this. It provides a paradigm for
constructing canonical relation representation schemes.

Aside from the inherent feedback between representation and generalization, a
particular MERGE-based system can make use of its knowledge base for other
processing. In RESEARCHER, the parser uses information in the generalization
hierarchies to help i1n disambiguating text The knowledge structures are also used
as the basis of an intelligent information system 1n conjunction with an integrated
question answering module.

We believe that it 1s necessary to unify representation and generalization in order
to create intelligent information systems. This i1s particularly true when the goal 1s
to understand complex phenomena. The MERGE scheme does this for
hierarchically structured objects  Since complexity often takes the form of a
hierarchy, our scheme should have wide applications in intelligent information
systems geared toward understanding complex objects.
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Appendix A. F-tree Matching

In this appendix we present the algorithm wused to match F-trees 1n
CORPORATE-RESEARCHER and RESEARCHER. This algorithm serves as the
metric used to decide how similar two F-trees are in order to determine where in
memory a new instance F-tree should be located. In addition, this algorithm 1s
used to determine the structure of the generalized F-tree that 1s formed from
comparing a new instance F-tree to an existing F-tree. (Although, this feature will
not be discussed here.)

We have found this to be an effective algorithm for use in MERGE. However, 1t
must be emphasized that this is only one of many possible algorithms that a
MERGE-based system could use.  The reader may find work done by other
researchers helpful in developing similar F-tree matching algorithms. Of particular
interest 15 work 1in: [Noetzel and Selkow 83] that presents a procedure for
determining the minimum number of operations needed to permute one tree (F-tree)
into another, [Tversky 77] that describes numerical similarity measures, and [Kruskal
and Sankoff 83] which presents a survey of work dealing with various methods for
comparing sequences of data

A.l1 Overview

Generalization in RESEARCHER and CORPORATE-RESEARCHER 1s done by
making binary comparisons of F-trees. The program code for matching F-trees has
two inputs the old F-tree and the new F-tree. The old F-tree 1s one that already
exists as part of memory. It may either be a generalized F-tree (one that was
created by the program) or it may be an instance F-tree (one that was input to the
program)  The new F-tree is not yet in memory  The only connection that the
new F-tree has with memory 1s that its nodes are variants of the same concepts
that nodes in other F-trees are. That 1s, all F-trees are defined in terms of a
common set of imtial concepts. These concepts are the root nodes of G-trees (see
examples in Chapter 6).

The basic matching procedure works by recursive descent through the input F-
trees At each level, a doubly nested loop is run through trying to match all
children nodes in one F-tree against all children nodes in the other F-tree. When a
leaf node 1s reached in either the new F-tree or the old F-tree it 1s compared
against 1ts corresponding node. If they are both variants of the same 1nitial
concepts then some preset number of points is given to this correspondence. (Other
possibilities are discussed below.) This score 1s passed back up one level and used
to decide which are the best child-child matches to choose. Once this “best”
matching of children 1s picked, the scores for each child-child match are summed
and the matching of the parent nodes is summed into this.
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The score returned from MATCH for the entire F-tree i1s the result of summing
the scores for each matched pair of nodes. However the scoring process is
somewhat more complex 1n that each level in the F-trees is given a different
weight. The higher level nodes are more important than are the lower level nodes
and thus the grade given to a match of them 1s higher. In addition, relations that
a particular memette is involved in also contribute to the total score. Finally,
when a node has components that do not exist in the other (new or old) F-tree
these count negatively toward the match score. The effect of doing this is to not
match similar memettes if the children in one of them would have to be deleted via
the subtraction operation unless outweighed by a different matching.

Because F-trees in a given domain are usually not standardized some way of
finding correspondences between nodes that are not on the same level in both the
new F-tree and the old F-tree 1s needed. Level-hopping is used to find these
correspondences. NULL# memettes are inserted in either or both the old F-tree
and the new F-tree to achieve level-hops. The i1nsertion of a NULL# memette
counts negatively toward the match score. This effectively restricts the use of
NULL# memettes, so that too many levels are not inserted.

A.2 The basic algorithm

Level-hopping 1s accomplished using the function HOP-MATCH (see Figure A-1).
HOP-MATCH calls MATCH using variations on the input F-trees. For example,
HOP-MATCH calls MATCH with no inserted NULL# memettes, 1t then calls
MATCH with a NULL# memette inserted in front of the root node of the old F-
tree, 1t then tries the same but using the new F-tree It also tries other
combinations by inserting NULL# memettes immediately after the root node, etc.
After trying all these combinations 1t chooses the resultant configuration with the
highest matched score.

PRECEEURE HOP-MATCH (memette-a,memette-b)
BEGI!
IF [(memette-a 1is unitary) AND (memette~-b 1is unitar{)]
OR [(memette-a is NULL#) AND (memette-b is NLLL#)]
THEN RETURN MATCH(memette-a,memette-b);
ELSE
RETURN
MAX (MATCH (memette-a,memette-b),
MATCH(memette-a, (insert a NULL# before memette-b))
MATCH (memette-a, (insert a NULL# after memette-b))
MATCH((insert a NULL# after memette-a) ,memette-b)
EN MATCH((insert a NULL# before memette-a) ,memette-b));
D

This is the top-level function in the F-tree matching process. It calls
MATCH to do all the work. NULL# memettes are inserted before and
after each node 1n both F-trees. The result of the best configuration 1s
picked (by the MAX function). This 1s how level-hopping is achieved.

Figure A-1: HOP-MATCH - the level-hopping procedure.
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MATCH (see Figure A-2) 1s the basic matching code which works as described
above. However, instead of calling itself recursively 1t calls HOP-MATCH on the
subtrees of the F-tree it 1s currently analyzing. In this way, level-hopping occurs at
all levels 1n the F-trees.

Several factors determine what will be the ‘‘best’” match of nodes in the new F-
tree with nodes 1n the old F-tree. The scoring system captures all of these factors
as a single number As was mentioned above, points are added or subtracted from
this score on three occasions: 1 - when two leaf nodes are compared, 2 - when two
parent nodes are compared, 3 - when a parent node has unmatched children.

PROCEDURE MATCH(memette-a,memette-b)
BEGIN
tlevel!:=!level!-1:
score :=COMPARE (memette-a,memette~-b) ;
IF memette-a is UNITARY

THEN
BEGIN
!level!:=!level!+l;
RETURN !level! = score;
END;
ELSE
BEGIN
DO FOR all x:=(F-children of memette-a)
BEGIN
best-child-match:=0;
DO FOR all y:=(F-children of memette-b)
best-child-match:=
MAX (best-child-match,HOP-MATCH(x,y)):
score:=score+best-child-match;
REMOVE the best-child matched from
memette-b’'s F-children;
END;
!level!:=!level!+1;

RETURN !level!*[score +
lextra-parts-penalty! =
END (the number o! unmatched F-children)];
END o

MATCH compares the new F-tree rooted at memette-a against the new
F-tree rooted at memette-b. The score 1s computed by adding the value
returned by COMPAREIng the root nodes to the sum of the best matches
of the trees’ F-children. The variable llevell 1s used to weight the value
returned at each level (higher levels are worth more)  ILevell must be
initialized in the calling procedure to be the greater of the depth of the
new F-tree or the old F-tree.

Figure A-2: MATCH - the basic algonthm.

The function COMPARE (see Figure A-3) returns the score computed by
comparing the two memettes that 1t 1s passed as arguments. The score returned
depends on what the memettes are ultimately variants of, whether one or both of
them are NULL# memettes, and any relations the memettes might be involved in.
Variables are set in the calling procedure that are used for each of these cases
(they are indicated by lxxxxxx!). Another variable, !at-levell 1s incremented and
decremented in MATCH to keep track of how deep in the recursion the program is,
and 1s used as a multiplier factor for the !xxxxxx!  vaniabless. ~COMPARE-
RELATION 1s called by COMPARE to compute the value added for relation
matches.
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The score for any subtree is computed by summing the scores for all the matched
children of the subtree together with the score for matching the root of the subtree.
Any unmatched children are subtracted from the score according to the value that
lextra-parts-penalty! has.

PROCEDURE COMPARE (memette-a,memette-b)
BEGIN
CASE 0OF
VARIANT-OF (memette-a)=VARIANT-OF (memette-b) :
sum:=!same~variant-of-match!;
IS-NULL#(memette-a) OR IS-NULL#(memette-b):
sum:=!null-real-match!;
OTHERVWISE:
sum:=!unknown-part-match!;
ENDCASE ;

DO gg§1311 x:=(relations that involve memette-a)
best-relation-match:=0;
DO FOR all y:=(relations that involve memette-b)
best-relation-match:=
MAX (best-relation-match,
COMPARE-RELATION(x,y));
sum:=sum+best-relation-match;
REMOVE the best-relation matched from
END the relations that memette-b is in;

RETURN sunm;
END

The COMPARE function evaluates how two individual memettes
compare. [f they are ultlmatelg variants of the same 1mtial concept then
they are considered to match better than if they are not. This is true
only if the value of Isame-variant-of-match! is greater then lunknown-part-
match!  This function returns a score that is dependent on both what the
memettes are variants of and how they are used in relations. COMPARE-
RELATION 1s a simple function that looks inside relation frames and
returns a non-zero value 1If 1t finds some commonalities between x and y.

Figure A-3: COMPARE - the lowest-level evaluation function.

A.3 Scoring variables

In this section we discuss each of the variables of significance to the F-tree
matching algorithm  The values that have been used to generate the examples n
this thesis are shown in parenthesis zfter the name of each variable. We have
found the program to be fairly insensitive to the values of these variables.
However, 1t is sensitive to the relative ordering of their values  For example,
lsame-varnant-of-match! > lunknown-part-match! > Inull-real-match! produces
different results than !'unknown-part-match! > Isame-variant-of-match! > !null-real-
match!

- Isame-vaniant-of-match! (+7) - This is the value assigned to a memette
matching where both memettes (old and new) are found to ultimately be
variants of the same initial concept (by following the VARIANT-OF links
all the way up the G-tree) In the program used for the examples in
this thesis, this value 1is assigned’ regardless of how many G-tree




VARIANT-OF links need to be followed. However we have
experimented with using a percentage of this value that depends on how
many links must be followed.

'null-real-match! (-2) - When a real memette (ie., non-NULL# memette)
1s matched against a NULL# memette this i1s the value assigned to their
match.  Using a negative value for 'null-real-match! has the effect of
penalizing the use of level-hopping. This technique is a heuristic that
limits the number of levels that will be inserted to give a good match.

tunknown-part-match! (+1) - When two memettes are matched and they
are not ultimately variants of the same 1nitial concept, then an
UNKNOWN# memette 1s created in their generalized F-tree. The value
of this variable 1s assigned to a match of memettes in these cases. Its
value should be less than the value of !same-variant-of-match!, but still
positive compared to the value of 'null-real-match!.

- lextra-parts-penalty! (-3) - This is used when there are unmatched F-
children at any level in the F-treee The number of such children
multiphes this variable, and this product i1s added into the score returned
from MATCH. It should have a value that is negative relative to both
tunknown-part-match! and !same-vaniant-of-match!. Its purpose is to push
the algonithm into matching as many memettes as possible.

levell - This vanable 1s 1mitialed to be the depth of the deepest F-tree
(new or old) It is then decremented at each call to MATCH, and
incremented upon return. It 1s used as a multiplying factor for all of
the above variables Its purpose 15 to allow memette matches higher in
the F-tree to count more strongly than memette matches lower in the F-
trees
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