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Abstract

We study optimal algorithms for linear problems in
two settings: the average case and the probabilistic
case settings. We assume that the probability measure
is Gaussian. This assumption enables ut to consider a
general class of error criteria. we prove that in both
settings adaption does not help and a translated spline
algorithm is optimal. We also devise optimal information
under some additional assumptions concerning the error -

criterion.




l. Introduction

In this paper we study the optimal reduction of
uncertainty for linear problems in two settings: the
average case setting and the probabilistic case setting.

By a linear problem we mean the problem of approximat-
ing sf, where S 1is a linear operator defined on a
separable Hilbert space Fl’ when only partial information
Nf on £ 1is available. This partial information causes
uncertainty. In the average case setting the intrinsic.
uncertainty is measured by the average size of the error
of the best possible algorithm that uses N. In the pro-
babilistic case setting it is measured by the probability
that the error of the best possible algorithm is small.

In this paper we assume that the probability measure on the

space F. is Gaussian and the difference between Sf and x,

1
the value given by an algorithm, is measured by E(Sf-x),
where E is an arbitrary error functional.

The average case setting has been studied in [5,7,8]
for rather general class of probability measures assuming
however that the error functiocnal is of a special case.
Typically it is aséﬁmed that E(Sf-x) = Hsf—x”2 and S(Fl)

is a separable Hilbert space. ' Here restricting the class

of probability measures to Gaussian measures we relax the



assumption concerning the problem énd the form of the
error functional E. We are able also to study the pro-
babilistic case setting.

AThe following results are obtained for both the

average case and the probabilistic case settings:

1 For every error functional and for every adaptive
information N° there exists nonadaptive information
on the same structure as N° with uncertainty not
greater than the uncertainty caused by N2. Thus
adaption does not help.

2 For every error functional and for every nonadaptive
information N a translated spline algorithm is
optimal. A sufficient condition for the spline
algorithm to be optimal is given.

3 Optimal information N* is exhibited under some addi-

tional assumptions concerning the error functional E. -

We now comment on the results mentioned above. The
result 1° states that adaptive information is not more
powerful than nonadaptive information in either setting.

A similar result for the average case setting has been
established in [5,8]. This is not merely of theoretical
interest since adaptive information has several undesirable

properties like eg.:



--It has more complicated structure than nonadaptive
information

--It is ill-suited for parallel computation, whereas
nonadaptive information can be computed very efficiently

in parallel,

Since adaptive information does not decréase the uncer-
tainty, it may be replaced in gractice by nonadaptive
information. We want to stress that many commonly used
algorithms use adaptive information.

We comment on the result 2° which states that in
both settings a translated spline algorithm * is optimal.
(For a similar result for the average case setting see
[5,7,9].) Since the spline algorithm is linear, the
optimal algorithm 4* is affine. Hence the cost of evaluat-
ing »* for given y = Nf is proportional to the cost of
evaluating y = Nf. This is a desirable property from the
complexity point of view.

The result 3° gives us the best information to be
used, i.e., information which minimizes the uncertainty
in two settings.

We now summarize the contents of the paper. In
Section 2 we formulate the problem. In Section 3 we
derive some properties of Gaussian measures. These

properties will play a key role in the rest of this paper.



In Secticn 4 we study the average‘éaSe setting, and we
prove that lo, 2o and 3O hold for that setting. 1In Section
5 we study the probabilistic case setting, and we prove
that lo, 2o and 3° nold for that setting. In Section 6

we prove that the spline algorithm enjoys one more
optimality property. Namely, assuming that the error
functional E(Sf-X) = HSf-xnz, the spline algorithm

minimizes the variance.




2.  Basic Concepts

Our aim is to approximate the solution operator S,

S: Fl > F2.

We assume that S 1is linear, Fl is a separable Hilbert

space and F2 is a linear space, both F. and F. over the

1 2

real field. Hence we want to construct an element

x = x(f) € F_, which approximates Sf, Ve e Fl, with a

2

small error. The error between Sf and X is measured By

E(Sf - x), where

E: F2 > l+,

is called an error functional. For example, E might be

of the form E(g) = ”g”p if F2 is normed. Here we consider

a general class of error functionals. The only assumption
concerning E 1is that for every g € Fz'H(') d==fE(S(-)-g) is
measurable, i.e., H-l(B) € B(Fl) whenever B € B(Fl), where
B(Fl) stands for the g-field of Borel sets from Fl'

To construct x = x(f) we need to know something about
f. We assume that our knowledge of f is given by Na(f).

a . . . . .
Here N 1s a linear adaptive information operator (for

brevity adaptive information), i.e.,

a .
(2-1) N (f) = [(f)gl):(f)gz(yl));"':(f’gn(yl”"’yn_l))]’



where (°,*) is the innerproduct in.Fl,

(f’gi<yl""’yi-l)’ i=2,3,...,n.

For brevity we shall write gi(y) = gi(yl""’yi-l) € Fl
for every vy = [yl,...,yn] € ln. We assume that gi(.),
as functions of vy, are measurable. Without loss of
generality we assume that gl(y),...,gn(y) are linearly

.

independent for every y € . By
a
(2.3) card(N ) = n,

we mean the cardinality of N°. Note that in general the
ith evaluation (f’gi(yl""’yi-l)) depends on the pre-
viously computed information yl(f),...,yi_l(f). That's
why N° is called adaptive. If g, do not depend on vy,

gi(y) = gi,‘¢i, Yy € 2”, then N° is called ncnadaptive.

To stress the nonadaptive character of N® we often write
on , . . .
Nn n instead of Na. For every adaptive information Na, by
- n < . df .
fixing y € R a priori and letting 9, = gi(y). we obtain

a nonadaptive information

(2.4) NOOTC) = LGhg) e, ()]

) , a
which uses the same evaluations as N .



. a
Knowing N (f) we construct an approximation x = x(f)

by an algorithm 0
X = o (NO(£)),

where by an algorithm @ that uses N® we mean any mapping

a n .
(2.5) o: N (F)) =B > F,.

We are interested in optimal algorithms, that is
algorithms with minimal errors. what we mean by the error
of an algorithm depends on the setting we are dealing '
with. In this paper we study two different settings:
the average case setting and the probabilistic case
setting. We begin with the average case setting.

In the average case setting the error of ¢ is

determined by the average behavior of the error

E(Sf-@(Naf)). More precisely, let |, be a Gaussian measure
defined on B(F,). Then the average error of ¢ is defined
by
(2.6) eV (u,n?) = fo E(SE - o (N2£)) L (df)

1

a . .
and an optimal algorithm x* that uses N is defined by

df . a
(2.7) e (o, 8" = 29 ®) T inf V9 (y,NY).
e0]



This means that in the average case setting we are in-
terested in algorithms »*, if they exist, whose average
error are minimal. In Section 4 we find g* for every

. a
nonadaptive information N -~and for adaptive N we prove

0

n
« ) for some y=*.

that ro I (NY) < ::E”""(N;l
We now turn to.the probabilistic case setting. 1In
this setting the goodness of ¢ is measured by the
probability of success, i.e., by the probability that the
error E(Sf - @(Naf)) of ¢ 1is small. More precisely,

given ¢ > 0, let
(2.8) prob(p,N , ¢) = u((f € F,: E(Sf-u(NT£)) < €)),

where 3 1is a Gaussian measure defined on B(Fl)' Then by

an optimal algorithm that uses N° we mean an algorithm o*

so that

(2.9) Prob(m*,Na;c) = Prob(Na,c) =£ sup Prob(c,Na,e).

=]

: . . o
In Section 5 we find ¢* for every nonadaptive N"°",  For

on

* ? E) for

adaptive N we prové that Prob(Na,c) < Prob(Ng
some y¥*,
We comment on the definitions (2.6) and (2.8). 1In

order for (2.6) and/or (2.8) to be well defined,

E(S(')-Q(Na('))), as a function of £, should be measurable.




It is shown in [6] that this assumption is not restrictive
since it is possible to exteﬁd the definitions (2.6)
and (2.8) for every algorithm‘and prove that for optimal
algorithms g*, E(S(.)—m*(Na(-))) is measurable.

We now recall some basic properties of Gaussian
measures, By a Gaussian measure on B(Fl) we mean a measure
u such that

(2.10) fF exp{i(£,x)},(df) = exp[i(a,x)—%(Ax,x)],
1

¥x € Fl, (i=J:i),

where A: Fl - Fl is a self-adjoint nonnegative definite

operator Qith finite trace and a is an element of Fl.
(The left hand side of (2.10) is called the characteristic

functional of |; and is denoted by y (x).) Then the mean
)

element m of |, is given by
M

(2.11) m = a
u

and the correlation operator § of , by
o

]
>

(2.12) S
)

(see [2,3,4]). Recall that for an arbitrary measure i,

its mean element m 1is defined by
M
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(2.13) (m ,x) = o (£,x)u(df), Y¥x e Fl,
H 1

and its correlation operator Su by
(2.14) (s g,h) = [ (f-m ,g) (f-m ,hiu(af),
u 1 W 5

Vg,h € Fl.

Throughout the rest of this paper we shall assume
without loss of generality that the mean element m of
u

u is zero. m = 0, and that the correlation operator S
' 99

is positive definite.
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3. Conditional measure.

In this section we exhibit an important property of
the.conditional measure for adaptive information. This
property will be extensively used in the next sections.
We begin with the definition of conditional measure
(see [3]).

For an adaptive information operator Na, let
ul(-,Na) be the probability measure on B(R") induced by

a |
N, i.e.,

(3.1) : N2(£) € A)),

() = u (D 7Ha)) = u(lf e By

M1
YA € B(R").

Let uz('\y,Na),y € ln, be a family of probability measures
on B(Fl) such that

a a, -1 a, _
(3'2) uz(F:L\Y,N ) = uz((N ) ({Y}HY,N ) = l:

n
for almost every v € R,

(3.3) My (B|-,N%), as a function of vy, is u,(-|N87)-

measurable, VB € B(Fl),

and

a
(3.4) L(B) = fx“ u2(B|y,Na)ul(dy,N ), VB € B(F,).
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The family u, (- |y,N°) is called the conditional measure
with respect to N2 and y. The existence and uniqueness
of oy follows from [3, Th. 8.1].

Let now G be a measurable function, G: Fl - l+.

Then
(3.5) o G(fu(ag)

= a a
.xn IV(Na,Y) G(f)uz(dfly,N )]Ul(dY)N ):

where V(Na,y) =(Na)-l([y]) = (f € F,: Na,(f) =y} is the

1
set of elements £ from Fl which share the same informa-
tion, Nf = y. The essence of (3.5) is that we first
integrate G over all £ with fixed information value vy,

and then over all values y from B

Recall that

(3.6) NU(E) = [(£,99), (£,95(y)))seee, (£,9 (¥y,eeeny )],
Y, = yi(f) = (f,gi(yl,...,yi_l)).

For brevity we write gi(y) = gi(yl""’yi—l)’ Without loss

of generality we assume that

(3.7) (8 9, (¥),95(¥)) = 85, Vy e &".

Let for a fixed y = [yl,...,yn] € ln,
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a n .
3.8 N, =T, .S g.
(3.8) m(N",y) = £y ¥4S 94(¥)
and
(3.9) o . () =g8 (-,9.(¥))S g.(y)

N2,y i=1 3 uo3
Then ¢ : Fl > Fl is linear and m(Na,y) = g (g), for
Ney N,y
every g € V(Na,y), and for every fixed y € R"., Of course,
m(N?,y(£)) and ¢ , y(£) = N®(f), need not be linear
N ,y(£)

in f£.

.

Theorem 3.1: Let N® be an arbitrary information operator

of the form (3.7).

(i) Then the induced probability measure
(3.10) (-8 = u (),

. , n ,
where Hy is the Gaussian measure on B(R ) with mean

element zero and correlation operator identity, i.e.,

1 1
= —— =
(3.11) “l(A) = /2 exp 2(x,x)}dnx.
J(2m)
(ii) The conditional measure uz(-|y,Na) is the
Gaussian measure on B(Fl) with mean element m(Na,y) given
by (3.6) and correlation operator

(3.12) S = (I -o¢ )S (I-o* ).
Na,y Nay U Na’y
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Proof: It is shown in (8, Th. 4;éj that there exists a
probability measure u; on B(ln) such that ul(-,Na) =.ul(')
for every N® of the form (3.7)." It was shown in
[6, Th. 4.2 (i)] that for every nonadaptive N °O of the
form (3.7), ul(-,Nnon) is the Gaussian measure on B(!n)
with mean element zero and correlation operator identity.
Since ul(-,Na} = ul(-,Nnon) = uys the proof of Theorem
3.1 (i) is completed.

To prove (ii), let xz(-|y,Na) be the Gaussian measure
on B(Fl) with mean element m(Na,y) given by (3.8) and
correlation operator S a given by (3.12). Then, due

to (2.10)

fo et gy, n®)
1

= exp(i(m(Na,y),X) - %(s a x,x)}.
N,y

Since c;a’y(x) = 2?=l(x,sugj(y))gj(y), we have
(s x,x) = (S (x-c*a (x)),x-c*a (x))

N>,y “ N,y N,y

(s x,x) - 2(S X,c*a (x)) + (S c*a (x),e a (x))
W NS,y RN,y N,y

n 2 n 2
S x,;x) - 2 %, S xX,9. + L. S X,4g.
(s /) 521 (8 X095 (¥ + Ti_ (8 x,95(9))

n
S x,x) - Z. S X,49.
(s %,%) = E3_)(S %,9,(¥)

)2,

Hence
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(3.13) J‘F el (£:%) )\Z(dfly,Na) = exp(—%‘(sux,x)}H(X,Y),
1

where

H(x,y) = exp(i(m(¥,y),%) += % (s x9.(y))2].
2 ]—l u J

Due to (3.8)

n . 1 2
H(x,y) exp[2j=l{xyj(sux,gj(y))+§(sux,gj(y)) }

. 1 2
- ”?:1 exP(le(Sux,gj(y))+5(sux,gj(y)) J.

Recall that gj(y) = gj(yl,...,yj_l), and that w, is the

Gaussian measure. Hence

a ¥ I H(%,¥)u, (dy)

1 n .
=t * M s
S UL exp[xyj(sux,gj(yl, Y ))

j(Zﬂ)n “ o
a

1 1 2
+ 2 (sux)gj (Yl:- .. )Yj_l) ) }exp(_221=lyj}d[yl, ¢ . :Y ] -

n

Observe that

1 .
Ix exp(lyj(sux,gj(yl,...,yjfl))

J2n

1 1.2
5 e Y. -2v<}ldy.
* 25, %9 (¥ sy g)) texpl{-3y]ldy,
1
= eXP(Z(Sux,gj(yl,-..

1
Y. )}/
i-1 E;IR

. 12
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1 of =
= exptz(sux,gj(yl,..-,yj_n))}exp( 2(Sux,qj<yl,---,y‘ )) )

= l’
This yields that a = 1 and

i(f,X) a _ _F_l_ -
jlnjFl e A\, (Af|y,N") = exp( 2(sux,x)] ¢u(x),

where § is the characteristic functional of . Since
0}
characteristic functional defines measure uniquely and
since conditional measure is determined uniquely (up to”’
a a
a set of W,-measure zero), uz(v|y,N ) = kz(.ly,N ),

Vy € la,a.e. This proves the theorem.

Theorem 3.1 states that the induced measure ul(-,Na)
does not depend on Na, it only depends on n = card(Na).
From (ii) we can easily conclude that for y € Rn, the
conditional measure uz(-‘y,Na) is the same as the condi-

tional measure for the nonadaptive information operator

no
N en
y

(3.14) v, NY) = ) (- |y, 0o,

Furthermore, uz(-|y,Na) is a translated measure
non

Uz("O;Ny ), i.e.,

on

(3.15)  u, (Bly,N°) = uz(B-m(na,y)|o,1~:; ), ¥B e B(F).
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In particular, if N'O© is nonadaptive then

on on

(3.16) Ly (Bly, N = uy (B-m(¥",y) 0,8, VB € B(F)).

We end this section by two lemmas whose proofs, because

of their length, are presented in the Appendix.

Lemma 3.1: For every Gaussian measure ) with mean

element zero and for every balanced and convex set B,

(3.17)  A(B) 2 a(B+h), Nh e F . a

Lemma 3.2: Let Xl’k2 be two Gaussian measures on a
separable Hilbert space with mean elements zero and
correlation operators § and s reépectively. Let

1 2

al,i’32,i”"’(aj,i > aj+l,i) be the eigenvalues of

operators SX , 1 =1,2. If

a5 < @y 5o Yi=1,2,...

then

)\1(3(013)) 2 )\2(J(0; e))’ V€2 O:

where J(0,¢) stands for the ball with center zero and

radius . ) L
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4. sSpline algorithm and adaptive information on the

average.

In this section we prove that for every error
functioconal E and for every nonadaptive information, a
translated spline algorithm is optimal. We also prove
that for every adaptive information N® there exists non-
adaptive inforﬁation of the s ame cardinality and whose
radius is not greater than the radius of Na.

Let N* and « be given. Recall that the (global)

average errcr of ¢ is defined by

(4.1) eI (@, N%) = [ E(SE - o(N7E))y(df)

1

and the (global) average radius of N°, by

(4.2) 29 (8% = inf 2V ().
[v+]

. a | L.
Hence the global average radius of N 1is the minimal

global average error made by any algorithm ¢ that uses

Na, and the optimal algorithm g* that uses N® is defined

so that its error is minimal, i.e.,

avg

(4.3) eV (o*, 8% = ().

Wwe now define the concept of the local average error

as studied in [6]. Due to (3.5) and Theorem 3.1l(i)
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: . d
> inf [ E(S£-g)u, (af]0, 8" T n
geF 1
2
This proves that
ravg(Nnon) S H
To prove that ravg(Nnon) = H we can assume that H is

finite. Then for every g > 0, there exists gc € Fz such

non .
that [, E(Sf-g_)u, (Af|O,N""") < H + 4. Define Qé(y)
= Sm(Nn n,y) +'gc° Then

—-n

av non a av no
e d (Qé s N ) = e d (m N
R

"¥)u, (dy) < H-g.

) £ H and consequently

. . . o
Since 4 1is arbitrary, ravg(Nn n

ran(Nnon) = H. This proves (4.6). To complete the

proof observe that if H = +» then every algorithm is

optimal and P = Fz. Therefore we can assume that H ¢ +o,
non ,

If o*(y) = Sm(N ,¥) + g*(y) with g*(y) € P for almost

every vy, then, obviously, g*(y) = Sm(Nnon,y) + g* (y)

with g*(y) + P for almost every y, then, obviously, o* is

optimal. On the other hand, take an arbitrary algorithm

o Define

o

Y =(y € %: g(y) = o(y)-sm(N"°",y) £ p).

If Y has a positive My measure, then
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o no
eV (o, 8" = rol e E(SE-g(¥))y, (A£|0,N n)ul(dy)

1

+ 1 0 Jp E(SE-g(¥))u, (@£]0,NT), (ay)

E\Y "1

avg
r

avg n

> up 2PN g @y

ravg(Nnon

).

Hence ¢ 1is not optimal. This completes the proof of

Theorem 4.1. w

Theorem 4.1 states that there exists an optimal
algorithm iff the infinum in (4.8) is attained by some
element g*. Of course g* need not be unique, but taking

any g* satisfying (4.8), the algorithm
*(0) =g () + g*
0 . = o . g

is optimal where

o (N°PfF) = £ (£,9.)s5 g. = sm(N"°", N"f) .
i=1 i woi

The algorithm ms’ called the spline algorithm, is l near.

Hence g* is an affine mapping, which is a desirable
property from the complexity point of view. On the other
hand if the infinum in (4.8) is not attained, i.e.,
P = @, then there is no optimal algorithm. 1In this case

taking g* so that ! E(Sf-g*)uz(dflo,Nnon) is sufficiently

Py
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avg non avg ono

( M o+ o,

close to r ), say is not greater than r

the following affine algorithm
©*(+) = g°(+) + g*

is almost optimal, since
éavg(m*’Nnon) < ravg(Nnon)

+ 5.

We now prove that adaption does not help on the average.

Let N° be adaptive information of the form (3.7), and let

H(y) = inf ' E(Sf-g)u, (d£]0,N°°0),
gerF 2
2
Then, due to (3.15) and (4.6),
avg _a, _ _ avg, non, 2
(4.9) r SN = [ H(Y)gdy) = r (N, )y (dy).
R R
Let y*, y* ¢ nn, be such that
(4.10) ran(N;Sn) < 9.
Observe that such y* exists. Indeed, ran(Nnon) > ravg(Na)
for every y would contradict (4.9). Hence we have proven

Theorem 4.2: For every adaptive information N® there

exists y* € B such that

av non
r g(NY*

) £ ravg(Na).

We now give a sufficient condition on the error
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functional E so that the spline algorithm @s is optimal.

Technically, this means that 0 € p,

Theorem 4.3: If E is convex and symmetric (with respect

: , . , non
to zero) then for every nonadaptive information N the

spline algorithm @s is optimal.

Proof: Although Theorem 4.3 follows immediately from [6],

we present its proof for the completeness., Take g € Fz.
.. . non

Then, due to the symmetricity of uz(-) = uz(-|0,N )

(f.e., uy(B) = u,(-B), VB € B(F))),

1
IFl E(Sf-g)uz(df) = EIFI (E(Sf-g) + E(-Sf—g)]uz(df).

Since E 1is symmetric and convex,

N =

—;'[E(Sf-g)+E(Sf-g)} = S(E(Sf-g)+E(Sf+g)} > E(Sf).

Hence
J‘FlE(Sf-g)uz(df) > J‘FLE(Sf)uz(df), Yg ¢ F,.
This proves that ¢* = 0 € P and completes the proof of

Theorem 4.2. |

Remark 4.1: Optimality of the spline algorithm on the
average has been established in [7,8] for orthogonally

invariant measures assuming that F_ is a separable Hilbert

2

space and E(g) = ”9“2. The same result was obtained in
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[5] assuming that F. is a finite dimensional space and

1
a a2 .
E(Sf-g(N £)) =.|lSf-x (N £)!|"2 ((s £,£)) for some function
9
o .
In this paper, restrictiong the class of probability

measures to Gaussian measures we relax the assumptions

and F.. |

concerning E and the spaces Fl 5

We now exhibit an n-th optimal information operator

N* of card(N*) = n, i.e., N* satisfying
av
r g(N*) < ran(Na), VNa, card(N%) = n.

S and

We find N* under some additional assumptions on Fz,

E. Namely, we assume that F2 is a separable Hilbert space,

S 1is continuous and

(4.11) E(g) = H(|lg]])

for some function H: R+ > R+ which is convex -and nondecreasing.
Observe that then E 1is convex and symmetric and therefore the
spline algorithm is optimal for every ncnadaptive

information,

To find N* we proceed as follows. Let

= *
(4.12) R SSuS : F2 > F2.

Since S 1is continuous, R is a nonnegative definite
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operator with finite trace. Let‘gi,gz,... be eigenelements

of R corresponding to the eigenvalues Xy > N 20002 o,

i.e.,
* = * * * =
Take
1 .
(4.13) gi = — S*g;, 1 =1,2,...
Ay
Remark 4.2: The optimal information for the average

case setting studied in [7]) is derived from the operator

K defined by

1/25*551/2: F. > F

K = Su " 1 1

Observe that if 1n is an eigenvector of K corresponding

to an eigenvalue B8, Kn = Bn, then letting

1/2
= SS
¢ L
we get
2
R¢ = Ss S*SSl/zn = SSl/ZKq = BSSl/ n = 3¢.
M N M u

Hence the operators K and R have the same eigenvalues.

1/2

|93

Furthermore n is an eigenvector of K iff SS is an

eigenvector of R. [
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Define the nonadaptive information operator
(4.14) N*(£) = [(£,97),...,(E,90)1].
Note that N* satisfies (3.7).

Theorem 4.4: The information operator N¥ defined by

(4.14) is nth optimal.

Proof: Due toc Theorem 4.2, we need only to prove that

ravg(N*) < ravg[Nnon)’
non
for every N of the form (3.7). Due to Theorems 4.1
and 4.3,
av non non
eSO = f (IS, (AE[O,NT).
1

If H 1is constant, H(x) = ¢, then ravg(Nnon) = ran(N*)
non - .

for every N . Hence without loss of generality we can

assume that H 1s not constant. Then H(l+) = [H(0),+=).

Indeed, convexity of H vyields 2H(x) < H(O0) + H(x),

¥x € l+. Since H 1is nondecreasing, sup(H(X):x € R+}

= limX*G H(x) c. Note that H(0) < ¢. If c ¢ +» then

2c < H(0) + ¢ < 2c which is a contradiction. Hence

H(l+) = [{H(0),+=) as claimed. Define

(4.15) y (B,N°°T) = u, (£ € F oz H(|SE]) € B}|0,N"),

VB € B(E(R)).

= C
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no . Ly
Then y (- ,N n) 18 a probability measure on B(H(l+)) and

(4.16) ravg(Nnon) - ty(dt,Nnon).

pteo
vH(O)

r

non . . ,
Let D(*,N ) be the distribution function for Y(.’Nnon)

i.e.,
non X non
4.17 =
(4.17) D(x,N ") = flio) YEENT), Vx e H(R,).
We shall prove that
(4.18)  D(x,8°™) < D(x,§¥*), Vx e H(R,), WO .

Before presenting the proof of (4.18), we show that
(4.18) will complete the_proof of Theorem 4.4. For this

end, observe that

« .
t=1lim ., . t, 4 (t), Ve > H(0),
X i=1 "i,k (ai,k’ai+l,k]
for some numbers H(0) = al,k < a2,k <...< ak,k < ak+l,k = 4w

o
and ti € (a Hence for every Nn n,

ik’ 241,k

avg _non, _ .. k non
= 14 k & D Nnon) - D¢ Nnon)]
T R Iiag S k(P e 3,k
. k-1 non
= Rl ke, 1P B ) S
. non non, _ non, _
since D(al,k’N ) = 0 and D(ak+l,k’N ) = D(+4»,N ) 1.

Hence,
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t ) [D(a, *)]

non
(%) x " Fi+1,x i+l x’¥ 17D

= lim z§=

N
+1,k’
k

1

and ti - ti+l < 0 imply that

ravg(Nnon) _ ran(N*) S o.

Hence to complete the proof of Theorem 4.4 it is enough

to show that (4.18) holds. Observe that

(4.19)  D0,N"™) = Of: H(|sE]) < x)[o,8) '
=, ((£: |Isgll < 5 (x)} 0,87,
Define
A(B,NTT) = o ((£ € Fy: SE € BI|O,NTT),

¥B ¢ B(F,).

Then x(-,Nnon) is a probability measure on B(Fz) and, due

to (4.19),

(4.20)  p(x,N"°™) =1(J(0,2),N T,

where now z = H-l(x)‘and J(0,2) is the ball in F2 with
center zero and radius 2z. We need the following two

lemmas.

Lemma 4.1: For every Nnon,x(-,Nnon) is the Gaussian

measure with mean element zero and c¢Hrrelation operator
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= - -
R on = S(I ancn)su(I,cﬁnon)s*.. [ |

proof: Observe that for the characteristic functional
¥ non of 1(-,Nn°n) we have
, non
¥ non® = g exp(i(g,h))a(dg,n "M,
N 2

Change variables by setting £ = Sg. Then

¥ non¥) = [p expli(£,5%n) )y, (a£ 0,87
N 1
= exp(-3((I-0 __ )S (I-g*_ _)S*h,s+h})
2 non’" non !
N N
= exp(-* (R h,h)) Vher
2 non "’ ’ 2°
N
This completes the proof of Lemma 4.i. »
Let SEATIERE (Yi > Yisl 2 0) be the eigenvalues of
RNnon' It 1s easy to check that for N*, Xn+l’kn+2’°'
are the dominating eigenvalues of R Iy
N
Lemma 4.2:
|

(4.21) Apak S Yo YR = 1,2,

Proof (induction on k): For k = 1, (4.21) holds trivially.

Suppose therefore that (4.21) holds for every k < ko. We
prove that (4.21) also holds for k = ko+l.

For this end, let Nys 7 -0 ™y be eigenelements of

PR
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KNnon corresponding to \BEACIEREEA L Take

n+k "
= : [
9 = Lo ¥i¢1 ¢ Fy

Such that
(4.22) ”9”2 - zn+k x2 =1
’ i=1 i ’
(4.23) q*non(S*g) = 0,
N
and
(4.24) (g,ni) =0, 1i-= l,2,...,k0 = k-1.

Since (4.23) and (4.24) are equivalent to a homogeneous
system of n+k-1 linear equations with n + k unknowns, such
g exists. Furthermore, (4.22) and (4.24) yield that

Yy > (RNnong’g)‘ Hence, due to (4.23), we get

n+k 2 n+k_2
Vg 2 (R 1on3:9) = (RE9) = Ty ai% 2 h o D0 %)
N
= Ak’
which completes the proof of Lemma 4.2. L

We are ready to complete the proof of Theorem 4.4,

Due to Lemmas 4.1, 4.2 and 3.2,

A (J(0,2),N*) > )\(J(O,z),Nnon), VNnon, Yz ¢ n+.




Hence (4.20) yields that

D(x,N*) > D(x,Nnon) ’

This completes the proof of (4

of Theorem 4, 4.

non
VN ,‘v‘xen+.

-18) as well as the proof

31
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S. Spline algorithm and adaptive information in the
probabilistic setting.

In this section we prove that for every error funé-
tional E and for every nonadaptive information N,
the probability of the fact that the error does not exceed
¢, is maximized by a translated spline algorithm.  We
also prove that aggption doces not help in this setting.

Recall that for given '¢ > O, N and 0

(5.1) Prob(g,N7,¢) =u((£ € Fi: E(SE - o(N°£)) < c})
is the probability of the fact that the error E(Sf-g(N°f))
made by ¢ is not greater than ¢, and

(5.2) Prob(Na,c) = inf Prob(@,Na,c).
]

Then Prob(Na,e) is the maximal probability among all

algorithms that use Na, and the optimal algorithm @* that

uses Na is defined so that

(5.3) Prob(g*,N%, ¢) = Prob(N3, ).

. . . non
Theorem 5.1: For every nonadaptive information N of

the form (3.7)

(5.4) Prob(N"°%, ¢) = sup uy ((£ € Fut E(SE-g) < ¢)]0O,8°7).

1
geF2

Let
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(5.5) P ={g* €Fy: ) ({f€F: E(SE-g*) ¢ e} |0, 8"°")
= prob(N "7, ¢) .

An algorithm ¢* that uses N'°O is optimal iff

df )
(5.6) g(y) = m*(y)-Sm(Nnon,y) € P, for almost

every y € g°. y

Proof: The proof of this theorem differs from the proof
of Theorem 4.1 only at the beginning. Observe that for -
every algorithm ¢ that uses Non we have, due to (3.16)

and linearly of S,

non _

Proble,N ", e) = [ L, ((£€F): E(SE-p(y))Se) |y, N My, (dy)

u

= [ oy ([£€F ¢ E(SE- (o (y)-Sm(N"",y)))
R

< )]0, (ay)

< sup u, ([£ € Fl: E(SE-g) < ¢)|O,N °0).

geF2
Hence using the same reasoning as in the proof of Theorem
4.1 one can easily complete the proof of Theorem 5.1.

Therefore we skip this part.

Let N° be adaptive. Similar as in (4.10), let

y*,y* € Rn, be such that
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(5.7) prob (N, ¢) = Ik“ prob(ﬁ;én,c)ul(dy) < prob(N;fn,g).
of coufsa, such y* exists.
Theorem 5.2: For every adaptive information N® there
exists y* € gn such that
| |

non a
b N 5] 'P b N ] .
Prob ( v ¢) £ pProb( ¢)

As in Section 4 we give a sufficient condition on E

for the spline algorithm to be optimal, i.e., g* = 0 € P.

Theorem 5.3: If E is convex and symmetric (with respect

to zero) and if F, = S(F,) then for.every nonadaptive

2
information N'C" the spline algorithm ms is optimal. |
proof: To prove this theorem it is enough to show that
(5.8) uz([feFl: E(S£)<el) > u2((feFlg E(S£-g)<e]}),
Yg € F,
where 1, (+) = u, (- |0,8 7). Let

B(g) = (£ € Fy: E(Sf-g) < e}
and

B=2B(0) = (f e Fi: E(Sf) < e},
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Since F2 = S(Fl), there exists an element h € Fl such that

Sh = g. Qbserve that
B(g) € B + h,.

Indeed, for f € B(g) let f = f-h. Since E(Sf) = E(S(f-h))
= E(Sf-g) < e¢. Thus feBand f=f+heB+h as

claimed. This means that
w, ((£ € Fi: E(SE-9) < e}) = n,(B(9)) € u,(B + h).

Hence to prove (5.8) we need only to show that

(5.9) up(B) 2 uy(B +h),  Vhner.

Observe that B is convex and balanced. 1Indeed, if
fl,f2 € B then E(tf1+(l—t)f2) < tE(fl) + (l—t)E(fz) £ €,
i.e., tfl + (l—t)f2 € B, and if £ € B then E(-f) = E(f) < e,

i.e.,”f € B. Since Mo is a Gaussian measure with mean

element zero, Lemma 3.1 completes the proof of Theorem 5.3. |

The next theorem is about n-th optimal information

N*. The information N* of cardinality n 1is optimal iff
Prob (N*,¢) > Prob(Na,c), ‘VNa, card(Na) = n.

Theorem 5.4: Let E be of the form (4.11l) and let S

be continuous. Then the information N* defined by (4.14)
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is n-th optimal for every 'e > 0. ]

Proof: This theorem follows immediately from (4.18).
Indeed, due.to Theorem 5.2, we need only to consider

n

. no nen
nonadaptive information N . But then for every N

and every ¢ > O,

Prob (N7, ¢) = i, ((£6F): H(|SE)e)) = DE (o), 8",

Hence (4.18) implies that
Prob(N*, ¢) > Prob(N 0, ¢), YN0, Ve o,
which completes the proof. ) ‘ : L

We end this section by the following problem. For

a given set A ¢ B(ln) let

(5.10) Prob(y,N°, ¢,A) = y([£€F : E(Sf-g (N £))

1

< e A N°F € a)).

We want to find @* such that

4
(5.11) Prob(Na,g,A) =5 sup Prob(m,Na,c,A)
@ .

= Prob(g*,N%, ¢,A).

Observe that Prob(g,N°,¢,A) is the probability that

E(Sf-5(N°£)) < ¢ under the condition that N2(£) € A. Of
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n a
course, ror A = R, Prob(gy,N , ¢,A) = PrOb(w,Na,g).
For every adaptive information Na,

a,
Prob(e,N",'e,A) = [ 11, ((£€F): E(SE-g(y)) < -e}|y,N;‘°“)ul(dy)

S [p S9P u,(dfeF : E(Sf-g) el‘o’N;On)ul(dy)

geF2

non
= IA Prob(Ny :c)ul(dY)-
From this we can conclude

Theorem 5.5:

(1) For every adaptive information N® there exists

y* € Rn such that

" Prob(N?, ¢,A) < Prob(N;?n, e,A), YE, YeO0,VYa € B(r").

. . . . non
(ii) For every nonadaptive information N

on

Prob (Nn ) e,A) = Prob(NnonJ C)L.I.l(A)J VE: Ve 2 0

vA € B(R").

In particular, u* is optimal independently of A.
(iii) 1If F2 = S(Fl) and E 1is convex and symmetric
(with respect to zero) then the spline algorithm @S is
. non n
optimal for every N , every ¢ > 0 and every A € B(R ).
(iv) If F, is a separable Hilbert space, S 1is

2

continuous and E 1is of the form (4.11l), then N* defined
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by (4.14) is optimal for every e 50 and every A € B(R').

Theorem 5.5 states that the probability of 2a small

non . .
error does not depend on the value N £ of information.

This result will be used in a future paper for studying

optimal stopping criteria.
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5. Variance of spline algorithm.

In previous sections we showed when the spline
algorithm @s is optimal. Here we exhibit another
optimality property of ws showing that it minimizes the
variance whenever F, is a Hilbert space and E(g) = ”g”z.

non . . .
Let N be nonadaptive information and let o be

. o .
an algorithm that uses Nn n. By the variance of © Wwe

mean
(6.1) var (y) = fFl{”sf-m(NnOnf)”Z_eavg(w’Nnon)}Zu(dé)’
where
eavg(w,Nnon) _ fpl USf-m(Nnonf)”zu(df).
Theorem 6.1:
(6.2) var(”) = inf var(gp). g

Q@

. s
Proof: Let ¢ be an algorithm. Define h = 4 - 4 , i.e.,

o(NO0E) = o° ("°"f) + h(¥"°"). Then due to (3.18),

2
var (g) flanl[”Sf—ms(y)—h(y)”

av -.non, .2
e g(Q)N )]

up (QE|y, 8Ty, (ay)

I

2 no 2
[ nle IsEp] -9 (o, 8" )4y, (af)y (ay),
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non

where uz(.) = u2(-\0,1‘1 ). Observe that ”Sf-h(y)”2

= ”51"2 - 2(£,S*h(y) + ”h(y)”z. Since mean element of

Mo is zero, [ (f,s*h(y));z(df) = 0, and

Fy

o, = [ o (sE)*-2(2,5%n ()
R 1
2
+ IR |7 Iy, (@), (ay)
2 2
= ofp UISEN R 170,y (a5, (dy)
R 1

- eavg(as’Nnon) + I n”h(Y)“zul(dY)-
R

Hence
var(p) = [ fo (s £l%-e2V9 (o, 8"™) =2 (£, S*h () ) +[h (v) |
) § 1 ‘

2 2
- Ilnnﬁ(Z)” Hl(dz)] uz(df)ul(dy).

Change the variables by letting £ = -f, Then

var(p) = %I anl[[”Sf”z-ean(@s,Nnon)-Z(f,S*h(y))+”h(y)”2
R

- [ alm @)y @)

29 (o° M) + 2(£,5*h(y)) +hiy) |

+ (lsg)®-e
2 2
- [ Ihiz2)]| ul(dz)] Ju, (df)y, (dy)

. ,
2 J‘lr.m‘rf‘l[”s"‘” 'eavg(os:Nnon)+Hh(y)“

2 2
- Iln”h(z)” wy (dz)} uz(df)ul(dy),
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since %’[(a+b)2 + (a—b)2] > a2. Hence

(6.3) var(gp) > var(ms) + 2H1 + HZ’

where

Hy = f 0o UISE1%-eY9 (o, ™™ ) () |2
) -4 1

2 2
" L oalR @ 7, (323 %, (@) ay)

and

2 2 2 .
B2 = Jpnle RO - Gl % (32) )0, (@) (ay).
Of course, Hz 2 0 and therefore

(6.4) var (g) > var(ms) + 2H,.

We now prove that Hl = 0. Indeed,

2 2 2 2
H. =" [{|h(y) - " _|h(z)]| (dz)}". " (ISE
1 ..n | I v " M1 “Fy

avg, s __non

- e (¢ »N )]uz(df)]ul(dY)
and since eavg(ws’Nnon) = IF ”Sf”zuz(df), see Theorem 4.3
1l

and (4.8), Hl = 0 as claimed., Hence

var(p) > var(e"), ¥ o,
which completes the proof.

We want to stress that the minimal variance of the
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spline algorithm strongly depends on the form of E,
i.e., B(9) = ”gnz. For arbitrary E (even convexX
and symmetric) the spline algorithm need not minimize

the variance.
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7. Appendix.

We prove Lemmas 3.1 and 3.2. Since these lemmas
are well known for finite dimensional spaces, the proofs
are mainly to show that the infinite dimensional case

can be reduced to a finite dimensional one.

Proof of Lemma 3.1: We prove that (3.17) can be reduced

to a problem with a finite dimensional Gaussian measure.

Then the Anderson's inequality will complete the proof. .
Let gl,gz,... be eigenvalues of the covariance

operator SX’ ngi = aigi and (gi,gj) = Gij' Let X =

ker SX and let X' be the orthogonal complement of X,

F. = X* 9 X. Then for every £ € F £=f + f2, wheré

1 1’ 1
£ €Xand £, ¢ Xx*, and for every C € B(F))
(A.1) A (C) = at(c nxh),

where 3* is the Gaussian measure on B(X') with mean

element zero and covariance operator S = S |
- S X+

(4]). Observe that B N X* is convex and balanced and

(see

that (B +h) NX* < (B NX*) +h. (h=nh,+h, h, € X

2 1722 71

and h2 € X*). Hence, due to (A.1l),

X(B) = 1"(B N X*) and x(B+h) = A" ((B+h) N X < A*((BA)+h,).

This means that to prove (3.17) we can assume without




44

loss of generality that Xt = Fy and \» = )\*, i.e., that

all eigenvalues of SX are positive.

For ¥ = 1,2,... define Pk: Fl > Rk,
1 Cx
(A.Z) P (f) = [(f) )J""(f! )]0
k
Jcl Jak

Observe that for every set C € B(Fl), P;l(Pk(C))‘

-1 o0 -1
) Pk+l(pk+l(C)) and nk=l Pk (Pk(C)) = C. Hence

1

(A.3) A (€) = lim X (P _" (P, (C))), Ve e B(F)).

k k
Let A be the probability measure on B(EX) induced by
Pk’ i.e.,
-1 k

A, (A) = (P, _"(A)), Va e B(R).

k k
Then (A.3) can be rewritten as
(A.4) A(C) = lim xk(Pk(C)).

i k

Since for every k = 1,2,... the operator P, is of the

k

form (3.7) then, due to (3.10), is the Gaussian measure

M
on B(lk) with mean element zero and correlation operator
identity. Observe also, that Pk(B) is convex and balanced

and that Pk(B+h) = Pk(B) + Pk(h). Hence the Anderson's

inequality [l] yields that




(A.3) A (P (B)) > 3, (P, (B+h)),. ¥k = 1,2,...
This and (A.4) implies that

A (B) > A (B+h)

which completes the proof of Lemma 3.1. u

Proocf of Lemma 3.2: Leﬁ aj i be the eigenvalues of s

s

i
(i =1,2), and
(Ais) aj,l S aj’z) VJ = 112J
Similarly as in the proof of Lemma 3.1 we can assume
that 2, ., > 0. Then
J,1
(A¢7) Xi(J(O; e)) = lim Ai,k’ 1l = 1,2,
k
where
1 l _k 2
A, = ———°F exp(-3 T._, v.1d(y.,...,y,)
i,k JQE;TEuBi,k 2 “j=1 “j 1 k
and
k k 2 2
Bi,k = (y € B 2j=l aj,iyj < ¢ .
Since aj,l < aj,2’ V] =1,2,..., then BZ,k c Bl,k which
i i = cee i .7
implies that Al,k > A2,k’ k 1,2, This and (A.7)

complete the proof of Lemma 3.2. L

45
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