THE NEED FOR TEXT GENERATION

Kathleen R. McKeown

CUCS-173-85




The need for text generation

by KATHLEEN R. McKEOWN

Columbia University
New York, New York

ABSTRACT

For a variety of systems, such as expert systems, database systems, and problem-
solving systems, text generation is one way for the system to communicate effec-
tively with its users. This is particularly true when the system is likely to be used by
a wide range of users with varying levels of expertise and background. In this paper
I will show why explanation is a crucial feature of expert systems. how text gener-
ation can be used within database systems to familiarize users with the database,
and where text generation can aid communication with problem-solving systems.
Given that text generation is more than just a frill for such systems, a second focus
of the paper will be on the kinds of problems that any designer of a text generation
system must address. Some of the problems include being able to decide what to
say, how to organize that information, and how to express it in natural language.

87



The Need for Text Generation 89

INTRODUCTION

As computer systems become more sophisticated, they must
be able to communicate their results successfully to their users
if they are to be effective. For a variety of systems, the use of
natural language text is becoming increasingly popular for
such communication. This is particularly true when the system
is likely to be used by a wide range of users with varying levels
of expertise and background. Many potential users of com-
plex computer systems are naive and infrequent users: They
not only are unfamiliar with the computer and the formal
languages available to interact with it, but their planned use of
the system is infrequent enough that it does not warrant the
time needed to learn a formal language. For such users, the
ability to communicate with systems in everyday language
promises to open the door to a world of information and tools
they were previously unable to use. For expert users, on the
other hand, text generation can provide a summary of com-
plex system behavior that can allow them to detect errors
before delving into system details. '

In this paper I will show the role text generation plays in
three types of systems: expert systems, database systems. and
problem-solving systems. These systems all have a wide vari-
ety of users and have become complex enough that text gener-
ation is appropriate for the interface if ease of use is an issue.
Given that text generation is necessary for such systems, the
paper will also focus on the problems involved in communi-
cating through natural language. A sketch of the kinds of
solutions that have been successfully used is included, but this
overview primarily serves as motivation for the text gener-
ation problem and an introduction to the solutions and issues
considered by the other participants in this session.

EXPERT SYSTEMS

Communication with the user in expert systems has been
needed primarily to explain the reasoning used by the system
in producing its advice. Textual explanation has proved crucial
to the success of expert systems for several reasons.

First, expert system users are often not computer scientists
and would be unable to follow a formal representation of the
system’s reasoning. For example, users of medical expert sys-
tems are doctors and medical students. Natural language is'a
mode of communication familiar to users such as these who
may not want to take the time to learn other modes.

Users, though not experts in the programming methodol-
ogy of expert systems, are often experts in the domain of the
system. Again, doctors fit this characterization. Their purpose
in using the system is often for consultation: to gain advice on
a case or to confirm their own diagnosis. To evaluate the

advice provided and to determine whether to accept it, such
users need to be able to understand both how and why the
system came up with its advice.

Builders and maintainers of expert systems are now point-
ing out the value of textual explanation in identifying errors in
the underlying inferencing process. Often a trace of the infer-
ence process itself can be so lengthy (for example, in ACE,'
a single recommendation may invoke up to 15000 individual
production rules) that errors are difficult to detect. Kukich®
cites this benefit when an explanation facility was first added
to the XSEL system.® The underlying inferencing system had
been constructed incrementally by a number of different re-
searchers who often did not understand the conventions used
previously. Her explanation facility immediately pointed out
even such simple discrepancies as errors due to roundoff,
which had gone undetected.

. DATABASE SYSTEMS

Natural-language interfaces to database systems allow a user
to retrieve information from the database by asking questions
and receiving answers in English. For many questions, the
response can be generated by simply formatting the results of
a database search in a list or as part of a sentence. It has been
shown,* however, that many users of database systems, partic-
ularly naive and infrequent users, need to ask questions to
familiarize themselves with the database before asking spe-
cific questions about its contents. Such users need to know
what information is available in the database (e.g., ““What
kind of data do you have?"’), what specific terms mean in the
context of the database (e.g., “ What is production cost?”’), or
what the differences are between different terms (e.g.,
“What's the difference between manufacturing and produc-
tion cost?”’). Questions like these typically cannot be an-
swered by doing a search of the underlying database, and this
is one place where text generation has played an important
role. Natural language is particularly appropriate for answer-
ing such questions, since they require definitions, descrip-
tions, and longer textual sequences. To generate these Kinds
of responses, a formulation of strategies that can be used to
organize and determine content of the response is required.*

Research in response generation has also addressed the
problem of producing responses that cooperatively address
the questioner’s intentions. Frequently, users reveal in their
questions a presumption about the database that turns out to
be incorrect. The encoding of presumptions in utterances is a
formal feature of natural language that can be exploited to
detect and correct a user’s misconceptions.®”-® If such pre-
sumptions are not corrected, the user may be left with false




90 National Computer Conference, 1985

beliefs about the database even if all his/her questions have
been answered correctly.

PROBLEM-SOLVING SYSTEMS

By problem-solving systems, I mean systems that are capable
of working together with another agent (whether a human,
another computer, or a robot) to solve a task. Since the two
agents must work together cooperatively to solve the prob-
lem, communication between them is crucial. In this type of
system it is often not necessary to generate lengthy text, but
the utterances that are generated must be easily understood
by the other participant. For example, in instructing the other
participant which tool to use next in a task, the system must
use a description that will allow the participant to pick out the
correct tool.

Interactive problem-solving systems are often set up so that
the system is the expert and the user is an apprentice.”'® The
user is not knowledgeable about how to perform the task (or
solve the problem), and his/her purpose in using the system is
to learn how to do so. Some of the tasks that have been
considered include construction of a particular piece of equip-
ment (such as the assembly of a water pump) that involves
being able to communicate about objects and tools in the
physical world. Others have been tasks that could be solved
purely verbally, such as in GUS," a system that acts as an
airline reservation agent and helps the user select appropriate
flights for a trip. Communication in natural language is appro-
priate for these types of systems, since the user is a novice and
thus is unlikely to be familiar with a formal language devel-
oped for the domain. Furthermore, language has a long tradi-

tion of use as an interactive tool for communication. It is well .

suited to a situation in which participants must interact heavily
to reach a solution.

PROBLEMS IN TEXT GENERATION

The previous sections have demonstrated that there is a need
for communication on the part of the system in natural lan-
guage in a variety of system types. The character of the gener-
ated text may differ; but natural language is an appropriate
medium, in large part because of the people who will be using
such systems. Given that there is a need for text generation in
these different types of systems, what types of issues must a
designer of a text generation system consider? How do these
issues manifest themselves in the different types of systems?
How close is text generation research to having practical and
implemented solutions to these issues?

In the following sections, a simple but well-tried engineer-
ing approach to text generation that is currently used in many
systems is first presented. Problems with this approach and
issues that must be further considered in order to develop a
robust and effective text generation system are then explored.

Canned Text

The simplest method for producing computer-generated
text is the use of canned text and templates. This approach is

probably- the most commonly used method in systems requir-
ing production of a limited amount of text. Most practical
expert systems today use templates to produce explanations,
and help systems are one of many examples of the use of
canned text. The use of canned text requires that the system
designer anticipate all questions that might be asked by the
user, create the answers by hand, and store these answers as
strings, which are retrieved by the system when required.

Templates are slightly more general than canned text, since
they provide “text frames"” that can be used to answer more
than one question of the same type. Templates are English
phrases with slots that can be filled in by different words for
different occasions. An entire text can be produced by string-
ing together individual templates that each describe a step in
the process. (For example, a single template is associated with
each rule in an expert system, and an explanation is produced
by stringing together the templates associated with the rules
that fired. Slots in the templates are filled by English trans-
lations of instantiated variables in the rules.) As with canned
text, templates must be produced by the designer by hand
when the system is first built, and care must be taken that
reasonable texts will be produced when several tempiates are
strung together.

Canned text and templates have the advantage that their
generated text can be as sophisticated as the system designer’s
own prose. Furthermore, it is an engineering technique that is
easy to implement. There are numerous problems with this
approach, however. Since the system code can be changed -
independently of the associated text, there is no guarantee
that the generated text accurately reflects what the system
actually does. An intensive personnel effort is required at the
beginning of system development to hand-encode answers,
and this effort must be duplicated every time a new system is
developed. Finally, in large systems it may be difficult to
anticipate all situations in which text will be required in ad-
vance.

Deciding What to Say

If text is not prestored ahead of time for the system to
retrieve when needed, the text generation module must be
able to determine what information to convey, given a request
for communication. For certain questions, such as requests for
definitions in the database domain, there may be a potentially
large amount of information that could be used to answer the
question. The system must be able to filter out information in
its knowledge base that can be ignored and pinpoint informa-
tion that should be included.

A number of factors can influence these decisions. The
purpose for which information is required can indicate what
type of information will be useful. For example, for a request
for a definition, information about an object’s class member-
ship, its distinguishing attributes, examples, or analogies are
appropriate. For a request about the differences between two
objects, shared attributes, different class membership, and
distinguishing attributes are appropriate. One technique,
then, for determining what to say is to use different discourse
strategies such as these for different purposes. (For more
information, see McKeown.")




The Need for Text Generation 91

A text generation system cannot say more than it knows, as
represented in its knowledge base. In order to generate partic-
ular types of text, it may be necessary to specify the type of
information needed in the knowledge base. Swartout'? shows
what information must be added to an expert system knowl-
edge to produce acceptable justifications of the system’s ad-
vice. Finally, depending on who the system is talking to when
a questions is asked, different information will be relevant.
Appelt'® has shown how information about the current user's
beliefs should influence what the system says in order to make
communication successful. Similarly, Paris' identifies how
information about the user type (for example, whether naive
or expert) can influence how much detail to include in a text.

Deciding When to Say What

Having determined what information is relevant, a text gen-
eration system must be able to order that information to pro-
duce the text. Order of a text can be crucial to a reader’s
understanding of it. Order alone can be used to convey tem-
poral sequence, causality. or exemplification. Many early sys-
tems simply traced the underlying knowledge base to deter-
mine order, doing simple transformations on the underlying
data structures. This method requires that the knowledge base
be appropriately structured for text generation in addition to
meeting all the other demands placed on it. Furthermore,
while one knowledge base structure may facilitate inferencing,
it may not be appropriate as a blueprint for text production.

Knowledge about discourse structure encoded as strategies
can be used for determining order as well as content. Again,
for situations where definitions are required, the strategy
might not only dictate that class membership information and
examples should be used, but also that examples should be
included only after class membership has been provided. Dis-
course structure is currently used to help determine order of
presentation in several text generation systems.’ '>-!4

Deciding How 10 Say It

The text generation system must also be able to determine
what the surface text should look like. This involves making
decisions about what vocabulary to use (and in particular, how
to choose between synonyms), when to use a pronoun and
when to use a full noun phrase to refer to an object or concept,
whether to use a sequence of simple sentences or to combine
several simple sentences into a single complex sentence, and
how to arrange the words in each sentence. Almost all these
decisions are influenced by syntactic constraints on language:
thus, one component of a language generation system is a
grammar. McDonald'® describes the kinds of constraints that
must be included in a grammar and how it can be used to
produce fluent text. One benefit of the use of a grammar over
templates is that the system can decide how to combine
phrases to produce acceptable text, whereas with templates
this work must be done by the system designer manually
checking that templates will not produce unacceptable text
when strung together.

Other influences on surface level decisions include informa-

tion about the person the text is intended for and information
about the discourse structure of the text. Information about
user type can be used to select appropriate vocabulary (the
naive user will not understand the expert’s terminology). Sim-
ilarly, information about the user’s knowledge can be used to
generate noun phrase descriptions so that the user can suc-
cessfully identify what is referred to by the description.'® Fi-
nally, knowledge about how a given sentence fits in with the
rest of the text can be used to choose the best word order for
a sentence and to decide whether to use pronouns.

SUMMARY

Decisions that must be made by a text generation system
range over a variety of knowledge sources and are influenced
by a variety of factors. Furthermore, while I have identified
them as separate problems, these problems interact so that
decisions often cannot be made independently.* Systems cur-
rently exist that have addressed each of the problems cited
above. Few of these systems, however, handle more than
several problems in a single implementation. The other pa-
pers in this session focus on specific problems, illustrating
more sophisticated text generation techniques that are cur-
rently available beyond the limited canned text and template
approach.

ACKNOWLEDGMENTS

Research in text generation at Columbia University is par-
tially supported by ARPA grant N00039-84-C-0165 and by
ONR grant N00014-82-K-0256.

REFERENCES

1. Stolfo, S.. and G. Vesonder. ““ACE: An Expert System Supporting Analy-
sis and Management Decision Making.” Technical Report, Department of
Computer Science, Columbia University, 1982.

2. Kukich, K. “Knowledge-Based Explanation Generation.” Paper presented
at Second Annual Language Generation Workshop, July 8-10. 1984, Stan-
ford University.

3. McDermott, J. “Building Expert Systems.” In Proceedings of the 1983
NYU Symposium on Ariificial Intelligence Applications for Business. New
York: New York University, 1983.

4. Malhotra, A. “Design Criteria for a Knowledge-Based English Language
System for Management: An Experimental Analysis.” MAC TR-146, Mas-
sachusetts Institute of Technology, 1975.

5. McKeown. K. R. “Generating Natural Language Text in Response to
Questions about Database Structure.” Ph.D. dissertation, University of
Pennsylvania, 1982.

6. Kaptan, S. J. “Cooperative Responses from a Portable Natural Language
Database Query System.” Ph.D. dissertation. University of Peansylvania,
1979.

7. Mays. E. “Correcting Misconceptions About Data Base Structure.” In
Proceedings 3rd Canadian Society for the Computational Studies of Intel-
ligence Bienniul Meeting, Victoria, B.C.. 1980.

8. McCoy. K. “Correcting Misconceptions: What To Say When the User is
Mistaken." In Proceedings of Computer and Human Interaction Confer-
ence, 1983 Cumbridge, Massachusetts, 1983.

9. Grosz, B. J. “The Representation and Use of Focus in Dialogue Under-
standing.” Technical note 151. Stantord Research [nsutute. Menlo Park.
California. 1977.



National Computer Conference, 1985

10.

11

12,

Appelt, D. E. “Planning Natural Language Utterances to Satisfy Multiple
Goals.” Ph.D. dissertation, Stanford University, Stanford, California.
1981.

Bobrow, D. G., R. M. Kaplan, M. Kay, D. A, Norman, H. Thompson, and
T. Winograd. “GUS, A Frame-Driven Dialog System.” Arsificial Intel-
ligence, 8 (1977), pp. 155-173.

Swartout, W. “Knowledge Needed for Expert System Explanation.” In
AFIPS, Proceedings of the National Computer Conference (Vol. 54), 1985.

13

14,

Paris, C. “*Description Strategies for Naive and Expert Users.™ Technical
Report, Department of Computer Science, Columbia University, 1984.
Mann, W. “Discourse. Structures for Text Generation.” In Proceedings of
Conference on Computational Linguistics, 1984, Stanford University, 1984.

. McDonald, D. D. “Surface Generation for a Variety of Applications.”

AFIPS, Proceedings of the National Computer Conference (Vol. 54), 1985.

. Appelt, D. “Planning and Language Generation in Problem-Solving Sys-

tems.” In Proceedings of the National Computer Conference (Vol. 54),
1985.



