
Building a Reactive Immune System for Software Services

Stelios Sidiroglou Michael E. Locasto Stephen W. Boyd Angelos D. Keromytis
Department of Computer Science

Columbia University in the City of New York�
stelios,locasto,swb48,angelos � @cs.columbia.edu

Abstract

We propose a new approach for reacting to a wide
variety of software failures, ranging from remotely
exploitable vulnerabilities to more mundane bugs
that cause abnormal program termination (e.g., il-
legal memory dereference). Our emphasis is in cre-
ating “self-healing” software that can protect itself
against a recurring fault until a more comprehensive
fix is applied.

Our system consists of a set of sensors that mon-
itor applications for various types of failure and
an instruction-level emulator that is invoked for se-
lected parts of a program’s code. Use of such an em-
ulator allows us to predict recurrences of faults, and
recover program execution to a safe control flow.
Using the emulator for small pieces of code, as di-
rected by the sensors, allows us to minimize the per-
formance impact on the immunized application.

We discuss the overall system architecture and a
prototype implementation for the x86 platform. We
evaluate the efficacy of our approach against a range
of attacks and other software failures and investigate
its performance impact on several server-type appli-
cations. We conclude that our system is effective in
preventing the recurrence of a wide variety of soft-
ware failures at a small performance cost.

1 Introduction

Despite considerable work in fault tolerance and re-
liability, software remains notoriously buggy and
crash-prone. The situation is particularly trouble-
some with respect to services that must maintain

high availability in the face of remote attacks, high-
volume events (such as fast-spreading worms, e.g.,
Slammer1) that may trigger unrelated and possibly
non-exploitable bugs, or simple denial of service at-
tacks. The majority of solutions to this problem fall
into four categories:

� Proactive approaches that seek to make the
code as dependable as possible, through a com-
bination of safe languages (e.g., Java), libraries
[1] and compilers [13], code analysis tools [6],
and development methodologies.

� Debugging aids whose aim is to make post-
fault analysis and recovery as easy as possible
for the programmer.

� Runtime solutions that seek to contain the
fault using some type of sandboxing, ranging
from full-scale emulators such as VMWare, to
system call sandboxes [21], to narrowly appli-
cable schemes such as StackGuard [7].

� Byzantine fault-tolerance schemes (e.g.,
[29]) which use voting among a number of ser-
vice instances to select the correct answer, un-
der the assumption that only a minority of the
replicas will exhibit faulty behavior.

The contribution of this paper is a reactive ap-
proach, accomplished by observing an application
(or appropriately instrumented instances of it) for
previously unseen failures. The types of faults we

1http://www.silicondefense.com/
research/worms/slammer.php

examine consist of illegal memory dereferences, di-
vision by zero exceptions, and buffer overflow at-
tacks. Other types of failures can be easily added to
our system as long as their cause can be algorithmi-
cally determined (i.e., another piece of code can tell
us what the fault is and where it occurred). We in-
tend to enrich this set of faults in the future; specifi-
cally, we plan to examine Time-Of-Check-To-Time-
Of-Use (TOCTTOU) violations.

Upon detection of a fault, we invoke a localized re-
covery mechanism that seeks to recognize and pre-
vent the specific failure in future executions of the
program. Using continuous hypothesis testing, we
verify whether the specific fault has been repaired
by re-running the application against the event se-
quence that apparently caused the failure. Our ini-
tial focus is on automatic healing of services against
newly detected faults (whether accidental or mali-
ciously induced). We emphasize that we seek to ad-
dress a wide variety of software failures, not just
attacks.

For our recovery mechanism we use an instruction-
level emulator, libtasvm, that can be selectively in-
voked for arbitrary segments of code, allowing us
to mix emulated and non-emulated execution in-
side the same process. The emulator allows us to�����

monitor for the specific type of failure prior
to executing the instruction,

�����
undo any memory

changes made by the function inside which the fault
occurred, by having the emulator record all mem-
ory modifications made during its execution, and

�����

simulate an error-return from said function.

One of our key assumptions is that we can create a
mapping between the set of errors that could occur
during a program’s execution and the limited set of
errors that are explicitly handled by the program’s
code. This “error virtualization” technique is based
on heuristics that we present in Section 2.4. We be-
lieve that a majority of server applications are writ-
ten to have robust error handling; by virtualizing the
errors, an application can continue execution even
though a boundary condition that was not predicted
by the programmer allowed a fault to “slip in.” Our
experiments with Apache, OpenSSH, and Bind val-
idate this intuition.

Our current work focuses on server-type applica-
tions, since they typically have higher availability
requirements than user-oriented applications, which
can often simply be restarted upon failure. Such
an approach [5] has been advocated as “micro-
rebooting.” Server applications often cannot be sim-
ply restarted because they are typically long run-
ning (and thus accumulate a fair amount of state)
and usually contain a number of threads that service
many remote users. Restarting the whole server be-
cause of one failed thread unfairly denies service to
the users of unaffected threads.

Also, unlike user-oriented applications, servers op-
erate without direct human supervision and thus
have a higher need for an automated reactive sys-
tem. Furthermore, it is relatively easy to replay the
offending sequence of events in such applications,
as these are typically limited to input received over
the network (as opposed to a user’s interaction with
a graphical interface). We intend to investigate other
classes of applications in the future.

To evaluate the effectiveness of our system and its
impact to performance, we conduct a series of ex-
periments using a number of open-source server ap-
plications including Apache, OpenSSH, and Bind.
The results show that our “virtualized error” map-
ping assumption holds for more than 88% of the
cases we examined. Testing with real attacks
against Apache, OpenSSH, and Bind, we show that
our technique can be effective in quickly and auto-
matically protecting against zero-day attacks. Fur-
thermore, although full emulation of these is pro-
hibitively expensive, our selective emulation im-
poses between a 1.3 and 30 times performance over-
head, depending on the size of the emulated code
segment.

The remainder of this paper is organized as follows.
In Section 2, we discuss our approach, including the
limitations of our system and the basic system archi-
tecture. In Section 3 we briefly discuss the imple-
mentation of libtasvm, and Section 4 presents some
preliminary performance measurements of the sys-
tem. We give an overview of the related work in
Section 5 and Section 6 summarizes our contribu-
tions.

Application Server

Instrumented
Application

Hypothesis
testing &
Analysis

Internet

Enterprise Network

(1) Failure inducing
Input

(2) Sensor determines
failure

(3) Input vector

(4) Feedback control
loop

(5) Update application

Figure 1: Feedback control loop.

2 Approach

Our architecture, depicted in Figure 1, uses three
types of components: a sensor that monitors an
application such as a web server for faults, an
instruction-level emulator (libtasvm) that can selec-
tively emulate “slices” (arbitrary segments) of code,
and a testing environment where hypotheses about
the effect of various fixes are evaluated. Note that
these components can operate without human super-
vision to minimize reaction time.

2.1 System Overview

When the sensor detects an error in the application’s
execution (such as a segmentation fault), the sen-
sor instruments the portion of the application’s code
that immediately surrounds the faulty instruction(s)
such that the code segment is emulated (the mechan-
ics of this are explained in Section 3). To verify the
effectiveness of the fix, the application is restarted
in a test environment with the instrumentation en-
abled, and is supplied with the input that caused the
failure (or the � most recent inputs, if the offending

one cannot be easily identified) 2.

During emulation, libtasvm maintains a record of
all memory changes (including global variables or
library-internal state, e.g., libc standard I/O struc-
tures) that the emulated code makes, along with
their original values. Furthermore, libtasvm exam-
ines the operands and pre-determines the side ef-
fects of the instructions it emulates. Using an emu-
lator allows us to avoid the complexity of code anal-
ysis, as we only need to focus on the operation and
side effects of individual instructions independently
from each other.

If the emulator determines that a fault is about to
occur, the emulated execution is aborted. Specif-
ically, all memory changes made by the emulated
code are undone, and the currently executing func-
tion is made to return an error. We describe how
both emulation and error virtualization are accom-
plished in Sections 2.3 and 2.4, respectively, and we

2A current limitation of our system is its inability to handle
failures that occur due to extremely long inputs; this is a prac-
tical limitation, as we wish to limit the input size we need to
“remember.” If necessary, we can record longer input sessions
for replay purposes, at the expense of storage size and testing
time.

experimentally validate the error virtualization hy-
pothesis in Section 4.

Execution now enters the testing phase. After forc-
ing the function to return, emulation terminates. If
the program then crashes, the scope of the emulation
is expanded to include the parent routine, repeating
as necessary. In the extreme case, the whole appli-
cation could end up being emulated at a significant
performance cost. However, Section 4, shows that
this failsafe measure is rarely necessary. If the pro-
gram does not crash after the forced return, we have
found a “vaccine” for the fault, which we can use
on the production server. Naturally, if the fault is
not triggered during an emulated execution, emula-
tion halts at the end of the vulnerable code segment,
and all memory changes become permanent.

Note that the cost of emulation is incurred at all
times (whether the fault is triggered or not). To min-
imize this cost, we must identify the smallest piece
of code that we need emulate in order to catch and
recover from the fault. We currently treat functions
as discrete entities and emulate the whole body of a
function, even though the emulator allows us to start
and stop emulation at arbitrary points, as described
in Section 3. Future work will explore strategies for
minimizing the scope of the emulation and balanc-
ing the tradeoff between coverage and performance.

In the remainder of this section, we describe the
types of sensors we employ, give an overview of
how the emulator operates, (with more details on
the implementation in Section 3) and describe how
the emulator forces a function to return with an er-
ror code. We also discuss the limitations of reactive
approaches in general and our system in particular.

2.2 Application Monitors

The selection of appropriate failure-detection sen-
sors depends on both the nature of the flaws them-
selves and tolerance of their impact on system per-
formance. We describe the two types of application
monitors that we experimented with.

The first approach is straightforward. The operating
system forces a misbehaving application to abort
and creates a core dump file that includes the type

of failure and the stack trace when that failure oc-
curred. This information is sufficient for libtasvm
to apply selective emulation, starting with the top-
most function in the stack trace. Thus, we only need
a watchdog process that waits until the service ter-
minates before it invokes our system.

A second approach is to use an appropriately in-
strumented version of the application on a separate
server as a honeypot, as we demonstrated for the
case of network worms [26]. Under this scheme,
we instrument the parts of the application that may
be vulnerable to a particular class of attack (in this
case, remotely exploitable buffer overflows) such
that an attempt to exploit a new vulnerability ex-
poses the attack vector and all pertinent information
(attacked buffer, vulnerable function, stack trace,
etc.).

This information is then used to construct an
emulator-based vaccine that effectively implements
array bounds checking at the machine-instruction
level. This approach has great potential in catching
new vulnerabilities that are being indiscriminately
attempted, as may be the case with an auto-root kit
or a fast-spreading worm. Since the honeypot is
not in the production server’s critical path, its per-
formance is not a primary concern (assuming that
attacks are relatively rare phenomena). In the ex-
treme case, we can construct a honeypot using our
instruction-level emulator to execute the whole ap-
plication, although we do not further explore this
possibility in this paper.

2.3 Instruction-level Emulation

For our recovery mechanism we use an instruction-
level emulator, libtasvm, that can be selectively in-
voked for arbitrary segments of code, allowing us
to mix emulated and non-emulated execution inside
the same code execution. The emulator is imple-
mented as a � library that defines special tags (a
combination of macros and function calls) that mark
the beginning and the end of selective emulation. To
use the emulator, we can either link it with an appli-
cation in advance or compile it in in response to a
detected failure, as was done in [26].

Upon entering the vulnerable section of code, the

emulator snapshots the program state and executes
all instructions on a virtual processor. When the
program counter references the first instruction out-
side the bounds of emulation, the virtual proces-
sor copies its internal state back to the program.
While registers are explicitly updated, memory up-
dates have implicitly been applied throughout the
execution of the emulation. The program, unaware
of the instructions executed by the emulator, contin-
ues executing directly on the CPU.

To implement fault catching, the emulator simply
checks the operands of instructions it is about to
emulate, also using additional information that is
supplied by the sensor that detected the fault. In
the case of division by zero, the emulator need only
check the value of the operand to the div instruction.
For illegal memory dereferencing, the emulator ver-
ifies whether the source and destination address of
any memory access (or the program counter, for in-
struction fetches) points to a page that is mapped
to the process address space using the mincore()
system call. Buffer overflow detection is handled
by padding the memory surrounding the vulnerable
buffer, as identified by the sensor, by one byte, sim-
ilar to the way StackGuard [7] operates. The emula-
tor then simply watches for memory writes to these
memory locations. This approach requires source
code availability, so as to insert the “canary” vari-
ables. Contrary to StackGuard, our approach allows
us to stop the overflow before it overwrites the rest
of the stack, and to recover the execution.

We currently assume that the emulator is pre-linked
with the vulnerable application, or that the source
code of that application is available. However, it
is possible to circumvent this limitation by using
the processor’s programmable breakpoint register
(in much the same way as a debugger uses it to cap-
ture execution at particular points in the program)
to invoke the emulator without the running process
even being able to detect that it is now running un-
der an emulator.

2.4 Recovery: Forcing Error Returns

Upon detecting a fault, our recovery mechanism un-
does all memory changes and forces an error re-

turn from the currently executing function. We ana-
lyze the declared type of the function using a TXL
[18] script to determine the appropriate error return
value.

TXL is a hybrid function and rule-based lan-
guage which is well-suited for performing source-
to-source transformation and for rapidly prototyp-
ing new languages and language processors. The
grammar that drives parsing of the source input is
specified in a notation similar to Extended Backus-
Naur (BNF). In our system, we use TXL for � -to- �
transformations using the GCC � front-end.

Depending on the return type of the emulated func-
tion, the system returns an “appropriate” value. This
value is determined based on some straightforward
heuristics. For example, if the return type is an int,
a � �

is returned; if the value is unsigned int the sys-
tem returns � , etc. A special case is used when the
function returns a pointer. Instead of blindly return-
ing a NULL, we examine if the returned pointer is
later dereferenced further by the parent function. If
so, we expand the scope of the emulation to include
the parent function. We handle value-return func-
tion arguments similarly. There are some contexts
where this heuristic may not work well; the error
return semantics of the Linux kernel are an example
of such a system.

As a first approach, these heuristics worked ex-
tremely well in our experiments (see Section 4). In
the future, we plan to use more aggressive source
code analysis techniques to determine the return
values that are appropriate for a function. Since
in many cases a common error-code convention is
used for a large application, it is possible to ask the
programmer to provide a short description of this
convention as input to our system.

2.5 Caveats and Limitations

Reactive approaches to software faults face a new
set of challenges. As this is a relatively unexplored
field, some problems are beyond the scope of this
paper.

A reaction system must evaluate and choose a re-
sponse from a wide array of choices. Furthermore,

much research remains to be done in discovering the
actual limits and boundaries of this broad spectrum.
Currently, when encountering a fault, a system can�����

crash,
�����

crash and be restarted by a monitor
[5],

��� �
return bogus values [23], or

��� �
slice off the

functionality. Most proactive systems take the first
approach. We elect to take the last approach. As
noted in Section 2.4, this choice appears to work ex-
tremely well. Such an approach also seems to work
at the machine instruction level, as noted in [28].

However, there is a fundamental problem in choos-
ing a particular response. Since the high-level be-
havior of any system cannot be algorithmically de-
termined, a response must be careful to avoid cases
where the response would take execution down a
semantically (from the viewpoint of the program-
mer’s intent) incorrect path. An example of this type
of problem is skipping a check in the sshd which
would allow an otherwise unauthenticated user to
gain access to the system. The exploration of ways
to bound these types of errors is an open area of re-
search.

There is a key tradeoff between code coverage (and
thus confidence in the level of security the system
provides) and performance (the amount of memory
and time that the emulator adds). Our emulator im-
plementation is a proof of concept; many enhance-
ments are possible to increase performance in a pro-
duction system. Our main goal is to emphasize the
service that such an emulator will provide: the abil-
ity to selectively incur the cost of emulation for vul-
nerable program code only. Our system is directed
to these vulnerable sections by runtime sensors –
the quality of the application monitors dictates the
quality of the code coverage.

Since our emulator is designed to operate at the user
level, it hands control to the operating system during
system calls. If a fault were to occur in the operat-
ing system, our system would not be able to react
to this fault. In a related problem, I/O beyond the
machine presents a problem for a roll back strategy.
This problem can partially be addressed by the ap-
proach taken in [15] by having the application mon-
itors log outgoing data and implementing a callback
mechanism for the receiving process.

Finally, in our current work, we assume that the
source code of the vulnerable application is avail-
able to our system. We briefly discussed how to cir-
cumvent this limitation in Section 2.3.

3 Implementation

We implemented the libtasvm x86 emulator to val-
idate the practicality of providing a supervision
framework for the feedback control loop through
selective emulation of code slices. Integrating lib-
tasvm into an existing application is straightfor-
ward. As shown in Figure 2, four special tags are
wrapped around the segment of code that will be
emulated.

void foo() {
int a = 1;
emulate_init();
emulate_begin(p_args);
a++;
emulate_end();
emulate_term();
printf("a = %d\n", a);

}

Figure 2: A trivial example of using libtasvm. The
emulate * calls invoke and terminate execution of lib-
tasvm. The code inside that region is executed by
the emulator. For simplicity, we show only the in-
crement statement as being executed by the emulator,
but there is no reason why the entire function body
couldn’t be emulated (including calls to other func-
tions).

The � macro emulate init() moves the program
state (general, segment, eflags, and FPU registers)
into an emulator-accessible global data structure
to capture state immediately before libtasvm takes
control. The data structure is used to initialize the
virtual registers. With the preliminary setup com-
pleted, emulate begin() only needs to obtain the
memory location of the first instruction following
the call to itself. The instruction address is the same
as the return address and can be found in the activa-
tion record of emulate begin(), four bytes above its

base stack pointer.

The fetch/decode/execute/retire cycle of instruc-
tions continues until either emulate end() is
reached, or when the emulator detects that control
is returning to the parent function. If the emulator
does not encounter an error during its execution, the
emulator’s instruction pointer references the emu-
late term() macro at completion. To enable the pro-
gram to continue execution at this address, the re-
turn address of the emulate begin activation record
is replaced with the current value of the instruction
pointer. By executing emulate term(), the emula-
tor’s environment is copied to the program registers
and execution continues under normal conditions.

If an exception arises during emulation, libtasvm
locates emulate end() and terminates. Because the
emulator saved the state of the program before start-
ing, it can effectively return the program state to
its original setting, thus nullifying the effect of the
instructions processed through emulation. Essen-
tially, the emulated code is sliced off; even memory
updates are backed out. At this point, the execution
of the code (and its side effects in terms of changes
to memory) has been rolled back.

The emulator is designed to execute in user-mode,
so system calls cannot be computed directly with-
out kernel-level permissions. Therefore, when the
emulator decodes an interruption with an immediate
value of ��� � � , it must release control to the kernel.
However, before the kernel can successfully execute
the system call, the program state needs to reflect
the virtual registers arrived at by libtasvm. Thus,
the emulator backs up the real registers and replaces
them with its own values. An INT ��� � � is issued by
libtasvm, and the kernel processes the system call.
Once control returns to the user-level code, the em-
ulator updates its registers and restores the original
values in the program’s registers.

The next step was to confirm the effectiveness and
performance impact of the emulator.

4 Evaluation

In this section, we qualitatively validate our ap-
proach using a set of exploits against popular server
applications, and quantitatively measure the perfor-
mance impact of selective emulation.

4.1 Effectiveness of Forced Return Recovery

In order to validate our hypothesis on control flow
recovery using forced function return, introduced
in Section 2.4, we experimentally evaluate its ef-
fects on program execution on the Apache httpd,
OpenSSH sshd, and Bind. We run profiled ver-
sions of the selected applications against a set of test
suites and examine the subsequent call-graphs gen-
erated by these tests with gprof and Valgrind [20].

The ensuing call trees are analyzed in order to ex-
tract leaf functions. The leaf functions are, in
turn, employed as potentially vulnerable functions.
Armed with the information provided by the call-
graphs, we run a TXL script that inserts an early
return in all the leaf functions (as described in Sec-
tion 2.4), simulating an aborted function. Specif-
ically, we examined 154 leaf functions. For each
aborted function, we monitor the program execution
of Apache by running httperf [19], a web server per-
formance measurement tool. Success for each test
was defined as the application not crashing.

The results from these tests were very encourag-
ing; 139 of the 154 functions completed the httperf
tests successfully: program execution was not inter-
rupted. What we found to be surprising was that not
only did the program not crash, but in some cases
all the pages were served correctly. This is probably
due to the fact a large number of the functions are
used for statistical and logging purposes. Further-
more, out of the 15 functions that produced segmen-
tation faults, 4 did so at start up (and would thus not
be relevant in the case of a long-running process).

Similarly for sshd, we iterate through each aborted
function while examining program execution during
an scp transfer. In the case of sshd, we examined 81
leaf functions. Again, the results were auspicious:
72 of the 81 functions maintained program execu-

tion. Furthermore, only 4 functions caused segmen-
tation faults; the rest simply did not allow the pro-
gram to start.

For Bind, we examined the program execution of
named during the execution of a set of queries; 67
leaf functions were tested. In this case, 59 of the
67 functions maintained the proper execution state.
Similar to sshd, only 4 functions caused segmenta-
tion faults.

4.2 Exploits

Given the success of our experimental evaluation
on program execution, we wanted to further vali-
date our hypothesis against a set of real exploits for
Apache, OpenSSH and Bind. No prior knowledge
was encoded in our system with respect to the vul-
nerabilities: for all purposes, this experiment was a
zero-day attack.

For Apache, we used the apache-scalp exploit that
takes advantage of a buffer overflow vulnerability
based on the incorrect calculation of the required
buffer sizes for chunked encoding requests. We
applied selective emulation on the offending func-
tion and successfully recovered from the attack; the
server successfully served subsequent requests.

The attack used for OpenSSH was the RSAREF2
exploit for SSH-1.2.27. This exploit relies on
unchecked offsets that result in a buffer overflow
vulnerability. Again, we were able to gracefully re-
cover from the attack and the sshd server continued
normal operation.

Bind is susceptible to a number of known exploits;
for the purposes of this experiment, we tested our
approach against the TSIG bug on ISC Bind 8.2.2-
x. In the same motif as the previous attacks, this
exploit takes advantage of a buffer overflow vulner-
ability. As before, we were able to safely recover
program execution while maintaining service avail-
ability.

4.3 Performance

We next turned our attention to the performance
impact of our system. In particular, we measured

the overhead imposed by the emulator component.
The libtasvm emulator is meant to be a lightweight
mechanism for executing selected portions of an ap-
plication’s code. We can select these code slices ac-
cording to a number of strategies, as we discussed
in Section 2.2.

We evaluated the performance impact of libtasvm
by instrumenting the Apache 2.0.49 web server
and OpenSSH sshd, as well as performing micro-
benchmarks on various shell utilities such as ls, cat,
and cp.

4.3.1 Testing Environment

The machine we chose to host Apache was a single
Pentium III at 1GHz with 512MB of memory run-
ning RedHat Linux with kernel 2.4.20. The machine
was under a light load during testing (standard set of
background applications and an X11 server). The
client machine was a dual Pentium II at 350 MHz
with 256MB of memory running RedHat Linux 8.0
with kernel 2.4.18smp. The client machine was run-
ning a light load (X11 server, sshd, background ap-
plications) in addition to the test tool. Both em-
ulated and non-emulated versions of Apache were
compiled with the –enable-static-support configu-
ration option. Finally, the standard runtime configu-
ration for Apache 2.0.49 was used; the only change
we made was to enable the server-status module
(which is compiled in by default but not enabled in
the default configuration). libtasvm was compiled
with the “-g -static -fno-defer-pop” flags.

We chose the Apache flood httpd testing tool to eval-
uate how quickly both the non-emulated and emu-
lated versions of Apache would respond and process
requests. In our experiments, we chose to measure
performance by the total number of requests pro-
cessed, as reflected in Figures ?? and 4. The value
for total number of requests per second is extrapo-
lated (by flood’s reporting tool) from a smaller num-
ber of requests sent and processed within a smaller
time slice; the value should not be interpreted to
mean that our test Apache instances and our test
hardware actually served some 6000 requests per
second.

4.3.2 Emulation of Apache Inside Valgrind

To get a sense of the performance degradation im-
posed by running the entire system inside an emu-
lator other than libtasvm, we tested Apache running
in Valgrind version 2.0.0 on the Linux test machine
that hosted Apache for our libtasvm test trials.

Valgrind has two notable features that improve per-
formance over our full emulation of the main re-
quest loop. First, Valgrind maintains a 14 MB cache
of translated instructions which are executed na-
tively after the first time they are emulated, while
libtasvm always translates each encountered in-
struction. Second, Valgrind performs some inter-
nal optimizations to avoid redundant load, store, and
register-to-register move operations.

We ran Apache under Valgrind with the default skin
Memcheck and tracing all children processes. While
Valgrind performed better than our emulation of the
full request processing loop, it did not perform as
well as our emulated slices, as shown in Figure 3
and the timing performance in Table 1.

Note that the Valgrind–ized version of Apache is 10
times the size of the regular Apache image, while
Apache with libtasvm is not noticably larger.

4.3.3 Full Emulation and Baseline Perfor-
mance

We demonstrate that emulating the bulk of an
application entails a significant performance im-
pact. In particular, we emulated the main re-
quest processing loop for Apache (contained in
ap process http connection()) and compared our re-
sults against a non-emulated Apache instance. In
this experiment, the emulator executed roughly
213000 instructions. The impact on performance is
clearly seen in Figure 3 and further elucidated in
Figure 4, which plots the performance of the fully
emulated request-handling procedure.

In order to get a more complete sense of this perfor-
mance impact, we timed the execution of the request
handling procedure for both the non-emulated and
fully-emulated versions of Apache by embedding
calls to gettimeofday() where the emulation func-

0

50

100

150

200

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 (emulated) Request Handling Performance

lbtasvm-mainloop

Figure 4: A closer look at the performance for the
fully emulated version of main processing loop. While
there is a considerable performance impact compared
to the non-emulated request handling loop, the emu-
lator appears to scale at the characteristic linear rate,
indicating that it does not create additional overhead
beyond the cost of emulation.

tions were (or would be) invoked.

For our test machines and sample loads, Apache
normally (e.g., non-emulated) spent some
6.3 milliseconds to perform the work in the
ap process http connection() function, as shown in
Table 1. The fully instrumented loop running in
the emulator spends an average of 278 milliseconds
per request in that particular code section. For
comparison, we also timed Valgrind’s execution
of this section of code; after a large initial cost (to
perform the initial translation and fill the internal
instruction cache) Valgrind executes the section
with a 34 millisecond average. These initial costs
sometimes exceeded one or two seconds; we ignore
them in our data and measure Valgrind only after it
has settled down.

4.3.4 Selective Emulation

Lacking any actual attacks to launch against Apache
(with the exception of the apache-scalp exploit, as
we previously discussed), we used the RATS tool
to identify possible vulnerable sections of code in
Apache 2.0.49. The tool identified roughly 270 can-

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80

re
qu

es
ts

 p
er

 s
ec

on
d

of client threads

Apache 2.0.49 Request Handling Performance

apache-mainloop
libtasvm-mainloop
libtasvm-parse-uri

libtasvm-header-parser
valgrind-apache

Figure 3: Performance of the system under various levels of emulation. This data set includes Valgrind for
reference. While full emulation is fairly invasive, selective emulation of input handling routines appears quite
sustainable. Valgrind runs better than libtasvm when executing the entire request loop. As expected, selective
emulation still performs better than Valgrind.

Apache trials Mean Std. Dev.
Normal 18 6314 847

libtasvm 18 277927 74488
Valgrind 18 34192 11204

Table 1: Timing of main request processing loop.
Times are in microseconds. This table shows the over-
head of running the whole primary request handling
mechanism inside the emulator. In each trial a user
thread issued an HTTP GET request.

didate lines of code, the majority of which contained
fixed size local buffers. We then correlated the en-
tries on the list with code that was in the primary
execution path of the request processing loop. The
two functions that are measured perform work on
input that is under client control, and are thus likely
candidates for attack vectors.

The main request handling logic in Apache 2.0.49
begins in the ap process http connection() func-

tion. The effective work of this function is car-
ried out by two subroutines: ap read request()
and ap process request(). The ap process request()
function is where Apache spends most of its time
during the handling of a particular request. In con-
trast, the ap read request() function accounts for a
smaller fraction of the request handling work. We
chose to emulate subroutines of each function in or-
der to assess the impact of selective emulation.

We constructed a partial call tree and chose
the ap parse uri() function (invoked via
read request line() in ap read request()) and
the ap run header parser() function (in-
voked via ap process request internal() in
ap process request()). The emulator processed
approximately 358 and 3229 instructions, respec-
tively, for these two functions. In each case, the
performance impact, as expected, was much less
than the overhead incurred by needlessly emulating
the entire work of the request processing loop.

4.3.5 Microbenchmarks

Using the client machine from the Apache perfor-
mance tests, we ran a number of micro-benchmarks
to gain a broader view of the performance impact of
libtasvm. We selected some common shell utilities
and measured their performance for large workloads
running both with and without libtasvm.

For example, we issued an ’ls -R’ command on the
root of the Apache source code with both stderr and
stdout redirected to /dev/null in order to reduce the
effects of screen I/O. We then used cat and cp on a
large file (also with any screen output redirected to
/dev/null). Table 2 shows the result of these mea-
surements.

As expected, there is a large impact on performance
when emulating the majority of an application. Our
experiments demonstrate that only emulating poten-
tially vulnerable sections of code offers a significant
advantage over emulation of the entire system.

5 Related Work

Modeling executing software as a transaction that
can be aborted has been examined in the context of
language-based runtime systems (specifically, Java)
in [25, 24]. That work focused on safely terminat-
ing misbehaving threads, introducing the concept of
“soft termination”. Soft termination allows threads
to be terminated while preserving the stability of the
language runtime, without imposing unreasonable
performance overheads. In that approach, threads
(or codelets) are each executed in their own trans-
action, applying standard ACID semantics. This al-
lows changes to the runtime’s (and other threads’)
state made by the terminated codelet to be rolled
back. The performance overhead of that system can
range from 200% up to 2,300%. Relative to that
work, our contribution is twofold. First, we apply
the transactional model to an unsafe language such
as � , addressing several (but not all) challenges pre-
sented by that environment. Second, by selectively
emulating, we substantially reduce the performance
overhead of the application. However, there is no
free lunch: this reduction comes at the cost of al-

lowing failures to occur. Our system aims to auto-
matically evolve a piece of code such that it eventu-
ally (i.e., once an attack has been observed, possibly
more than once) does not succumb to attacks.

Virtual machine emulation of operating systems or
processor architectures to provide a sandboxed en-
vironment is an active area of research. Virtual
machine monitors (VMM) are employed in a num-
ber of security–related contexts, from autonomic
patching of vulnerabilities [26] to intrusion detec-
tion [12].

Virtual machine monitors (VMMs) are one type
of protection mechanism; other approaches include
compiler techniques like StackGuard [8] and safer
libraries, such as libsafe and libverify [2]. Other
tools exist to verify and supervise code during de-
velopment or debugging. Of these tools, Purify3 and
Valgrind [20] are popular choices.

Valgrind is a program supervision framework that
enables in–depth instrumentation and analysis of
IA-32 binaries without recompilation. Valgrind
has been used by Barrantes et al. [3] to im-
plement instruction set randomization techniques
to protect programs against code insertion attacks.
Other work on instruction–set randomization in-
cludes [14], which employs the i386 emulator
Bochs4.

Program shepherding [17] is a technique developed
by Kiriansky, Bruening, and Amarasinghe. The au-
thors describe a system based on the RIO [10] archi-
tecture for protecting and validating control flows
according to some security policy without modifica-
tion of IA-32 binaries for Linux and Windows. The
system works by validating branch instructions and
storing the decision in a cache, thus incurring little
overhead.

The work by Dunlap, King, Cinar, Basrai, and Chen
[11] is closely related to the work presented in this
paper. ReVirt is a system implemented in a VMM
that logs detailed execution information. This de-
tailed execution trace includes non–deterministic
events such as timer interrupt information and user
input. Because ReVirt is implemented in a VMM,

3http://www.rational.com
4http://bochs.sourceforge.net/

Test Type trials mean (s) Std. Dev. Min Max Instr. Emulated
ls (non-emu) 25 0.12 0.009 0.121 0.167 0

ls (emu) 25 42.32 0.182 42.19 43.012 18,000,000
cp (non-emu) 25 16.63 0.707 15.80 17.61 0

cp (emu) 25 21.45 0.871 20.31 23.42 2,100,000
cat (non-emu) 25 7.56 0.05 7.48 7.65 0

cat (emu) 25 8.75 0.08 8.64 8.99 947,892

Table 2: Microbenchmark performance times for various command line utilities.

it is more resistant to attack or subversion. How-
ever, ReVirt’s primary use is as a forensic tool to
replay the events of an attack, while the goal of lib-
tasvm is to provide a lightweight and minimally in-
trusive mechanism for protecting code against ma-
licious input at runtime.

King, Dunlap, and Chen [16] discuss optimizations
that reduce the performance penalties involved in
using VMMs. There are three basic optimizations:
reduce the number of context switches by moving
the VMM into the kernel, reduce the number of page
faults by allowing each VMM process greater free-
dom in allocating and maintaining address space,
and ameliorate the penalty for switching between
guest kernel mode and guest user mode by sim-
ply changing the bounds on the guest memory area
rather than re–mapping.

An interesting application of ReVirt [11] is Back-
Tracker, [15], a tool that can the automatically iden-
tify the steps involved in an intrusion. Because
detailed execution information is logged, a depen-
dency graph can be constructed backward from
the detection point to provide forensic information
about an attack.

Toth and Kruegel [27] propose to detect buffer over-
flow payloads (including previously unseen ones)
by treating inputs received over the network as code
fragments; they show that legitimate requests will
appear to contain relatively short sequences of valid
x86 instruction opcodes, compared to attacks that
will contain long sequences. They integrate this
mechanism into the Apache web server, resulting in
a small performance degradation.

Some interesting work has been done to deal with

memory errors at runtime. For example, Rinard et
al. [22] have developed a compiler that inserts code
to deal with writes to unallocated memory by auto-
matically expanding the target buffer. Such a capa-
bility aims toward the same goal our system does:
provide a more robust fault response rather than
simply crashing. The technique presented in [22] is
modified in [23] and introduced as failure-oblivious
computing. This behavior of this technique is close
to the behavior of our system.

One of the most critical concerns with recovering
from software faults and vulnerability exploits is en-
suring the consistency and correctness of program
data and state. An important contribution in this
area is presented by Dempsky [9], which discusses
mechanisms for detecting corrupted data structures
and fixing them to match some pre-specified con-
straints. While the precision of the fixes with re-
spect to the semantics of the program is not guar-
anteed, their test cases continued to operate when
faults were randomly injected.

While our prototype x86 emulator is a fairly
straightforward implementation, it can gain further
performance benefits by using Valgrind’s technique
of caching already translated instructions. With
some further optimizations, libtasvm is a viable and
practical approach to protecting code. In fact, [4]
outlines several ways to optimize emulators; their
approaches reduce the performance overhead (as
measured by two SPEC2000 benchmarks, crafty
and vpr) from a factor of 300 to about 1.7. Their
optimizations include caching basic blocks (essen-
tially what VG is doing), linking direct and indirect
branches, and building traces.

6 Conclusions

Software errors and the concomitant potential for
exploitable vulnerabilities remain a pervasive prob-
lem. Accepted approaches to this problem are al-
most always proactive, but it seems unlikely that
such strategies will result in error-free code. In the
absence of such guarentees, reactive techniques for
error toleration and recovery are powerful tools.

We have described a lightweight mechanism for su-
pervising the execution of an application that has al-
ready exhibited a fault and preventing its recurrence.
We use selective emulation of the code immediately
surrounding the fault to validate the operands to ma-
chine instructions, as appropriate for the type of
fault; we currently handle buffer overflows, illegal
memory dereferences, and division by zero excep-
tions. Once a fault has been detected, we restore
control to a safe flow by forcing the function con-
taining the fault to return an error value, also rolling
back any memory modifications the emulated code
has made during its execution.

Our intuition is that most applications are written
well enough to catch the majority of errors, but fail
to consider some boundary conditions that allow the
fault to manifest itself. By catching these extreme
cases and returning an error, we make use of the
already existing error-handling code. We validate
this hypothesis using a set of real attacks, as well
as randomly induced faults in a number of open-
source servers (Apache, sshd, Bind). Our results
show that our system works in over 88% of all cases,
allowing the application to continue execution and
behave correctly. Furthermore, by using selective
emulation of small code segments, we minimize the
performance impact on production servers.

Our approach allows quick, automated reaction to
software failures, thereby increasing service avail-
ability in the presence of general software bugs. We
re-emphasize that our approach can be used to catch
a variety of software failures, not just malicious at-
tacks. Our plans for future work include enhanc-
ing the performance of our prototype emulator and
further validating our hypothesis by extending the
number of applications and attacks examined.

References

[1] A. Baratloo, N. Singh, and T. Tsai. Transpar-
ent Run-Time Defense Against Stack Smash-
ing Attacks. In Proceedings of the USENIX
Annual Technical Conference, June 2000.

[2] A. Baratloo, N. Singh, and T. Tsai. Transpar-
ent Run-Time Defense Against Stack Smash-
ing Attacks. In Proceedings of the USENIX
Annual Technical Conference, June 2000.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest,
T. S. Palmer, D. Stefanovic, and D. D. Zovi.
Randomized Instruction Set Emulation to Dis-
trupt Binary Code Injection Attacks. In 10th
ACM Conference on Computer and Commu-
nications Security (CCS), October 2003.

[4] D. Bruening, T. Garnett, and S. Amarasinghe.
An infrastructure for adaptive dynamic opti-
mization. In Proceedings of the International
Symposium on Code Generation and Opti-
mization, pages 265–275, 2003.

[5] G. Candea and A. Fox. Crash-only software.
In Proceedings of the 9th Workshop on Hot
Topics in Operating Systems, May 2003.

[6] H. Chen and D. Wagner. MOPS: an Infras-
tructure for Examining Security Properties of
Software. In Proceedings of the ACM Com-
puter and Communications Security (CCS)
Conference, pages 235–244, November 2002.

[7] C. Cowan, C. Pu, D. Maier, H. Hinton,
J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Au-
tomatic adaptive detection and prevention of
buffer-overflow attacks. In Proceedings of
the 7th USENIX Security Symposium, January
1998.

[8] C. Cowan, C. Pu, D. Maier, H. Hinton,
J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, and Q. Zhang. Stackguard: Auto-
matic Adaptive Detection and Prevention of
Buffer-Overflow Attacks. 1998.

[9] B. Demsky and M. C. Rinard. Automatic De-
tection and Repair of Errors in Data Struc-
tures. In Proceedings of the 18th Annual
ACM SIGPLAN Conference on Object Ori-
ented Programming, Systems, Languages, and
Applications, October 2003.

[10] E. Duesterwald and S. P. Amarsinghe. On the
Run – Building Dynamic Program Modifiers
for Optimization, Introspection, and Security.
In Conference on Programming Language De-
sign and Implementation (PLDI), 2002.

[11] G. W. Dunlap, S. King, S. Cinar, M. A. Bas-
rai, and P. M. Chen. ReVirt: Enabling Intru-
sion Analysis Through Virtual-Machine Log-
ging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and
Implementation (OSDI), February 2002.

[12] T. Garfinkel and M. Rosenblum. A Virtual
Machine Introspection Based Architecture for
Intrusion Detection. In 10th ISOC Symposium
on Network and Distributed Systems Security
(SNDSS), February 2003.

[13] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe
dialect of C. In Proceedings of the USENIX
Annual Technical Conference, pages 275–288,
June 2002.

[14] G. S. Kc, A. D. Keromytis, and V. Preve-
lakis. Countering Code-Injection Attacks With
Instruction-Set Randomization. In 10th ACM
Conference on Computer and Communica-
tions Security (CCS), October 2003.

[15] S. T. King and P. M. Chen. Backtracking Intru-
sions. In 19th ACM Symposium on Operating
Systems Principles (SOSP), October 2003.

[16] S. T. King, G. Dunlap, and P. Chen. Operating
System Support for Virtual Machines. In Pro-
ceedings of the General Track: USENIX An-
nual Technical Conference, June 2003.

[17] V. Kiriansky, D. Bruening, and S. Amaras-
inghe. Secure Execution Via Program Shep-
herding. In Proceedings of the 11th USENIX
Security Symposium, August 2002.

[18] A. J. Malton. The Denotational Semantics
of a Functional Tree-Manipulation Language.
Computer Languages, 19(3):157–168, 1993.

[19] D. Mosberger and T. Jin. httperf: A tool for
measuring web server performance. In First
Workshop on Internet Server Performance,
pages 59—67. ACM, June 1998.

[20] N. Nethercote and J. Seward. Valgrind: A Pro-
gram Supervision Framework. In Electronic
Notes in Theoretical Computer Science, vol-
ume 89, 2003.

[21] N. Provos. Improving Host Security with Sys-
tem Call Policies. In Proceedings of the 12th
USENIX Security Symposium, pages 257–272,
August 2003.

[22] M. Rinard, C. Cadar, D. Dumitran, D. Roy,
and T. Leu. A Dynamic Technique for Elim-
inating Buffer Overflow Vulnerabilities (and
Other Memory Errors). In Proceedings 20th
Annual Computer Security Applications Con-
ference (ACSAC) 2004, December 2004.

[23] M. Rinard, C. Cadar, D. Dumitran, D. Roy,
T. Leu, and J. W Beebee. Enhanc-
ing server availability and security through
failure-oblivious computing. In Proceedings
6th Symposium on Operating Systems Design
and Implementation (OSDI), December 2004.

[24] A. Rudys and D. S. Wallach. Transactional
Rollback for Language-Based Systems. In
ISOC Symposium on Network and Distributed
Systems Security (SNDSS), February 2001.

[25] A. Rudys and D. S. Wallach. Termination
in Language-based Systems. ACM Trans-
actions on Information and System Security,
5(2), May 2002.

[26] S. Sidiroglou and A. D. Keromytis. A Network
Worm Vaccine Architecture. In Proceedings of
the IEEE Workshop on Enterprise Technolo-
gies: Infrastructure for Collaborative Enter-
prises (WETICE), Workshop on Enterprise Se-
curity, pages 220–225, June 2003.

[27] T. Toth and C. Kruegel. Accurate Buffer Over-
flow Detection via Abstract Payload Execu-
tion. In Proceedings of the 5th Symposium
on Recent Advances in Intrusion Detection
(RAID), October 2002.

[28] N. Wang, M. Fertig, and S. Patel. Y-branches:
When you come to a fork in the road, take it.
In Proceedings of the 12th International Con-
ference on Parallel Architectures and Compi-
lation Techniques, September 2003.

[29] J. Yin, J.-P. Martin, A. Venkataramani,
L. Alvisi, and M. Dahlin. Separating Agree-
ment from Execution for Byzantine Fault Tol-
erant Services. In Proceedings of ACM SOSP,
October 2003.

