SIAM 1. ConpUT © 1980 Society for Industrial and Applied Mathematics
Vot 9, No 1, February 1980 0097-3397 8u 09C1-0004 $01.00:0

ON THE COMPLEXITY OF COMPOSITION AND
GENERALIZED COMPOSITION OF POWER SERIES*

R. P. BRENTt anp J. F. TRAUB#

Abstract, Let Flx)=fix+ zx2+- - - be a formal power series over a field A. Let F%x)=x and for
q=1,2,---,define F“’](x) = FA'”(F(x)). The obvious algorithm for computing the first n terms of F("](x) is
by the composition analogue of repeated squaring. This algorithm has complexity about log» q times thatof a
single composition. Brent showed that the factor log; g can be eliminated in the computation of the first n
terms of (F(x))}? by a change of representation, using the logarithm and exponential functions. We show the
factor log; q can also be eliminated for the composition problem, unless the complexity of composition is

quasi-linear.
F"’](x) can often, but not always, be defined for more general g. We give algorithms and complexity

bounds for computing the first n terms of Fm(x) whenever it is defined.
We conclude the paper with some open problems.

Key words. composition, fast algorithms, formal power series, symbolic computation, generalized
composition, functional equations, Schroeder function, iteration, similarity transformations

1. Introduction. Let .
(1.1) F(x)=f1x+f2x'+-~~
be a formal power series over a field A. Let Fx)=x and for g=1,2,--- define the
q-composite of F by

(1.2) Fl) = Fl Y F(x)).

The g-composite may also be called the g-iterate. Let H (x) be the reversion of F(x),
i.e., the power series inverse to F(x) under composition. Forqg=1,2, - -, define

(1.3) Fa(x) = H9(x).

As we shall see below, the g-composite of F can often (but not always) be defined for
more general g. If g is not an integer, we shall call F'%(x)a generalized g-composite. We
confine ourselves to the case that F1?)(x) is a power series. One important special case of
generalized composition is ¢ = 1/r, where r is an integer. Then G = F'""Yx) is an rth
root of F under composition, and satisfies the equation G'{(x) = F(x).

Let
(1.4) Falx)=fix+---+fx",
(1.5) G(x)=Fx)=gix +gax +- - -,
(1.6) G.lx)=gyx -+ gx".

Given q and F,{(x), we want to compute G.(x).

In this paper we shall give algorithms and complexity bounds for computing G,{(x)
whenever it is defined. For integer q these algorithms are asymptotically faster than the
obvious algorithms.

* Reccived by the editors May 23, 1978, and in revised form December 18, 1978 This rescarch was
supported in part by the National Science Foundation under Grant MCS875-222-55 and the Office of Naval
Research under Contract N00014-76-C-0370, NR 044-422, The work of the first author was also supported
in part by the National Science Foundation under Grant 1-442427-21164-2 at the University of California at
Berkeley.

t Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania. Presently at
Computer Science Department, Australian National University, Canberra, Australia.

t Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.

54

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 55

We discuss the last point. Let COMP; (n) denote the complexity of computing the
first n terms of F(F(x)), and let g be a power of two. Then the obvious algorithm for
computing G.(x) is by the composition analogue of ‘‘repeated squaring,” and has
complexity COMP, (n)lgg. (We shall denote log, by lg.) Can we eliminate the
multiplicative factor of lg g?

An analogous problem is that of computing R, (x). the first n terms of (F(x))%
Asymptotically in n, the complexity of forming R.(x) is the same as the complexity of a
single multiplication of two polynomials of degree n. This follows from the observation
that if A(x) is a power series with constant term unity, then (A(x))* =exp (g In A(x)).
This may be viewed as a change of representation of A(x) to a new representation
where multiplication is replaced by addition, followed by the inverse change of
representation. Brent (1976) showed that the change of representation could be
computed *fast.”

This suggests asking whether there is a change of representation which reduces
composition to multiplication. We shall see that there is, at least in the “regular’ case
(see § 3). Furthermore, the change of representation can be computed “fast.” This
enables us 10 eliminate the muitiplicative factor of lg q (unless the complexity of
composition is quasi-linear). In addition we shall show (§§ 4-6) that even in the
“nonregular’’ cases we can still eliminate this factor. A bonus is that our algorithms
apply for non-integer g (so long as F%x) is a well-defined power series).

The problem of composition and generalized composition occurs in many appli-
cations including branching processes, asymptotic analysis, difference equations,
numerical analysis, and dynamical systems. See, for example, Aczél (1966), Cherry
(1964), de Bruijn (1970), Feller (1957), Harris (1963). Henrici (1974), Knuth (1969),
Kuczma (1968). Levy and Lessman (1961), and Melzak (1973). The study of composi-
tion (often called iteration) may be viewed as a major subfield of mathematics. See
Aczél (1966), Gross (1972), and Kuczma (1968) for very extensive bibliographies.
However, little attention seems to have been given to the development of algorithms for
computing F'Y(x) when F(x) is a given power series.

The following conventions are adopted below. We deal with formal power series;
that is, we do not concern ourselves with convergence. Power series are denoted by
upper case letters such as A(x) or simply A, with coefficients denoted by the cor-
responding lower case letters such as a;. If A(x)= akx" + ak“xk“ +--+,ar#0, then
ord (A)= k. It is convenient to define ord (0)=00. If ord (B—-C)Z k we write B =
C+0O(x*). The polynomial bo+bix +- - - +bg_1x*"Vis denoted either by B{x) mod x*
or by Bg_i{x). It is convenient to define y(n.q)= O(8(n, q)) to mean |y(n, q)|=
K|8(n, q)| for all sufficiently large integer n for all ¢ under consideration.

We summarize the remainder of the paper. Our complexity model is specified in
§ 2. In § 3 we study the “regular” case when the multiplier f, is such that f; #0, fT # 1,
m=1,2,---.Inthefollowing three sections we consider the cases f; =0: f, = 1:f7 =1,
integer m > 1, but f, # 1, respectively.

In each of §§ 3, 4, and 5 we define an “auxiliary” function, demonstrate it can be
computed fast by “divide and conquer,” and show how it can be used to compute Flal,
The case studied in § 6 can be reduced to that of § 5. In the concluding section we state a
theorem (Theorem 7.1) summarizing our results, state the defining equations for all
cases, and mention some open problems.

2. Complexity model. In this section we state our complexity model and sum-
marize the complexity resuits needed below. We assume that scalar arithmetic opera-
tions are performed exactly and have unit cost. Thus our time bounds are invalid if, for

56 R. P. BRENT AND F. J. TRAUB

example, exact rational arithmetic is used. However, our algorithms should still be
useful in this case.

Given power series A(x) and B{(x), the time required to compute
A(x)B(x)mod x" is denoted by MULT (n). If ord (B)=1, the time required to
compute A(B(x)) mod x" is denoted by COMP (n). We assume that MULT (n) and
COMP (n) satisfy certain plausible regularity conditions (see Brent and Kung (1978,
§ 1)). Then Brent and Kung (1978) show

(2.1) COMP (n)= O(min (n"*"2, (n 1g n)'> MULT (n))),

if matrix multiplication has complexity O(n"). If the field A is such that fast algorithms
like the FFT are available, then

(2.2) MULT (n)= O(n lg n)
(see Borodin and Munro (1975)), and it follows from (2.1) that
(2.3) COMP (n) = O((n 1g n)*").
The bounds in this paper will be expressed in terms of the complexity function
tlgn)
(2.4) COMP; (n)= Y 2' COMP ([27'n]).
i=0

Assume (with notation as in Knuth (1976))
(2.5) COMP (n)=0O(n"s(n)),

where « 2 1, and s(n) is a monotonic increasing positive function. (For example, s(n)
might be (Ig n)® for some constant 8 20.) Then, s(n)=O0(n") for all ¢ >0.

O(COMP (n)), ifa>1,
O(COMP (n)lgn), ifa=1.

If the field A is such that (2.3) holds, then a =3. If a > 1, then COMP, (n) may be
replaced by O(COMP (1)) in our bounds.

If a =1, we say COMP (n) is quasi-linear. If « =1 and q is a fixed integer, then
“repeated squaring” is asymptotically faster than our algorithms. Of course, if q is not
an integer, then “repeated squaring’ is not an alternative to our algorithms. If a >1,
our result (that we can eliminate the multiplicative factor of lg q) holds for all fields of
characteristic zero and all finite fields of characteristic p greater than n.

If f1 is defined, we denote the complexity of computing f7 by POWER (g). If g isa
positive integer, then POWER (q)=O(lgq). To eliminate POWER (q) terms we
sometimes assume that f7 is given.

In Brent (1976) it is shown that the complexity of computing In (1 + A(x)) mod x”
is O(MULT (n)) for any power series A, ord (A)>0. Using Brent's results it can
be shown that the complexity of computing (B(x))*mod x" is O(MULT (n)+
POWER (g)). By Brent and Kung (1978, Lemma 4.2) MULT (n) = O(COMP (n)), so
we can absorb MULT (n) into COMP (n) in our analyses.

Recall that COMP, (n) was defined as the complexity of computing the first n
terms of F(F(x)). It can be shown, by means similar to the proof of Brent and Kung
(1978) that the complexity of reversion and composition are asymptotically equal, that
COMP (n)= O(COMP, (n)).

(2.6) COMP; (n) = {

3. The regular case. In this section we study the computation of F') when
H#0, fi'#1, m=1,2,---. We call this the regular case. Define the Schroeder

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 57

function $(x) by
(3.1) S(F(x)=fiS(x) ord(§)=1, s;=1.

S(x) exists and is unique (Schroeder (1871), Kuczma (1968, Chap. 6)). See also Parker
(1977). It is easy to prove that, for all integer g,

(3.2) F'x) = S(£1S (x)).

S(x) and ST (x) play the role that the logarithm and exponential functions play in
computing (F(x))? fast. They reduce self-composition to scalar powering.

Equation (3.1) has an interesting matrix interpretation. To the formal power series
F(x) and S(x), we may associate infinite matrices Mg and Mj, respectively (see, for
example, Henrici (1974, p. 45)). Then S[_”(x) is associated with M3'. Itis easy to show
that (3.1) corresponds to a matrix similarity transformation which transforms Mg to a
diagonal matrix with diagonal elements f% k=1,2,---.The conditions f; #0, fT' # 1
ensure that the eigenvalues of Mg are all distinct.

If ¢ is not an integer but g and the scalar f, are such that f7 is defined, then (3.2)
may be used to define F {4} Wwe shall use the “'divide and conquer’ strategy to compute
S(x) fast and then show how to compute F 9] from (3.2) in total time O(COMP; (n)+
POWER (g)).

Although we wish to solve the functional equation (3.1), to make the “divide and
conquer™ strategy work we embed (3.1) in the more general linear functional equation

(3.3) AX)W(F(x))-Bx)W{x)-C(x)=0,

where W is the ur.known. Note that this equation includes reversion as a special case.
The divide and conquer” algorithm introduced to solve (3.3) may therefore be used to
revert power series. This algorithm is different from the one derived by Newton
iteration and given in Brent and Kung (1978).

Lemma 3.1 gives the basis for a “*‘divide and conquer™ algorithm for solving (3.3).
The proof is by substitution. Lemma 3.2 gives sufficient conditions for the existence of a
formal solution, and Lemma 3.3 gives an upper bound on the time required to compute
an approximate solution.

LeMmMma 3.1, If n, p are nonnegative integers, ord (F)=1,

(3.4) AX)UFx)-Bx)U(x)-C(x)=x"R(x)
and
(3.5) AQ)Fx)/x)"V(F(x) - B(x)V(x)+R(x) = O(x"),
then
(3.6) AXW(EFR)=Bx)W(x)-Cx)=0(x""")
where
(3.7) W(x)=Ux)+x"V(x).
Remark 3.1. If Lemma 3.1 is applied for n =p=2',j=0,1, 2, - - . we have an

algorithm for approximating W(x) which is quadratically convergent in the sense of
Kung and Traub (1978).
Lemma 3.2, Iford (F)=1,

(3.8) aoft #bo form=1,2,3,---

58 R. P. BRENT AND F. J. TRAUB

and
(39) ap = bo lleIeS Co= 0

then there is a formal power series W, satisfying (3.3), with ord (W) =0 unless co =0 and
ao# bo.)

Proof. We shall construct wg, w,, - - - such that W(x)=27:_0 wix! satisfies (3.3).
We let
(3.10) Waix)= Y wx'

j=0
and show by induction on m that, for some power series R, ,(x),
(3.11) AE)Wn(F(x)=B(x)Wn(x)=C(x)=x""' R i(x) = O(x™"").
Let

{1 ifa()=b0’
Wo =

(3.12) " leo/(ao—bo) otherwise.

Then (3.11) holds for m =0, starting the induction. Assuming that (3.11) holds for
m 20, we define

Rm+l(0)
bo— aof'x'""I
and apply Lemma 3.1 (withn=m+1,p=1,U=W,, V=w,,,) todeduce that (3.11)
holds with m replaced by m + 1. Thus, the result follows by induction on m. 0O
LEMMA 3.3. Suppose that wg, -+, w,— can be found in time t(n) whenever the
conditions of Lemma 3.2 apply. Then

(3.14) t(2n)=2¢(n)+ COMP (2n)+ O(MULT (n)).

Proof. Intime t(n) wcla ﬁnq Ug, * -+, U,_y such that (3.4) holds for some power series
R(x), where U(x)=Y, , ux’. Compute U(F(x)) mod x*" in time COMP (2n), and
then find

(3.13) Wy =

6.15) Re) = AWUEC) BV -Cle)

in time O(MULT (n)). [Note: MULT (2n)= O(MULT (n)).]
Since ord (F)= 1, F(x)/x is a power series, and by an algorithm given in Brent
(1976) we can compute (F(x)/x)" mod x", and thus

(3.16) A(x)= A(x)(F(x)/x)" mod x",
in time O(MULT (n)). Now (3.5) with p =n is just
A(X)V(F(x))-B(x)V(x)+R(x)= O(x"),

so we can find vg, -+ -, v,y In time t(n). Using Lemma 3.1, we take

_{u,- if0=j<n,
! Vj-, fn=j<2n,

and the result follows. 0O
CoROLLARY 3.1. With the notation of Lemma 3.3,

(3.17) t(n) = O(COMP; (n)).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 59

Proof. This follows from Lemma 3.3, the definition of COMP- (1), and the fact
that MULT (n) = O(COMP (n)). O

COROLLARY 3.2. Iford (F)=1landfY#1form=1.2.- -, then we can compute
the first n coefficients, sy, * * + , Sp—1 Of the Schroeder function S(x) satisfying (3.1) in time
O(COMP; (n)).

Proof. We solve a special case of (3.3), namely

(3.18) (Fx)/x)W(Fx)-HW(x) =0,

to obtain wo, - - -, w,_» by the method of Lemma 3.2. Then S(x) = x W(x) satisfies (3.1)
mod x",so sp=0ands;=w,_, forj=1,---,n-1. O

THEOREM 3.1. Assume ord (F)=1, fi'#1 form=1,2.---. Let f{ be defined
and let
(3.19) G(x)=F9%).

Then go, " -+, .-1 can be computed in time
(3.20) O(COMP: (n)+POWER (g)).

Proof. Using the method of Corollary 3.2, we compute S, _(x) = Z;‘:,‘ six' such
that s, # 0 and

(3.21) Sa-1(F(x))=f18..1(x)+ O(x")
in time O(COMP; (n)). Now

(3.22) St (G(x) =FIS.21x)+ O(x ™),
and thus

(3.23) G(x)=ST NS, i)+ O™,

Using the method of Brent and Kung (1978}, we can compute St (x) mod x" in time
O(COMP (n)), and the go, - - - . g.-1 are obtained from (3.23) in time COMP (n)+
POWER (q). The result follows. 0O

Remark 3.2. The condition f7' # 1 is necessary so that the divisor in (3.13) is
nonzero. Thus, we need only assume that f7" # 1 form =1,2,-- -, n—2.1f Fisaformal
power series over a finite field with characteristic p, then it is necessary to assume n = p.

The proofs above are constructive and give the following two algorithms.

ALGORITHM 3.1. The algorithm (A, B, C, F, W, m) finds wq, -+ -, wm_ such
that W(x) satisfies (3.3). It is defined recursively by:

if m =1 then {use equation (3.12) to define w,} else
{ne[m/2];

SAA,B,C F U nj;

Compute R using equation (3.15);

Compute A using equation (3.16);

(A, B,-R,F, V,n),

for j<0step 1T until n — 1 do i, « w0y, <0}

ALcoriTHM 3.2, The following algorithm computes G(x) = FY%) if the condi-
tions of Theorem 3.1 apply:
1. Take A(x)= F(x)/x, Blx)=/,, C{x)=0and find wy, - - -, w, ; such that W(x)

60 R. P. BRENT AND F. J. TRAUB

satisfies (3.3) by applying &(A, B, C, F, W.n — 1) (see Algorithm 3.1).
2. Let 50=0, s,=w;_, for j=1,---.n-1, and compute S[_”(ﬁS(x)) mod x"
using the composition and reversion algorithms of Brent and Kung (1978).

4. Multiplier zero. In this section we study the case f, = 0. Since the problem is
trivial if F(x)=0, we can assume ord (F)=k, 1 <k <o, We define auxiliary power
series S(x) by

(4.1) S(F(x)=f(Stx)*, ord(§)=1, s =1,

This reduces to Schroeder’s equation (3.1) if ¥ = 1. By induction on g we have, for all
positive integer q,

(4.2) Fl9(x) = $I 851 5()]),

Remark 4.1. The restriction to positive integer g is essential here. For example,
take F = x>. Then F'¥) does not exist as a power series for g=-lorg=3.

The following lemmas reduce the solution of (4.1) to problems solved in the
previous section.

LEMMA 4.1. If ord (F) =k > 1 the equation.

(4.3) W(F(x) - kW(x)+{(k - 1)+In[Fx)/(fix“)} =0

has a solution W(x), and wq, * * -, Wa- can be computed in time O(COMP; (n)).
Proof. Lemmas 3.11t0 3.3 are applicable to (4.3), so W{x) exists and wg, * * -+ , w, -,
can be computed in time O(COMP, (1)) by the method used in the proof of Lemma
33. 4
LemMMA 4.2, If ord (F)=k > 1 and W(x) satisfies (4.3), then

(4.4) S(x)=xexp(W(x)-1)

satisfies (4.1).

Proof. Substitute W(x)=1+In(S(x)/x)in (4.3). From (3.12), wo=1,s0 S(x) isa
power series. [

Using the algorithm of Brent (1976) we can compute the first n coefficients of

[S(x)/x)* =exp [kY(W(x)-1)]
k-1)/(k-1)

in time O(MULT (n)) once wy, - - -, w,—; are known. We can also computeﬂ
in time POWER ((k® —1)/(k — 1)). Then, using a slight modification of the composition
and reversion algorithms of Brent and Kung (1978) we have:

THEOREM 4.1. Assume ord (F)=k >1, q 21 is a positive integer, and

(4.5) G(x)=Fx)/x*",
Then go, -+ * . g«-1 can be computed in time
(4.6) O(COMP:; (n)+POWER ((k*-1)/(k —1))).

5. Multiplier unity. Now we consider the case that the multiplier f, is equal to
unity. We define an auxiliary function T by

(5.1) T(F(x))=F'(x)T(x), ord (T)=ord (F(x)~-x).

T(x) exists and is unique up to a scaling factor (Kuczma (1968, Lemma 9.4)). Let
G(x)=F'(x). Then we show below that G(x) may be computed from the equation

(5.2) T(Gx))=G(x)T(x).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 61

Remark 5.1. T may also exist if f; # 1. If F is such that the Schroeder function §
exists, then T(x)=cS5(x)/S'(x), where ¢ is a nonzero constant.

Example 5.1. If F(x)=2x +x°, then S(x)=In(1+x). Tx)=(1+x}In(l+x),
FU %) =(1+x)" = 1. If F(x)=x/(1-x), then T(x) = x>

Although we wish to solve the functional equation (5.1), as before we need to
embed (5.1) in a more general equation. Throughout this section we define d by
F(x)=x+fx?+--. f;#0, andlet k be any integer greater than 4. Then we shall solve

(5.3) X TUF @)/)Y (F(x)-F'(x)Y(x)]- A(x)=0

for Y(x).

Lemma 5.1 gives the basis for a “‘divide and conquer™ algorithm for solving (5.3).
Lemma 5.2 gives sufficient conditions for the existence of a formal solution, and Lemma
5.3 gives an upper bound on the time required to compute an approximate solution.
Lemma 5.4 establishes (5.2) and gives a sufficient condition for G to be uniquely
defined.

LemMMa 5.1. Let n, p be nonnegative integers. If

(5.4) xTUF)/ x) UF @) -Fx)Ux)] - Alx) = x"R(x)
and
(5.5) ' TUF)/) TVIF () - F'(x)V(x)]+ R(x) = O(x°),
then
(5.6) F)/) WF) -Fx)WE)]-ARx)=0(x""?)
where
5.7) Wx)=Ux)+x"V(x).
Proof. By direct substitution. Note that since F(x)=x +fdxd +-- -, the terms in

square brackets in (5.4) to (5.6) have ord=d—-1. 0O
LEMMA 5.2. There is a formal power series Y (x) such that

(5.8) M TUEFEE/ O Y (F) - F(x)Y(x)] = Ax).

Proof. We shall construct yq, yi, - - - such that Y(x)=}:7°=0 yx' satisfies (5.8).
Recall our assumption that k >d = ord (F(x) - x). Take

(5.9) =80

T k- ay
and let
(5'10) Yn (X) = i yix‘l‘

i=0
Thus
(5.11) ' T ()/0) Yoo r(F(x) = F'(x) Yaoi(x)] = A(x) = x "R, (x)
is true for n = 1 (where R, is some power series). Define
(5.12) y, = —Fnl0)
(k +n-— d)fd

for n 2 1. Using Lemma 5.1 with p = 1, it is straightforward to prove that (5.11) holds
for all n 2 1, by induction on n. Thus, the result follows. 0

62 R. P. BRENT AND F. J. TRAUB

LEMMA 5.3. Suppose that yo. - - -, v.-1 can be found in time t2(n) whenever the
conditions of Lemma 3.2 apply. Then
(5.13) 12(2n)=20,(n)+ COMP 2n +d - 1)+ O(MULT (n)).

Proof. In time ta(n) we find uy, - * -, 4,-1 such that (5.4) holds for some power
series R(x).if Ulx) = E;';Ol uix'. Compute U(F(x)) mod x2"4" " and then R(x) mod x"

from (5.4). Then find ve, - - +, tn—; such that V(x) satisfies (5.5) with p = n (this takes
time t2(n)+ O(MULT (n))). From Lemma 5.1 we can take

_{u, if0=j<n,
" lye, ifnsj<2n,

SO we get yo. ', Yia—y in time 2f:(n)+COMP (2n+d—-1)+ O(MULT (n)) as

required. 0O
CoOROLLARY 5.1. With the noration of Lemmma 5.3, t3(n) = O(COMP; (n)).
COROLLARY 5.2. There exists a formal power series T (x) such thatord (T)=d and

(5.14) T(F(x))=F'(x)T(x).
Moreover, 14, - -, t.—y can be found in time O(COMP; (n)).
Proof. If
(5.15) AX)=x"MFOx? = (F))= (fur - 1)+ -
and
(5.16) TF@)/)Y (F() - F () Y(x)]= Ax)
then
(5.17) T(x)=x"+x*""Y(x)

satisfies (5.14). Thus, the result follows from Lemma 5.2 and Corollary 5.1. 0O
LEMMA 5.4. Let q be an integer, T satisfy (5.14), and

(5.18) Gx) = F"x).
Then
(5.19) T(G(x))=G'(x)T(x),

and the power series G(x) is uniquely determined by (5.19) and the condition
(5.20) ord (G{x)—x —qfd.r") >d.

Proof. 1t is easy to prove (5.19) by induction for positive ¢, and the result for
negative g then follows. It is also easy to prove by induction that (5.20) holds if G is
defined by (5.18). From Lemma 9.4 of Kuczma (1968) the solution of (5.19) satisfying
(5.20) is unique, so the result follows. 0O

One T(x) is known, we can solve (5.19) for G(x), using the “initial condition”
(5.20). Since (5.19) is a nonlinear differential equation for G, we ¢can use a Newton-type
method as described in Brent and Kung (1978). The algorithms are given below. First
we summarize the result:

THEOREM 5.1. Assume fi=1 and let G = F'x). Then Lo." " "4 81 can be
computed in time O(COMP: (n)).
Proof. First find 14, - * * . 1,— such that T'(x) satisfies (5.1), as in Corollary 5.2, in

time O(COMP, (n)). Then solve (5.19) and (5.20) by Algorithm 5.3 below (in time
O(COMP (n))tofind go, " - -, gnnr. O

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 63

Remark 5.2. Note that q need not be an integer in Theorem 5.1. Kuczma (1968,
Thm. 9.15] considers the question of when F'*)(x) is analytic. See also Baker (1964) and
Szekeres (1964).

ALGORITHM 5.1. The algorithm B(A, F, Y, k, d, n) finds yo, - - - . y._; such that
Y (n) satisfies (5.8). It is assumed that n >0, aq, - -, a,-;and f,, - - - o fa+a-1 are given,
and that the conditions stated after Example 5.1 are satisfied. ®(A, F, Y, k. d, n) is
defined recursively by:

if n =1 then {define yo by (5.9)}
else {p « [n/2];
B(A, F, U, k, d, p):
Compute U(F(x)) mod x?*?°"}:
Compute R (x) mod x” from (5.4) with n replaced by p;
BH—R,F, V. k+p.d p);
for j« O step 1 until j -1 do
{yi < wis youi < vl

ALGORITHM 5.2. The algorithm E(F, T, d, n) finds 14, - - -, 1,_; such that T(x)
satisfies (5.14). It is assumed that f,, .-, f._, are given and that the conditions of
Corollary 5.2 are satisfied.

Y<0:Te0; 15« 1;
if # >d + 1 then {compute A(x) mod x" "¢ from (5.15);
B(AF. Y, d+1,d n-d-1);

forjed+1untiln—1do ;< y-a-1}.

ALGORITHM 5.3. The following algorithm computes go. - -.g,-;. such that
G(x)=F["](x). It is assumed that f4---,1,.; have been computed using
Algorithm 5.2.

Gex +qfdxd:
k«1;

while k +d <n do
{k « min Qk.n-d);
- T(G(x)-G'(x)T(x)
xdT(x)
‘_ii_ T (Gx))
x T(x)

k-1
R mod x~

U mod x*7?;
E «exp (J Uly) dy) mod x*77;
0

| %

eE(x) J:) E(y)R(y) dy mod x*;

G« G+x*V modx**9).

64 R. P. BRENT AND F. J. TRAUR

Remark 5.3. It can be verified that all the quantities appearing on the lefthand
sides in Algorithm 5.3 are indeed power series.

6. Multiplier nontrivial root of unity. In this section we consider the only remain-
ing case: fi#1. fi'=1 for some integer m >1. By Remark 3.2 we may assume
m =n-2. We also assume ¢ is an integer.

Remark 6.1. The restriction to integer q is essential here. For example, let
F =—-x+x2+x". There is no formal power series for F“m(x). That s, there is no power
series G(x) such that Gm(x) = F(x) (Kuczma (1968, p. 304)).

In what follows we shall use the following algebraic relations:

(6.1) F[P*Q](x)zF[ﬂ](F[q](x))‘
(6.2) F"™)(x)=R"(x), where R(x)=F'"x),

for integer p, gq. If g is negative we compose F'""instead of F, so without loss of
generality we may assume that g is positive. Let

(6.3) qg=mr+s,

where r=0. 0=s<m. We can evaluate M = F'™ = x +.- ., and F" by the obvious
“squaring”* method in time O(COMP (n) Ig m)= O(COMP (n) Ig n). Then, using the
method of § 5. we can evaluate FI™ = M"! in time O(COMP; (n)). Finally, F¥'=
F™ Y FY may be evaluated by performing one composition. (An additional reversion
is required if ¢ <0.) Thus we have established

THEOREM 6.1. Assume ord (F)=1, fi# 1, f' =1 for some m such that 1<m=
n—2, q integer, and let G= F'9 Then g1.° ", 8n-1 can be evaluated in time
O(COMP (n)1g m + COMP; (n)).

Remark 6.2. If Ais the real field (so the only roots of unity are 1) then Theorem
6.1 shows that gy, - - -, g.-) can be evaluated in time O(COMP; (n)).

7. Summary and open problems. From Theorems 3.1, 4.1, 5.1, and 6.1 we have
THEOREM 7.1. Let F(x) be a formal power series, ord (F)Z 1, and let G(x)=
Fx). If q satisfies the following conditions:
(1) If ord (F)>1, then q is a positive integer;
(ii) If the multiplier f, is a nontrivial root of unity, then q is an integer;
(iii) f1 is defined;
and iffiisgiven, theng,, - - - . g. can be computed in time O(COMP; (n)) and this bound
is independent of q.
Different defining equations are used for the various cases we have had to consider.
For the reader’s convenience we summarize them here. As before, G = Fl9,
I. Regular case: fi#0, f'#1, m=1,2,---. Define § by S(F(x))=f,S(x).
ord (S) = 1. Then G(x) =S (f1S(x).
I1. f,=0. Define § by S(Fix)) =fk(S(x))k. ord(S)=1. s;=1. Then G(x)=
S[-l]{f(kk"—n/(k-l)[s(x-)]k“}.
III. fi=1. Define T by T(F(x))=F'(x)T(x), and ord (T} = ord (F(x) — x). Then
determine G(x) from T(G(x)) = G'(x)T(x) and (5.20).
IV. fi#1, fi' =1 for some integer m > 1. This can be reduced to case III.
It is possible to compute G using the same functional equation for cases [-III.
Define U(x) by

F'(x)
ord (F)

(7.1) U(F(x))= Ul(x), ord (U(x)) = ord (F(x)— x).

COMPOSITION AND GENERALIZED COMPOSITION OF POWER SERIES 65

U (x) exists and is unique up to a scaling factor. In fact, in cases I and II we have
(7.2) Ux)=cS(x)/S'(x),

and in case I1I we have U(x)=c'T(x), for some nonzero constants ¢ and ¢'. Also, it is
easy to.prove that G satisfies

G'(x)

7.3 V=
(7.3) U(G(x)) Tord (F)F

Ulx).

Although a unified treatment of cases [-111 using (7.1) and (7.3) would be possible,
it is simpler to use the Schroeder function S§(x) of (3.1) in case I and the generalized
Schroeder function of (4.1) in case 1I, for then G is given explicitly by (3.23) or (4.2)
instead of implicitly as a certain solution of (7.3). Also, in proving properties of
algorithms for the computation of G by either method, it is natural to consider cases
I-III separately.

The techniques of §§3 and 5 can be applied to far more general nonlinear
functional equations. We shall report on this elsewhere.

To conclude we list some open problems suggested by the results of the paper.

1. If the field A is such that MULT (n) = O(n lg n) then the fastest algorithm
known for composition is O((n Ig n)m). No nontrivial lower bound is known.

a. Is composition harder than multiplication? (It is at least as hard.)

b. Although there are only n inputs and n outputs, the best upper bound known is
O((n 1g n)*'?). This is comparable to matrix multiplication where there are 2n? inputs
and n’ outputs but the best upper bound known (Pan (1978)) is O(n*"). Can the
Brent-Kung upper bound be reduced?

c. Is a>1 in the notation of (2.5)? An affirmative answer would show that
COMP; (n) = O(COMP (n)).

2. Brentand Kung (1978) showed that, for the reversion problem R(x) = F™(x),
the complexity of computing R,.(x) is O(COMP (n)). Consider computing R, (x¢) for a
scalar xg. This problem has n inputs and one output. Brent and Kung (1978) showed its
complexity tobe OMULT (n)). If G(x) = F["](x)‘ what is the complexity of computing
G, (x0)? Is it less than the complexity of computing G, (x)?

3. What are the numerical properties of our algorithms? For example, we expect
the computation of the Schroeder function to be ill-conditioned if f7" is close to 1 for
some m = n — 2 see (3.13). Cherry (1964) discusses this problem in conjunction with a
problem in dynamical systems.

4. What are the complexity bounds for exact arithmetic over the rational field?

Acknowledgment. We are deeply indebted to M. L. Fredman who pointed out to
us the critically important idea of using the Schroeder function to effect a change of
representation in the regular case. We thank D. E. Knuth who pointed out to us that a
single functional equation, (7.1), can be used for three of the cases. Finally, we thank
M. Sapsford and M. Sieveking for their careful reading of the manuscript.

REFERENCES

J. AczEL (1966), Lectures on Functional Equations and Their Applications, Academic Press, New York.

I. N. BAKER (1964), Fractional iteration near a fixpoint of multiplier 1,). Austral. Math. Soc., 4, pp. 143-148.

A. BORODIN AND I. MUNRO (1975), The Computational Complexity of Algebraic and Numeric Problems.
American Elsevier, New York.

66 R. P. BRENT AND F. J. TRAUB

R. P. BRENT (1976}, Multiple-precision zero-finding methods and the complexity of elemeniary function
evaluation, Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New York, pp.
151-176.

R.P. BRENT AND H. T. KUNG (1978). Fast algorithms for manipulating formal power series, Department of
Computer Science Report, Carnegie-Mellon University, 1976. Also J. Assoc. Comput. Mech., 25,
pp. S81-595.

T. M. CHERRY (1964), A Singular Case of Iteration of Analytic Functions: A Contribution to the Small-
Divisor Problem, Nonlinear Problems of Engineering, W. F. Ames, ed., Academic Press, New York,
pp. 29-50.

N. G. DE BRUDN (1970), Asymprotic Methods in Analysis (Third Edition), North-Holland Publishing
Company, Amsterdam.

W. FELLER (1957), An Introduction to Probability Theory and its Applications, vol. 1, Second Edition, John
Wiley, New York.

F. GROss (1972}, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington,
DC.

T. E. HARRIS (1963), The Theory of Branching Processes, Springer-Verlag, Berlin.

P. HENRICI (1974), Applied and Compurational Complex Analysis, vol. 1, John Wiley, New York.

D. E. KNUTH (1969), The Art of Computer Programming, vol. 2, Addison-Wesley, Reading, MA.

(1976), Big omicron and big omega and big theta, SIGACT News 8, no. 2, pp. 18-24,

M. KuczMa (1968), Funcrional Equations in a Single Variable, PWN-Polish Scientific Publishers, Warsaw.

H.T.KUNG AND J.F. TRAUB (1978), All algebraic functions can be computed fast, Department of Computer

Science Report, Carnegie-Mellon University, 1976. Also J. Assoc, Comput. Mech., 25, pp.
245-260.

H. LEvY AND F. LESSMAN (1961), Finite Difference Equations, Pitman, London.

Z. A. MELZAK (1973), Companion to Concrete Mathematics, John Wiley, New York.

V.PAN (1978), Strassen’s algorithm is not optimal trilinear technique of aggregating, uniting and canceling for
constructing fast algorithms for matrix operations, 19th Annual Symposium on Foundations of
Computer Science, IEEE Computer Society.

D. S. PARKER, IR, (1977), Nonlinear recurrences and parallel computation, High Speed Computer and

Algorithm Organization, D. J. Kuck, D. H. Lawrie, and A. H. Sameh, eds., Academic Press, New
York, pp. 317-320.

E. SCHROEDER (1871), Uber iterierte Funktionen, Math, Ann., 3, pp. 296-322.

G. SZEKERES (1964), Fractional iteration of entire and rational functions, J. Austral. Math. Soc., 4, pp.
129-142.

