Surface Orientation and Segmentation
from Perspective Views of
Parallel-Line Textures

Mark L. Moerdler
John R. Kender

CUCS-159-85

450 Computer Science
Columbia University
New York, N.Y. 10027

oot

Table of Contents

INTRODUCTION
MATHEMATICAL BASIS
METHODOLOGY
RESULTS AND ANALYSIS

4.1. Pure Synthetic Image

4.2. Random Noise

4.3. Textural Variations

4.4. Multiple Adjacent Surfaces

4.5. Multiple Overlapping Surfaces

4.6. Multiple ”Transparent” surfaces

4.7. Perspective-Based Segmentation
CONCLUSION AND FUTURE WORK

W 00 00 ~1 O W W

10

11
12
13

to

Surface Orientation and Segmentation
from Perspective Views of
Parallel-Line Textures

ABSTRACT

This paper describes a particular shape-from-texture algorithm that
constrains and defines surface orientations with little a priori knowledge. It
has been found to be robust under a variety of conditions. The methcd uses
the change in the spacing of parallel surface markings to derive the
orientapion and shape of multiple surfaces in synthetic noisy scenes. We first
describe the problem domain and the representational approach. Next we
outline the mathetical basis of the method, and its straightforward graphical
interpretation. Third, we discuss the implementation r:sthodology employed
and some concrete implementational issues. We eriain the algorithm’s
response to a number of images, in which various forr.: of noise or surface
perturbation are handled: texel loss or distorﬁion, and r:ultiple or overlapping
surfaces. We discuss the relationship between the various forms of noise and
the quality of the results. Fourth, we demonstrate perliminary findings of
texture-driven segmentation in which this method not ornly segments adjacent
surfaces but also separates two overlapping ‘‘transparent’” surfaces. We

conclude with our future research plans.

1. INTRODUCTION

One of the key questions of image understanding is how to recover the
three dimensional structure of a surface. Although many algorithms for
discovering surface constraints have been proposed and implemented, most of
them are based on a single surface cue. Considering the diversity of
potential image surfaces and the fact that these methods are only partially
successful even in a limited domain, a more broad based approach would
seem necessary. Robustness and generality can only be achieved by means of
a multi-module design containing many components, each of which uses a

different surface cue.

Such a multi-module approach has been implemented in a wide range
of vision domains (see [1], [4]). These systems contain either several distinct
modules, or one module whose various instantiations act independently on
subimages as if they were several distinct modules. In this paper, we shall
discuss the results of one such module which simultaneouély induces a
segmentation and performs an initial surface analysis. It attempts to recover
surface constraints from the apparent change in spacing between textual

primitives which are known to be evenly spaced in the scene (Diagram 1).

These textural primitives, since they are spacings rather than lengths,
are virtual textural elements. From a viewpoint normal to the surface, these
spacings can be considered to be the equally-spaced intersections of actual

textural elements with an arbitrary virtual line. When the surface is viewed

in perspective to the viewer, the s‘pacing between virtual primitives changes
in an orderly way This module uses the detection of a change 1n texel
spacing to calculate local surface orientation by finding an equivalent
representation of local surface gradient: the local vanishing line of

perspective.

2. MATHEMATICAL BASIS

The derivation of surface constraints from textural cues can be
performed by back-projecting the textural primitives onto a hypothesized
local surface ([2], [3]). Using the image position of three or more textural
elements and the hypothesized surface parameters, we are able to recover
constraints on surface orientation, under the assumption that the back-

projected features are regularly distributed in real space.

Tlﬁs equal-spacing module operates in the following way. It constructs
" multiple straight virtual lines through the region of interest. Each of these
lines passes through a number of texel primitives; each adjacent pair of
intersections with the texels produces a virtual spacing. For every group of
three of more texels on the virtual line (that is, for every pair of spacings) it

then computes the appropriate vanishing point implied by the ratios of the

spacings.

The relationship of these spacings to the local vanishing line can also

be obtained by a simple graphic construction. Given an adjacent pair of

spacings, it cuts the virtual line at the middle texel, and pivots each of the
two (unequal) halves up off the surface of the image plane and perpendicular
to it (see Diagram 2) The method resembles the opening of a jack knife.
The line through the top of each of these ’'jack knife lines’ intersects the
virtual line at the locally determined vanishing point. Note that if the lines
do not intersect, it must be that the spacing between texels are equal and
the local vanishing point must be infinitely distant to the line of sight (that
1s, the surface 1s perpendicular to the line of sight). Each vanishing point
constrains the local surface to one degree of freedom in its surface

orientation; two independent vanishing points (from spacings derived from

two independent virtual lines) uniquely determine local surface orientation.

In practice, these constructions are not done graphically but rather by
means of the back-projection formula relating texel position and the slopes of
the constructed lines. Given any two texel locations a and b, if the distance
from a to the midtexel is equal to L and the distance from b to the same

midtexel is equal to R, the vanishing point distance is given by (3]:

[X - a]/L = [X - bJ/R

where X 1s the vanishing point distance. Rewriting the equation we

have:

X = [La - Rb}/[L-R]

In the next section we discuss some of the implementation issues that

arise from this ideal mathematical basis.

3. METHODOLOGY

The quality of the algorithm’s results depends on a number of factors
including the location and direction of placement of the virtual lines, the
determinator of what constitutes a texel as opposed to noise, and which

groups of texels to use to generate vanishing points.

The optimal choice of the orientation, placement, and number of virtual
lines 1s also related to the specific image parameters. As a general rule we
have found that four equally positioned orientations of virtual lines are
necessary. (They lie in the direction of a pixel's eight neighbors: see Diagram
3.) If there were only one orientation, then surface orientation would be
underdetermined except for the invocation of édditional assumptions such as-
medium-scale planarity. Additionally, with only one direction, no vanishing
points can be found when the virtual lines and the texture lines are parallel.
Although two orientations. are theoretically sufficient, results are often
inadequate when an ‘image contains converging lines that nearly parallel one
of the directions (see Diagram 4). With three orientations, it is difficult to

quantize the direction of the virtual lines; with four it is straight-forward.

Given a virtual line, the algorithm aggregates the virtual texels upon it
into all the possible groupings that have an even number of adjacent
spacings (and therefore that even number, plus one, of virtual texels). Each
such group then has two end texels, and a middle pivoting texel (see

Diagram 2). Since all spacings are assumed equal, grouping together

adjacent runs of them creates new virtual spacings, if two adjacent groups
have the same spacing count, they two must represent equal spacings on the
surface itself. Although the theory does not strictly require equality of
grouping (as long as the virtual spacings are properly normalized in the
vanishing point calculation), the current method operates sufficiently well,

and has the advantage of straigthforward simplicity.

We operate on images in the following way. In the synthetic, noisy
images we have used, we approximate the imtial edge finding step (and
reduce noise as well) by a simple heurisitic thresholding of each pixel. Edge
linking is also approximated: pixels above threshold are considered parts of a
linear surface marking 1if at least one neighboring pixel is also above
threshold_. Since virtual spacings are highly sensitive to placement and
digitization error, we further hmit texels to those that are spaced greater

than two pixels apart.

4. RESULTS AND ANALYSIS

A number of synthetic images have been generated and used to test the
capabilities of the program. FEach was choosen to show a form of image
perterbation that 1s likely to occur in real-world textures. These images test
the effects on the method of random noise, texture loss, mulitiple sufaces,
and overlapping transparent surfaces. It is important to note that in each
case the parallel line spacing (PLS”) algorithm has been given the image as

a whole. No a priori information is supplied about the number of surfaces

minimum noise levels, or the existence of multiple textures.

4.1. Pure Synthetic Image

The first image (the “Manhattan sunrise”: see Figure 1), tests the
program on a pure synthetic image. The middle portion of Figure 1, (the
“waves”), contains a surface textured with horizontal parallel lines, while the
upper portion (the ‘‘sun’) contains converging lines. Both textured surfaces
would be parallel and equal spaced when seen in the normal direction. In
both of these surfaces, and in other ”clean” surfaces containing no noise, the
program correctly found the true vanmishing line with a high desgree of

certainty and accuracy.

4.2. Random Noise

Random noise can eitﬁer create false texels or remove true ones. The
creation of false texels is partially compensated for in the algorithm by the
use of the neighbor-checking step. In a sparsely textured image this does
remove much of the random noise; in an image where the texture is more
closely spaced or the noise is more prevalent, false texels can be retained
since they fall next to other retained texels (which may be true texels or

false ones).

To further decrease the effects of small numbers of false texels, we

generate a large number of candidate vanishing points per virtual lin2: there

are multiple ways in which texels can be aggregated into equal odjacent
pairs of groupings. Some of these groupings will include false texels. This 1s

-

s form of noise averaging; small amounts of random noise will still create
incorrect vanishing points but it appears experimentally that a greater
proportion of the vanishing points generated will be correct. Note, too, that
when the noise is random the noisy vanishing points will also be randomly
located off the true vanishing line (where they will be ignored), although
their spatial distribution is hard to quantify or analyze even under the

simplest of assumptions.

Noise can also cause the loss of true texels. Figure 2 is an example of
a textured surface in which a substantial portion of the horizontal parallel
lines have been lost. The PLS algorithm however was able to find the
correct vanishing line reliabley (see Figure 3). Other incorrect vanishing lines
were also indicated, but they had less than half as many points as the true

vanishing line.

Similar results occurred in every other texture-loss image, with the
quality of the results, as expected, decreasing as the percentage of texture
loss increases. The effect of texture loss appears greatest if the loss occurs
in regions where many texture lines are seperated by only few pixels (that is,

near the vanishing line itself).

4.3. Textural Variations

Another form of perturbation that can occur is the skewing of texel

orientation. Figure 4 is comprised of the missing-texture image of Figure 2

with the added difficulty of a random change in orientation of every textur
e

10

line; the slope is altered by one or two pixels per hur --d. This image still
contains sufficient correct information such that the srogram found the
largest density of potential vanishing points on the true vanishing line (see

Figure 5).

4.4. Multiple Adjacent Surfaces
The next group of test images contains multiple non-overlapping
surfaces. Since no a priori information is supplied to the PLS program, all

the surfaces are initially treated as a single planar surface.

When run on the “Manhanttan sunrise” image as 2 whole (Figure 1),
the algorithm treats much of the ‘‘sand” as random noice, due in part to the
lack of neighbors.above threshold, and in part because thz inter-texel spacing
1s often too small. Thus the results obtained are mainly due to the
horizontal-line and converging-line surfaces, both of which point to the same
true vanishing line (that 1s, the surfaces are parallel 1n three~§pace). The
results are seen as white dots on Figure 6, and Chart 1 maps the degree of
success of the program; it found most of its vanishing points on the true

vanishing line.

The next image (the ”corridor”; see Figure 7) contains four non-
overlapping surfaces, each of which generates a different vanishing line. Again
the PLS program mechanically draws virtual lines acrass the image, they

often intersect the texels of more than one surface. If t.e algorithm chooses

its texture groups all within the same planar surface, & “rue vanishing point

J—

11

is computed. If one of the texels is on a different s:iface instead, a false
vanishing point is computed. However, the distribution = the false vanishing
points is heavily dependent on the location of the virtual line and the
surfaces that it travels through. These false points tend not to fall in
regular patterns, nor do a sufficient number randomly fall on any one line
with a frequency approaching the number of points on the true vanishing

line (see Figure 8 and Chart 2).

4.5. Multiple Overlapping Surfaces

The next class of images contain an even more difficult surface
constraint problem, that of overlapping transparent surfaces. Figure 9 shows
two surfaces, one ‘“‘on top” of the other. The first is imaged as containing
.parallel horizontal lines, while the second i1s imaged as converging lines. Both

surfaces, however, have the same orientation and vanishing line.

The PLS program treats the two as a single texture; the human
observer also often envisions it as a single brick floor going off to infinity.
The results of this surface are shown in Chart 3 (see Figure 10). The
program was able to find the vanishing line accurately, with the proper line

having twice the number of vanishing points as any other candidate.

4.6. Multiple "Transparent” surfaces

Next we distort this image by changing the orientation of the

converging-line plane The resulting image, Figure 11, does create difficulties

for the program, but it also often puzzles human observers. The

horizoﬁtal]y-lined surface’s vanishing points are easily found, whereas the
converging-line surfaces’s are not. This appears to be because the horizontal
lines at the bottom of the image are little encumbered by the converging
lines; they strongly indicate their vanishing line. However, the middle section
of the image, which contains the best converging-line textures, is noisy due

to the co-existence of both textures.

Without additional processing--such as direction-sensitive filtration of
linear texels--the PLS program is unable to find with conviction the

converging-line surface’s orientation.

4.7. Perspective-Based Segmentation

The PLS program 1s also capable of some limited perspective-based
segmentation. By using the same basic algorithm, with some additional
information we are able to find which texels contribute to which vanishing
line. Given the equation of a vanishing line, the program can label a given
texel group as belonging to the local surface or not. By including all texels .
that generate correct vanishing points in a seperate image, we are able to

partially define and remove one surface at a time from the image.

By using this method, we were able to segment all of the previous
images in which there existed more than one vanishing line. For the
overlapping image of Figure 11, the PLS program finds the vanishing line of

the horizontally-textured surface (see Figure 12 and Chart 4), and uses this

to generate Figure 13, which contains much of the horizontally-textured

13

surface. Subtracting Figure 13 from Figure 11 gives Figure 14, which now is

sufficiently ”clean” to allow the detection of the converging-line surface’s

vanishing line.

5. CONCLUSION AND FUTURE WORK

The PLS algorithm has been found to be robust when used on many
images of synthetic parallel-line textured surfaces. One good measure of the
quality of an algorithm is how much one gets "for free”. Here, segmentation
does comes freely: not only are we able to constrain noisy difficult images
and 1mages with multiple surfaces, but we are able to separate two

transparent 1mages.

However, combinations of noise, texture loss, and surface o?erlap can
cause the algorithm’s performance to degrade or fail completely. These
situations can probably be handled best by the concurrent use of other
similar texture-based modules. Future research will include other such shape-
from-texture methods, and should allow us to constrain a larger range of
both synthetic and simple real images. This multi-module approach should

address many of the problems of perspective-based surface segmentation and

surface orientation analysis.

14

APPENDIX A - Charts Figures and Diagrams

Chart 1: Manattan Sunrisel

Rov # # of points

231 2738

239 1188

240 2385

241 5608 -- the true vanishing line
242 1626

243 3385

No rows over 2000

no cols with over 2000 points

Chart 2: four wall image

vanishing line points

rov 240 3411

rov 271.5 3684 --- 1/2 rov position errror
col 239.5 3674 --- 1/2 rov position errror
col 271 3414

These are all the rows or columns over 2500 points

Chart 8: Overlaping image

Rov # % of points

230 1161

237 1127

239 1028

240 2261 -- the true vanishing line
240 1008°

260 1005

All rows over 1000

no cols with over 1000 points

IThe algorithm returns potential vanishing pomts;,the{ are currently
rocessed either by a horizontal or vertical best-fit line linder, or by a
ough transform module. The results obtained by either method agree
sufficiently closely in these examples to be used interchangeably.

15

Chart 4: Overlapping skewed images

Rov # # of points

230 2071

240 3604 --- The True vanishing line
242 1842

260 1800

All rovs over 1800
no cols vith over 1800 points

Diagram 1: Parallel line textured Diagram 2: Vanishing point finding
surface using eqaugonpacing method

Diagram 3: Four Orientations of Diagram 4: Converging line texture
- virtual line templates .

1

Figure 1: Wanhattan Sunrise

Figure 2: Horizontal lipe image
vith partial texture loss

Figure 3: Partial loss texture Figure 4: Horizontal line image
, vith result points vith partial texture loss
and position skewing

Figure 5: Previous image with Figure 6: Manhattan Sunrise image
result points

vith result points

17

Figure 7: Hultiple Surface image Figure 8: Multiple surface image
vith result points

Figure 9: Two overlaping surface Figure 10:Brick Floor image with
"Brick Floor® Image results

Figure 11:Two Transparent surfaces Figure 12:Two Transparent surface
image image results

18

Figure 13:Horizon surface points Figure 14:Results of figure 11
found ninus figure 12

Figure 15:Nev Transparent image
. vith results

3]

4]

19

References

Brooks R.A.
Symbolic Reasoning among 3-D Models and 2-D Images.
Artificial Intelligence Journal. , August, 1981.

Kender, JR.

Shape from Texzture.

PhD thesis, Carnegie-Mellon University Computer Science Department,
1980.

Kender JR.

Surface Constraints from Linear Extents.

Proceedings of the Nation Con ference on Artifical Intelligence. |
March, 1983.

Sabbah D.
A Connectionist Aprroach to Visual Recognition.
PhD thesis, University of Rochester, 1982.

