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ABSTRACT .

This article explores the idea of leaming efficient strategies for solving problems by searching for
macro-operators. A macro-operaior, or macro for shor, is simply a sequence of operators chosen
from the priminive operators of a problem. The technique is particularly useful for problems with
non-serializable subgoals, such as Rubik's Cube, for which other weak methods fail. Both a
problem -solving program and a learming program are described in deswail. The performance of these
programs is analyzed in terms of the number of macros required to solve all problem instances, the
length of the resuiting solutions (expressed as the number of primitive moves), and the amount of fime
necessary to learn the macros. In addition, a theory of why the method works. and a characterization
of the range of problems for which it is useful are presenied. The theory introduces a new rype of
problem swucture called operator decomposability. Finally, it is concluded that the macro technique
is @ new kind of weak method. a method for leaming as opposed to problem solving.

1. Introduction and Summary

One view of the field of artificial intelligence is that it is the study of weak
methods [1]. A weak method is a general problem-solving strategy that can be
used when not enough knowledge about a problem is available to employ a
more powerful solution technique. The virtue of the weak methods is the fact
that they only require a small amount of knowledge about a problem and
hence are extremely general. The set of weak methods includes generate-and-
test, heuristic-search, hill-climbing, and means-ends analysis.

Many problems, however, are so complex or have so little structure that
none of the weak methods are effective in solving them. Such problems are
only solved by the use of a large, domain-specific knowledge base. It has
become almost an axiom of artificial intelligence that powerful problem solving
in any realistic domain requires a large amount of knowledge.

This raises the question of how such knowledge bases are acquired or
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learned. This article proposes the hypothesis that there exist weak methods for
leamming, or general techniques for acquiring knowledge that are domain-
independent. One such method. that of searching for macro-operators. is
presented and analyzed in detail. Below is a short summary of each of the
sections of this article.

Section 2 demonstrates that there exist problems that have efficient solution
strategies that cannot be explained by any of the current stock of weak
methods, and presents the 2x 2x 2 version of Rubik's Cube as an example.
The goal state of this problem is naturally described as a conjunction of a set of
subgoals. It is observed that all known algorithms for this problem require that
previously satisfied subgoals be violated later in the solution path. Such a set of
subgoals is referred to as non-serializable. However, the standard technique for
solving problems with subgoals, means-ends analysis, does not allow non-
serializable subgoals. Furthermore, we present empirical evidence that several
natural heuristic evaluation functions for the simplified Rubik's Cube provide
no useful estimate of distance to the goal, suggesting that heuristic search is of
no use in solving the problem. Since all the weak methods rely on some sort of
evaluation function, Rubik’s Cube cannot be solved by any of these techniques.

Other work related to this research is reviewed in Section 3. The problem
solver is based on the General Problem Solver program of Newell and Simon.
Non-serializable subgoals were studied extensively in the context of the blocks
world by Sussman, Sacerdoti, Warren, Tate, Manna and Waldinger. and others.
Macro-operators were first learned and used by the strips problem solver and
later by the ReFLECT system of Dawson and Siklossy. Banerji suggested the use
of macros to deal with the non-serializable subgoals of the Rubik's Cube and
the Fifteen Puzzle. Finally, Sims and others showed how to organize sets of

macros to solve permutation puzzles, and demonstrated one way the macros.

could be learned.

Section 4 describes the Macro Problem Solver, an extension of the General
Problem Solver to include macro-operators. The basic idea of the method is to
.apply macros that may temporarily violate previously satisfied subgoals within
their application, but that restore all previous subgoals to their satisfied states
by the end of the macro, and satisfy an additional subgoal as well. The macros
are stored in a two-dimensional table, called a macro table, in which each
column of the table contains the macros necessary to satisfy a particular
subgoal. The subgoals are solved one at a time, by applying a single macro
from each column of the table. The Macro Problem Solver generates very
efficient solutions to several classical problems, some of which cannot be
handled by other weak methods. The examples include Rubik's Cube, the
Eight Puzzle, the Think-a-Dot problem, and the Towers-of-Hanoi problem.

The question of how macros are learned or acquired is the subject of Section
5. The simplest technique is a brute-force search. However, by using a
technique related to bi-directional scaich, the depth of the search can be cut in
half. Finally, existing macros can be composed to find macros that are beyond
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the search limits. These techniques are sufficient for learning the necessary set
of macros for the example problems. A key property of the learning program is
that all the macros necessary to solve any problem instance are found in a
single search from the goal state.

Section 6 explains the theory of macro problem solving and characterizes the
range of problems for which it is effective. A necessary and sufficient condition
for the success of the method is a new type of problem structure cailed operator
decomposability. A totally decomposable operator is one that may affect more
than one component of the problem, but whose effect can be decomposed into
its effect on each component independently, The degree of operator decom-
posability in a problem constrains the ordering of the subgoals, ranging from
compiete freedom in the case of Rubik’s Cube, to a total ordering for the
Towers-of-Hanoi problem.

An analysis of the performance of the problem-solving and learning pro-
grams is presented in Section 7. The performance measures include the number
of macros that must be stored for a given problem, the amount of time
required to learn the macros, and the lengths of solutions generated in terms of
number of primitive moves, both in the worst case and the average case. The
first result is that the 1otal number of macros is the sum of the number of
macros in each column whereas the number of states in the space is the product
of these values. The total learning time for the macros is shown to be of the
same order as the amount of time required to find a solution to a single
problem instance without the macros. Finally, the solution length generated by
the Macro Problem Solver is less than or equal to the optimal solution length
times the number of subgoals in the problem, in the worst case. Furthermore,
for the Eight Puzzle and the full 3x 3x 3 Rubik's Cube, the solution lengths
generated by the Macro Problem Solver are close to or shorter than those of an
average human problem solver,

Section 8 presents the conclusions of this article, most important of which is
that the macro learning and problem-solving techniques constitute a valuable
addition to the collection of weak methods.

Parts of this work have appeared in [2, 3]. For a more complete treatment of
this research, including the complete set of macro tables and the formal proofs
of all the results, the reader is referred to [4].

2. The Failure of Weak Methods

The purpose of this section is to demonstrate that there exists problems, such
as Rubik’s Cube, that cannot be solved efficiently of any of the current stock of
weak methods.

2.1. Problem description: 2 x 2 x 2 Rubik’s Cube

Fig. 1 shows a simpler 2x 2x 2 version of the celebrated 3x3x 3 Rubik's
Cube, invented by Erno Rubik in 1975. The puzzle is a cube that is cut by three
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FIG. 1. 2% 2x 2 Rubik's Cube.

planes, one normal to each axis, separating it into eight subcubes, referred to as
cubies'. The four cubies on either side of each cutting plane can be rotated in
either direction with respect to the other four cubies. Note that these rotations,
called twists, can be made along each of the three axes. The twists can be 90
degrees in either direction or 180 degrees.

Each of the cubies has three sides facing out, called facelets, each a different
color. In the goali state of the puzzle, the four facelets on each side of the cube
are all the same color, making six different colors in all, one for each side of the
cube. The cube is initialized by performing an arbitrary series of twists to mix
the colors on each side. The problem then is to solve the cube, or find a
sequence of twists that will restore the cube to the goal state, i.e. each side
showing a single color. .

There are actually two levels of tasks associated with the cube. One is the
problem-solving task of restoring a given randomized cube to the goal state.
The other is the learning task of acquiring a general strategy for solving the
cube from all possible initial states. We will see that solving the latter task first
is the only practical means of addressing the former.

There are several reasons why Rubik’s Cube is an excellent domain for
research on problem solving and particularly on learning problem-solving
strategies. One is that the problem is well-structured yet very difficult. The
second is that progress towards learning a strategy to solve the cube is
incremental and easily observable. Finally, the problem cannot be effectively
solved by any of the known weak methods.

2.2. Brute-force search

Given a problem space for Rubik's Cube, we could try to solve it using
brute-force search. We would expect a brute-force search to look at about half
the states in the space, on the average, before finding a solution. The 2x2x 2
cube has 3674 160 distinct states. When we consider the 3x 3x 3 Rubik's
Cube, however, the number of states grows to approximately 4 - 10'. Even at a
million twists per second, it would take a computer an average of 700 000 years
to solve the 3x 3x 3 cube with brute-force search.

"The terminology used here is standard in the literature of Rubik's Cube {s}.
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2.3. Means-ends analysis

Note that the goal state of Rubik’s Cube is naturally expressed as a conjunction
of subgoals such as “‘get the colors on each face to match”, or *'get each cubie
to its correct position and orientation™. This suggests setting up a sequence of
subgoals and using means-ends analysis to solve them one at a time. The General
Problem Solver (GPS) program of Newell and Simon [6] implements means-ends
analysis, in conjunction with other problem-solving techniques such as operator
subgoaling. A necessary condition for its applicability is that there exist a set of
subgoals and an ordering among them, such that once a subgoal is satisfied, it need
never be violated in order to satisfy the remaining subgoals [7]. A set of subgoals
with this property is called serializable.

Unfortunately, Rubik’s Cube does not satisfy this condition. A few minutes
of experimentation with the cube reveals the aspect of the problem that makes
it so difficult and frustrating. In particular, once some of the cubies are put into
place, in general they must be moved in order to position the remaining cubies
correctly. All of the published solutions to the problem, of which there are
many, share this feature of violating previously solved subgoals, at least
temporarily, in order to solve additional subgoals.

To be precise, there are several technical qualifications that must be attached
to the claim that Rubik's Cube does not satisfy the applicability condition for
GPS. One is that for the degenerate case where we assume only a single
subgoal which is the main goal, the condition is vacuously satisfied. The second
is that a sequence of subgoals of the form, *‘move from the current state to a
state which is one move closer to the goal™, can be solved sequentially without
ever violating a previous subgoal. The difficulty is that we don't have any
method of determining when a state satisfies such a subtoal other than
brute-force search, and we don’t have any more economical representation of
this information than an exhaustive table.

2.4. Heuristic search

Even though we do not have a set of serializable subgoals, there may be a
heuristic evaluation function that, though not guaranteed to vary monotonically
toward the goal, may nevertheless ofler a useful estimate of problem-solving
progress. A heuristic evaluation function is a function that is relatively cheap to
compute from a given state, and that provides an estimate of the distance from
that state to the goal. Most of the weak methods except for generate and test
(which is a brute-force technique) rely on such a function, either explicitly or
implicitly. For example, the evaluation function is the essence of simple
heuristic search. Hill-climbing requires an evaluation function that, in addition,
must be monotonic. If we view the number of subgoals remaining to be
satisfied as an evaluation function, then even means-ends analysis uses an
evaluaticn function.
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The usefulness of an evaluation function is directly related to its accuracy in
estimating the distance to the goal. In an effort to find a useful heuristic for
Rubik’s Cube, several plausible candidates were tested experimentally to
determine their accuracy. The surprising results were that none of the heuris-
tics tested produced values that had any positive correlation with distance from
the goal!

The basic idea of the experiment was to compute the average actual distance
from the goal state for all the states that produce a particular value of the given
evaluation function. The 2x 2x 2 Rubik’'s Cube was used because the state
space is small enough (3 million states) that it can be exhaustively searched.
The first step of the experiment was to conduct a breadth-first search of the
entire space, generating a table which lists the actual minimum distance of each
state to the goal state. The maximum distance of any state from the goal is 11
moves, and the average distance over ail states is 8.76 moves.

The next step was to identify plausible evaluation functions, which resulted
in four fairly obvious ones. The first heuristic function is simply the number of
cubies that are in their goal positions and orientations. Note that a cubie can be
in its correct position but in an incorrect orientation. Considering position and
orientation independently, the second function awards one point for a cubie in
its goal position, one point for a cubie in its goal orientation, and two points for
both. Reasoning that the position of a cubie relative to its neighbors in the goal
state is more important than its absolute position, the next heuristic counts the
number of pairs of adjacent cubies that are in the correct position and
orientation relative to each other, without regard to their global position or
orientation. Taking into account the distance of a cubie from its goal position,
the final evaluation function determines the minimum number of moves
required to correctly position and orient each cubie independently, and sums
these values over all the cubies.

The results of the experiments are presented as a set of graphs, one for each
evaluation function (see Figs. 2 through 5). In each case, the x-axis of the graph
corresponds to the different values produced by the heuristic function. The
y-axis of the graph corresponds to the average distance from the goal state.
Each data point gives the average distance from the goal state for the set of
states which produce a particular value of the evaluation function.

The resuits show that in general, the average distance from the goal for a set
of states sharing a particular heuristic value is within 10% of 8.76, the average
for the entire state space. This result holds across almost all values of all the
evaluation functions, The only significant deviation from this norm is that the
states whose evaluations are closest to that of the goal state are in fact further
from the goal than the average state! However, none of the evaluation
functions identify a set of states that are even a single move closer to the goal
state, on the average.

This implies that none of the above heuristics are of any direct use in solving




MACRO-OPERATORS: A WEAK METHOD FOR LEARNING 41

11

)

Average distance 1o goal state

N WAl N D ©

-

o 1 2 3 4 5 8 7
) N . Value of heuli;lic function
Number of cubies in correct position and orientation

FIG. 2. Average distance to goal state vs. number of cubies in correct position and orientation.

the 2x 2x2 Rubik's Cube. Attempts to use these heuristics- to reduce the
amount of search required for the 3X3x 3 cube were unsuccessful as well.
Since these heuristics were the best we could come up with, we may conclude
that if there does exist a useful heuristic, its form is probably quite complex, the
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FIG. 3. Average distance of goal state vs. sum of correct cubie positions and orientations.
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limiting case being the heuristic of moving one step closer to the goal,
Furthermore, none of the literature on the cube suggests any other evaluation
functions. All this evidence suggests that heuristic evaluation functions are not
in fact used to solve this problem.
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FIG. 5. Average distance to goal state vs. sum of distance of each cubie from correct position and
orientation,
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2.5. Conclusion

Since all the weak methods rely on some type of evaluation function, we
conclude that Rubik's Cube is an example of a problem that cannot be solved
by any of our current weak methods. It can, however, be solved effectively by
people. Hence, either there exists an as yet undiscovered weak method, or a
knowledge-based approach is required to solve the problem. The answer will
prove to be both.

3. Previous Work

This section reviews previous work that has contributed to or is related to the
development of the Macro Problem Solver. It includes the General Problem
Solver, research on non-serializable subgoals in the context of the blocks world,
the development of the idea of macro-operators, the ideas of Banerji for using
macros to deal with non-serializable subgoals, and work on permutation
groups.

3.1. The General Problem Solver

As described in Section 2, the General Problem Solver (GPS) of Newell and
Simon solves a problem by using an ordered set of subgoals and solving them
.one at a time, such that the main goal can be reached without violating a
previously solved subgoal. The structure of the Macro Problem Solver (MPS)
borrows heavily from that of GPS, to the extent that the Macro Problem Solver
is actually a generaiization of GPS to include macro-operators in addition to
primitive operators.

3.2. Non-serializable subgoals

The problem of non-serializable subgoals was studied in the context of the
blocks world by a number of researchers in the early 1970s. Sussman’s HACKER
program [8] deals with problems of building stacks of blocks represented by
sets of conjunctive subgoals of the form (On X Y), where X and Y are blocks.
HACKER works by initially assuming that the subgoals can be achieved in-
dependently and then explicitly invokes a set of ‘debugging’ mechanisms to
deal with interactions between the subgoals. Subsequently, Warren {9], Tate
[10], Waldinger [11], and Sacerdoti [12] arrived at related techniques for
generating optimal plans for problems with non-serializable subgoals by poten-
tially reordering all the subgoals and actions required to solve a conjunctive
goal.

There are several limitations to this body of work in dealing with non-
serializable subgoals. One is that most of these systems, with the exception of
that of Waldinger, simply reorder the primitive actions necessary to achieve
each of the subgoals independently, without the capability of adding new
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actions to deal directly with subgoal interactions [12]. A second factor is that
the subgoal interaction in the blocks world is not an inherent property of the
domain but rather an artifact of the particular subgoals chosen to decompose a
main goal. In particular, if we simply add a subgoal of the form (On X Table)
where X is the bottom-most block of a stack, then all the block-stacking
problems could be solved by GPS simply by first putting the bottom block on
the table, then the next-higher block, and so on until the top block is placed on
top of the stack. A final limitation is that these techniques only work on
problems for which independence of subgoals is a good first approximation {8].
For these reasons, it seems highly unlikely that these methods would be
powerful enough to deal with the complexity of subgoal interactions manifested
by a problem such as Rubik's Cube.

3.3. Macro-operators

The idea of composing a sequence of primitive operators and viewing the
sequence as a single operator goes back to Saul Amarel's 1968 paper on
representations for the Missionaries and Cannibals problem [13). The first
implementation of this idea is the use of Macrors [14] in the sTrips problem
solver. The main contributions of that work with respect to macros are the
powerful mechanisms for generalizing macros.

There are several features of the work on Macroes that distinguish it from
the research reported here: The most important is that MAcroPs are not used to
overcome the problems of non-serializable subgoals but rather to improve the
efficiency of the sTrips problem solver in a domain, robot problem solving, for
which there exists a good set of GPS differences. The fact that strips with
Macrors performs relatively inefficiently in this simple domain suggests that the
system is not powerful enough to handle more complex domains. A second
limitation of sTrips with MACROPs is that it does not generate a complete set of

-Macros. MACROPs are generated by using the solutions to particular problems
posed to the system, and serve to reduce but not eliminate the amount of
search required on future problems. The questions of what problems to use in a
training sequence, and how much search is still required to solve problems
chosen from some population given a set of Macmosrs, are difficult and still
open. By contrast, the Macro Problem Solver works from a complete set of
macros that eliminate search entirely.

The rerLecT system of Dawson and Siklossy [15] has a preprocessing stage
where macro-operators, called BiGops, are generated by comparing the post-
conditions of each primitive operator with the preconditions of all possible
successor operators, creating a two-operator macro whenever they match.
Unfortunately, this approach is limited to very short macros or to operator sets
where the preconditions severely constrain the possible operator sequences.
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3.4. Macros and non-serializable subgoals

The fact that macro-operators can be used to overcome the problem of
non-serializable subgoals was first suggested by Banerji [16]. He points out that
both Rubik’s Cube and the Fifteen Puzzle cannot be solved by a straightfor-
ward application of GPS, but that an extension of GPS to include macros
would be able to solve these problems. Banerji suggests that at a given stage of
a strategy, the macros that are useful are ones that leave all previously satisfied
subgoals intact while satisfying an additional subgoal as well. Within the body
of a macro, a previous subgoal may be violated. but by the end of the macro,
the subgoal must be restored. Banerji's work was independent of and concur-
rent with this research.

3.5. Permutation groups

Given that macros may be useful for solving problems with non-serializable
subgoals, the issue of exactly what macros are necessary and how to use them
in an efficient strategy must be addressed. A solution to this problem is
suggested by the work of Sims [17] on computational problems of permutation
groups. The goal of that research, and related work by others, is to be gble to
represent a permutation group compactly so that questions such as the order of
the group and membership in the group can be answered efficiently.

Sims shows how a permutation group on n elements can be represented by
an n X n matrix of permutations where the permutation in the jth row of the
ith column maps the jth element to the ith position, and leaves the first i — 1
elements of the permutation invariant. Sims also implemented an algorithm to
fill in the permutation table given a set of generators of the group, or primitive
permutations. The technique relies on the observation that if permutation A
leaves the first i — 1 elements invariant and maps the jth element to the ith
position, and permutation B has the same properties, then A composed with
the inverse of B will leave the first i elements invariant.

Furst, Hopcroft, and Luks [18] later showed that the complexity of a similar
algorithm for generating the permutations in this matrix is a polynomial of
order n® where n is the number of elements permuted. Knuth?® reduced this
upper bound to n*log n, and Jerrum [19] further reduced it to n* for a slightly
different representation. .

As we will see in Section 4, replacing the permutations in such a table with
corresponding sequences of primitive operators gives rise to an effective
strategy for solving permutation problems. There are two limitations, however,
to this work from the point of view of general problem solving. One is that it
refers only to permutation groups and must be extended to apply to a broader

3Personal communication from Donaid Knuth to Eugene Luks. May 1981.
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class of problems. The second limitation of this work is that the technique used
to fill in the permutation table results in extremely inefficient solutions, relative
to human strategies, in terms of number of primitive moves. For example, in
the case of the 3x 3x 3 Rubik's Cube, macros can be as long as 27 primitive
moves.

3.6. Conclusion

In conclusion, we find that many of the main ideas in this article can be found
in one form or another in the literature of problem solving. The basic structure
of the problem solver comes from GPS, the study of non-serializable subgoals
was pioneered in the blocks world, the use of macro-operators dates from
sTrips, Banerji independently discovered the application of macros to non-
serializable subgoals, and the structure of macro tables is borrowed from work
on permutation groups. The novel contributions of this work .are the com-
bination of these ideas into a general problem-solving and learning method,
and a precise theory of the applicability and performance of the technique.

4. The Macro Problem Solver

This section describes the operation of the Macro Problem Solver and gives
several examples of its use. Briefly, the problem solver achieves an ordered set
of subgoals one at a time by applying macros that solve the next subgoal while
leaving previously solved subgoals intact, even though they may be temporarily
violated during the application of the macro. We describe a problem represen-
tation, the structure of the table of macros, and the problem-solving algorithm.
The issue of how the macros are learned will be deferred to the following
section. The collection of examples includes the Eight and Fifteen Puzzles,
Rubik’s Cube, the Think-a-Dot problem, and the Towers-of-Hanoi problem.
For simplicity of exposition, the Eight Puzzle will be used as the primary
example.

The Eight Puzzle (see Fig. 6) has been studied extensively in the artificial
intelligence literature [20-22] and provides one of the simplest examples of the
operation of the Macro Problem Solver. It consists of a three-by-three frame
which contains eight numbered square tiles. One of the squares of the frame is

1 2 3
8 4
7 ] ]
.

FiG. 6. Eight Puzzie goal state.
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empty; this is referred to as the blank tile or blank. Any of the tiles horizon-
tally or vertically adjacent to the blank can be moved into the blank position.
The problem is to take an arbitrary initial configuration of the tiles and
transform it into a goal state, such as that shown in Fig. 6, by sliding the tiles
one at a time.

4.1. The state-vector representation

We begin with an abstract representation of our example problems. A state of
a problem is specified by the values of a vector of state variables. Banerji [16]
argues that this representation is natural and very general. For example, the
state variables for the Eight Puzzle are the nine different tiles of the puzzle,
including the blank, and the values are the positions occupied by each tile in a
particular state. For Rubik’s Cube, the variables are the different cubies, and
the values encode both the position and the orientation of the cubies. In the
case of the Towers of Hanoi, the variables are the disks, and the values are the
pegs that the disks are on. For each problem, a single goal state is specified by
assigning particular values to the state variables, called their goal values.

Note that a dual representation exists for these problems, and may in fact
seem more intuitive to the reader. For example, in the Eight Puzzle the
variables could correspond to the positions and the values could represent the
tiles which occupy the positions. The two representations are isomorphic, but
the macro problem-solving technique is sensitive 'to the representation of the
problem and in general will not work in the dual representation, as will be
discussed in Section 6. Thus, we will use the original representation described
above.

4.2, The macro table

Table 1 shows a macro table for the Eight Puzzle, corresponding to the goal
state in Fig. 6. The columns correspond to the tiles and the rows correspond to
the tile positions. The labels of the positions coincide with the numbers of the
tiles that occupy them in the goal state. The elements of the table are macros,
which are sequences of primitive moves. A primitive move is represented by
the first letter of Right, Left, Up, or Down, and is the direction that a tile is
moved. This notation is unambiguous since only one tile, other than the blank,
can be moved in each direction from any given state.

The subgoals used to solve the problem are the obvious ones of placing the
tiles in their correct positions one at a time, or in other words, mapping the
state variables to their goal values sequentially. The first thing that must be
decided is the solution order, or the order in which the tiles are to be
positioned. The constraints on solution orders will be discussed in detail in
Section 6. Briefly, the constraint is that the applicability and the effect of any
operator on any state variable must be a function only of that state variable
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and previous state variadles in the solution order. The only constraint on the
solution order for the Eight Puzzle is that the blank be positioned first.

The columns of the table correspond to the state variables of the problem,
which are the different tiles of the puzzle, in solution order from left to right.
Each column contains the macros necessary to map its corresponding state
variable to its goal value, without permanently disturbing the values of the
state variables that precede it in the solution order. The rows of the macro
table corresporid to the different possible values of the state variables, in our
case the different possible positions of the tiles. For each tile and for each
different position of the tile, there is a different macro that will move it to its
goal position while leaving all the previously positioned tiles in their goal
positions, independently of the positions of the remaining tiles in the solution
order. More precisely, if the first i — 1 state variables equal their respective goal
values, then the macro in column i and row j of the macro table will map the
value of the ith state variable in the solution order from the value correspond-
ing to row j to its goal value, while leaving invariant the values of the first i — 1
state variables in the solution order. For example, the macro in column 3 and
row 6. URDDLULDRRUL, when applied to a state in which tiles 1, 2, and the
blank are in their goal positions, will map the tile located in position 6 to the
goal position for the 3 tile, while leaving the blank, 1, and 2 tiles in their goal
positions.

Note that in each column, one of the rows corresponds to the goal value of
the corresponding state variable. Since noting needs to be done to a state
variable that already equals its goal value, we adopt the convention that these
elements of the table contain the identity macro, which has zero length and no
effect on the state of the problem. Notice also that the macro table for the
Eight Puzzle has a lower triangular form. This is due to the fact that for this
problem, no two state variables may have the same value, or in other words, no
two tiles can occupy the same position. Thus, as more of the tiles are placed in
their goal positions, there are fewer positions that the remaining tiles can
occupy. Finally, note that the Eight Puzzle macro table ends with the 6 tile
instead of the 8 tile. This is because once the first six tiles are in their goal
positions, the remaining two tiles must also be correctly positioned, or the
problem cannot be solved.

4.3. The problem-solving algorithm

The algorithm employed by the Macro Problem Solver will be described with
the aid of the example in Fig. 7. State (a) is an arbitrary initial state for the
problem. The first step in the solution is to ascertain the position of the blank,
which is located in the S position in state (a). This value is used as a row index
into the 0 column of the macro table and the corresponding macro, DR, is
applied. The eitect of the macro is to move the blank to the center position, its
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FiG. 7. Example of solution of the Eight Puzzie by the Macro Problem Solver.

goal location. Next, the location of the 1 tile in state (b) is ascertained, position
2 in our example, this value is used as a row index into column 1 of the macro
table, and the corresponding macro is applied. The effect of this macro is to
move the 1 tile to its goal position, while leaving the blank at its goal position.
Note that during the application of the second macro the blank is moved, but
by the end of the macro application, the blank is restored to the center
position. Similarly, the position of the 2 tile in state (c) is used to select a macro
from column 2 that will map the 2 tile to its goal position while leaving the
blank and 1 tiles in their goal positions. Note that in state (d), the 3 tile
happens to be in its goal position ailready and hence the identity macro is
applied, as is the case for tile 4 in state (¢). In general, for i from 1 to n, if j is
the value of variable i in the solution order, apply the macro in column i and
row j, and then repeat the process for the remaining variables. Note that the
value of variable i above refers to its value at the ith stage of the solution
process, and not to its value in the initial state.

This solution algorithm will map any solvable initial state to the given goal
state. The algorithm is deterministic, i.e. it involves no search, and hence is
very efficient, running in time proportional to the number of primitive opera-
tors that are applied in the solution. It derives its power from the knowledge
about the problem that is contained in the macros.

Unfortunately, the actual macro table is dependent on the pamcular goal
state that is chosen. The algorithm can be simply extended, however, to allow
mapping any initial state to any goal state. The idea is to first find a solution
from the initial state to the goal state for which the macro table was generated,
then find a solution from the desired goal state to the goal state of the macro
table, and finally compose the first solution with the inverse of the second
solution. The inverse of a sequence of primitive operators is obtained by
replacing each operator with its inverse and reversing the order of lhe opera-
tors. Hence, if each of our primitive operators has a primitive inverse, ‘we can
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use the Macro Problem Solver to map any initial state to any goal state with a
penalty of approximately doubling the solution length.

4.4. Additional examples

This section presents several additional example problems for which the Macro
Problem Solver is effective. They include the Fifteen Puzzle, Rubik’s Cube, the
Think-a-Dot problem, and the Towers-of-Hanoi problem.

4.4.1. Fifteen Puzzle

Since the size of the state space for the Eight Puzzle is fairly small (181 440
states), a macro tabie for the Fifteen Puzzle was also generated to show the
power of the technique in larger domains (about 10" states). Unfortunately,
space limitations prohibit its inclusion here and the interested reader is referred
to [4]. The tabie contains 119 macros, the longest of which is 24 moves long,
and produces an average case solution length of 139.40 primitive moves. While
this example provides no new insights into the operation of the Macro Problem
Solver, it does present additional problems to the learning program as we will
see in the following section.

4.4.2. Rubik's Cube

For reasons already mentioned, Rubik’s Cube was the primary vehicle for the
development of the Macro Problem Solver. The state variables for this problem
are the individual cubies, and the values encode both the positions and the
orientations of the cubies. The subgoals are to position and orient the cubies
correctly one at a time. ’ ’

Again, space constraints prevent including the complete macro tables here.
The 2x 2x 2 table contains 75 macros, ranging in length from 1 to 11 moves,
and produces an average case solution length of 27 primitive moves. The
3x 3x 3 macro table is composed of 238 macros up to 14 moves long and
generates an average case solution length of 86.38 primitive moves.

4.4.3. Think-a-Dot

»

The Think-a-Dot machine was a commercially available toy which involves
dropping marbles through gated channels and observing the eftects on the
gates. Fig. 8 is a schematic diagram of the device. There are three input
channels at the top, labelled A, B, and C, into which marbles can be dropped.
When a marble is dropped in, it falls through a set of channels governed by
eight numbered gates. Each gate has two states, left and right. When a marble
encounters a gate, it goes left or right depending on the current state of the
gate and then flips the gate to the opposite state. A state of the machine is
specified by giving the states of each of the gates. The problem is to get from
an arbitrary initial state to some goal state, such as all gates pointing left.
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FiG. 8. Think-a-Dot machine.

The state variables of the problem are the individual gates, and the values
are right and left. The primitive operators are A, B, and C, corresponding to
dropping a marble in each of the input gates. Table 2 shows a macro table for
the Think-a-Dot problem where the goal state is all gates pointing left. Note
that there are only two possible values for each state variable and hence only
two macros in each column, one of which is the identity macro. The last gate in the
macro table is gate 7 since once the first seven gates are set, the state of the last gate
is determined, due to a situation similar to that of the Eight Puzzle.

4.4.4. Towers of Hanoi

The well-known Towers-of-Hanoi problem consists of three pegs and a set of
different size disks stacked on the pegs in decreasing order of size. The
standard task is to transfer all the disks from one peg to another subject to the
constraints that only one disk may be moved at a time and that a larger disk
may never be placed on top of a smaller disk. Note that while the standard
treatment of the problem is only concerned with solving the problem from a
particular initial state, namely all the disks stacked on one peg, we will address
the issue of transferring all the disks to a goal peg from any legal initial state. A
legal state is one where no disk is on top of a smaller disk on the same peg.

TaBLE 2. Macro table for the Think-a-Dot
machine

Gates

1 2 3 4 5 6 7

Right A B C AA CC AAAA CCCC
Left :
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TasLe 3. Macro table for the three-disk Towers-of-Hanoi

problem
Disks
1 2 3
. A AC CB. AC,BC CA,CB.AB,AC,BA.BC,AC
é" B BC CA,BC,AC CB,CA,BA,BC, AB, AC,BC
C

Table 3 shows a macro table for the three-disk Towers-of-Hanoi problem,
where the goal peg is peg C. A similar table can be built for any number of
disks. The state variables are the disks, numbered 1 through 3 in increasing
order of size. The values are the different pegs the disks can be on, namely A,
B, and C. There are six primitive moves in the problem space, one correspond-
ing to each posible ordered pair of source peg and destination peg. The
complete set is thus {AB, AC, BA, BC, CA, CB}. Since only the top disk on a
peg can be moved, this is an unambiguous representation of the operators.
The solution order is to position the disks in increasing order of size. Note that
this is exactly the opposite of the ordering of subgoals for the GPS solution to
the problem, but does correspond to the order in which the disks are first
moved in any solution.

The solution that results from this macro table is not always the most
efficient solution to the problem in terms of number of primitive moves.
Unfortunately, this is a general characteristic of the Macro Problem Solver. In
this case, each macro stacks up the disks on the goal peg, and hence the next
macro must move them to create a large stack on the goal peg.

4.5. Conclusions

The knowledge necessary to efficiently solve a certain class of problems can be
represented by macro-operator sequences. The key property of these macros is
that they leave all previously satisfied subgoals invariant while solving an
additional subgoal as well. The macros can be organized into a two-dimen-
sional table such that a problem-solving program can solve any instance of the
problem with no search. The result is an expert problem-solving system for the
given problem. The method has been illustrated by a number of example
problems, including the Eight and Fifteen Puzzles, the 2x2x2 and 3x3x 3
Rubik’s Cubes, the Think-a-Dot problem, and the Towers-of-Hanoi problem.

5. Learning Macro-Operators

While the previous section described the operation of the Macro Problem
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Solver once it has a complete macro table, this section is concerned with the
problem of how the macros are acquired. This is the learning component of the
paradigm. The basic technique that will be used is to search the space of
macro-operators. Each macro generated is inserted into the macro table in its
correct slot, unless a shorter macro aiready occupies that siot. We first address
the problem of where to place a given macro in the macro table. We then
consider three different methods for generating macros. One is a simple
brute-force search through the space of primitive operator sequences, the
second is a variation of bi-directional search, and the last is the macro
composition technique of Sims [17].

8.1. Assigning macros to the macro table

In general, the macros that make up the macro table all have the property that
they leave an initial sequence of the state variables invariant if they equal their
goal values, and map the next state variable to its goal value, independent of
the values of the remaining variables in the solution order. In addition, the
table should ideally be filled with the shortest macros that accomplish each
subgoal. This section is concerned with the problem of determining the correct
location in the table of a given macro.

5.1.1. Selecting the column

In order to determine the column in the macro table in which an arbitrary
macro belongs, we introduce the notion of the invariance of a macro. Given a
particular goal state, a solution order, and a macro-operator, we_define the
invariance of the macro as follows: The macro is applied to the goal state of the
problem and the resulting state is compared with the goal state. The invariance
of the macro is the length of the longest initial sequence, according to the
solution order, of state variables that equal their corresponding goal values.
The sequence starts with the first state variable in the solution order and
continues until a mismatch is found. In other words, if the first state variable of
the resulting state does not equal its goal value, the invariance of the macro is
zero; if the first variable in the solution order equals its goal value but the
second does not, the invariance of the macro is one; and in general if the first i
state variables in the solution order equal their goal values but the (i + 1)st
does not, then the invariance of the macro is i. For example, if the goal state of
the Eight Puzzle is represented by the vector [B, 1, 2, 3, 4, 5, 6, 7, 8], the
solution order is (B, 1, 2, 3, 4, 5, 6, 7, 8), and the state resulting from the
application of some particular macro to the goal state is [B, 1. 2,3, 6, 5.7, 4, 8],
then the invariance of the macro is four, because the first four tiles (including
the blank) in the solution order are in their goal positions and the fifth is not.

The invariance of a macro gives the longest initial sequence of state variables
in the solution order that are left invariant by the application of the macro to
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the goal state. Hence, the invariance of a macro determines its column in the
macro table.

5.1.2. Selecting the row

In addition to the column, we must also determine the proper row for a macro
in order to include it in the macro table. A macro in column i and row j of the
macro table, when applied to a state in which the first i variables in the solution
order equal their goal values and in which the (i + 1)st variable equals the
value corresponding to row j, results in a state in which the first i + I variables
equal their goal values. Hence, the row in the table of a macro with invariance i
is the row that corresponds to the value of the (i + 1)st state variable that the
macro maps to its goal value.

If a macro has invariance i, then its inverse will also have invariance i, where
the inverse is obtained by reversing the order of the operators and replacing
each with its inverse operator. The reason is that the original macro maps the
first i variables from their goal values back to their goal values and hence the
inverse must do the same. Second, if the (i + 1)st state variable has the value
corresponding to row j after the application of the inverse macro to the goal
state, then the correct row of the original macro in the macro table is j. The
reason is that the inverse macro maps the value of the (i + 1)st variable from its
goal value to that corresponding to j, and hence the original macro would map
the value corresponding to j back to the goal value. Thus, given a macro with
invariance i, we place it in the table at column i, and at the row which
corresponds to the value of the (i + 1)st variable in the solution order when the
inverse macro is applied to the goal state.

5.2. Brute-force search

Given the above techniques for placing a macro in its correct place in the
macro table, what is still required for the learning program is a method of
generating macros. Since we are interested in the shortest possible macros for
each slot in the table, we first adopt a brute-force, depth-first, iterative-
deepening search from the goal state. Depth-first, iterative-deepening is a
search algorithm which first expands the first level of the search tree, then
performs a depth-first search to level two, followed by a depth-first search to
level three, etc. It uses far less memory than breadth-first search, yet always
finds a shortest path to the goal. Thus, the first macro placed in each empty slot
in the table is guaranteed to be a minimal length macro for that slot.

It is important to realize that a single search from the goal state will find all
the macros in the table, and that a separate search for each column or even
each entry is not required. We are not searching for particular states but rather
for particular operator sequences. For problems like Rubik’s Cube that have
no preconditions on the operators, a single search will encounter all possible
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operator sequences up to the length of the search depth, and-hence will find all
macros up to that length. For problems with operator preconditions, such as
the Towers-of-Hanoi problem. recall that we are only interested in macros that
map some initial subsequence of the state variables in the solution order to
their goal values. Hence, by searching from the complete goal state and using
the inverses of the operator sequences generated, we will find all the macros in
a single search,

One problem with this learning algorithm is knowing when to terminate it.
We cannot simply run it until all the slots in the macro table are filled because
some slots may remain permanently empty. For example, the last two columns
of the Eight Puzzle macro table can never be filled, due to the property of the
puzzle that the positions of the last two tiles are determined once the positions
of the remaining tiles are known. Both Rubik's Cube and the Think-a-Dot
problems have similar properties. In general, discovering these properties is
very difficult. Hence, we have a situation of not knowing when we know
enough to solve every instance of the problem.

There are several solutions to this difficuity. One is simply to run the learning
program until its computational resources, in most cases memory, are exhaus-
ted. Another is the heuristic of terminating the search if one or two additional
plies fail to produce any new macros. The best solution involves interleaving
the learning program with the problem-solving program as co-routines and only
running the learning program when a new macro is needed to solve some
particular problem instance.’

Brute-force depth-first iterative-deepening is sufficient to solve the Eight
Puzzle, the Towers-of-Hanoi, and the Think-a-Dot problems. For problems as
large as the Fifteen Puzzle and the Rubik’s Cubes, however, a more sophisti-
cated technique is required. '

5.3. Partial-match, bi-directional search

If we assume that each primitive operator has an inverse primitive operator,
thus ruling out the Think-a-Dot example, then we can find macros considerably
more efficiently than by depth-first iterative-deepening. Consider a macro that
leaves i state variables invariant. When applied to the goal state, the values of
these state variables are mapped from their goal values, through a succession of
intermediate values, and finally back to their goal values again. Now split in
half the sequence of primitive operators that make up the macro. The first half
maps the i state variables from their goal values to a sequence of values
(v vy .. .. 1), and the second half maps these values back to their goal values.
Thus, the inverse of the second half of the macro will map the goal values of
these variables to this same set of values (v,, vy, . .., v;). This suggests that, given

*This was suggested by Jon Bentley.
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two different macros that map the same initial subsequence of i state variables,
according to the solution order, from their goal values to an identical vector of
intermediate values, composing one of the macros with the inverse of the
other will yield a macro with invariance i. Thus, macros can be found by storing
the intermediate values of the state variables for each macro when applied to
the goal state and comparing them with the corresponding values for each new
macro generated, looking for matches among initial subsequences of variables
according to the solution order.

Note that once a match is found, two macros can be generated, depending on
which of the two matching submacros is inverted. The two macros are inverses
of each other. Hence, each of these macros must have the same invariance, but
in general the rows of the macro table to which they belong may be different.
Furthermore, by using the inverse method for determining the row of a macro,
the correct row for each of the macros can easily be determined from the other.
Note that this is not a heuristic method but is in fact guaranteed to find all
minimal-length macros, since every macro can be split into two parts as
described.

This scheme is closely related to bi-directional search, first analyzed by Pohl
[23). They have in common searching for a path from both ends simul-
taneously, looking for a match between states generated from opposite direc-
tions, and then composing the path from one direction with the inverse of the
path from the other direction. There are, however, three important differences
between this technique and bi-directional search. One is that in this case the
initial and goal states are the same state, namely the goal state, and hence only
one search is necessary instead of two. The second difference is that, since we
are looking for macros that leave only some -initial subsequence of the state
variables invariant. we only require a partial match of the state variables rather
than a total match. Finally, in order to save space and find the shortest macros,
the bi-directional search is combined with depth-first iterative-deepening.

The computational advantage of this scheme is tremendous. In order to find
a macro of length d, instead of searching to depth d, we need only search to
depth [d/2]. Since the computation time for a complete depth-first search is
proportional to b, where b is the branching factor and d is the depth of the
search, this reduces the computation time from b¢ to b%?, essentially halving
the exponent. :

However, if each new state must be individually compared to each existing
state, a bi-directional search requires as much time as a uni-directional search,
with the comparisons taking up most of the time. Thus, the performance
claimed above can only be achieved if a new state can be compared to all the
existing states in constant time. Fortunately, hashing the states based on the
values of the state variables achieves this performance.

An alternative scheme for comparing the generated states efficiently uses a
search tree instead of a hash table. As each state is generated, it is stored in a
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tree where each level of the tree corresponds to a different state variable and
different nodes at the same level correspond to different possible values for
that state variable. The ordering of levels of the itree from top to bottom
corresponds to the solution order of the state variables from first to last. Thus,
each node of the tree corresponds to an assignment of values to an initial
subsequence of state variables in the solution order.

A state is inserted in the tree by filtering it down from the root node to the
last existing node which corresponds to a previously generated state. A new
node is created at the next level of the tree and the macro which generated the
new state is stored at the new node. Since the states are generated using
iterative deepening, this ensures that stored with each existing node is a
shortest macro which maps the goal state to the initial subsequence of values
corresponding to that node. When a new state reaches the last previously
existing node it matches in the tree, a macro is created as before.

The expected number of probes to compare a new state to the existing states
for the hashing scheme is constant, assuming the hash table remains partly
empty [24]. For the search tree, the expected number of comparisons is linear
in the number of state variables. The partial-match, iterative-deepening, bi-
directional search algorithm is sufficient to find all the macros for the Fifteen
Puzzle and the 2x 2x 2 Rubik’s Cube. The limitation of this algorithm, as for
any bi-directional search, is the amount of memory available for storing states.

5.4. Macro compeosition

Finding all the macros up to length nine for the 3 x 3% 3 Rubik’s Cube macro,
table requires storing about 50 000 states. This still leaves seven empty slots, out
of 238, in the table. These remaining slots can be filled using the macro-
composition technique employed by Sims [17].

If we compose two macros with invariance i, the result will also be a macro
with invariance at least i, but in general a different macro. If, in addition, when
the macros are applied to the goal state the two (i + 1)st state variables take on
the same values, but not necessarily the goal values, then if we compose either
macro with the inverse of the other macro, the result will be a macro with
invariance at least i + 1. This is actually just a special case of the more general
technique described in the previous section, specialized in the sense that not
only are the first i variables constrained to match, but they must equal the goal
values as well.

The advantage of this technique is that it allows us to find macros with high
invariance with very little computation, by using macros with high invariance
that have already been found. The disadvantage of the technique is that a
macro found by this method will not in general be the shortest macro for the
corresponding slot in the macro table. There is some psychological plausibility
to this method for finding macros in that many human cube solvers, particularly
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novices, use compositions of shorter macros to complete the final stages in their
solution strategies. s

The macro-composition technique is effective in finding the remaining seven
macros for Rubik’s Cube that are beyond the range of the bi-directional search.
Most of these macros are fourteen moves long whereas macros twelve moves
long are known to exist for these slots in the table. The complete learning
program for the 3 X 3 x 3 Rubik's Cube runs for less than 15 minutes of CPU
time on a VAX/11-780 and uses about 200K words of memory. :

Note that macro composition could be used to find all the macros for Rubik’s
Cube, starting with only the primitive operators of the problem. However, as
pointed out in Section 3.5, the resulting strategy would be extremely inefficient
in terms of number of primitive moves. The combination of bi-directional
search and macro composition amounts to a tradeoff between learning time
and space vs. solution efficiency.

5.5. Conclusions

We have presented a number of techniques for learning macros effectively.
These include brute-force iterative-deepening search, a variation of bi-direc-
tional search that is only single-ended and requires only a partial match of the
states, and the macro-composition technique of Sims. The performance of the
learning program is limited by the amount of available memory. The most
important results of this section are that all the macros in the table can be
found in a single search from the goal state and that filling the macro table is
feasible for problems of substantial size (e.g. the 3% 3x 3 Rubik’s Cube).

6. The Theory of Macro Problem Solving

We have seen that macro problem solving works for a set of example problems,
and have demonstrated the learning of macro-operators. We now turn our
attention to the question of why these techniques work. The reason for
addressing this issue is twofold: to understand the problem structure it is based
on, and to characterize the range of problems for which it is eftective. The main
contribution of this section is to identify a property of problem spaces called
operator decomposabiliry. Roughly, operator decomposability exists in a prob-
lem space to the extent that the effect of an operator on a state can be:
decomposed into its effect on each individual component of the state, in-
dependent of the other components of the state, It will be shown that operator
decomposability is a sufficient condition for the application of macro problem
solving.

6.1. General definitions

We begin the formal theory with precise definitions of what is meant by a
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problem, a problem instance, and a macro. In general, capital letters will be
used to denote sets, bold face will be used for vectors and vector functions,.and
light face will be used for scalars and scalar functions.

Definition 6.1. We define a problem P to be a triple (S. O, g) where:

S is a set of states and each state sE€ S§ is a vector of state variables
($y $2 . - ., S,), where the s; are chosen from a set of values V ={v,, v, ..., 511

O is set of operators where each operator o € O is a total function from § to
S. In the event that there are preconditions on the operators, then Vs € § and
0 € O s.t. s does not satisfy the preconditions of operator o, we adopt the
convention that o(s) = s.

g €S is a particular state called the goal state, represented by the vector
(81 82 - - -+ &) where each g, is called the goal value of variable i.

In addition, let §; be the set of all states in which the first i — 1 state variables
equal their goal values or

sE€S it s€SandVx,1=<x=<i-ls5,=4g,.
Similarly, let §; be the subset of §; in which the ith state variable has value j, or
sES, iff s€ S ands, =/,

Definition 6.2. A problem instance p is a pair (P, s,,) of a problem P and a
particular initial state .

Definition 6.3. A macro is a finite sequence of operators (0,, 0,, . . ., 0,) chosen
from O. We write m(s) =t to denote the application of macro m to state s,
where t = 0,(...(05(0,(s)))...). If K is zero, m is the identity macro I such
that VsES, I(s)=s.

Finally, we restrict the set of states of a problem to those that are solvable in
the sense that:

Vs S Jamacrom st.m(s)=g.

6.2. Macro table definition

When we examine the macro table for the Eight Puzzle (Table 1), we notice
that the first column contains nine entries, including the identity macro. There
is one macro for each possible position that the blank could occupy in the
initial state, or one macro for each possible value of the first state variable.
Thus, the choice of what macro to apply first depends only on the value of the
first state variable. Another way of looking at this is that for a given value of
the first state variable, the same macro will map it to its target value regardless
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of the values of the remaining state variables. In general, this property would
not hold for an arbitrary problem. In fact, in the worst case, one would need a
different macro in the first column for each different initial state of the
problem. In the second column as well, we only need one macro for each
possible value of the second state variable (the positions of the 1 tile). Again,
this is due to the fact that its application is independent of the values of all
succeeding variables in the solution order. Similarly, for the remaining columns
of the table, the macros depend only on the previous state variables in the
solution order and are independent of the succeeding variables. More formally:

Definition 6.4. A macro table M is a set of macros, each denoted by m; for
l=<i=<n andj€ V, where m, is defined as follows:
If §, = 8, then m; is undefined. Otherwise, if S; # 8, then

VseS,mys)ES.,,.
Note that if j = g, then m; = I, the identity macro.

The property that allows macro tables to exist is called operator decom-
posability. For pedagogical reasons, we first present a special case of operator
decomposability called total decomposability.

6.3. Total decomposahility

Given that each state is a vector of the form (s, 55 ....s,), we define total
decomposability as follows:

Definition 6.5. A vector finction f is totally decomposable if there exists a set
of scalar functions f; for 1 <i < n such that

Vs€ES, f(s)=f(s, S30 -0 5,) = (filsy), f1(5D), .. [ (5,)) .

This property is illustrated by the operators of Rubik’s Cube. Recall that the
state variables are the individual cubies and the values encode their positions
and orientations. Each operator will affect some subset of the cubies or state
variables, and leave the remaining state variables unchanged. However, the
resulting position and orientation of each cubie as a result of any operator is
solely a function of that cubie’s position and orientation before the operator
was applied, and independent of the positions and orientations of the other
cubies. Incidentally, for Rubik’s Cube all the f; are identical.

It can be shown that if all the operators of a problem are totally decompos-
able, then there exists a macro table for the problem. However, total decom-
posability is merely a special case of a more general property, called serial
decomposability, for which we will prove the general result.
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6.4. Serial decomposability

The small number of macros in the macro table is due to the fact that the effect
of a macro on a state variable is independent of the succeeding variables in the
solution order. However, the effect of a macro on a state variable need not be
independent of the preceding variables in the solution order, since these values
are known when the macro is applied. This suggests that a weaker and more
general form of operator decomposability would still admit a macro table. This
is the case with the Eight Puzzle, the Think-a-Dot problem, and the Towers-of-
Hanoi problem.

Recall that in the Eight Puzzle, the state variables correspond to the different
tiles, including the blank. Each of the four operators (Up, Down, Left, and
Right) affect exactly two state variables, the tile they move and the blank.
While the effects on each of these two tiles are totally decomposable, the
preconditions of the operators are not. Note that while there are no pre-
conditions on any operators for Rubik’s Cube, i.e. all operators are always
applicable, the Eight Puzzle operators must satisfy the precondition that the
blank be adjacent to the tile to be moved and in the direction it is to be moved.
Thus, whether or not an operator is applicable to a particular tile variable
depends on whether the blank variable has the correct value. In order for an
operator to be totally decomposable, the decomposition must hold for both the
preconditions and the postconditions of the operator.

The obvious solution to this problem is to pick the blank tile to be first in the
solution order. Then, in all succeeding stages the position of the blank will be
known and hence the dependence on this variable will not affect the macro
table. The net result of this weaker form of operator decomposability is that it
places a constraint on the possible solution orders. The constraint is that the
state variables must be ordered such that the preconditions and the effects of
each operator on each state variable depend only on that variable and
preceding state variables in the solution order. If such an ordering exists, we
say that the operators exhibit serial decomposability. In the case of the Eight
Puzzle, the only constraint is that the blank must occur first in the solution
order. .

The following is a formal treatment of serial decomposability. It shows that
serial decomposability is a sufficient condition for the existence of a macro
table.

Definition 6.6. A solution order is a permutation # of the state variables of a
state vector. Since we will never refer to more than one solution order at a
time, without loss of generality we will continue to refer to a state as a vector
of state variables (s, s,,...,5,) with the assumption that the order of the
subscripts corresponds to the order of the state variables in the solution order
under consideration.
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Definition 6.7. A function f is serially decomposable with respect to a particular
solution order 7 if there exists a set of vector functions f, for 1 <i < n, where
each f; is a function from V' to V, and V' is the set of i-ary vectors with
components chosen from V, which satisfy the following condition:

VSES, f(5)= (51 S v )= CFils) FolSpe S, -l 08)).

Lemma 6.8. A macro m is serially decomposable with respect to a solution order
m if each of the operators in it are serially decomposable with respect to .

Proof. In order to prove this result, if sufficies to show that the composition of
two serially decomposable functions with respect to a solution order = is also
serially decomposable with respect to .

Assume that g and h are serially decomposable functions with respect to a
solution order , and that f is the composition of g and h. Then

m(s) = g(h(s)) = g(h(s,. 55 ..., 5,))
= g(h(s)), By(s. 59, ... B (5185 .. .. 5,)
= (8,(h(5))). 82(h\(5)), Bolsy, 5)). . . .. 8a(By(s). Ayls,. £ NP i
h(sy, 52 ..., 5,))

where g; and h; are the i-ary vector functions which correspond to g and A,
respectively. Hence f is serially decomposable with respect to 7. O

Definition 6.9. A problem P is serially decomposable if there exists a solution
order 7 such that V o € O, o is serially decomposable with respect to 7.

The following theorem is the main theoretical result of this research.

Theorem 6.10. If a problem is serially decomposable, then there exists a macro
table for the problem. '

Proof. To prove the existence of a macro table M, it must be shown that for
each i and j, m, is either undefined or exists according to Definition 6.4. Hence,
" Vijforl<i<nandj€V, cither:

Case 1. S, = @ in which case m; is undefined; or

Case 2. S;#9 in which case Is€ S, Since all states are solvable by
definition, there exists a macro m s.t. m(s) = g. Recall that

VseS,s, =g, for0sys<i-1lands =].

SincesES,m(s)=g.8=(8.8.---- &,). and m is serially decomposable, then
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m(s, Ss....85)=m(8.8: --.8)=8§, forOsy=i-1
and

m(sy, 52 .S 5)=m(8. 8- 1 8- /)= &

where m_ and m, are the y-ary and i-ary functions, respectively, corresponding
to m. This is true independent of the values of s,,, through s,. Therefore,

VseES,m(s,5....5)=g, for0=sysi.
Thus,

VseS,m(s)ES,,,
Hence, m satisfies the definition of m,,. O

Note that total decomposability is merely a special case of serial decom-
posability. Rubik's Cube is totally decomposable and hence any solution order
admits a macro table,

While the Eight Puzzle is the simplest example of a serially decomposable
problem, the Think-a-Dot machine exhibits a much richer form of serial
decomposability that results in a complex constraint on the solution order.
Roughly, the effect of an operator on a particular gate can depend on the
values of the gates above it. More exactly, the effect of an operator on a
particular gate depends only on the values of all of its ‘anicestors’, or those
gates from which there exists a directed path to the given gate. Thus, the
constraint on the solution order is that the ancestors of any gate must occur
prior to that gate in the order. The serial decomposability structure of this
problem is directly exhibited by the directed-graph structure of the machine.
Note that the serial decomposability of this problem is based on the effects of
the operators and not on their preconditions, since there are no preconditions
on the Think-a-Dot operators.

An extreme case of serial decomposability occurs in the Towers-of-Hanoi
problem. Recall that the variables correspond to the disks and the values
correspond to the pegs. There are six operators, one for each possible ordered
pair of source peg and destination peg. Since no smaller disk may be on the
source or destination peg of the disk to be moved, the applicability of each of
the operators to each of the disks depends upon the positions of all the smaller
disks. This totally constrains the solution order to be from smallest disk to
largest disk. We describe this as a boundary case since it exhibits the maximum
amount of dependence possibie without violating serial decomposability.

Operator decomposability in a problem is not only a function of the
probiem, but depends on the particular representation of the problem in terms
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of state variables as well. For example, under the dual representation of the
Eight Puzzle, where state variables correspond to positions and values cor-
respond to tiles, the operators are not decomposable. The reason is that there
is no ordering to the positions such the effect of each of the operators on each
of the positions can be expressed as a function of only the previous positions in
the order.

We conclude this section with the result that a macro table for a problem
contains a solution to every problem instance.

Definition 6.11. Given a macro table M, a macro sequence m, is a sequence of
macros from the table of the form

mo=(m; my, ....m,;).

Theorem 6.12. Given a problem P and a corresponding macro 1able M,
VsES 3IminM stm(s)=g.

Proof. By the definition of a macro table,
Vil<sis=nVseS,Im;, stmis)=s.,.

since

VsES s€S and §,,, = {g}.
VsES,Bm'=(m”‘,mzf;,...,m,,_ st.m(s)=g. O

6.5. Conclusions

We have presented a theory of macro problem solving that explains why the
technique is effective for the example problems and characterizes the range of
problems for which it is useful. A sufficient condition for the existence of a
macro table is that the primitive operators of the problem space be decompos-
able. If the operators are totally decomposable, then any solution order can be
implemented in a macro table, while serially decomposable operators constrain
the solution orders that admit macro tables.

7. Performance Analysis

Several example problems for which the Macro Problem Solver is effective
have been exhibited, techniques for learning the macros have been presented,
and a theory of why the method works has been developed. We now turn our
attention to an analysis of the performance of the method. The goal of this
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exploration is to be able to characterize quantitatively how well macro problem
solving works.

7.1. Summary of methodology and results

There are three main criteria for gauging the performance of this method: the
number of macros required to fill the macro table, the amount of time
necessary to learn the macros, and the number of primitive moves required to
solve an instance of the problem. We will analyze each of these factors in turn.

Since the values of these quantities will depend on the problem, they must be
expressed in terms of some problem-dependent parameter. In traditional
computational complexity theory, this parameter is often the ‘size’ of the
problem, which in our case would be the number of state variables. Our
analysis, however, will not be based on the size of the problem but rather on
different measures of the ‘difficulty’ of the problem. For example, the number
of primitive moves required for a solution will be expressed as a function of the
optimal number of moves.

Three main results will be presented:

(1) The number of macros is equal to the sum of the number of values for
each of the state variables; this is compared with the number of states in the
space which is the product of the number of values for each of the state
variables.

(2) The total learning time is of the same order as the time required to find a
single solution using conventional search techniques.

(3) The length of the solution is no greater than the optimal solution length
times the number of state variables. For the Eight Puzzle and the 3x3x3
Rubik's Cube, the solution lengths are approximately equal to or less than
those of human strategies.

In order to save space, the formal proofs of these results will be omitted and
simply sketches of the proofs will be provided. The reader is referred to [4] for
the full proofs.

7.2. Number of macros

The usefulness of the Macro Problem Solver is based on the fact that an
efficient strategy for a very large number of problem instances can be im-
plemented with a very small number of macros. Hence, the actual number of
macros required for a given macro table is of obvious interest. This is also a
measure of the amount of knowledge required by the strategy, or the amount
of space that must be used by the problem-solving program.

We begin with some preliminary definitions and lemmas.

Definition 7.1. An operator o is appiicatle 10 a state s iff o(s) * s.
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Definition 7.2. A function f is information preserving ift

Vs,t€S s.t fis applicable to s and ¢,
f(s)=f(t) implies s=t.

Definition 7.3. A problem P is information preserving iff Vo €0, o is in-
formation preserving.

Definition 7.4. A problem P is connected iff

Vs,t€S Jamacrom st.m(s)=t¢.

Note that connectedness is a stronger property than solvability since it
requires a path between every pair of states as opposed to just a path from
every state to the goal. The reader can easily verify that all of our example
problems are information preserving and connected.

The main result of this section is that the total number of states in the
problem space is equal to the product of the number of macros in each column.
This includes the identity macro in each column in the row corresponding to
the goal value of that variable. More formally: .

Theorem 7.5. Given a problem P that is connected, serially decomposable. and
informarion preserving, then for all macro tables for P,

ISi=TTIM|  where M, ={my|s, =0}
=]

Proof Sketch. The intuitive reason this is true is that we have a separate macro
for each value of each state variable and the total number of states is the
product of the number of values for each state variabie. The formal proof is by
induction on the number of state variables. )

By way of comparison, the total number of macros is only the sum of the
number of macros in each column of the macro table. Thus, in general, the
number of macros will equal only a small fraction of the total number of states.
For example, if we have n state variables each of which can take on any of k
different values, then the number of states is k" while the number of macros is
only kn.

7.3. Learning time

In addition to the number of macros required to fill the macro table, the
amount of time required to learn the macros is an important performance
parameter of the macro problem-solving technique.
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To address this issue, we assume that we have the computational resources
to search to a sufficient depth to find all the macros and hence the macro-
composition technique is not required. We also will assume that each primitive
operator has a primitive inverse. Recall that all the macros are acquired during
a single search of the problem space starting at the goal node. Thus, the
learning time depends primarily on the branching factor of the space and the
depth to which the search must go. The execution of the learning program is
interleaved with that of the problem solver so that the learning program only
runs when a new macro is required. This ensures that the learning program will
only search to a depth necessary to find all macros.

We begin with a set of definitions aimed at capturing the depth of search
required to find all macros.

Definition 7.6. The distance between two connected states is the shortest-
length macro that maps one state to another, or

Vs, tES st.qmE 0" st.m(s)=t¢,
d(s. t) = min I(m)

m(s)=t

where I(m) is the length of macro m which is the number of primitive operators
in m,

Definition 7.7. The radius of a problem P with respect to the goal state g is the
maximum distance to the goal state or

D, =maxd(s, g).

€5

For most problems, including all of our examples, the radius of the problem
with respect to all goal states wiil be equal

Definition 7.8. A subgoal is a set of states. A given state is said to satisfy a
subgoal iff it is an element of the set. The particular subgoals we are concerned
with here are the sets

Sforlsisn+l

where
s€Siffs€ESandVx, 1sxsi-1,5,=g,.

Note that

S,=§ and S,. ={g}.
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Definition 7.9. Given two subgoals S, and S,. the subgoal distance is the largest
distance from any state in S, to the clostest state in S., or

D(S,, S;) = maxmin d(s, ¢).

1ES] 1ES

Definition 7.10. Given a sequence of subgoals (S,, S,,.... S, S..) the maxi-
mum subgoal distance D, is

D,=max D(S,§..).

l€ign

Given a set of subgoals, the maximum subgoal distance is a better measure
of the ‘difficulty’ of a problem than the problem radius. In general, D, will be
less than Dy. A useful analogy here is that of crossing a stream on stepping
stones: The difficulty of the problem is related to the maximum distance
between stepping stones and not the width of the river.

We now formally define the inverse of an operator.

Definition 7.11. The inverse of a function f is a function f™' s.t.

VsES s.t. fis applicable to s,

o '(o(s))=s.
Next, we turn out attention to the branching factor of a problem space.
Definition 7.12. Given a state s € §, we define the braﬁching factor b(s) as
VsES.b(sj=I{ts.t.tESAt#sA do0EOs.t.o(s)=1}.

Definition 7.13. Given a problem in which each operator has an inverse, the
maximum branching factor for a problem P is defined as

B, =max b(s)-1.

1€ES

The one is subtracted to exclude the immediate ancestor of a given state in
the branching factor.

We continue our analysis with the definition of an optimal macro table.

Definition 7.14. An oprimal macro table for a problem P is a complete macro
table M in which each macro is the shortest possibie macro that could occupy
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that slot in the table. Formally,

Vm EMmEO",
ifVsES, m(s)ES,., then [(m)=l(m,;).

In order to simplify the complexity analysis of the learning task, we will
consider the tree-search bi-directional search instead of the hashing scheme.
While it is easier to analyze and its complexity is of the same order as the
hashing algorithm, the constant factors of this algorithm are larger and hence it
is less efficient.

The following theorem is the main result of this section.

Theorem 7.15. Given a serially decomposable problem P for which each primi-
tive operator has an inverse primitive operator, an optimal macro table M for P
can be generated in time O(nD,B2?), where n is the number of state variables,
D, is the maximum subgoal distance for the solution order embodied in the macro
mble M, and B, is the maximum branching factor of the space.

Proof Sketch. The reason for this result is that we have to perform a single
exponential search where the base of the exponent is the branching factor and
the exponent is half of the maximum subgoal distance since the search is
bi-directional. The factor of n comes from the assumption that it takes order n
work to apply a’single operator. Finally, the factor of D, is due to the time
required to invert the macros.

How does this compare with the running time of a standard problem-solving
program trying to solve a particular instance of the problem? We assume the
problem solver uses the same set of subgoals with the same ordering and can
perform bi-directional search as well, but has no additional knowledge about
the problem. In other words, the problem-solving program is given the same
information about the problem as the learning program. Using an ordinary
search with subgoals, the problem solver performs a bi-directional search
between the initial state and the first subgoal, then performs another bi-
directional search between the first subgoal- and the second subgoal, and
continues similarly until the final goal is reached. The running time of this
algorithm is dominated by the depth of the longest search, which is D,. Hence,
the total running time is also O(nD,B27?). The learning program requires only
a single search to depth D,. Thus, the runtime of the learning program which
learns an efficient strategy for solving all instances of the problem is of the
same order as that of a standard problem-solving program, using the same
knowledge, that solves just one problem instance!

Note that in practice, the maximum branching factor B, can usually be
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replaced by an average branching factor. The necessary condition is that after
an initial search of bounded depth, the expected branching factor of a state be
equal to the average branching factor over all the states.

7.4. Solution length

So far, we have considered the amount of knowledge required to solve our
example problems and the amount of time necessary to acquire that knowl-
edge. We now turn our attention to the quality of the resulting solutions. In
particular, we will analyze the lengths of the solutions generated by the Macro
Problem Solver in terms of the number of primitive moves. We will consider
the worst-case solution length, and the average case based on a given macro
table. In addition, these values will be compared with typical solution lengths
generated by human problem solvers.

For problems such as Rubik’s Cube and the Eight Puzzle, the problem
radius, Dy, is only known for versions of the problem small enough to allow
exhaustive search of the entire state space. Thus, optimal solution lengths have
been determined experimentally for the 2 x 2 x 2 Rubik’s Cube (11 moves) and
the Eight Puzzle (30 moves [20]) but are not known for the 3x 3 x 3 cube or the
Fifteen Puzzle. It follows that all known algorithms for these problems, other
than exhaustive search, may yield suboptimal solution paths. A lower bound on
the problem radius is the log, base B, of the number of states, since this is the
depth in the search tree at which the number of nodes first exceeds the number
of states in the problem space.

We define solution length as follows.

Definition 7.16. Given a macro sequence of the form
mo=(my, my,....m,
we define the solution length as the total number of primitive operators, or

YmeEMIim)= 2": I(m,)

i=1
where /(m) is the length of macro m.
7.4.1. Worst-case results
The goal of worst-case analysis is to determine the maximum solution length

that could be generated to solve some problem instance.

Theorem 7.17. The worst-case solution length is equal to the sum of the subgoal
distances for the given solution order. or

max I(M,) z D(Si’ Snl)

IES
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Proof. The proof follows directly from the fact that the length of the longest
macro in each column of the macro table is equal to the corresponding subgoal
distance.

Two weaker corollaries follow immediately from this result.
Corollary 7.18.
VsE€S Im)=n-D,
where D, is the maximum subgoal distance for the solution order.

Proof. This is due to the fact that the maximum subgoal distance is greater
than or equal to each of the individual subgoal distances.

Corollary 7.19.
VseS Im)<n-D,
where D, is the radius of the problem P with respect to the goal state g.

Proot. This follows from the fact that the problem radius is greater than or
equal to the maximum subgoal distance.

Note that given an optimal macro table, the Macro Problem Solver solutions
are the optimal solutions that pass through the given set of subgoals. This is
due to the fact that each of the individual macros are optimal. The reason that
these solutions are not optimal in the global sense is that the global optimum
solution need not pass through the given subgoals.

7.4.2. Average-case results

While the goal of worst-case analysis is to bound the longest possible solution
length, average-case analysis is concerned with the actual solution length for a
particular problem, averaged over all problem instances. In order to do an
average-case analysis, we assume that all possible problem instances are
equally likely.

Definition 7.20. We define the auverage-case solution length L, to be the
solution length for each particular initial state averaged over all possible initial
states, or

Ly=2 I(mS!.

€S
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Theorem 7.21. Given a problem that is connected and information preserving,
the average-case solution length is equal to the sum of the average macro length
in each column of the macro rable, or

L,=3 3 im)/M,].

isl jev

Proof Sketch. This result follows from a proof that the macros chosen from
different columns of the table are independent.

7.4.3. Comparison with human smategies

This section compares the average solution lengths generated by the Macro
Problem Solver with those produced by humans for the Eight Puzzle and the
3x3x3 Rubik's Cube. For the Eight Puzzle, Ericsson [22] found that the
average solution length generated by ten human subjects on eight different
problem instances was 38 moves. This is within 5% of the 39.78-move average-
case solution length computed from the macro table in Table 1. An informal
survey of ten people who could solve Rubik's Cube resulted in an average
solution length of 125 primitive moves, where a 180-degree twist is counted as a
single primitive move. This is significantly longer than the 86.38-move average-
case solution length based on the macro table for the 3x 3x 3 Rubik's Cube.
Thus, we find that for these problems, solutions generated by the Macro
Problem Solver are close to or superior to those of humans in terms of number
of primitive moves.

7.4.4. Solution-order selection

The solution lengths generated by the Macro Problem Solver are dependent on
the solution order, or the sequence in which the state variables are solved. As
demonstrated in Section 6, the solution order is constrained by the serial
decomposability of the operators. For some problems, such as the Towers of
Hanoi, this condition totally constrains the solution order and no furthér
selection is possible. However, for other problems, such as Rubik's Cube,
operator decomposability places no constraints on the solution order.

For the 2x2x 2 Rubik’s Cube, 25 different solution orders were randomly
generated and the average-case solution length was computed for each of the
resulting macro tables. The average of these values was 28.39 moves, and the
variation was less than ten percent, implying that for this problem the choice of
solution order has very little effect on the efficiency of the resulting solution.
However, for problems such as the Eight Puzzle this is not the case. If we
consider the solution order (0,2,6,4,8,1,5,3,7], which was deliberately
chosen to result in an inefficient solution strategy. the average number of
primitive moves required to solve an instance of the problem using this order is
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58.06. This is significantly more than the 39.78 moves required using the macro
table in Table 1.

Unfortunately, one cannot predict a priori what solution order will result in
the most efficient solution strategy. Rather, heuristics must be used to select a
solution order which will result in a reasonably efficient strategy. One such
heuristic is to select the state variables in order so as to maximize the number
of operators which do not affect any of the state variables selected so far. The
intuition behind this heuristic is to maximize the ‘freedom of movement’ of the
remaining state variables in the solution order.

7.8. Conclusions

We have analyzed the performance of the Macro Prabiem Solver along three

different dimensions: the number of macros, the learning time, and the length

of solution. In each case, we compared the performance measure to some

measure of the ‘difficulty’ of the problem, including number of states in the

space, time to search for a single solution, and optimum solution length,

respectively. We found that:

— Whereas the number of states is the product of the number of values for each
state variable, the number of macros is the sum of the number of values.

~The learning time is of the same order as the time required to search for a
single solution using the same knowledge.

—The solution lengths are less than or equal to the optimal solution length
times the number of state variables. Furthermore, for the Eight Puzzie and

TasLe 4. Experimental performance measures for example
problems

Problem Dy D, La Lw macros learning
Eight Puzzie k1] 14 39.78 64 kL3 <:01
Fifteen Puzzle »66 4 139.40 214 119 :10
2x 2% 2 Rubik's Cube 11 11 27.00 38 75 :18
3x 3 x 3 Rubik's Cube 18 12 86.38 . 134 238 14:28
Tower of Hanoi (3 disks) 7 3 7.33 11 é <:01
Think-a-Dot 9 4 71.50 15 7 <:01

Dy problem radius or maximum distance to the goal state.
D, maximum distance between successive subgoals.
La average<case solution length for the Macro Problem Solver.
I'w worst-case solution length for the Macro Problem Solver.
macros number of non-identity macros in the macro table.
learning the amount of time in seconds to learn the macros using bi-direc-
tional search.
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the 3x3x3 Rubik's Cube. we found that the average solution length is,
respectively, very close to and less than the solution lengths generated by
human probiem solvers.
Numerical values of these measures for the example problems are summarized
in Table 4.

8. Conclusions

There are several conclusions that can be drawn from this work. The first is
that our current collection of weak methods is incomplete. In particular, there
exists problems, such as Rubik’s Cube, that cannot be solved efficiently by any
of the weak methods, including means-ends analysis and heuristic search.
However, these problems can be solved by people with no prior knowledge of
the problems. This implies that some other technique must be involved.

The Macro Problem Solver, a new problem-solving method based on macro-
operators, can solve these problems efficiently. The basic idea is that while the
primitive operators of the space may make large global changes in the state of
the problem, there exist sequences of primitive operators that make only small
local changes. While a fairly general method, the technique depends on
problem dependent knowledge in the form of the macro-operators.

These macros, however, can be learned automatically. Learning fis ac-
complished by searching through the space of all macro-operators for those
macros which leave most of the problem state invariant. The macro learning
techniques are problem independent. For difficult problems, such as the full
3x3x 3 Rubik’s Cube, the learning methods are sufficiently powerful to find
all necessary macros in a reasonable amount of computer time (less than 15
minutes).

The success of this paradigm is based on a structural property of problems
called operator decomposability. An operator is totally decomposable if its
effect on each component of a state can be expressed as a function of only that
component of the state. Given an ordering of the state components, an operator
is serially decomposable if its effect on each state component can be expressed
as a function of only that component and any previous components in the
ordering. Total decomposability is a special case of serial decomposability. The
Macro Problem Solver and the macro-learning techniques are effective for any
problems which are serially decomposable. Operator decomposability is a
property of a problem space which allows a general strategy for solving a
problem from any initial state to be based on a relatively small amount of
knowledge.

The performance of this method, measured in terms of number of macros
that have to be stored, learning time, and number of primitive operators for a
solution, is quite acceptable when compared with problem difficulty. In parti-
cular, (1) the number of macros is a small fraction of the total number of states
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in the space, (2) the amount of time to learn all the macros is of the same order
as would be required to solve just one instance of the problem. and (3) the
worst-case solution length is no more than the optimal solution length times the
number of subgoals the problem is broken down into.
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