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Abstract.

We determine the dimension of the polynomial subspace

of the linear space Spanned by the translates over lattice

peints of a bivariate box spline on a k-direction mesh.
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1. Introduction.

Box splines were introduced by de Boor and De Vore,
(1], and systematically studied by de Boor and Hollig in
(2,3] and by Dahmen and Micchelli in (4,5,7].

For box splines on a k-direction mesh in an s-dimensional
space, one is interested in the dimension of the polynomial
subspace of the linear space spanned by the translates of
a box spline over lattice points in Zs, since this dimension
is closely related to the rate of approximation using box
splines. This problem has been solved for the case s = 2
and k = 4. For the proof see [4]. For the general case,
the result has been announced in a recent paper [(6]. The
authors suggest to prove it by employing an induction.

In this paper, we provide a proof of this result
for the case of bivariate box splines (i.e., s = 2) and
arbitrary k. Our proof does not use induction.

A k-direction mesh is a set of vectors

(1.1) x = (vi, .. .,vh, o v,
——
™ Ty
where vl = (ai,Bi) € 32, 7 is the set of integers, and Bi > 0,

. . ¢ o5 o o 2. €
aiaj # ajBi for i # j, m, >1, i,3 1, k, k> Le

(1.2) n =g, m, and d = min{n - mi} - 1.
i

. . . . 2
Then there exists a unique function B(.|X) in R , called a

box spline on a k-direction mesh, such that




(1.3) £(x,y)B(x,y X)dxdy = >, . ! L k
IR?' (x,y)x)dxdy Jo J'o f(tlv +ooott V) X

dtl. . .dtn

for all £ € c(Rz).
d-1

The box spline B(- |X) is a piecewise

polynomial in C (RZ) where d 1is given in (1.2), and has

compact support [2,3].

Let S(X) be the linear span of translates of the box

spline over lattice points in ZZ, i.e.,
(1.4) S(X) = span({B(--(a,8)|X): (a,8) € 2°}).

We are particularly interested in the subspace Sn(x) of

polynomials in S(X). rLet

m.

Q,(x,y) = N (a.x + B.y) T,

[ y) i i

and let

. m,

3 2 i
(1.5) Q. (D) = T (&, =—+ 8. —) .
2 igg 1 ax 1 3y

It was proved ([3,6,7]) that SW(X) is of finite dimension

and that-

(1.6) s (X) = p(X),

where

(1.7) D(X) = {£f: Q, (D) £=0, 2=1,...,k}.




It was proved (3]

Theorem 1.1: If det(vl,vj) = 1 for each pair of vectors

in X which spans R2, then

(1.8) dim SW(X) = dim 9(X) A(X),
where A(X) is the area of the support of B(-|[X). 0

A simple example is the case of a 3-direction mesh,

1 1, 2 2
where X = {sil;;;ifl'e +e ,...,e1+e?,s_i;;;LE3}, el = (1.0),
m ) M3
e2 = (0,1). We have

dimnS (X) = di@ X) = A(X) = Zl§i<ji3 mimj.

In general, the condition in Theorem 1.1 does not holgd,

as in the case of a 4-direction mesh, where

X = {el,...,el,el+e2,...,e1+e2,e2,...e2,e2-el,...,ez-el},
N—_———— — —
M ) M3 My
. 1, .2 2 1, _ . .
since det(e +e“,e“-e”) = 2. We address this problem in

section 2.

2. Box splines on a k-direction mesh.

For a k-direction mesh as given in (1.1), we give the

dimension of sn(x) in Theorem 2.1.

- -




We need the following

2
Lemma 2,1: t ; .
Lemma ¢c.1: Le (ai,ai) € Z° with aisj # a.Bi, i,3

m,
d let = *
an e Gj(x) ni#j(ai+6i1) , where m, > 1.

=1,...,k,

Then for

all distinct XO""’Xn-l' the following matrix is nonde-

generate:
Gy (xg) G O )
G
o l(xo) xn_lGl(xn_l)
/
m. -1 m -1
1 - 1
A Gl(lo) < .. Xn-l Gl(xn_l)
(2.1) M = )
n
G, (1) G (r ;)
Xon(ko) Xn—le(Xn—l)
mk'l mk—l
Yoo G&Bo) e AT G0 )
k
where n = 2i=1 mi.

Proof: The matrix .Mn is nondegenerate for any choice of

distinct Xj’ j=0,...,n-1, if and only if for any vector a,

Mna = 0 implies a = 0. Let

aT = (a1

e ce., 8 a s eessd )
,0731,1° 'al,ml-l’ 3. 0'%,1 Ck,m 177




= ce. 2 -

and let Pz(x) = aﬁ’0 + al,lx + + al,ml-lx , 2=1,...,k.

k
Then z Pl(x) Gz(x) vanishes at all the n distinct Xj’

=1

k
since M _a = 0, On the other hand, I P, (x) Gl(x) is a
n 1=1 2

polynomial of degree less than n, hence must be identically

zero. But then since all summands except for the %-th one

m

have the factor (a2+8lx) 2 , the £-th summand must also have it

and, since Gz does not have it, Pl must have it, and that is

possible only when Pl = 0. This shows that a = 0, as required.

Remark 2.1l: We choose distinct XO’;"’Xn-l with xi #1,0,1,

a. +8»\, #0, j=1,...,kx, i=0,...,n-1, such that M in
J J1 n

(2.1) is non-degenerate, and we denote this matrix with fixed
. ,
Ay as Mx. a

We are ready to prove

Theorem 2.1l: Let X be a k-direction mesh. Then

(2. 2) dim 8§ (X) = . m.m,,

X Tigiciex ™ g
Proof: 1In the pro&éf we denote the differential operator
Q, (D) by Q- 2=1,...,k. Since S (X) = 9(X), we need only

to derive the




dimension of the space PH(X). Let Hj be the linear space

of all homogeneous polynomials of degree j. Observe that

J

(x+ijy)J} is a basis of Hj for arbitrary distinct

Xij' i=0,...,3, with xij¢-1,o,1.

Since P(X)} is a finite dimensional linear space of polynomials,

T = . . j j
g NI {0} for i # j and that {(x+xojy) ,(x+xljy) feeey

P(X) is a subspace of Ty &--- & Ty for sufficiently large
N. Let Sj =D(xX) N Hj. Then S, N Sj = {0} for i#j, and

therefore So ® - B Sy is well defined. We prove that

(2.3) DX) =5, 8-+ @ 5,.

Indeed, S, @ *+++ & Sy € 9(X) by the definition of Sj’ To

0
show that D(X) &€ Sp & =) Sy take arbitrary f e D(X), and
N

£f., where £. € 1.. Due to (1.7), f = £
0 K j j ( ) Ql =

[ 4

j 0

2=1,...,k. By (1.5), we know that for i < j and Q fj # 0,

deg(szi) < deg(szj). Thus Qlfj =0, 2=1,...,%k, 3 =0,...,N,

i.e., fj € Sj, j =20,...,N. This means that P(X) & SOQH'QSN’

which completes the proof of (2.3).

To derive dim J) we compute dim Sj’ j=20,...,N, since
N
dim H(X) = I dim Sj' due to (2.3). Let f € Sj. Then
j=0
J j
(2.43) f(x,y) = i aij(x+xijy) ,

0

and

(2.5) sz =0, 2=1,...,k.




k
Let q, = deg(32= n - m, where n = 151 m . Since
3, 3m j
(2.6) (agg + 8550 (x + Ay)
0, if m> j,

(3-1) + -+ (3-m+1) (48X T(x+Ay) 27T, if m < 3,
from (2.4) we have
(0 if q, > 3,

(2.7) Qlf

i
S

]-ql

14

]
E al] ](]-1)"'(J'q2+l)Q2(lr)\ij)(X+Xin)

if g, 2 3.

Since SW(X) is the polynomial subspace of the linear space
spanned by the translates of a box spline for which there are
only n directions, polynomials in SW(X) have degree less than

n. Thus we only need to derive dim S., for j=0,1,...,n=-1.

]
From (2.7) we have
Qf = O £ q 2 341,
(2.8) . |
] s . J'ql
Quf = I ay 3310+ o+ (3-q,+1) Q) (1,4 5) (xFA;4Y) ,

if dq 2 3.




From (2.5) and (2.8), we have a system of equation in a,.:

(2.9)

.
@

ij

(1,x:.) A, = 0, r=0,...,j-q2; q, < 3.

and the coefficient matrix Mj of (2.9) consists of blocks

Bz,j‘
1, . e e e e e
Qu (Liagy) £ Qy (12g5)
B, . = . 1, . e e e e o Al P A
2.3 032 (17 2o4) Y332y (LrAyy)
03 QQ( , Oj) SR SO Sy Qz(l,Ajj)
Since j < n-1, i-q, =3 - (n—mz) = mz - (n-3j) < ml -1,

is a submatrix of M; in Remark 2.1,

and is contained

M.
]
k k
in g (j+1- q, ) rows. Notice that Jj+1 > 1 (j+l-g )+, for
2=1 e=1 .
j < n-1, since we get equality when Jj + 1 = n. Since M;

is non-degenerate, we can find j+1 columns,

A,

such that the

k
L (j+l-q2)+ by (j+1) submatrix of M* , corresponding to
2=1
k
Mj ,1s of rank Zl(j+1-q2)+. Use the j+1
=

corresponding to the j+1 chosen columns as

[ 3 M*
lS in n '

.Aoj,-..[ij



in (2.4) and (2.9), and Mj is obviously of rank
k
r (3+1l-q,) .. Since the number of a..'s, j+l, is no less

2=1 13
k

than z (j+l-q2)+, the number of equations in (2.9), and
=1

the coefficient matrix of (2.9), Mj ,1s non-degenerate, the

solution space of (2.9) is of dimension

k
(§j+1) - £ (j+1-ql)+’ which is the dimension of Sj' So
=1
n-1 n-1 k
£ dim s, = L [(3+1) - I (3+1-q,) ]
j:o ] J=0 = L+
n k My
= L j- 1L L 3= P m.m.,
j=1 2=1 j=1 1<i<jck  * 3
since
n-1
L (J+1-q1) =1+ +-+ +n-q, and n-q, = m,. d

j=0 "
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