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Abstract

Minimar has long been the standard method of evaluating game tree
nodes tn game-playing programs. The general assumption underlying these
programs 13 that deepening search improves play. Recent work has shoun
that this assumption is not always valid: for a large class of games and
evaluation functions, deepening search decreases the probability of making a
correct move.  This phenomena 138 called game tree pathology.

Two structural properties of game trees have been suggested as causes
of pathology: independence among the values of sibling nodes. and unijorm
depth of win nodes. This paper eramines the relationship between

unt form win depth and pathology.

A game-playing program 13 run using two different evaluation

functions. The first recognizes wins only at the bottom level. the second
at various leveis throughout the tree. The minimar procedure behaves
pathologically wken the first function 13 wused: the second shows no such
pathology. This result constitutes the first erperitmental evidence linking

uniform win depth to pathology. The effect of not recognizing wins until
the bottom of the tree on the probability of muaking a correct decision 13
also analyzed. This analysis may lead to a general characterization of

pathology in terms of win distribution.



1 Introduction

Computer programs that play two-player games generally adhere to the
paradigm of heuristic game tree search, the minimax procedurs [10]
Minimax sirategies were first discussed in the context of finite two-person
zero-sum  games of perfest information, where they were shown to be

optimal [2] (p 71) As 1s all too ofien the case, however, theoretical and
implemented games tend to differ in one important aspect: hmteness'! In
theory, before play begins, both players can see the entire game tree,
including the actual value of each node In most implementations, however,

the trees are tco large to be seen at once, f{orcing players to move
without seeing all possible completions of the game. To account for this
discrepancy, minimax has been extended to partial game trees by treating
statically evaluated tip nodes like leaves, the tree 1s searched to some
arbitrary depth, all nodes at that depth are evaluated, and the estimated
values are mimimaxed back up the tree The appeal of this procedure s
obvious - since munmax 1s an optimal strategy fer finite games, estimated
minimax should approximate an optimal strategy for infimite games

Unfortunately, the procedure described does not estimate the minimax
value, but rather minimaxes estimated values In general, the two are not
2qu:valent, computing = function of esumates instead of an estimated
function 13 a cardinal sin of statistics Statistically sound or not, there s
a significant coliection of game pliving programs that attests that not only
does minimaxing estimates work, but the deeper the search, (and thu: the
greater the functional dependence on those estimates), the better the gquality
cf play [7] [1] Nevertheless, a  theoretical diffticulty with minimaxing
estimates was pointed out in 3] for a large class of game trees and
avaluation functions, as long as the search does not reach the end of the
tree  (in which case a correct decision would be guaranteed) searching
deeper causes decistons to become increasingly random The prediction of
gemes exmbiting this type of pathologicai behavior suggests two ntzresting
questions Do any krown games belong to this class’ And why  hasn:
pathology been observed :n existing game playving programs®

Secticn 2 discusses  work that has bheen done on board splitting, a
game which behaved pathologically when a reasonably accurate evaluaticn

1Te:5nic::l_\. the distinction is not finite vs. infinitz, but decidakle vs. efTectively computable. Mizimax is a decision
procedurs which works on alil finite trees. regardless of size. Since :omputers zan only store 2 relatively small number of
oodes, hcwever, the minimax value is act effectively computable for most games.



function was used. Some of the structural differences between board
sphtting and popular nornpathological games are considered as possible causes
of pathology. Section 3 identifies one such difference in the tree of the
pathoiogical game described 1n section 2. This structural flaw increase the
probability of making an error as search deepens A new evaluation
function for the board splitting game 1s introduced to correct this flaw
Using this new function, the pathology disappears. Section 4 offers some
conclusions and directions for future work.

2 A Patholcgical Game: Board Splitting

Board spiitting was devised by Pearl as an example of a game whose
tree has 2 wumform branching factor (B), a uniform leafl depth (D), and
randomly distnibuted wins and losses among the leaves Play proceeds as
follows: a square (BP-by-BP) board is covered with randomly distributed 1's
and O0's. The first player splits the board vertically into B sections, keeps
one 1n play, and discards the rest.  The second player splits the remaining

portion horizontally, doing the same After D rcunds, only one square
remairs If that square contains a 1, the honzontal sphtter (H) wins
Otherwise, the vertical splitter (V) wins To compensate V for geing first,

the board 1s set up by fiipping a coin weighted 1n her favor, such that a
1 1s generated with probability p < 5 and a 0 with probability (i-p) >

3 The value of p needed to make the game fair is dependent on B
(3] 2 In order to wuse board sphtting as a model for more complex
games, the tree must be treated as 1if 1t were too large to search 1n its
entirety The minimax procedure searches the iree to some arbitrzry depth.

k. where 0< k< 2(D-1) An heuristic evaluation fuaction 15 then apphed
to all nodes at the specified level, and these estimates are mimmaxed back
up the tree The search depth s bounded by 2(D-1) to tnsure that

neither player can see the last round A simple function which has been
nsed 1n the past assigns each tip node a valus equal to the number of
I's 1t contans (8] [3] Call this evauation function N(g) V' otries to

minimize 1's (thereby maximizing 0's), and H tries to maximize 1's

“Set p equal to the unique solution to the equation (I-K)B=( in the interval (0.1).




(Ehe number of 1’s in g if g is a tip node
N(g)= {min{N(g')| g’ is a child of g} if g is a min node
max{N(g’)| g’ is a child of g} if g is a max node

Nau showed that N(g) evaluates a given board fairly accurately, the more
1’ a board conta:ns, the more likely 1t is to be a win for H, and the
smaller the board, the more accurate the evaluation Nevertheless, programs
that use N(g) behave pathologically for sufficiently large B and D In other
words, the probability of making a correct decision at a given node 1s not
a morotonically nondecreasing function of search depth, there are cases
where searching ahead another round (increasing k by 2) decreases the
probabiity of making a correct decision [3] [4]. This result runs counter
to the intuition developed through observing other game programs, in which
increased search depth improved play, and constitutes an example of the

theoretically predicted pathology.

Various cures have been offered for this pathclogical behavior. Most.
of them diagnose the minmimax procedure as the primary cause, and alleviate
pathology ty removing mimmax. In 1ts place, product propagation rules
that estimate the conditional probability of winning the entire game from
each node are used [4] [6] ([11] Although this approach has cured all
obsarved pathologies, 1t has not answered the basic question. why 15 the
minimax procedure rnonpathological 1 games such as chess and checkers’
Two (not nrecessarily exclusive) conjectures have been forwarded, both f[ocusing
on an evaluation function’s sensitivity to certain charactenisitics of a game
tree's structure The first, developed by Nau (3] [4], shows that game
trees  sauisfying certain  preconditions exhibit  pathologies Among these
preconditions 1s that the value of a tip ncde may be dependent only to a
fimited  extent on the values of the 1ts siblings Thus, games like chess
and checkers, which ciearly do not exhibit independence for most standard
evalnation functions, are nonpathological This sibling independence, 1t has
been hypcthesized, 1s the cause of pathology

Pearl showed that pathoiogy can only be avoided by wusing evaluation
functions whose accuracy improve by over 509% at each successive level 1n
the tree Most common game trees are not umform 1n structure Rather,
they are niddled with early terminal positions, or (raps The estimated
va:ues of the ancestors of traps are more rehiakle than those of other
rodes at the same Jlevel Although most evaluation functions are ncot 350
more zccurate for a given node at level k+1} than for a given node at
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leve! k, the presence of terminal positions 1n the wvicinity of the search
frontier sigmficantly improves the function’s accuracy when taken over all
nodes at the deeper level Since deeper searches expose more traps, the
noise introduced by an additional mimmax operation s counterbalanced by
increasingly  accurate  evaluations This led to the second conjecture
pathology 1s caused by the absence of traps.  According to this hypothesis,
the introduction of even a small number of traps may :ignificantly dampen
the roise amplification due to mmmaxing. [9]. A useful evaluation functicn
then, should not only discriminate among nodes based on strength, but
detact traps as well

3 Understanding and Curing Pathology

Unhke most games, board sphtting has a uniform game tree - all
leaves are located at level 2D.  The concentration of leaves at the bottom
of the tree seems to 1mply an absence of traps. If traps are needed to
avoid pathology, then, board sphtting should be pathological regardless of the
evaluation function used. However, the salient feature of traps 1s not that
they are leaves, but that the value associated with them 1s exact, not
astimated. Leaves are not the only nodes with this property Any rode
that 1s recognized as a forced win or loss has an exact value associated
with 1t, as well Thus, the existence of leaves 1n mid-tree s not crucial
to avoiding pathology: the recognition of forced wins can serve the same
purposa There are configurations 1n  board sphtting which can serve as
traps The most obvious forced wins are boards which contain a row of
l's (win for H), a column of 0s (win for V), or a main diagonal of 1's

{(win for H, who always goes last) Although a reasonable case could be

made in favor of 1ncluding other patterns, this decision should not affect
the basic resuit: evaluation functions that recognize forced wing as traps

avnid pathology.

The evaluation function described 1n section 2, Nig), reccgnizes wins
only at the leaves Thus, 1t frequently overlooks fcread wins 1n favor of
configurations with more (or fewer) 1's, albait less strategically arranged
Y(g), shown below meodifies N(g) so that the patterns described above are
recognized as forced wins Tip ncdes are evaluated by checking for a row
or diagonal of I's If such a row exists, the node 1s assigned the

maxiraum  value of N(g), B®*P (the number of squares in the initial board)
This assures that a forced win wil always be chosen by H and avoidad




by V If a column of 0's exists, the value -B®0 does the reverse
guaranteeing that V will choose it and H avoid 1t.  Otherwise, the number
of 1's is counted, just like in N{g) These values are then minimaxed

back up the tree.

B if g is contains a row or diagonal of 1's
E(g)= )-B® if g contains a2 column of 0's

# 1's in g otherwlse

E(g) if g 1s a tip node

Y(g)= Jmin{N(g’)| g’ is a child of g} 1f g 1s a min node
max{N(g’)| g’ is a child of g} if g is a max node

3.1 Theoretical Predictions

Y(g) differs from N(g) n only one respect: 1t introduces nodes with
completely accurate values 1n  mid-tree. How often wiil this correct a
mistake that N(g) would make? Define an 1incorrect decision as the
selection of a non-trap node as the best (max or min) chidd of a given

parent, despite the existence of a trap? Clearly, N(g) and Y(g) will

choose the same child of any parent with no traps among 1its children. [If
there 15 a trap, Y(g) wil always (correctly) choose 1t N(g), which does
act look for ‘traps, may or may not What 15 the effect of increased

search depth on the probability that an evaluation function that does not
look for traps will find them? A simphfied model can be constructed to
answer this question

On H's first move, she looks ahead k levels in the tiree, (k even),
ard evaluates square toards using N(g) Consider only the probability of
m:ssing a single type of trap, say a row of 1's {Analogous arguments
can be applied to ail other cases, namely V's lookahead, 2valuating
rectangular boards, and other trap patterns)

Let S = BOPY/2! be the number of rows (and columns) 1in g, where
g 15 a beard at level k 1n the game tree

Let p represent the probabiity that a 1 was placed 1n a given square
in the ongzwmal board

30ther reasonable defintions are possible. Several authors [9] {4] consider a decision incorrect only if a *lass* node is
chosen when a “win® was available. The definition used here considers a decis:on incorrect i 3 node of uoknown exact value
is chcsen when s *win” trap should have teen recognized.




Then P = Pr{g 1s a trap] = (1-(1-pS))

By definition, 1f N(g) made an tncorrect decision, there must be some
node at level (k-1), G, with a trap child of maximum value amcng 1its
trap children, g, and a non-trap child of maximum value amoag the non-
traps, g, for which N(g,) > N(g) In other words, N(zg) errs if G has
a child which 1s a trap, but the node containing the most 1's 1s a non-

trap
Let PrNTN] = Pr[G's child with the most 1's 1s not a trap]
82 S(S~1) Pozimz (SN i1 1S2—AB-1
=1-5,_(5(", 5 )Bet1-p)* T, ( Jpli-p)S B,
Let Pr{ll = Pr(G's children include exactly 1 traps] = (?)P"(I—P)B‘i

Then Pr[N(g) errs] = Z?;ll Pr{NTN)Pr{]]

The complexity of Pr[NTN] 1s due to the f{act that there 1s an
unequal amount of wuseful information about the nodes. By the definitions
of traps and non-traps, SSN(gt)Sﬁ and OSN(gnt)SSQ—S‘ Since N(g,)
has a nontrivial lower bound and N(g,) does not, g 15 more likely to
contain the maximum number of 1's than g,, and N(g) 1s a prior1 more
likely to choose a trzp than a non-trap To simplify the anaiysis. define
another evaluation function, R(g) which chooses nodes arbitrarnly The
interesting  feature of R{g) 15 that 1t can be used to calculate the
probability of choosing a non-trap as a function of the probability that a

given board 1s a trap

B
Pr[NTRI] = Pr[R chooses non-trapiG has 1 trap children] = =

Then. Pr[R(g) errs] = Z?;ll Pr{\Pr{NTRI]

I RN
=5 (—B—)(\?)P‘(I—P)B—*
=(1-P)—(1-P)B
:(l—pBD_k/Q—l)BD—kle—l_(l_pBD“kI/Q—l}BD—k/Q—l

This term represents P, the probability that a trap was missed at
depth k. To affect the performance of R(g) this error must be
propagated back up k levels, and affect the decision made on H's first
move Depth (k-1) 1s a2 min level - for a mistake toc appear there, 1t
must have been made cn =all B children of the min node 1n question
Tkus, P, = P.B Depth (k-2) s a max level once agamn, so P, =



(l—Pk_l)—(l—Pk_l)B This  sequence continues alternating as the error
propagates  upward. At the level of the ongmnal decision, P, =
(l—Pl)—(l—P,)B P, can be shown to grow rapidly as k increases

Thus, the probability that R{g,) > RIig,) increases as the search deepens
In other words, an evaluation f{unction which does not look for traps
becomes decreasingly likely to choose them as search deepens. N(g), like
R(z), is such an evaluation function.

The pathological behavior of N(g), then, can be explained as follows
there are a group of ncdes 1n mid-tree which should be recognized as
forced wins. These nodes, when they exist, always represent the maximum
children of their father, and should always be chosen (by a max operation)
As search depth 1ncreases, an evaluation function that does not check for
these patterns becomes decreasingly likely to choose one of these nodes
The shght edge that N(g) gives g, over g, for having at least S 1's will
not counter the rapid growth of P, Thus, N(g), like R(g), can be
expected to become less reliable at each successive level searched.  Yig), on
the other hand, should encounter no such difficulty

3.2 Experimental Results

Game tree pathology 1s 2an observed phenomena. Even for board
sphtting, no definite criterion  has been developed for predicting when
miimaxing  N(g) will  behave pathologically The previous section used
Paarl’s conjecture that pathology 1s due to the absence of traps to identify
a flaw :in N(g), 1ts :nabihty to recognize certain obvious patterns as wins
or losses A new evaluation function, Y(g), recognizes those configurations
The probabihity that an evaluation function that does net recognize traps
will err was shown to be an increasing function of search depth Yig). by
catching the traps, avoids these errcrs

Y(g)'s abiity to recognize these patterns indicates that it should
outperform N(g), it does not prove that Y(g) s nonpathological It 1s
altogether conceivable that because Y(g} only recognizes some forced wins it
will behave pathologically as well fa fact, because pathology 1s an
otserved phenomena, 1t 1s impossible tc prove that Y(g), or any evaluation
function on any game, for that matter will never behave pathclogically.
However, 1t 1s possible to construct a series of experiments which show that
for several cases for which N(g) behaves pathoicgically, Y(g) does not

For a fixed B and D, 100 random games were generated. One



player sees only her possible next moves, while the other player lock:
ahead k moves. K varies by 2's, either from 0 to 2(D-1), or from 1 to
{(2D-3). If the lookahead length 1s even, tip nodes are MAX nodes (square
boards for H, rectangular boards for V) If odd, the tips are MIN nodes
(rectangular for H, square for V). To insure that neither player can see
the endgame too early, lookahead 1s always cut off at H's next-to-last
move, level 2(D-1) in the original game tree For each lookahead length,
the same 100 games are played, with both players wusing the same
evaluation function, first N(g), then Y(g) The results of these experiments
are shown for three different values of B and D in figures 1 through 6

There are several points worth mentioning. First, although p was
chosen to make games wusing N(g) fair (3], the random number generator
seems to have favored V - V consistently won over 505 of the games 1n
which both players used N(g) with equal (0 move) lookahead. Second, Y(g)
favors H Since H goes second diagonals represent wins for H, but not for
V  Furthermore, H always looks for wins 1n smaller boards. In other
words, on the ** move, H's wins contain Bt 1's, while V's wins require
BOi 0’s. Third, N(g) 1s not always pathological. Nonpathological bshavior

1s characterized by monotonic nondecreasing functions of victories vs. search
depth.  Fer B and D sufficiently small, N(g) behaves nonpathclogically (see
figures 1 and 2) However, even 1n these cases, N(g) 1s rather weak;

allowing H to see level 10 1n a 12 level tree on her first turn stil wins
only 66 games of 100, as opposed to 90 when Y(g) 1s wused Finally, and
most mportantiy, 1n all cases 1n which N(g) behaved patholegically, Y(g)
did not (see figures 3,45,6) This constitutes the first empirical evidence
supporting Pearl’s claim. tntroducing traps avoided pathology.

4 Conclusions

The theoretical prediction of game tree pathology 1n 3], and the
subsequent observation of pathologicai behavior n board splitting [3] raised
an obvious question: What charactenistics of game trees cause pathological

pehavior? Two plausible answers have ©been posited. Independence among
sibling nodes [3] [4], and the absence of traps [9] This paper examined
the relationship betwe:en iraps and pathology 1n board sphtting. The

pathological behavior of N(g), an evalvation function which has been shown
to evaluate 1ndividual boards fairly accurately (3] was explained. Although
it periormed well on individual boards, N(g)'s 1nability to recognize traps
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doomed 1t to frequently missing the best choice. A moadtfied evaluation
function, Y(g), was designed to create traps by reccgnizing certain midgame
setups as  wins/losses For several cases 1n  which N(g) behaved
pathologically, Y(g) did not These results offer the first empirical evidence
of the importance of traps in avoiding pathology. ~ Furthermore, they extend
the defimtion of traps to include all nodes of known exact value. This

extension makes 1t possible to devise nonpathological evaluation functions for
games with uaniform structure.
The probabilistic analysis of R(g) outlincd 1n section 3.1 was not

dependent on board splitting; a similar argument would hold for any
evaluation function failing to recognize traps in the middle of a uniform

game tree. Further analyses are now 1n progress to resolve two major
points the probabiity with which specific evaluation functions, such as Nig),
err, and the exact relationship between P, and P. Expressing P, as a

function of P would give a general formula for the probability of choosing
a trap as a function of the probabiity that a given node 1s a trap
This, 1n turn, wouid give a general characterization of pathology in terms
of trap distribution.
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