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Abstract

In recent years, the development of expert systems implemented by rule-based
production systems has emerged as one of the dominant paradigms in the field of
artificial intelligence. While production systems offer important advantages in large-
scale Al applications, their use in such applications is typically very costly 1n
execution time. In this paper, we describe an algonithm for executing production
systems expressed in the OPS5 language on a massively parallel multiple-SIMD
machine called NON-VON, portions of which are currently under construction at
Columbia University. The algorithm, a parallel adaptation of Forgy’s Rete Match,
has been implemented and tested on an instruction-level simulator.

\We present a detailed performance analysis, based on the implemented code, for the
averaged characteristics of six production systems having an average of 910
inference rules each. The analysis predicts an execution rate of more than 850
production firings per second using hardware comparable in cost to a VAX 11/780.
By way of comparison, a LISP-based OPS5 interpreter running on a VAX 11/780
typically fires 1 to 5 rules per second, while a Bliss-based interpreter executes 3 to

12 rules per second.
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1 Introduction

After several decades of research on artificial intelligence, rule-based production
systems have emerged as one of the most important and widely employed tools for
the implementation of expert systems and other Al software. In general terms a
production system consists of a set of condition/action rules, or productions, a
working memory representing the current “state of the world”, and an interpreter

that repeatedly executes a three-phase cycle:

1. Match. The interpreter identifies all rules whose conditions are satisfied
by the current contents of working memory.

o

Select. One of the matching rule instantiations is selected.

3. Act. The working memory is modified as specified by the action part of
the selected rule.

A production system organization facilitates the modular, incremental gro;vth of
knowledge bases, and allows for the wuseful but unplanned interaction of
independently-specified rules [Winston, 1977; Nilsson 1980]. While a few production
systems have already found commercial application, their use in certain other
domains is precluded by slow execution speeds. This is particularly true in the case
of real-time systems characterized by severe and inflexible time constraints, and in
applications where high throughput is necessary to make the use of such systems
cost-effective. A number of researchers [Sauers and Walsh, 1983; Forgy &
McDermott, 1977; Lenat and McDermott, 1977, McCracken, 1979; Lenat et al,
1979; Buchanan, 1982; Hayes-Roth et al., 1983] have considered the problem of
effictency in the execution of production systems, and have proposed techniques to

increase the speed of rule-based inferencing.

One approach to the efficient execution of production systems involves the use of
parallel hardware. Forgy [1980] considered the problem of executing production
systems in parallel on the ILLIAC IV, but was forced to significantly modify the
production system paradigm in order to obtain reasonable performance. Stolfo and
Shaw [1982] subsequently proposed a highly parallel machine called DADO, which
was intended specifically for the execution of production systems; an early prototype

of the DADO machine is presently operational. More recently, members of the




DADO project have investigated a number of issues related to languages and
algorithms for the parallel execution of production systems [Stolfo, 1984].  The
present paper describes and analyzes an algorithm for executing production systems
on a parallel machine called NON-VON, which was designed not for the execution
of production systems in particular, but rather, for application to a wide range of
symbolic information processing tasks. A prototype of the NON-VON machine
having 63 processing elements became operational in January 1985, and a larger

prototype 1s under construction.

In particular, this paper presents an algorithm for the parallel execution of
production systems implemented using the language OPS5 [Forgy, 1981], developed
by Forgy and others at Carnegie-Mellon University.  The algorithm may be
regarded as a parallel version of Forgy’s Rete Match (1982]. A LISP-based OPS53
interpreter executing the sequential Rete Match algorithm on a VAX ’11/780
typically fires between 1 and S5 rules per second, while a Bliss-based interpreter
executes between 5 and 12 productions per second [Gupta, 1984 (private
communication)]. By way of comparison, the results presented in this paper predict
that 2 NON-VON machine having approximately the same hardware cost as the
VAX 11/780 should execute more than 830 rules per second. This result is based
on measurements obtained by Gupta and Forgy [1983] of the static and dynamic
characteristics of six production systems having an average of 910 inference rules

each.

To establish the background for the work reported here, the next two sections will
discuss the OPS3 production system language and the sequential Rete Match
algonithm for production system execution, respectively. Section 4 provides an
overview of the NON-VON architecture, while section 5 explicates the details of the
machine configuration and performance assumptions that are used in our analysis.
An algorithm for the implementation of OPS5 on NON-VON is described in section
6. Section 7 analyzes the storage requirements of this algorithm, while section 8
presents a detailed analysis of its performance characteristics. The derivation of the

statistics employed in our performance analysis are presented as an appendix to the

paper.



2 OPSS5 Production Systems

The production system language OPS was first described by Forgy and McDermott
(1977].  Several subsequent versions have appeared, with OPS5 being the most
widely known. . We have chosen OPS5 as the vehicle for our investigations into

parallel execution of production systems for several reasons:

1. It 1s widely known, and has been evaluated favorably by other
researchers [Hayes-Roth et al., 1983|.

to

[t has been used to implement a large and successful commercial
production system [McDermott, 1980}

3. Static and dynamic characteristics of several OPS5 production systems
have been measured [Gupta and Forgy, 1983].

4. Its speed can be increased significantly by parallel executicn, even though
the language was designed for sequential processing.

It should be noted, however, that other researchers [Miranker, 1984a] are actively
engaged in the development of a production system language specifically designed
for parallel execution; such a language may well prove better suited to the

capabilities of parallel machines.

The essential elements of the OPS3 language are cutlined below; a more complete
exposition can be found in [Forgy, 198l]. By way of illustration, Figure 1 shows a
pair of productions whose execution results in the printing of a sorted list of all

numbers in working memory.
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A corresponding set of sample working memory elements is presented in Figure
they specify that the current task is to sort, that the output counter is 0, and that

there are three numbers to be sorted: 17, 5, and 23.
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A rule expressed as a production in OPS5 consists of a production name, a

conjunction of (possibly negated) clauses known as condition elements, and an arrow




followed by one or more actions. The condition elements of a production are
collectively known as the condition or left-hand side (LHS) of the production
Similarly, the actions are the right-hand side (RHS). Each condition element
consists of a class name and one or more terms. The class name is the first item
in the condition element. FEach term coasists of an attribute name, a relational
operator, and a value. Attribute names are prefixed with an up-arrow. Although
attribute-value pairs are the usual form of expression, OPS5 conditions may be
expressed in a positional notation by omitting attribute names. Common actions in

OPS5 write values to output, and remove, modify, or create facts in the working

memory.

Numeric and string values, which may be constants or variables, occur in OPSS5.
Variables are denoted by enclosing the name in angle-brackets. The permitted
relational operators are <, <=, >, >=, =, <>, and <=>. The first six
have their usual meanings, but only = and <> may be applied to string values.
The operator <=>> evaluates to true provided an attribute and value are of the
same type. If no operator is explicitly specified in a term, = is assumed. OPS5
has grouping operators to express conjunctions and disjunctions of multiple terms

involving an attribute.

A working memory element is similar in form to a condition element, but contains
neither operators nor variables, since it expresses a specific fact about the world
modeled by the production system. Each working memory element is assigned a
unique 32-bit integer time-tag upon creation. The tag serves as a compact
identifier for the working memory element, and also permits the distinction of
current facts from old information. A working memory element is said to mateh a
condition element provided all the constraints specified by relational operators hold.

The left-hand side of a production is said to be satisfied provided that:

1. For every non-negated condition element there exists a working memory
element that matches it.

to

. For every negated condition element, there does not exist a working
memory element that matches it.

3 Each variable is bound to the same value in all occurrences.



An OPSS5 interpreter executes a production system by cycling through the following

=

three-step process, halting before the third step if no production is satisfied by the

current werking memory.

1. Match the working memory elements with the conditions of all
productions. Each ordered tuple of working memory elements satisfying
the ccrresponding non-negated condition elements of a production 1s
called an instantiation of that production. The collection of all such
instantiations 1s called the conflict set.

to

Select one Instantiation from the conflict set according to certain
predefined criteria. This step is known as conflict resolution. Conflict
resolution strategies provided in OPS5 favor instantiations containing
recent information, and prefer productions having restrictive conditions.
The former tends to focus the system’s attention on one task at a time,
and the latter applies special case rules in preference to general ones.

3. Act on the chosen instantiation by performing the actions specified in the
production’s right-hand side. These actions perform input and output,
and modify the contents of working memory. The modifying actions can
make new working memory elemsnts, modify one or more terms i1n some
working memory elements in the instantiation, and remove elements of
the instantiation from working memory. Performing the actions specified
by a production is sometimes called firing the production.

3 The Rete Match Algorithm

Of the three steps 1n the production system cycle, the matching phase has proven
in practice to be the most time-consuming. According to Forgy [1979], more than
90S% of the execution time in a uniprocessor implementation is consumed by
matching. A naive implementation of the interpreter would match the condition
part of each rule in turn against the entire contents of the working memory.
Forgy’'s Rete Match algorithm ‘exploits his observation that firing an OPS
prcduction causes only a few changes o working memory, and that these changes
have few effects on the conflict set. Hence a computational savings results if the
production system is compiled into a dataflow graph, with state information saved
at each node during execution. A change to working memory is entered into initial
nodes of the graph. Consequent state changes then propagate through the graph,
updating information stored in intermediate nodes. State changes in terminal nodes

of the graph represent changes to the conflict szt. Figure 3 shows an example
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dataflow graph (as used on NON-VON) corresponding to the production named

sort-work that is depicted in Figure 1.
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The graph can be viewed as a collection of tests that progressively determine which
productions are ready to fire. First, the intra-condition tests check that attributes
in a working memory element satisfy relational operators, and that variables
occurring more than once in a condition element are bound consistently.  Any
working memory element satisfying all intra-condition tests for a condition element
is stored as a token in the a-mem node corresponding to that condition element.
Subsequently, inter-condition tests are performed in t¢wo-input nodes to veriy
consistent binding of variables across multiple condition elements in a production’s
left-hand side.  This testing occurs in AND-nodes for non-negated condition
elements, and NOT-nodes for negated condition elements. At the output of each
AND-node and each NOT-node 1n the graph 1s a §-mem node to store tokens. A
token 1in a f-mem node represents an ordered tuple of working memory elements

that jointly satisfy all non-negated condition elements that are ancestors of that

node.

The intra-condition tests are local, in that each examines terms of only one working
memory element. Entry of a token into an a-mem or S-mem node triggers the
more complex inter-condition testing, which proceeds as follows. First, the two-
input node following the memory node is identified. Second, the opposite memory
node that serves as the other input is located. Third, the new token is matched
with all members of the opposite node to test for consistent variable bindings, in
accordance with the type of two-input node. If consistent bindings are found, the
output tokens from this two-input node are formed, and they become new entries to
the subsequent S-mem node. In the case of terminal two-input nodes, the result is

an addition to (or deletion from) the conflict set.



4 The NON-VON Machine

This section outlines the essentials of the general NON-VON architecture 1n support
of the "gnalysis of section 8. A fuller description of the architecture is found in
[Shaw, 1982] and [Shaw and Sabety, 1984]. Although all portions of the general
machine architecture are mentioned here for completeness, only certain subsystems
are required to execute the algorithms described in this paper. Section 5 presents

the reduced configuration assumed for OPS5 production system execution.

The top-level organization of the general NON-VON machine is illustrated in Figure
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NON-VON has two principal components, known as the primary processing
subsystem and the secondary processing subsystem. NON-VON is connected to a

host machine, a general purpose ccmputer serving as a front end device for

interactions with the user.

The primary processing subsystem 1s organized as a binary tree. It consists of a
large number of small processing elements (SPE's), each having an 8&bit ALU, a
very small RAM, and communication connections to three neighboring SPE’s, which
are known as the parent, left child, and right child. In addition, each SPE s
capable of communicating, within a single instruction cycle, with two additional
SPE's, called the left neighbor and right neighbor.  These neighbors are the
pradecessor and successor in an 1norder traversal of the primary processing
subsystem tree. Each leaf node in the tree is also connected by bit-serial lines to
four other leaves known as the North, South, East, and West neighbors, providing
efficient support for an orthogonal mesh-connected communication topology. (The

mesh connections are not used in the execution of OPS5, however.)

Each SPE (as currently fabricated) contains a local RAM consisting of a 64 x 8-bit
section and 3 64 x 1-bit section. A prototype chip containing eight SPE's 1s
described in detail in [Shaw and Sabety, 1984]. The SPE’'s do not store programs

locally, but instead receive instructions that are broadcast to them from some




higher level in the primary processing subsystem tree, as described below.  This

mode of processing was named single instruction-stream, multiple data-stream
(SIMD) by Flynn [1972].

In the top five to ten levels of the primary processing subsystem, each SPE 1is
connected to a large processing element (LPE). The LPE’'s are general-purpose
microcomputers having large RAM’s, and supporting locally stored programs
Unlike the SPE's, the LPE’s are capable of operating asynchronously in multiple
instruction-stream, multiple data-stream (MIMD) mode [Flynn, 1972]. In particular,
LPE's at the roots of several subtrees of the primary processing subsystem (possibly
at different levels) can broadcast separate instruction streams to be executed
simultaneously by all SPE's below them, giving NON-VON the capability for what
1s sometimes referred to as multiple-SIMD execution. Each LPE also has an active

memory controller to generate control signals and to cache instructions and data for

its subtree of SPE's.

The LPE’'s are connected by a high-bandwidth interconnection network. For
moderate numbers N of LPE's (say, N < 128), a two-stage root-point network
consisting of N1/2 « N1/2 crossbar switches gives lower latency than a log(iV)-stage
2 x 2 crossbar network such as a butterfly or omega, at comparable cost. The use
of such a high-bandwidth network is essential to a number of NON-VON algorithms
involving large collections of data. The algorithms presented in this paper,

however, do not make use of the LPE network.

The secondary processing subsystem incorporates a substantial number (perhaps 32
to 256) of disk drives. Each drive is connected via an intelligent head umit to an
LPE 1n the primary processing subsystem, forming a very high bandwidth
tnterconnection between these two subsystems. In addition to ordinary disk 1/O,
intelligent head units can perform certain computationally simple data filtering and
hashing operations “on the fly”, passing results to the associated LPE's. In the
production system algorithms reported in this paper, the secondary processing
subsystem 1s not needed, as all the required data (even for rather large production

systems) can fit within the primary processing subsystem.
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An early prototype of the NON-VON architecture has been operational at Columbia
since January, 1985. This prototype, cailed NON-VON 1, contains 63 SPE’s, each
of which embodies some, but not all of the features described above and one VAX
11/750 that serves as the sole LPE and host. A larger, significantly enhanced
prototype called NON-VON 3 is currently under construction. This machine will
embody 8,191 SPE’s, again operating under the control of a single VAX 11/750
The machine is being implemented using 3 micron custom nMOS chips, each

containing four SPE's, which were developed using the MOSIS “silicon brokerage”

system ‘at ISI.

9 Configuration and Performance Assumptions

A large-scale NON-VON primary processing subsystem might comprise as many as a
million SPE’s, together with a thousand or more LPE’s. To execute production
systzms, however, a much smaller machine will suffice. In particular, w.e have
assumed a primary processing subsystem comprising 16K SPE’s for purposes of the
analysis presented 1n this paper. The system 1s assumed to contain 32 LPE’s, all
assoclated with the fifth level of the tree; the 31 LPE’s that would be associated
with the first through fourth levels in a general NON-VON machine are not
required for the execution of the production system algorithm. Ws assume that
each SPE contains 64 bytes of RAM, as is the case in the current NON-VON
design. Such a configuration would embody 4096 integrated circuit chips for the
SPE's and 640 chips for the LPE’s, assuming that 20 chips are required to
implement each LPE. We also assume a dedicated host, together with a bus
(which need not be as fast as that which would be incorporated in a general NON-
VON machine) connecting the host to the LPE’s. We assume the LPE’s and host
to be capable of executing three million instructions per second, a figure chosen to
correspond roughly with the performance of 32-bit microprocessors such as the

AT&T 32100 and the Moturola M68020.

Figure 5 depicts the reduced NON-VON configuration assumed for production
system execution.
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NON-VON uses a two-speed clock. The short clock period is fcr the broadcast of
an instruction to all SPE’s through a high-fanout tree implemented in fast bipolar
logic, and the execution of that instruction. The long clock period permits a signal
to propagate through combinational logic from the root of the tree to the leaves,
and back to the root again. There are two special instructions that require this
long communication step. The RESOLVE instruction requires two long clock
periods to identify the first (in an inorder enumeration of the tree nodes) of an
arbitrary collection of SPE’s having a certain flag register set. The linear neighbor
communication instructions require two long clock periods to permit all SPE’'s to
communicate simultaneously with their predecessors or successors in an lnorder
traversal of the binary tree. On the basis of preliminary chip tests and calculations
for a tree of 16K SPE’s, we assume a pericd of 350 ns. for the fast clock (30 ns.
broadcast + 320 ns. execution) and 3 us. (100 ns. per level) for the slow clock.

In the analysis of performance given in section 8, the fast and slow clock periods

are counted separately.

The following three sections of the paper describe an algorithm and performance
analysis for the execution of OPS5 on NON-VON. Considerable detall is given, to
show how a heterogeneous massively-parallel machine can be applied to this task,

and to provide the reader with a basis for assessing the performance figures derived

in section 8.

8 Execution of OPS5 on NON-VON
This section presents observations about the potential parallelism embodied in OPSS,

a description of how the Rete Match is processed on NON-VON to exploit the

identified parallelism, and an example to clarify this processing.

Our algorithm has its roots in Algorithm 3 of [Gupta, 1984]. This algorithm was
designed for the DADO machine [Stolfo and Shaw, 1982], in a configuration
consisting of 1023 1dentical processors. Our algorithm is designed for a NON-VON
configuration having 32 large processing elements, each somewhat more powerful
than a DADO PE, and 16K small processing elements for a greater degree of
associative parallelism.  The following discussion presents the rationale for our

approach to this problem. Since the experimental implementation of an OPS3
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interpreter for NON-VON comprises more than 1500 lines of LISP code, we describe
portions of the processing relevant to the performance analysis without formally

specifying details of the entire algorithm.

8.1 Parallelism in OPSS

As discussed previously, the execution cycle for an OPS5 production system has
three steps: match, select, and act. In the Rete match algorithm, the match phase
has two components: the highly local intra-condition testing, and the subsequent
inter-condition testing that evaluates a dataflow graph to combine previous results

and save state in a-mem and S-mem memory nodes.

Three levels of potential parallelism can be identified in this execution cycle:

1. The intra-condition testing can be performed in a massively parallel
manner using assoclative processing techniques. This has been previously
noted by Stolfo and Shaw [1982]. The NON-VON production system
algorithm guarantees very rapid completion of this step, in time
dependent on static characteristics of the production rules. This
contrasts with other implementations that depend on hashing techniques
to control the amount of matching. Massive parallelism is also applicable
during the deletion of facts from working memory. NON-VON
sitmultaneously finds all instances of a fact in all a-mem and A-mem
nodes, and removes all affected memory tokens simultaneously.

There is a modest amount of potential concurrency in the evaluation of
inter-condition testing in two-input nodes of a Rete dataflow graph.
This has been observed by Gupta [1984], who recommends partitioning
the production rules into 32 subsets (based on the same empirical data
on which our own analysis is based) to exploit parallelism in this phase.
In [Oflazer, 1984], it is determined that for two specific production
systems, the maximum available parallelism factor in the inter-condition
testing is approximately 7. The generality of this result is unkaown.

!Q

3 We find no significant parallelism in the select and act phases, although
substantial portions of the act phase can be overlapped with the

following match phase.
The heterogeneous architecture of the NON-VON machine is well suited to the

exploitation of these varying degrees of parallelism.

1. The ntra-condition testing is performed in the SPE’s in two massively
oarailel SDMD computation steps. The first step simultaneously evaluates
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individual terms of all condition elements. The second step determines
the satisfaction of all condition elements by a parallel communication in
time proportional to the number of terms in the longest condition
element.! The synchronous nature of SIMD execution was found not to

limit the rate of processing in this phase.

2 The moderate parallelism of the inter-condition testing 1s done in 32
LPE's, with NON-VON operating under a partitioned-SIMD execution
discipline. Pure SIMD processing would have been a serious constraint
during this portion of the execution, since evaluation of the Rete
dataflow graphs presents a high degree of data sensitivity. The use of
subtrees of SPE’s as active memories enhances the throughput of the
LPE's by providing a fast associative search capability.

3. The select and act phases, which have little inherent parallelism in
OPS53, are performed in a single relatively fast host processor, although
the LPE's and SPE's do some “bookkeeping” and overlapped processin
for the next match phase at this time. .

The overlapped processing is as follows. During the action phase of the production
system --eycle, the host executes the right hand side of the selected instantiation.
This commonly results in the addition of facts f,..f. to working memory. For
each f; the host assigns a time-tag for identification and converts attribute values
to tokens to obtain the working memory token ¢; Each ¢; is installed in a table
of working memory elements in the host, and is transmitted to the LPE's for use in
the next matching phase of the production system cycle. The matching phase for
t, starts 1n the LPE's and SPE’'s while the host asynchronously creates and
transmits £y...,tp.  With the exception of the time for ¢, the host processing for an
addition to working memory overlaps matching, and does not contribute to the
running time of the algorithm. Similarly, LPE’s asynchronously finish the matching
phase for each ¢; depending on the amount of activity in the dataflow graph of
each partition. Thus the host receives conflict set changes from LPE’s that finish
early, overlapped with continued matching in other LPE'’s. Only one

synchronization point occurs in the production system cycle: to be consistent with

LThis can be improved to time logarithmic in the number of terms in the longest
condition element with a worst-case 50% decrease 1n SPE utilization, by techniques
closely related to the allocation schemes for database records described in [Shaw and
Hillyer, 1982].
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the semantics of OPS5, all changes in the conflict set must reach the host prior to

the completion of conflict resolution for the next cycle.

8.2 Description of Processing
This section gives an overview of the procedures executed by the host, LPE's. and

SPE’s during the execution of an OPS5 program, and the following section presents

a concrete example. Salient steps are detailed in the analysis of section 8.

The host processor is responsible for controlling the overall computation and for
communicating with the user. Prior to the commencement of execution, the host
obtains a collection of production rules from the user (or from disk, at the direction
of the user), partitions them into subsets as described further below, and sends one
subset to each LPE. Each subset is compiled by its LPE into a dataflow graph.
These graphs are similar to those of the sequential Rete Match algorithm, but the
dataflow graph used by NON-VON 1s smaller, with input nodes representing entire
condition elements, rather than individual attribute constants and variables. This
increases parallelism during each execution cycle of the production system: all

condition elements are tested in one parallel step by the 16K SPE's before the 32

LPE's commence their dataflow graph processing.

Host processing during the three phases of the production system execution cycle

proceeds as follows:

1. During the match phase, the host receives messages from the LPE's,
which report changes to the conflict set, In our implementation the host
maintains the conflict set as a list“ sorted by the OPS5 conflict

resolution criteria.

During the select phase, the host chooses a production instantiation to be
fired. In our implementation this amounts to removing the item at the

head of a sorted list.

1

3. During the act phase, the host executes [/O specified in the right hand
side of the chosen production, creates new working memory tokens to
represent facts to be added to working memory, and broadcasts messages
to the LPE's. Each message contains a working memory token to be

added or deleted.

QAverage length 16 (Appendix, item 5).
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Each LPE is responsible for a subset of the production system rules and for a
subtree of SPE's. The LPE generates an instruction stream for the SPE's,
evaluates the dataflow graph for the production system partition stored in that

subtree, and obtains the resulting conflict set changes.

In particular,

1. During the match phase, each LPE broadcasts SIMD code to its SPE’s to
associatively determine additions and deletions to the set of condition
elements that are satisfied. A list of these changes is built. Each
addition is represented by a new memory token which, according to the
Rete technique, is stored in an a-mem or A-mem node in the dataflow
graph. This is implemented by associatively locating an available SPE
and storing the token there. Insertion or deletion of a token T in a
(non-terminal) a-mem or 3-mem node M is followed by evaluation of the
two-input node N that follows M in the dataflow graph. The evaluation
of N is implemented as follows. First the LPE looks in its table of twe-
input ncdes to determine the memory node M’ that is the other input of
V. Next, an associative probe is performed in all SPE’s in the subtree
to locate tokens in M’  An associative match 1s performed to discover
which tokens T'; in M’ have all their variables bound consistently with
the variables in T. The final step in evaluating /N depends on whether
N is of type AND or NOT, and on whether T is a left or right input to
V. Suppressing details, we state that in most cases the LPE retrieves
matching tokens T, and concatenates them in turn with T to form new
memory tokens T'; that are placed in the memory node at the output of
N Changes in terminal memory nodes of the dataflow graph represent
changes to the conflict set; these changes are reported to the host as
they are detected.

2. During the select phase, which is just long enough for the host to
extract the first element of its conflict set list, the LPE's are idle.

3. During the act phase of the host, the LPE's receive messages from the
host that contain working memory tokens and commands to add or
delete the tokens from working memory. These tokens are stored 1n
appropriate LPE tables, and are processed as described above: the
matching phase for LPE's and SPE's 1s overlapped with the act phase of
the host.

The SPE's in a particular LPE-rooted subtree serve as an active memory. They
contain the condition element terms of compiled productions, and the token memory
- for the Rete dataflow graph. The SPE associative processing capability facilitates
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the rapid, highly parallel evaluation of condition elements with respect to new
working memory elements, as well as the parallel evaluation of the two-input nodes

in the dataflow graph evaluation process.

Specifically,

1. During the match phase, tokenized attribute-value pairs are broadcast to
the SPE’s by their coatrolling LPE. The SPE’s, which each contain one
term of a condition element, then simultaneously evaluate the satisfaction
of all terms. Next, chains of adjacent SPE's communicate 1n parallel to
determine the satisfaction of entire condition elements, and the ID's of
satisfied condition elements are retrieved by the controlling LPE. During
the two-input testing in the Rete dataflow graph, all SPE’s containing a
token for the relevant memory node simultaneously check the consistency
of variable bindings, and the LPE retrieves successful matches. Deleticn
of a working memory element token T causes all concatenated S-mem
tokens that contain T to become unsupported; they are all associatively
found and removed by the SPE's in one highly parallel step (with
additional matching required when a token is deleted from the right

tnput of a NOT node.
2. During the select phase the SPE's are idle.

3. During the act phase, the SPE's associatively find and delete the token
for the production instantiation that has been fired.

8.3 Example of OPS5 Data and Processing
This section presents an example of a condition element based on a simple Al

“blocks.. world” shows how it is stored in NON-VON SPE'’s, and describes how 1t 1s

tested on a sample working memory element.

The following condition element will match a block that has no square faces, saving
the edge lengths in the variables <I>, <w>, and <h> It ensures that the
width of the block is different from the length, and that the height i1s different
from the length and width. Note that the first occurrence of a varniable simply
binds its value, while later occurrences r:fer to this value for comparison. Braces

enclose conjunctions of terms pertaining to an attribute.

(block “length <I>
“width { <w> <> <I>}
“haight { <h> <> <> <> <w> })
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This condition element occupies 4 NON-VON SPE’s, as depicted in Figure 6. Each
SPE holds a comparison operator and two 32-bit integers, which may be either
constants, or variables that are filled by attribute value tokens at runtime.

To do the matching of a working memory element, for instance
(block “length 3 “width 4 “height 5), two main steps are required. In the first
step, the truth or falsity of each term is determined by SIMD execution of code
that each LPE broadcasts to the SPE’s in its partition. The operations performed
for this example are:

1. Associatively probe for all SPE's having a “classname variable, and
broadcast the token for “block” to them.

)

Associatively probe for all SPE’'s having a “length variable, and
broadcast the value 3 to them.

3. Associatively probe for all SPE’s having a “width variable, and broadcast
the value 4 to them.

4. Associatively probe for all SPE’'s having a “height variable, and
broadcast the value 5 to them.

5. In parallel, evaluate the stored relational operator on the two stored
values in all SPE's.

In the second step, the truth or falsity of inter-condition tests for entire condition

elements is determined as follows:

1. Associatively locate all SPE’s that hold the first term of a condition
element.

(3]

In_parallel, send the boolean result of the comparison in the first terms
to the SPE’s having second terms of condition elements, where logical
conjunction is performed. Now the second terms contain an indication of
whether both the first and second terms of a condition element were
satisfied.

3. Send this result in parallel to SPE’s containing the third terms, where
logical conjunction is performed again.



4. Continue for a number of steps one less than the largest number of
terms in the longest condition element. Any SPE holding the last term
of a condition element will then contain TRUE or FALSE for the entire
condition element.

After the intra-condition testing has been performed in a partition, the LPE
associatively enumerates the ID’s of condition elements that were satisfied. In
NON-VON, this enumeration occurs in time proportional to the number that are
satisfied, independent of the total number of condition elements. The expected
number of satisfied condition elements per partition is less than one (Appendix, item
4). The LPE places a-mem tokens for satisfied condition elements on a stack of

pending memory node additions.

The memory node additions in a partition are handled sequentially by the
controlling LPE. Since the expected number of node additions per partition. is less

than one, this i1s both fast and economical.

To perform a memory node addition, the LPE performs several steps. The LPE
broadcasts SIMD code to associatively allocate SPE’s to hold the token, and then
code to store the token. Then the LPE determines which two-input node is
triggered by that memory node addition. The two-input node is evaluated in two
steps. First, the opposite input memory for the node—-a distributed set of tokens
stored 1n SPE's--is activated by an associative search. Second, an associative match
of relevant varniable bindings is performed in parallel between the new token and all
members of the opposite memory. Any consistent bindings are discovered by an
associative probe. Portions of successfully matched tokens are reported to the LPE,

and new memory node additions/deletions are placed on the stack.

The LPE recognizes an insertion of a token into any memory node at the bottom
of the Rete network to be the addition of a production instantiation to the conflict

set. Such a token is also reported to the host for conflict set resolution.

When all pending memory node additions have been processed, the LPE sends a
completion signal to the host, which performs conflict resolution when all LPE's are
finished. A centralized algorithm is reasonable for this step since the average size

of the global conflict set is 16 (Appendix, item 5), and the average number of
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changes to the conflict set 1s 5.3 per firing cycle (Appendix, item 6). The host

then executes the right hand side actions of the chosen production, sending messages

to the LPE's to effect changes to working memory.

8.4 Partitioning Production Systems

In the production systems examined in Gupta and Forgy [1983], approximately 30
(Appendix, item 3) condition elements are satisfied by a typical single addition to
working memory. As noted earlier, Gupta [1984] suggests obtaining parallelism by
dividing OPS3 production systems into 32 partitions that execute concurrently. The
problem of obtaining a suitable partitioning is separable from the problem of
executing the resulting partitions, and as such is beyond the scope of this paper.
Relevant to the present discussion, however, is the fact that the goal of partitioning
is to distribute the two-input node testing uniformly over the partitions, despite the
fact that cascading of two-input node activations through the Rete dataflow graph
is necessarily sequential. Although results have been reported in [Ishida, 1984] and

[Oflazer, 1984], the partitioning problem remains an area for future work.

A “good” partitioning method 1s assumed to exist, where the meaning of “good” is
determined by the statistical parameters given in the performance analysis section,
as justifled in the appendix. Somewhat similar assumptions have previously been
adopted by Gupta [1984] and Miranker [1984b].

During execution, a partitioned prcduction system could exhibit transient over-
concentration of a-mem and A-mem tokens in individual partitions, requiring
significantly more storage than for the average case. It remains to be seen whether

this 1s a problem in practice. One could speculate that such over-concentration,
should 1t occur,

- results from a production system programming style, or

- 15 due to the nature of the OPS3 execution semantics, or

1s the consequence of a particular partitioning algorithm, or

1s an unavoidable element of partitioned execution of production systems.

These possibilities have greatly differing implications for appropriate remedies. We
are not aware of any results reported in the literature that illuminate these issues,

and thus regard the (potential) problem of over-concentration as an open question.



7 Hardware Capacities Required

The storage required in an SPE is 24 bytes plus 18 1-bit flags. This represents
space for one term of a condition element, one a-mem token or portion of a F-mem
token, and one relevant binding. More specifically, the byte space is allocated as

follows:

- Two attribute name ID’s (1 byte each)

Two attribute-value tokens (4 bytes each)

- A condition element ID (2 bytes)

- An a-mem or 3-mem node ID (2 bytes)

A working memory element [D stored in an a-mem or S-mem node (4
bytes)

A relevant binding value or conflict set member ID (4 bytes)

The ID number of the SPE (2 bytes).

L}

The 1-bit flags mark subsets of SPE’s that contain:

- A condition-element term

- The first term of a condition-element

- The last term of a condition element

- An a-mem or F-mem token

- The first cell of a token

- The last cell of a token

- A working memory element [D in a token

- A relevant binding in a token

- The type (string or numeric) of the first value
- The type of the second value

- The type of the relevant binding

- A condition element that feeds the right-hand input of a NOT node
- A member of the conflict set

- Compare for equal

- Compare for not equal

- Compare for less

- Compare for less-or-equal

- Compare for same type

Thus the 64 byte RAM oi current NON-VON SPE's is of sufficient capacity to
store a term-evaluating node as well as a memory node and relevant binding. The
extra RAM could hold more tokens (but with a decrease in execution speed), or

possibly data such as the dataflow graph connections that would otherwise be storad

in the LPE's.
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The average of the production systems examined has 4 condition elements per
production (Appendix, item 7) and 3 intra-condition tests per condition element
(Appendix, item 10). Thus the number of SPE's required for production memory in
NON-VON is about 12 times the number of productions. The average of the
production systérns examined has 910 productions (Appendix, item 11), requiring
10,920 SPE's for condition element terms. The analysis presented below assumes
16K SPE's. Quadrupling the number of SPE’'s would permit systems of
approximately 5400 rules to be executed, but might decrease the clocking speed by

as much as 10 percent, absent technological compensation.

The maximum aggregate number of tokens in a-mem and A-mem nodes is about
4600 {Appendix, item 12), and the average token requires 2 SPE's (Appendix, item
21); thus, about 9200 SPE’s are required to store the tokens. A NON-VON having
16K SPE’s is sufficient. Note from the storage allocation described previously that
each SPE can hold both a condition element term and part of a token at the same
time. Note also that the number of tokens stored in an SPE could be increased if

necessary, although the execution speed would be reduced somewhat.

A host storage capacity of one megabyte would accommodate the following:
1. A symbol table of string tokens.
2. The current members of the conflict set.
3. Working memory elements with time tags indicating order of creation.
4. Right-hand sides of productions, indexed by production ID’s.

5. Software for the interpretation of OPSS5, including communication with
the user and with the LPE's.

We estimate that 256K bytes would be sufficient to store the data and code
required by an LPE, which includes:

1. Working memory elements with time tags indicating order of creation.
(This duplicates information stored in the host, but reduces the need for
communication.)

2. Tables encoding the Rete dataflow graph.
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3. Precompiled sequences of SPE instructions that the LPE will command
the active memory controller to broadcast into the subtree, to perform
data storage, associative matching, and associative retrieval.

4. Procedures to be executed by the LPE in performing its portion of the
production system work, and for compiling productions into the dataflow
graph.

8 Performance of Rete Match on NON-VON

Execution speeds of 1 to 12 cycles (or “rule firings”) per second on a VAX 11/780
are typical for OPS5 systems of the size analyzed in this paper [Gupta, 1984
(private communication)]. Using data from [Gupta and Forgy, 1983], we obtain
below a predicted execution speed for NON-VON of 861 production firings per
second. The formulas suggest that NON-VON's advantage may increase as
production systems become larger. Intuitively, NON-VON is insensitive to the total

number of objects because of its associative processing capabilities.

We have written and tested on an instruction-level simulator an experimental
compiler and runtime system for the execution of OPS5 on a one-LPE NON-VON.
By examining the NON-VON instructions, we determine the number of slow and
fast clock cycles required for each of the SIMD processing steps, as a function of
parameters of the production system. Adding approximate overhead values for non-
overlapped execution in LPE’s and the host3 gives the time required per production
firing cycle4, and hence the rate of production system execution on NON-VON.
These calculations are presented in three sections below. The first derives the time
required for an addition to working memory, the second calculates the time for a

deletion, and finally, the overall time including conflict resolution is obtained.

In the following analysis, F denotes the fast clock period for the SPE’s, S denotes

3The fig_ures given for host and LPE processing are estimates, unlike the SPE
figures, which are derived from actual code.

*We assume that the only actions in the right-hand sides of productions are
additions, deletions, and modifications of working memory elements. The right-hand
side of a production expressed in OPS5 can cause arbitrarily large amounts of [/O
and can call any function written in LISP, but the time consumed by such
operations does not give information about the performance of the production

system inferencing engine.
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the slow clock period for the SPE's, and H denotes the average instruction time for

the LPE and host microprocessors.

8.1 Addition to Working Memory
The analysis for an addition to working memory will be carried out in six parts.

1. The time for broadcasting the attribute-value pairs of a new working
memory element.

The time for intra-condition testing.

o

3. The time for processing a-mem node additions.
4. The time for processing f-mem node additions.

The time for evaluating two-input node tests.

U

6. The time for processing that may arise upon deletion of a token from
the right-hand input of a NOT node.

The first step in processing a working memory addition is to store it into a table
in the LPE, assigning a time-tag. Next, the LPE broadcasts the attribute-value
pairs. For each term, the attribute ID is associatively matched with the attribute
[D's stored in all SPE’s. Then the value of the attribute is broadcast and stored in
parallel by those SPE's for which the attribute ID matched. The time required is

given by
Throadeast = 26F x nAttr g + SF + LPEy . 4cast

where

LAt 0cq the number of attribute-value pairs in this
working memory eiement’s class, 1s 11.4 (Appendix, item 14), and

LPEy 0adcast: the number of non-overlapped LPE and host
instructions, is simply assumed to be 60. This reflects the
time required to store into the LPE’s table and assign a time tag.



Thus Throadeast = 301F + 60H.

The next step is the actual intra-condition testing. First, the two values stored in
an SPE contaiqing a term are compared. Second, the success of the comparison
ralative to the stored relational operator is determined. Third, the conjunction of
the terms in a condition element is evaluated in time proportional to the longest
condition element. Finally, matching condition element ID's are reported out, and
tokens for corresponding a-mem node additions are stacked. The time required 1s

given by

Thateh = 86F + (maxTerms - 1) x (3F + 28)
+ successes x (6F + 2S) + LPE ;.

where

maxTerms, the largest number of terms in a condition element, is 9

(Appendix, item 15),

successes, the maximum number of condition elements that are satisfied
in any partition, on the average, iIs 3 (Appendix, item 4),

LPE  .tch. the number of non-overlapped LPE instructions to construct
and stack tokens resulting from successes is simply assumed to be 40.

Thus T 128F + 22S + 40H.

match =

The processing required for an a-mem node addition includes removing the top
entry (a node ID and a working-memory element ID) {rom the stack of pending
additions, looking up relevant binding indices from the Rete net array (subscripted
by node ID), copying relevant binding values from the current working memory
element (array access), selecting an available SPE to hold the token and bindings, if
any, and broadcasting the token into the SPE for storage. The time required for

the a-mem node additions resulting from an addition to working memory is given

by
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T, mem = nAdds x ( 21F + 2S + (tokLen - 1) x (14F + 4S) + wmlDs x 4F
+ relBinds x 6F + strToks x 1F 4+ 3F if rhsNOT)
+ LPE__mem
where

nAdds, the maximum number of a-mem additions in any partition, 1s 3

(Appendix, item 4), on average,

tokLen, the average length for an a-mem token, is 1 (Appendix, item
17),

wmIDs, the number of working memory 1d’s stored in a token, i3 1 for
a-mem, since there is just one condition-element above each a-mem

node,

relBinds, the number of relevant bindings in a token, 1s 1 (Appendix,
item 16),

strToks, the number of relevant bindings that are string tokens rather
than numeric tokens, is assumed to be half of relBinds, or 0.5,

the term “3F f rhsNOT” is for setting a flag if this token is in a memory
node that is the night-hand input of a NOT node. This flag facilitates
rapid processing of deletions, as discussed later. The entry of a token

into the right-hand itnput of a NOT node 1s relatively rare, as discussed

in (Appendix, item 18). Thus the total contribution of the strToks and

rhsNOT terms is assumed to be 1 fast cycle.

LPE __ em: the number of LPE instructions to perform the

appropriate array accesses, is simply assumed to be 20.

Thus Ta-mem = 96F + 6S + 20H.

The processing and formula for additions to f~mem nodes is the same as for a-mem

nodes. The parameter values that differ are:
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nAdds is 2 (Appendix, item 19),

tokLen 1s 3 (Appendix, item 17),

wmlDs is 3 (Appendix, item 13).

Thus Ts-mern = 136F + 20S + 20H.

The memory allocation scheme that associatively finds available SPE’s to hold
tokens has the same behavior as the classical first-fit algorithm. Since most
allocation requests are for token space of size 1, and none are for more than 10 or
so, first-fit should behave well, and the need for compaction of free space should be
rare, unless almost all of the memory is occupied. Although the addition of a
token to a 3-mem node can trigger an incremental memory space compaction if
token memory has become fragmented 2and 1s nearly full, we assume that
compaction is sufficiently infrequent to be negligible. Support for this is given by
the 2/3 rule, also known as the “509% rule” [Knuth, 1968], together with the
observation (section 7) that token memory is less than 607 full when running the
production system analyzed here. Experimental examination of actual token

memory behavior 1n partitioned OPS5 production systems remains an area for

future work.

An addition of a token to an a-mem or B-mem node initiates the processing of a
two-input node in the Rete dataflow graph. The purpose of a two-input node is to
evaluate relational operators that reference variables bound in previous condition
elements  The right-hand i1nput of a two-input node is from a single condition
element, the “current” one. The left-hand input i1s from other condition elements of
the production. The two-input node examines variables that are bound in previous
condition elements and referenced for comparison in the current one. The values of
such variables are relevant bindings for this two-input node. In summary, an
addition to an a-mem or S-mem node causes comparison of relevant bindings with

tokens stored in the opposite input of the two-input node.

The LPE performs array accesses to determine the node ID of the opposite input,

to identify the comparison operators for this node, and to extract the current



binding from the token whose addition triggered this processing. An associative
probe activates all tokens in the opposite node.  The current binding and
comparison operators are broadcast to those tokens, and associative matching
identifies tokens having all comparisons satisfied®. In the case of AND nodes, the
working memory element ID’s are retrieved from satisfied tokens, and new tokens
are formed and stacked for addition to the A-mem node that receives the output of
this two-input node. Processing a right-hand input to a NOT node 1s initially
similar to that for an AND node, but after working memory ID's are retrieved from
satisfied "tokens, deletions (rather than additions) are stacked for further processing,
as accounted for separately below. In contrast, upon addition to the left-hand input
of a NOT node, the input token is copied to the output S-mem node only if no

opposite tokens were satisfied.

Ttwo—input =
nAdds x { P, x (8F + 2S)

+ Py x [ nBind x ( 2F + 28 + { 4F if <=> string
S5F if <=> number
10F if =<>,<,<=>>=})
+ (11F + 2S)
+ 1f not LHS input of NOT node, then
TF+ 28 +
nSuccessfulMatch x (4F + 28 + tokLen x (7F + 25))
+ 1f nBind > 1 then 4S x [(nBind - 1) DIV 2]
+ if nBind even then 1IF + 2S5 ]}

+ LPEtwo—input

where

nAdds, the maximum number of a-mem plus @-mem additions in any
partition, is 5 (Appendix, items 4, 19) on average,

P, the probability that the opposite input memory is empty,

. 5The idea of storing8 relevant bindings in tokens to facilitate associative matching
is found in [Gupta, 1934]



1s 0.7 (Appendix, item 20)

P, the probability that the opposite input memory has tokens,
1s 0.3 (Appendix, item 20)

nBind, the number of relevant bindings in a token, is 1 (Appendix,
item 16),

it 1s assumed that the computational savings for the <=> operator is

never obtalned,

1t 1s assumed that the computational savings for entry to the LHS of
NOT two-input nodes is never obtained,

nSuccessfulMatch, the total number of successful matches during the
comparison, 1s 2, since these cause the 2 J-mem node additions

(Appendix, 1tem 19),

tokLen, the average length for a token in the opposite memory,

1s 2 (Appendix, item 21),

LPEtwo—mput- the number of non-overlapped LPE instructions to do the
appropriate array accesses and create and stack any output tokens, iIs

simply assumed to be 50.

Thus Ttwo—mput = 127F + 34S + S0H.

The processing of token deletions induced by an addition to the nght-hand input of
a NOT node is as follows. The goal is to remove all tokens in descendant nodes 1n
the Rete net that depend on the token that is deleted.  This i1s done by
assoclatively activating all those nodes, associatively matching the working memory
element ID’s comprising the deleted token to find tokens that depend on the deleted

one, and erasing all such tokens in parallel. The time for this processing 1s given

by

T hsNOTdeletion = ©del



x { 69F + nDescendants x 8F + wmiIDs x (2F + 2S)
+ if wmDs > 1 then 4S x [(wmIDs - 1) DIV 2]
+ if wmIDs even IF + 2S
+ nCSdel x (8F + 2S)
+ (maxLen - 1) x (3F + 2S) }

+ LPEhsNOTdeletion

where

edel, the expected maximal number of deletions in any partition as
a result of an entry into a NOT node, i1s 0.6 (Appendix, item 23). (It
makes sense to use a non-integral expectation since synchronization is

not required after each addition or deletion.)

nDescendants, the average number of f-mem nodes in the Rete net that ’
arz descendants of a NOT node is 2 (Appendix, item 24),

wmIDs, the average number of working memory element ID’s stored in a
J-mem token, 1s 3 (Appendix, item 13),

nCSdel, the number of conflict set members deleted as a result of deleting
one token is 0.16 (Appendix, item 26),

maxLen, the length of the largest token, is 9 (Appendix, item 15)

LPErhs.\"OTdeletion 13 assumed to be 40 instructions.

Thus TrhsNOTdeletion = 70F 4+ 16S + 40H.

The total number of processing cycles resulting from an addition to working

memory, T,4q, i the sum of the 6 partial results obtained above.

Tadd = Throadcast + Thateh + Ta-mem + Tﬁ-mem
+ Ttwo—input + TrhsNOTdeletion

= 858F + 98S + 230H
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8.2 Deletion from Working Memory
Deletion of a working memory element is considerably faster than addition, since

the principal actions are associatively searching among all a-mem and S-mem nodes
to locate tokens that depend on that working memory element, and erasing all such
tokens in parallel. It also is necessary to delete the working memory element from
the LPE table. There are two complications that arise, however. First, deletion of
a working memory element from the right-hand input of a NOT node can
“unblock” tokens in the left-hand input. This case is infrequent, but if it occurs,
processing for the comparison of relevant bindings is necessary. Second, deletton of
a working memory element may cause the removal of members of the conflict set
This will happen naturally in token memory, but the affected instantiations must be
retrieved by the LPE so the tokens can be removed from the global conflict set

table. The time required for deletion of working memory elements is given by

Tge} = 80F + 6S + maxLen x (6F + 4S)
+ rthsNOT x [10F + (tokLen - 1) x (7F + 2S) + matchCost|

+ nCsDel x (8F + 2S)
+ LPEy

where

maxLen, the length of the largest token, 1s 9 (Appendix, item 15),

rhsNOT, the maximum number of tokens in any one partition removed from
right-hand inputs of NOT nodes as a consequence of a working memory

deletion, is 1 (Appendix, ttem 25),

tokLen, the average length for a token in the opposite memory,
is 2 (Appendix, item 21),

matchCost, the number of cycles to match relevant bindings, 1s

given by the formula for Ty, o inpyt 8iven above, but with the
nAdds parameter = 1 for the token removed in this case, and the
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nSuccessfulMateh parameter = 0 (Appendix, item 28), so
matchCost = 15F + 35S + 50H,

nCsDel, the average number of instantiations removed from the conflict set
as a result of the deletion of an arbitrary working memory element, is

0.16 (Appendix. item 26),
LPEy,; is simply assumed to be 40 instructions.

Thus Tdel = 167F + 47S + 90H.

8.3 Total Time per Production Firing
Since there are 2.21 changes (additions/deletions) to working memory per production

firing (Appendix, item 27), the time for these changes (Appendix, item 29) i3 given
by

Tiiring = 221 x (Taqq + Tael)/2 + Trps
where

T,}s is the number of host instructions needed for conflict resolution
and evaluation of the chosen production’s right-hand side.

Given the assumption that T,y = 300 [Gupta, 1984],

Tfiring = 1133F + 160S + 854H.
From section 5 we have F = 350 nanoseconds, S = 3 microseconds, and H = 333
nanoseconds. Hence Tfiring = 1161 microseconds, which yields an execution rate of

861 productions per second.

9 Conclusions
NON-VON's projected rate of production evaluation reflects the performance of a

heterogeneous architecture designed for rapid symbolic computation. The massive
parallelism of NON-VON'’s small processing elements was designed to be particularly

efficient 1n executing such operations as associative matching and data storage and
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retrieval. The large processing elements and host are few enough in number that it
is feasible to make them quite powerful, with the relatively large RAM memories
needed to hold control tables and data structures such as the compiled Rete

network, together with substantial amounts of program code.

NON-VON's partitioned-SIMD mode of execution, 1n which instructions are
broadcast to the SPE's for execution, avoids a need to replicate identical code in
thousands of processing elements. In addition, the storage capacity of NON-VON's
small processing elements is well matched to the size of typical condition element
terms and memory nodes. (Viewed in a more general context, the NON-VON small
processing element was designed to have a capacity on the order of the size of a
typical “record”.) In coarser grain, strictly MIMD machines the fit is not as
natural, and software mechanisms such as hash tables are used to accommod'ate the
storage of several items in each processing element, amortizing the cost of the larger

processor and program code over a greater quantity of data.

Although the formulas and parameters that predict NON-VON'’s performance on
this problem have been analyzed in considerable detail, the limitations of our
analytic techniques should not be ignored. An important area for future work is

the validation of our analysis by experimental measurements.
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Appendix

NON-VON's performance in executing OPS5 depends on several parameters of the
production system in questica. For the analysis presented in this paper, statistics
have been derived from averages over the =ix production systems measured In
[Gupta and Forgy, 1983]. Although most values are obtained directly from that
work, some plausible inferences have been necessary, and actual measurements of
the needed parameters would be preferable. The derivations and justifications for
the statistics employed are given below. All references to pages and tables cite

[Gupta and Forgy, 1983].

1) The average number of a-mem node additions per change to working memory
1s 5.09 (p. 25, Table 5-2, line 1).

The average static sharing of a-mem nodes is 3.31 (p. 23, Table 4-5,
line 2).

[ §)
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3) The average number of condition elements having all intra-condition tests
satisfied by an arbitrary working memory addition (without sharing) is
approximated as 17.87, the product of 1) and 2) above. That this is an
approximation since it is the dynamic sharing of a-mem nodes that
1s relevant: Gupta states {private communication) that 30 1s a more
accurate value, so we use 30 for the analysis.

4) The average number of a-mem additions per partition is 0.94, the
ratio of 30 (item 3 above) to 32, the number of partitions. If the
a-mem additions were evenly spread over the partitions, 30
partitions would have one addition each, and 2 would have none. If,
however, the additions occur randomly, with a uniform distribution over
the 32 partitions, clustering would cause an expected maximum of 3.4
additions in some partition. It is hoped that intelligent partitioning
of the production system can do better than randomizing the activity,
but this remains an open question. Oflazer [1984] reports 3 heuristics
for partitioning production systems; all 3 perform better than a random
distribution of rules. He does not state the effect of his heuristics
on a-mem node additions. We assume that as a result of
partitioning, on the average there are at most 3 a-mem additions in
any partition.

5) The average size of the conflict set is 16.0 (p. 30, Table 5-8, line 3).

6) The average number of changes to the global conflict set per firing cycle
is 5.3 (p. 29, Table 5-6, line 3).
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10)

14)

The average number of condition elements per production is 4.11 {p. 21,
Table 3-8, line 2). .

The average number of attributes in a condition element is 3.71 (p. 21,
Table 3-8, line 5).

The average number of variables in a condition element 1s 1.56 (p. 21,
Table 3-8, line 6).

The average number of intra-condition tests for a condition element

is 2.93, the difference between 8) and half of 9). This is based on

the assumption that each variable occurs once to be bound and once 1n
an inter-condition test. All attribute occurrences that are not
associated with an inter-conditicn test must be for intra-condition
testing. This analysis neglects the effect of conjunction and

disjunction expressions, which although rare, would tend to raise the
number of intra-condition tests.

The average number of productions is 909.83 (p. 21, Table 3-8, line 1).

The maximum aggregate number of a-mem and B-mem tokens is 4616
(p. 30, Table 5-8, line 6.)

The number of working memory element [D’s stored in an a-mem token
15 1. The size of a f-mem token ranges from 2 (most f{requent because
of the progressive filtering performed by the Rete net) up to the number
of positive condition elements in a production (average 4). Thus we

say the average number of working memory element [D's in a S-mem
tokens 1s 3.

The number of attributes per class ranges from 1 to 152 (pp. 19-20,
Tables 3-1 through 3-6). Since the OPS5 language manual states that
the maximum number of attribute slots per class is 126, we see that for
some classes, attribute names have been mapped by OPS5 literal
declarations to shared physical locations. A static weighted average

of all 41 most frequent classes listed in these tables, assuming no
attribute folding (i.e., 152 distinct physical locations are permitted

in a class) gives 11.4 attributes per class.

The average of the largest number of terms in a condition element is 9,
by inspection and averaging of the values ranging from 7 to 11 found in
(p. 13, Figure 3-4).

The average number of relevant bindings in a token is 1. This is
derived i1n the following way. The average number of relevant bindings
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1s the quotient of the average number of tokens in an opposite node,
divided by the average number of tests that are performed when a token
1s inserted. For an AND node this value 1s 0.88 (p. 27, Table 3-4,

line 4 divided by line 3), and for a NOT node this value is 0.97 (p. 28,
Table 3-3, line 4 divided by line 3). Note also that a static figure of
0.8 1s obtained from (p. 21, Table 3-8, line 7). Thus we state that the
average number of relevant bindings in a token is 1. This applies both
to a-mem and to S-mem tokens.

The average length of a token 1s the greater of the number of relevant
bindings, or the number of working memory ID’s stored in the token. For
a-mem tokens, both figures are 1. For A-mem tokens, the number

of working memory ID’s 1s 3, as described in 13), so the average length

of a 3-mem token is 3.

The average number of entries to the right-hand input memory of an AND
node 1s 22.37 (p. 27, Table 5-4, line 1). The average number of entries

to the right-hand input memory of a NOT node is 4.73 (p. 28, Table 55,
line 1). Thus 179% of right-hand entries are to NOT nodes.

The average number of additions to 3-mem node memory resulting from
an addition to working memory i1s 6.31 (p. 26, Table 3-3, line 1). If

6 additions are independently uniformly distributed over 32 partitions,

the expected maximum number in any partition is 1.41. We assume that
as a consequence of partitioning the productions, on the average there
are at most 2 J-mem additions in any partition.

For an AND node, the average number of entries to the right-hand input

1s 22.37, and to the left-hand input i1s 7.2 (p. 27, Table 5-4, line 1).

Thus 769 of eatries to AND nodes are to the right-hand input, and 24% are
to the left-hand. When entering the right-hand input, the opposite node

is empty 87.17% of the time, and when entering the left-hand input, the
opposite is empty 43% of the time (p. 27, Table 5-4, line 2). Thus the
weighted probability is 0.77 that an entry to an AND node will find the

opposite empty.

For a NOT node, the average number of entries to the right-hand input

is 4.73, and to the left-hand input 13 1.2 (p. 28, Table 5-5, line 1).

Thus 80% of entries to NOT nodes are to the right-hand input, and 20% are
to the left-hand. When entering the right-hand input, the opposite node

is empty 70.33% of the time, and when entering the left-hand input, the
opposite 1s empty 25.5% of the time (p. 28, Table 5-3, line 2). Thus the
weighted probability is 0.61 that an entry to a NOT node will find the
opposite empty.

Thus we say that the probability of finding the opposite node empty is
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0.7, and the probability of finding tokens in the opposite node is 0.3

Gupta (private communication) points out that this does not hold for
“long-chain” activations that propagate a token through consecutive
two-input tests during one execution cycle.

The length of all tokens in a-mem nodes is 1, and the average length
for tokens in B-mem nodes is 3 (Appendix, item 17). We assume that
most tokens are In a-mem nodes, and the S-mem tokens are short
because of the progressive filtering action of the Rete net, so we say
the average length of an arbitrary token 1s 2.

The probability that an addition to a NOT node triggers a deletion 1s
012, which 1s 0.3 x 0.49 x 0.8, where 0.3 is the probability that the
opposite node is occupled (p. 28, Table 3-5, line 2), 0.49 1s the

average number of tokens that successfully match given that the opposite
node 1s occupied (p. 28, Table 5-5, line 5), and 0.8 is the probability

that an entry to a NOT node is to the right-hand input (p 28, Table 5-3,
line 1).

The expected maximal number of deletions in any partition as 3 result

of an entry into a NOT node Is calculated as follows. There is a total

of 5.93 entries to NOT nodes in all partitions (p. 28, Table 5-5,

line 1). Let T{n,k) denote the probability that an aggregate of n

entries to NOT nodes triggers k token deletions. We round 5.93 to 6,

and using the probability 0.12 that any 1 entry triggers a deletion,

obtain through elementary probability theory that T(6,0) = 4644,

T(6,1) = 038, T(6,2) = 0.1295, and the sum of T{6,k) for k > 2

1s 0.0261. Next we assume the 6 entries are uniformly distributed over

the 32 partitions, and perform elementary combinatorial calculations to
obtain the number of entries in each partition. (The assumption of

uniform distribution is discussed in item 4, above.) We state the two

most common occurrences. The probability that six partitions have one
entry each is 0.61. The probability that one partition has two entries

and four other partitions have one entry each is 0.34. Multiplying these
and similar values by the T{6,k) and grouping by the maximum number

of deletions triggered gives the probability D(k) that k

deletions are triggered. We obtain D(0) = 0.46, D(1) = 0.48, D(2) = 0.06,
and all other values are nearly 0. Hence the expected maximum number of
deletions in any partition is 0.60.

The average number of S-mem nodes that are descendants of a NOT node

1s no more than 2. This is supported by two considerations. The average
number of 3-mem nodes for a production is one less than the average
number of condition elements (Appendix, item 7), hence it i1s 3. The average
number of AND nodes is 1845 (p. 21, Table 4-1, line 4), but the average
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number of NOT nodes is only 481 (p. 21, Table 4-1, line 5), so it is
likely that the ancestors of a f-mem node are AND nodes.

On average, 1.48 tokens are removed from right-hand inputs of NOT nodes
as a consequence of a working memory deletion. This figure is obtained
in the following way. The average number of tokens i1n all nodes 1s

12895 (p. 30, Table 53-8, line 5). The average number of working memory
elements 1s 295.75 (p. 30, Table 5-8, line 1). Thus there are 436

tokens per working memory element. Since a average token contains 2
working memory element [D’s (Appendix, item 21), an average working
memory element 1s represented in 872 tokens. Since less than 17% of
all-tokens are stored in right-hand inputs of NOT nodes (Appendix, 1tem
18), the figure of 1.48 1s obtained. We assume that at most one occurs

in any partition. Actual dynamic measurements of this statistic are

needed.

The average number of working memory elements is 295 (p. 30, Table 53-8,
line 1). The average size of the conflict set is 16 (Appendix, item 5).

The average number of condition elements in a production is 4.11
(Appendix, item 7). Since negated condition elements are not represented
in a conflict set instantiation, and assuming 3/4 of the condition

elements are non-negated, the average size of an instantiation is 3.

Thus 3x16/295, or 0.16, is the average probability that deletion of a
working memory element removes a member of the conflict set.

The average number of changes to working memory per production system
cycle 1s estimated as follows. From (p. 20, Table 3-7, lines 1-3) we
calculate the number of changes to working memory as a percent of the
total number of rhs actions by summing the percent of actions that are
MAKE. the percent that are REMOVE, and twice the percent that are

MODIFY (since a modify 1s a make and a remove). These product of these

values with the (static) number of actions per production (p. 21,

Table 3-8, line 3) gives an estimate of the number of changes per working
memory that results from firing a production. The average of the values
thus obtained is 2.21 changes per firing. A value derived from dynamic
measurements would be preferable.

The number of additions to A-mem resulting {rom the deletion

of a working memory element was considered too insignificant to analyze
by Gupta [1984], and no statistics were presented for this case in

[Gupta and Forgy, 1983]. We assume these statistics were aggregated with
those for two-input processing and S-mem additions that result from

the addition of working memory elements, and thus they have already been

accounted for in the addition portion of the analysis.

The formula for total time per production formula assumes that the number

10
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of working memory additions is equal to the number of working memory
deletions, which should be true over the long-term, assuming working
memory size does not grow without bound. We also note a comment from
Anoop Gupta [private communication, 1985): “The assumption is made that
the same partition exhibits worst-case performance for all of the 2.21
changes. That is probably not so, and will result in overall better
performance than predicted.”
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