A LISP Compiler for the
DADO

Parallel Computer!

Mark D. Lerner
Michael van Biema

Gerald Q. Maguire Ir.
) CUCS-146-85
Columbia University
Computer Science Department

7 January 1985

l'1"l:i.1 research was conducted as part of the DADO project. it was supported in part by the Defense Advanced Research
Projects Ageney under contract NOOG39-84-C-0168 and the New York State Science and Technology Foundation

NYSSTFCAT(84)15, as well as grants from Intel Corporation, Hewlett Packard, ATET Bell Technologies, and Nuvatee
Corp.



[

to

N o

© o

11

12.

13

14.
15.
16.
17.

Table of Con‘tents

A LISP Implementation
Implementation Techniques
21 Assumptions and Remedies
21.1 Representation of LISP Items
212 Allocation Types
213 Access to Direct Ram
214 Stack Space
2.1.5 Access to external RAM
Memory: Stacks and Conses
3.1 Stacks
32 Conses
Operating Instructions
41 Simulator for the MCS-51
Optimization Techniques
51 Jump Optimization
52 Code Compaction
521 Optimization Detalls
5.2.2 Optimization Code

. Limitations, Unimplemented Features

Tags

Predicates

CMACROs

The MOVE CMACRO

The MOVEX CMACRO

LAP Programming

Porting Between Version 3.2 and Version 33

Unix Shellscripts for Compilation, Assembly and Linkage
Sample Programs, Compilation, and Execution
Acknowledgements

References

A LISP Compiler for the DADO Parallel Computer

Uv —

0w oo 3 wv



Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

1-1:

2-1:
2-2:
3-1:
3-2:
4-1:
S-1:
8-1:

10-1:
12-1:
14-1:

14-2:
15-1:
15-2:
15-3:
15-4:

List of Figures

MCS-51 Memory  Operations (from  Intel MCS-51
Manual)

MCS-31  Memory Organization (from Intel MCS-51
Manual) :

Logical and Physical Registers

Scoping Issues: Compiled vs Interpreted Code

Stack Access Routines

Cons cell layout

Cross Compilation Steps and use of UNIX
Preliminary Optimization Results

Special Symbols Defined at Link Edit

Supported *MOVE operands

Sample LAP Code :

UNIX  Shellscript to Compile and Assemble a LISP
Program

UNIX Shellscript to Linkedit Cross Compiler Output
Sample Program

Sample Program Execution

Complete Source Code of Sample

Log file of program compilation, assembly and
linkage . : ‘

A LISP Compiler for the DADO Parallel Computer




1. A LISP Implementation

This describes a LISP implementation for the Intel MCS-31 family of
microprocessors, the processor used by the DADO parallel computer [Stolfo
83| This LISP 1s the implementation language for the high-level parallel
LISP (PPSL) [van Biema 84| It 1s based upon the Portable Standard Lisp
(PSL) [Griss 79] of the University of Utah. By wnting PPSL in PSL we
have achieved an significant degree of portability.

To execute PPSL on the DADO -machine we developed a LISP compiler for
the Intel MCS-51. Thusfar, the compiler has been used to write small
parallel programs that execute on the DADO prototype hardware. The
appendices include the UNIX shellscripts used to do this, as well as sample
rograms. The compiler 1itself runs on any system that is supported by
SL, although other aspects the DADO software environment make extensive
use of UNIX.

The DADO machine is a complete binary tree The computational
component of each processing element (PE) is an Intel MCS-51 8 bit
processor.  Thus 1t was necessary to develop techniques for the execution of

LISP on this hardware.

The technique 1s to provide an Intermediate semantic level through
pseudoregisters, two stacks, and extended macro commands. In addition, we
generate two distinct . segments. One includes only executable instructions,
and the other includes all constants and tables.

The cross compiler has been implemented through the wuse of Portable
Standard LISP (PSL) [Griss 79, Griss 82| developed at the University of

Utah. New compiler patterns and assembler formatting routines were
written.  These are loaded into a running PSL, and the result is a
functioning cross compiler. These changes were quite extensive: the source

of the new CMACROs 1s 85K bytes, and the source of assember
modifications 1s 30K bytes.

Space optimizations are presently being implemented and are described later
in  this paper. We hope at some time to add peephole optimization
[Kessler 84).

The Intel MCS-51 processor was selected for this project because it has 4
parallel IO ports, yet the chip 1s not designed to execute LISP programs.
Nevertheless, the processor offers considerable flexibility.

The following summarizes the processor. The reader is referred to figures
1-1 and 1-2 for diagrams.

1. Single-chip 8 bit microprocessor.

2. 128 bytes RAM on the chip (includes registers and stack) called
direct RAM. Direct RAM is used to simulate additional registers,
which are each 24 bits wide, to maintain a pointer to an

A LISP Compier for the DADO Parallel Computer




o

external stack, and for temporary locations. The direct RAM s
also used for the subroutine stack and by the kernel
communication primitives.

3. 4K bytes EPROM or 8K bytes ROM on the chip This stores
object code for communication primitives, as well as selected
elements of the LISP runtime system (such as garbage collection
and storage allocation). _

4. External RAM up to 64K bytes of code, plus 64K bytes of data

(DADO 1s currently configured with 16K bytes at each PE)

Code and data share memory.

Access to data 1n the external RAM is primarily by the 16 bit

memory access register named DPTR.

(@)

Access to the onchip RAM is through a rich assortment of instructions.
Program fetch is automatic from both the onchip ROM and the external
program RAM.

Access to the external RAM, however, is rather difficult. The solitary data
register must first be loaded with a 16 bit value. The MOVX instruction
1s subsequently used to transfer one byte of data. The consequent code
generation problems are significant.

These architectural factors manifest themselves in three primary ways.  First,
at least 3 bytes are required to represent a LISP. item (16 bits of data,
several bits for a tag, and a bit for garbage collection) However, the
underlying architecture 1s 8 bits. This has ramifications in the usage of
registers and data manipulation.

Second, the hardware stack 1s allocated within the 128 bytes of onchip
RAM. This memory segment must be shared with the registers and onchip

memory locations. Because of space limitations, the stack cannot be used
for the allocation of data (such as partially evaluated forms). The
hardware stack is reserved for storage of the return addresses.’ Indeed, this
stack 1s excessively small. Consequently we have written code to migrate

data between direct RAM and external RAM.

Third, there is a limited amount of external RAM and hence efficient
memory space usage Is lmportant.

A LISP Compiler for the DADO Parallel Computer




o TER '"Tm
/ \ o OM TUS- EOERC T A O TLD- Y
m;\‘ -;--f-:ﬂ Alr!'a:ﬂ?—o 40T GATR ¢ Mt}
et @ WPy
E__F I ‘] SECH) SRS eepuml v
Program Memory Move Extemal Data Memory Mave
Qperations Operations
-.:'- :ﬁ ll::l
NN ‘
\
~ | "
>, !
- <
]
- ;N\\ - i
S o eam
i ; N
‘ 7
| ; / !
1 ~
mosTin oo \ -ﬂlﬂlrc‘l
» . . 1] 1
1 W P WCHLELETES i Puasm OA POST GUCHLNERT LD SOM

internai Data Memory Move Operations

“qaTva omect
eree

Intemnal Data Memory

Internal Data Memory Logic
Exchange Operations

Operations

Figure 1-1: MCS-531 Memory Operations (from Inte!l MCS-31 Manual)

A LISP Compiler for the DADO Parallel Computer




cTeR
l AVERLSTED AT
f wee| T — / \
(5 ~ T BT 1 T ,ul j—w
l 'Il' 128
] gl I 3
SROGRAM O PeCAL UITwAL
ugoRY OATA nAM FUNCTION CATA
. NaeTIN WEMORY
NTIWGAL DATA MEMORY
8051 Memory Organization
weoAL
ReCTION
NTERNAL OATA AAM ST
P
_ wafasa 1] rw
prry sam
Y
o
oam
oo
Came AcOnESS-
Com aTS N
L) [
[ 1128 &TY)
agm
AGM
-
som
e
120 |118 128 | som
128
= 127
J— -
v = ar 20
aT3 ™
(.:; -TH 1217 ]
e 3
2 [
e 2
onTEN s .a_"'
L2 ‘
o (o !
A - [wr
e 0
_:! ~o
- - ! et s’
“TOwAL SPICIAL FICTION
OATA AAM MUSTS
[nternal Data Addressing Modes 1219082

Figure 1-2: MCS-51 Memory Organization (from Intel MCS-51 Manual)

A LISP Compiler for the DADO Parallel Computer




(#4]

2. Implementation Techniques

The cross compiler 1s implemented by wnting patterns for the PSL
compiler  In general, the PSL compiler translates user programs (written 1n

LISP) into a Dist of macros.  These are composed of machine independent
addressing forms (ANYREGS) and compiler macros (CMACROS).  The
ANYREGs represent common addressing hardware: typically this includes

CAR, CDR, and stack reference. The CMACROs are used for longer
instruction sequences.

The emitted macros are then recursively expanded, under control of the
CMACRO definitions. Additional properties give the compiler-writer more
control.  For more information see anss 82].

To determine which address space i1s to be wused, and consequently when
the DPTR must be wused, the compiler represents compile-time objects as
tagged pairs. The CAR of such items identifies (at compile time) the type
of object or the memory partition where "it is assigned. The CMACROs
generate appropriate instruction sequences based upon this tag. For example,
ExternalLoc X) indicates the variable X is stored in external RAM, whereas
OnChip Byte *25) indicates a byte 1n the processor chip at location 25.
Onchip 1s synonymous with Intel Direct RAM.

The tags direct the compilation through a reduction process whereby code is
generated and the internal representation is modified. Eventually the
representation 1s NIL and the compilation terminates.

2.1 Assumptions and Remedies

The generic PSL compiler makes several assumptions.  First, there must be
at least several registers. These registers should be sufficiently large to
store a LISP item.  The MCS-51 registers, however, are small.

The problems of register size and memory access were overcome through the
use of mechanical translation and a two-tiered CMACRO written entirely
with the standard PSL tools. In essence, CMACROs were written to
emulate the addressing modes of a more flexible abstract machine. This
abstraction provides base/index/displacement addressing.

The code of the existing compiler was not changed. About 50 printed
pages of changes were needed for the complete implementation.

2.1 1 Representation of LISP Items

The compiler represents LISP registers as abstract registers, and is thereby
consistent with the PSL representation of one LISP item per register.  The
registers are not given a °machine-specific representation until all other
processing is complete. At the conclusion of all processing the logical

registers are assigned to onchip RAM locations and suitable MCS-51
constructs are emitted.

A LISP Compiler for 'the DADO Parallel Computer




Logical PSL Register Machine Allocation

Tag High  Low Memory

¥ GC Info Info Space
Register 1 (3 bytes each) R2 R3 R4 Register
Register 2 RB RS R7 Register
Register 3 Reg3ByteA .. Reg3ByteC Diract RAM
Register 4 Reg4ByteA .. Reg4ByteC Direct RAM
Register S RegbByteA .. RegSByteC Direct RAM
Register 8 Reg6ByteA .. Reg6ByteC Direct RAM
Register 7 Reg7ByteA .. Reg7ByteC  Direct RAM
Register 8 RegBByteA .. Reg8ByteC Direct RAM
Register T! RegT1ByteA .. RegTiByteC Direct RAM
Register T2 RegT2ByteA .. RegT2ByteC Direct RAM

R2 ... R7 are six of the microprocessor’s actual registery.
Reg3ByteA ... RegT2ByteC are symbols for 24 bytes of direct RAM.

Figure 2-1: Logical and Physical Registers

The PSL convention is to pass parameters in registers, and hence the low
numbered registers are used most frequently. Therefore the PSL registers
(REG 1) .and (REG 2) are allocated to physical register triplets (R2, R3,
R4) and (R5, R6, R7). ’

Eight additional PSL registers -- (REG 3) through (REG 8), (REG TI1) and
(REG T2) -- are allocated from onchip RAM. They use a total of 18
bytes. These bytes are accessed as rapidly as registers, yet require longer
instruction sequences to specify the operand address

The physical registers RO and Rl have special capabilities for indirect
addressing.  These registers are used to pass parameters to support functions

(see page 12)

The mechanism of storing LISP registers in RAM is called PseudoRegisters

The compiler representation of registers 1s (REG 1) . (REG n) A
translation  function, = GetPseudoRegister, makes the assignments of these
registers to the actual hardware. There are 6 such functions. All are

implemented as ANYREGs.

The first three functions are GetPseudoRegisterA, GetPseudoRegisterB, and
GetPseudoRegisterC. These return the machine specific locations of the
logical register. The suffix “A’ retrieves the tag byte, the *“B’ retrieves
the high information byte, and ‘“C” retrieves the least significant byte. By
use of three additional functions (named GetPseudoRegisteralow) the compiler
can generate the location as 8 bit addresses rather than 16 bit addresses.

As an example, consider moving an item from (REG 1) to (REG 2). The
following CMACRO is emitted.

A LISP Compiler for the DADO Parallel Computer




(1sMOVE (REG 1) (REG 2))

This is translated to 6 Instructions for the MCS-51, and assembles to 6

bytes of storage®
MOV A, R2
MOV RS, A
MOV A, R3
MOV RS, A
MOV A, R4
MOV R7, A

2.1.2 Allocation Types

LISP items are created and given a type in several ways, as described
below. In addition, memory is allocated by any routine that calls the
CONS routine.

Function parameters
These are allocated and passed in registers, with the first
parameter in PSL register (REG 1), the second in PSL
register (REG 2), ete. The calling routine saves registers
before it calls a subroutine. The called routine may only
modify registers that are passed to it: other registers must
be saved and restored. (There are two temporary registers
(REG T1) and (REG T2) that can be modified without

restriction.)

Prog Variables These are allocated on the external data stack as

anonymous stack locations. Because this is compiled code,
these values may be passed to functions, but not modified
by them. For example, the function F1 (shown in figure
2-1) returns NIL when compiled. It returns T when

interpreted, or If Y is declared global

Global Varniables These are declared as:
(Global °(vari var2 var3))

The scope of these variables 1s global  They should not be

bound through prog or function parameters. They are
allocated 1n  the SYMVAL table and stored 1in external
RAM.

2The 8051 processor does not bave ap instruction to move from one register into another. Although registers can, in a
limited way, be addressed by equivalent direct RAM locations, no savings can result from this (because the instruetion
sequence must include 3 byte address). As an slternative, the use of a single “‘move-lisp-register’ subroutine would require
at least 8 bytes of storage (1 byte to store the source register, 1 byte to store the destination, 3 bytes for the call instruction,
and 1 byte for the return). The only way to generate tighter code would be to write 40 separate routines (for all possible
pairs). This would save 3 bytes of dynamic RAM per call, but at an expense of 400 bytes if all combinations are used:
enough for over 150 such operations. We plan to implement the most commoa of these instructions with ROM-based
assembler routines.

A LISP Compiler for the DADO Parallel Computer




(DE F10
(PROG (X Y)
(SETQ Y NIL)
(SETQ X 'Y)
(SET X T) %% Value of Y vill not change.
(RETURN Y)))

Figure 2-2: Scoping Issues: Compiled vs Interpreted Code

Fluid Variables These are not currently supported. They are treated as
globals, though no error message will be given. A separate
program 1s being developed to venify that the program does
not use fluid variables or dynamic scope.

Untyped Allocations
These must be declared and manually allocated. These are
Word Variables (WVARs) and are wused in untyped code.
The declaration format is:
(WDECLARE EXTERNAL WVAR (vari NIL NIL)
(var2 NIL NIL)
e )
In addition to the declaration, they must be allocated by
the linker/loader through the statement: ’
.DEFINE varname location

If the symbols are not defined the linkage editor reports
this as an error.

As discussed below, there 1s also LISP access to direct ram.

2.1.3 Access to Direct Ram

The eight LISP registers [(REG 1) .. (REG 8)] may be directly referenced
from SYSLISP with the names REGIITEM .. REGSITEM. In addition, the
data stack pointer (described later) may  be referenced at STACKTOPWORD.
These entities are stored in direct RAM

Declaration of additional direct ram variables 1s straightforward through three
steps. ~ The item must be declared as an exported wvar, it must be
tagged is ‘’directitem or ’directword, and 1t must manually be given an
address. ‘

Support for allocation in direct RAM is provided for two simple objects:
items and words. A WVAR may be given the ‘'DirectType property of
‘DirectItem to 1ndicate it is a 3 byte lisp item stored in direct ram, or
'‘Directword for a 2 byte direct ram item. The first 1s needed to access
the registers (needed, for example, during garbage collection). The second 1s
necessary to access untagged external items, such as the data stack pointer.

A LISP Compiler for .the DADO Parallel Computer




The EXPORTED WVAR declaration may:- be written either in the user
program, or the file ./global-data.red. [0 ‘addition, the address where the
item 1s to be located must be manually determined and subsequently
specified to the linkage editor with a .DEFINE statement to the linkage
editor (see above). Finally, the ‘DirectType property must be set If the
entity 1s 1n direct RAM.

Support includes the DirectltemP and DirectWordP predicates to recognize

the above special cases. The ANYREGS DIRECTBYTEO, DIRECTBYTE],
and DIRECTBYTE2 return the memory location of the first, second and
third bytes of an item. The !"MOVE macro utilizes these predicates.

2.1.4 Stack Space

The second problem is one of limited stack space. To solve this the
implementation uses two stacks: a program stack and a data stack. The
machine’s stack hardware is used to 1implement the program stack. Its

usage 1s lhimited to the return addresses for function calls.

Function evaluation generally results in subroutine calls. These wuse the
hardware stack to store the return address. Presently, 60 bytes of stack
are reserved for function calls. This is sufficlent for a depth 30 calls.

More depth would be desirable, and indeed the recently announced Intel
8052 chip provides an additional 128 bytes of stack. .

Stack overflow 1s not checked by the hardware, nor is it presently
monitored by software. Instead, there are hightly efficient assembler routines
which detect imminent stack overflow and migrate data between the stack
and the RAM. The wuse of these routines is at the discretion of the
progammer. They are generally insterted only into recursive routines.

Other stack operations are implemented through software A data stack
discussed on page 11 1s stored 11 -external RAM. Two bytes of direct
RAM, named HTOS and LTOS, provide a 16 bit data- stack pointer
Knowledge about how to access the data stack pointer 1s encoded into
several CMACROs, as well as highly efficitent assembler subroutines. The
PSL compiler uses the CMACROs !*PUSH and !*POP for direct stack
reference. In addition, the FRAME ANYREG 1s used to access a datum
stored on the data stack.

215 Access to external RAM

The third problem stems from the difficulty in accessing external RAM.
This must be done with the data pointer (DPTR). The DPTR s the
only 16 bit register other than the PC.

The need to access external RAM is determined from the tags, and the
special MOVEX CMACRO manipulates external memory. This corresponds
to the underlying hardware restriction that external RAM 1s accessed by the
MOVX instruction.

A LISP Compiler for the DADO Parallel Computer




10

It 1s important to note these manipulations depend upon whether the
external location is the source or destination. Although PSL does not
identify the CMACRO operands as source or destination, CMACROS have

been devised to distinguish between source and  destination®. Such
information is necessary on the MCS-51 because the addressing techniques
are quite primitive For example, 1t 1s necessary to preserve intermediate
results when moving between external memory locations, as in:

(SETQ X (CAR Y)) == (SETQ (Externalloc X) (CAR (ExternallLoc Y)))

In general, a compiler may be viewed as a mechanized technique to change
the semantic level of valid programs in the input language. When the
input s LISP and the output 1s for a 8 bit microprocessor, the disparity
tn levels causes particular problems.  Although LISP 1s usually executed on
a 32 or 36 bit architecture, often with specialized addressing hardware, these
features can be implemented with appropriate CMACRO definitions. The
code generation phase of the compiler provides a ‘translation from the
abstract LISP machine (ALM) level to the target machimne level In
addition, this phase also contains target machine to target machine
transformations, which are used to introduce various optimizations.

3This is done by using appropriste combinations of predicates.

A LISP Compiler for the DADO Parallel Computer




11

3. Memory: Stacks and Conses

3.1 Stacks

The 1mplementation uses two stacks. The first 1s used to save return
addreses when a subroutine 1s directly called; this 1s directly supported by
the hardware (by CALL and RET instructions). The second stack 1s used
to store data frames when subroutines are entered. This is supported by
software.

The addressing hardware is used soley for the purpose of subroutine calls.
The hardware stack pointer (SP) is 1nitialized during the standard start of

program to a value defined during the linkedit process. The linkage
command: .

.DEFINE STACKPOINTER

80H

sets the stackpointer to 60.

The second stack 1s the data astack, used for the storage and access of
frames during procedure execution.  The stack 1s accessed at the CMACRO
.level by the *PUSH and the !*"POP CMACROS.

The stack 1s stored in external RAM. The direct RAM locations HTOS
and LTOS maintain the value of the stack pointer, and are copied Iinto
the DPTR when the stack 1s accessed. The 1mtial value of the stack 1s
defined by the linkage editor symbol sTAckTOP, and the variable
STACKTOPWORD references the value during program execution.

The stack grows down. When a 3 byte item 1is stored on the stack, the
lower addressed bytes are stored at lower absolute stack locations. This
scheme 1s based on architectural considerations. There is an nstruction to
increment the data pointer, but there is no corresponding decrement
instruction.

The following statements retrieve one byte from the stack:
MOV DPH,HTOS . Move direct ram location 41 to data-pointer high.
MOV DPL,LT0S . Move direct ram location 42 to data-pointer low.
MOV A,@DPTR  ; Indirect move from data pointer to accumulator.

The assembly code 1s shown simply to 1llustrate how the machine actually
works: 1n practice this 1s done automatically. For example, the CMACRO
sequence:

('*PUSH (REG 1))

(1*MOVE (REG 2) (REG 1))

(1*POP (REG 2))

swaps the contents of (REG 1) with (REG 2).

Assembly routines provide for efficient stack access. These are used
automatically by the. CMACROS, and can be accessed via LAP ~ The seven

A LISP Compiler for the DADO Parallel Computer




12

routines are. TOSTACK, FROMSTACK, MOVESTACK, XPUSH, XPUSHI,
XPOP, XPOPI1. The arguments to these’ functions are described below, as
are detalls of the functions

The calhng convention 1s that all routines communicate with the machine's
RO and R1, which are destroyed. R2.R7 are reserved because they store
the PSL registers (REG 1) and (REG 2).

RO is a logical offset from TOS, 1e. the value 1s multiplied by 3 in these
routines to account for the 3 bytes/ltem R1 is the absolute address in
onchip ram, except in MOVESTACK where it too i1s a logical offset from
TOS. By storing logical offsets, rather than premultiplying at compile time,
the compiler can address a larger offset from the stack.  This violates the
conventional wisdom of performing such operations at compile time, but it
does so because of the larger concern of accessing as much of the stack
as possible

TOSTACK coptes 3 bytes from direct RAM to an offset on stack.
FROMSTACK  copies 3 bytes from an offset on stack to direct RAM.
MOVESTACK copies 3 bytes from the stack to another place on the

stack.

XPUSH1 pushes the 3 bytes addressed by RO onto the stack.

XPOP1 pops the 3 bytes addressed by TOS into memory addressed
by RO. '

XPUSH pushes the 2 bytes in RO/R1, then pushes a 16#0 (ie,
zero).

XPOP discards one byte from the stack, then pops 2 bytes 1nto
RO/R1.

Figure 3-1: Stack Access Routines

3.2 Conses

Cons cells are allocated from a reserved area of memory.  The program
executes at startup the MAKEFREELIST function to 1nitialize this area.
Each cell consists of 6 bytes, structured as a linked list, as follows:

| £========== (Ccar ==========> | £========== ¢dr ===c=======> |
| tagl | byteihigh | bytailow | tag2 | byte2high | byte2low |
| <=========== =========== > | <=== address next pair ===> |

Figure 3-2: Cons cell layout

A LISP Compiler for .the DADO Parallel Computer




13

The bytes NEXTFREE and NEXTFREE+1. contain the address of the next
availlable CONS cell.  The CONS routine returns the first pair and updates
the NEXTFREE pointer. A zero in the nextiree pointer 1indicates that no
CONS cells remain.

The garbage collection routine puts cells back onto this chain.  The routine

s a non-compacting garbage collector. It does a non-recursive search of all
accessible cells, and relinks .unuse.d cells onto the free chan. It is limited
to garbage collection of fixed-sized items. In particular, this allocation

scheme requires modification to support vectors of items.

A LISP Compiler for .the DADO Parallel Computer




14

4. Operating Instructions

There are 4 phases to program execution. The first executes on .any
system that runs PSL, whereas the subsequent steps work only on Unix
systems.

Cross compilation
This wuses the cross compiler features of PSL. The 8051
cross compiler has been executed on Dec20, Vax 730 (BSD
Unix), and HP sertes 200 (running Pascal Workstation
System). '

Assembly This 1s done with the Nuvatec 8051 cross assembler, and
runs only Unix.

Link edit This 1s done with the Nuvatec 8051 linkage editor, and
runs only under Unix*

Execution on hardware
This uses either the DADO 175 Prototype, or the Intel
Development system.

Alternatively, execution on software simulator
This 1s done with a C-language based 8051 simulator which
i1s executed under UNIX

Figure 4-1: Cross Compilation Steps and use of UNIX

The following are several programs that have been executed on the MCS-51
with this compiler Assembly and linkage editing were performed by the
Uniware tools donated by Nuvatec Inc.

The programs have been executed on an Intel [SIS-II Microcomputer
Development System with an In Circuit Emulator (ICE) They have also
been executed with an 8051 simulator wntten 1n C and executed wunder
Unix. The simulator 1s an indispensable development tool, 1ts flexible
features include formatting of s-expressions. In addition, the wuse of the
simulator allows many simultaneous users, thus avoiding some bottlenecks due
to the scarcity of DADO machines.

*This phase adds various utility functions and the details of DADO internals to the user code. In particular, the files
kernel.s, nathlidb.s and stacks.s are sesrched. The first of these contains entry points snd memory allocation to interface
with the DADO kernel. The aathlid contains 16-bit precision arithmetic, and the stacks includes routines for efficient
stack manipulation.

A LISP Compiler for the DADO Parallel Computer




15

4.1 Simulator for the MCS-51

A simulator for the MCS-51 simpliiles program development. The program
simulates all instructions of this Intel processor. The 8051 supports two
external memoriess one for code and one for data. In the DADO machine
code and data share the same memory partition. Likewise the simulator
supports either one bank or two.  The 8051 has several kinds of onchip
memory  Users are most concerned with direct RAM, and occasionally with
special function registers cgsfr). Moreover, the 8052 has additional RAM that
may be accessed only indirectly.  These are all supported by the simulator.

The simulator will execute until any of the following conditions occur:

o It encounters a breakpoint, either at the beginning or as part of
an instruction _

o [t executes the undefined opcode AS.

o It exceeds the bound on number of instructions. This can be
set with the N command (see below) and provides a mechanism
to capture control of wayward simulations.

The simulator does not provide complete support of hardware features such
as timers, Interrupts, or latched ports.  These facilities may be accessed at
the instruction level, but not the hardware level. For example, the timer
register can be set (by a move into the appropriate address) but the timer
will not be decremented and "will not generate an interrupt to the
simulator. These features are not used by the compiler and thus do not
require simulation.

The following commands are available:

Break sets a breakpoint. Control 1s returned to the console when a
breakpoint is encountered in any byte of an instruction.

Clear  clears a break point.

Examinea memory location of external RAM.  The wuser provides start and
end addresses. The memory between these bounds is dumped.

eXamine first shows values (in hexadecimal and decimal) for the currently
selected register bank, the program counter, the data pointer, and
the accumulator. Under user control, the program then displays a
range of values from direct onchip RAM or special-function RAM.

Debug toggles debug mode (for internal usage)
Go begins the simulation of the program

Insert a value 1n a location

A LISP Compiler for the DADO Parallel Computer




16

List lists all break points

Number sets number of 1instructions to execute. The simulator will enter
the break loop when this number 1s exceeded

Pec sets the program counter

Step toggles single stepping mode.  When 1in effect, the program executes
one instruction at a time, and preceeds execution with a display of
the 1nstruction and operands.

Y prints out an item. If the item is a pointer it will print 1t as
an S-expression. Accepts either a memory addruss, the literal ‘rl’
or ‘r2' The latter indicate the item's address is stored in a PSL-
register Other registers will be added later. The output includes
the print-name of atoms. Numerics are printed in hex.

Z prints out a s-expr of a cons-cell.  Accepts a memory address, ‘rl’
or ‘r2’

? prints a hst of commands with brief descriptions.

A LISP Compiler for the DADO Parallel Computer




17

5. Optimization Techniques

There are two . kinds of optimization used in the compiler First s
optimization of jump instructions.  Second s a more general techmque for
the compation of code

5.1 Jump Optimization

The 8051 instruction includes several jump commands. Short jumps are
generally 2 bytes long, whereas long jumps are 3 bytes. The compiler
emits short jumps in comparison 1nstructions. A function (fixupjumps)
verifies that the destination of the jump instructions is accessible by the
instruction  which i1s  used. New code s generated when needed to
guarantee that operands are within the range of their opcodes.

5.2 Code Compaction

An analysis and optimization tool has been developed which identifies

repeated code segments and reduces them to shorter sequences. This
involves representing the code sequence as a list where repeated sequences
are replaced by references to the original instance of the sequence. This

technique 1s defined recursively, so that each repeated sequence within the
program is Trepresemted by a reference to a unique instance. -

As a tool to analyse the code, this information is used to identify changes
to CMACROs. For example, the sequences may indicate that more specific
CMACRO cases should be written, or that temporary results should be
saved.

As a space optimization tool to be applied after the above optimizations,
new sequences which exceed a given length should automatically be revised
into a subroutine that 1s called by the references to the sequence. The
tool presently indicates the length of each repeated code sequence, thus it
1s straightforward to modify the code list by insertion of labels and control
intructions.

The computation is quite lengthy, as eshown below. Techniques are
currently under development to 1improve the performance of this initial
algorithm. The current 1deas are to 1mprove the algorithm to avoid
recomputing pattern matches at each cycle of the algorithm, and to limit
the number of input states. In addition, the optimization can be applied
on a subroutine-by-subroutine basis rather than to the complete code.

Experimental results have been obtained, as follows. The number of input
states 1s the number of source lines to be optimized. The number of
output states is the number of distinct states that result, where each state
may consist of one or many statements. The composite output length is
the sum of the sizes of all outputs.

A LISP Compiler for the DADO Parallel Computer



18

Prograns Number  Number Compositae Percent Time
Input Output Qutput Reduction bh:mm:ss
States States Length

Main program

in example 457 211 369 19% 3:22

Complete
example 2221 789 1870 16% 2:38:31
Figure 5-1: Preliminary Optimization Results

521 Optimization Details

The main routine 1s findloops. This simply executes the preconv function
to imtialize the data, and then repeatedly executes convl and conv? as long
as they can further compact the code.

The preconv function changes the input program into an initial symbolic

form. Each nput line 1s replaced by a symbol Equal 1nputs are
assigned the same symbol The convl function replaces a pair of equal
inputs with a new input ¢f the pair occurs again in the file. The conv?2

replaces such pairs even when they do not recur.

5.2.2 QOptimization Code

Following 1s the main loop of this optimization:

(de findloops

(input)

(prog (original result)
(setq original (preconv input))
more
(setq result (conv! original))
(setq result (conv2 result))
(and (equal original result) (Return result))
(setq original result)
(go more)))

A LISP Compiler for the DADO Parallel Computer



19

6. Limitations, Unimplemented Features

A number of conventional LISP features have not been provided in this

implementation. Two kinds of features were omitted, those  which require
large amounts of memory, and features which can ~be more efficiently
executed by the host computer. Since DADO functions as an attached

processor 1t 1s reasonable, for example, to use the host computer to store
parts of the symbol table.

1. The EVAL function 1s not supported. However, the APPLY
function 1s supported and allows indirect function 1nvocation of
compiled functions.

The symbol table consists of name, wvalue, property, and function
cells A compile-time option selects which of these cells are
allocated 1n *the DADO processing elements (PE). Presently we
do not allocate either name or property cells in the PEs.  Thus,
the APPLY function works (since it uses a symbolic identifier to
represent a token) but the oprintname 1s only available in the
host.  The GET and PUT f{unctions cannot be used because they
would require the property cell. These omitted features will be
available by communication with the host processor.

o

3. Static scoping is used: fluid varrables are not supported.

4. Presently certain assembler symbols are reserved and may not be
used. This condition 1s diagnosed by the assembler. The
symbols 1nclude® A, B, C, DPTR, RO, R1l, R2, R3, R4, RS5, RS,
R7, PC, as well as the MCS-51 mnemonics: ADD, ADDC, SUBB,
INC, DEC, MUL, DIV, DA, ANL, ORL, XRL, XRL, CLR, CPL,
RL, RLC, RR, RRC, and SWAP.  There are predefined variables

as well. REGILITEM . REGSITEM are LISP aliases for the
machine registers, STACKTOPWORD 1s the alias for the data
stack pointer. The following symbols have the special meaning

described below.

The following are special symbols. They are assigned values by the linkage
editor .DEFINE variable value statement. The sample program compilation
-shows how this 1s done.

A LISP Compiler for the DADO Parallel Computer



BOTTOM 15 the lowest address available 1n the hardware

TOP 15 the highest address available 1n the hardware. It s
assumed that all memory between BOTTOM and TOP s
available, 1e that there are no gaps.

STACKPTR 1s the initial value of the hardware stack pointer. On the
8051 and 8751 the stack goes from the value of
STACKPTR up to OxFF. On the 8051 the stack goes up
to Ox1FF.

STACKTOP is the 1nitial location 1n external ram of the data stack
pointer.  The stack will grow down as it is used.

EXTRAREG 1s the first external ram location to store extra registers
When the compiler needs more than 8 registers, 1t will
simulate them beginning at this location.

EXTRAREGTOP1s the last external ram location for extra registers.

NEXTFREE 1s the location of the pointer to the next available cons

cell.
STARTFREE 1s the lowest address of the space reserved for cons cells.
ENDFREE 1s the highest address of cons cell space

Figure 8-1: Special Symbols Defined at Link Edit

A LISP Compiler for the DADO Parallel Computer



7. Tags

The following are internal representations of data objects 1in the compiler.
While, in general, the CMACROs hide the details of the target machine,
the tags and predicates emphasize the details of the target machine.

Internal Form Meaning

(constant xxx) Constant

(externalloc xxx) 16 bit address constant

(immediate xxX) Constants or internal compiler item
(indirect register xxx) Indirect register, as in 8ro0 or Q@DPTR.
(label xxx) A machine-independent label

(lowbyte RAM xxI) 8 bit constant: part of an address

(onchip accumulator a) The accumulator of the machine

(onchip bit xxX) A bit address

(onchip dptr) The data access register

(onchip label xxX) 8 bit constant: part of an address

(onchip RAM xxxX) An address of onchip memory

(onchip register xxx) A physical register of the MCS-51 processor
(reg xxx) A machine irndependent register

(Wvar xxx) A SYSLISP variable: may have the property

*‘DIRECTTYPE with value 'DIRECTITEM or
'DIRECTWORD if located in onchip RAM.

A LISP Compiler for -the DADO Parallel Computer



8. Predicates

The following predicates are used within the CMACROs.
CMACROs to

selectors  within

specify the particular code to

Those marked with [+]| are unique to the MCS-51 implementation.

Predicate

Anyp

BytePattern000

BytePattern001l

BytePattern010

BytePattern100

DirectItenmP

DirectWordpP

DisplnumP

+ DptrP

+ ExtraRegP

+ FixedSymbolP
InumP

+ IndirectP

+ SyamVallocP

LonglInunP

MovexCaseOneP

+ + + 4+ + +

MovexCaseTwoP
Neg16p

Neg8P

Negp

NilRegP
NotNilRegP
OnchipAccP
OnchipP
OnchipRanP
OnchipRegP

+ + + + +

+ + 4+ + + +

OneP, TwoP, etc.

+ Pos255P
PosAmt
QuoteP
RegisterP
SmalllnumP

+ StackDisplaceP
ZeroP

MovexCasaThreeP

vhen True

Always

(And O operand) 1is an identity operand

(And OxFF operand) is the identity

(And OxFFO0O operand) is the identity

(And OxFF0000 operand) is the identity

Operand is a 3 byte quantity of onchip RAM
Operand 1s a 2 byte quantity of onchip RAM
Operand 1s a displacemsent

The real machine data access register (DPTR)
The extraregister mechanism is to be used
Numeric or symbolic constants

Numbers

Indirect addressing

Tests for global and fluid varlables

Tests for large numerics

Tests for external access using a general fixup function
Tests for external access as register/displacement
Tests for external access for base addressing
Equals -18

Equals -8

Any negative number

The special register that contains nil

Any register that is not nil

Representation of the real machine accumulator
Any datum stored on the onchip

Datum stored in 2 real machine onchip RAM location
Datum stored in a real machine register
Numeric tests

Numeric test

Numeric test

A quoted item

A register

A one-byte numeric

A reference to external RAM from the data stack
Numeric test

Many of the predicates form a hierarchical structure, as shown below:

A LISP Compiler for the DADO Parallel Computer

They are used as
generate.



NumberP
BytePattern000
BytePatternool
BytePatternoi10
BytePattern100

SmalllInuzP
DispInumP
InumP
/ I \
NegP ZeroP PosAmt
Neg168P Pos255P
Negg8P OneP
TwoP

AnyP
/ I \ \
QuoteP | Registerp OnchipP
[ /A !
| NilRegP NotNilRegP !
[ !
| ---------------------
I / I \
I DptrP DirectltemP OnchipAccP
I DirectWordP OnchipRegP
----------------- IndirectP OnchipRanP
/ \
MovexCaseOneP Others:
MovexCasaTwoP ExtraRegP
MovexCaseThreep FixedSymbolP
SymVallLocP
StackDisplaceP

A LISP Compiler for the DADO Parallel Computer




9. CMACROs

The following 1s a description of the 55 CMACROs that have been defined
for the MCS-51 cross compiler. Most CMACROs manipulate objects which
represent LISP items. They accomplish this by emitting instructions and
using other CMACROs for simplification. CMACROs are designed as
Abstract Lisp Machine opcodes. '

Very knowledgeable users can write code directly in LAP (the LISP
Assembly Language) using CMACROs and machine specific opcodes. By
using CMACROs the wuser can avoid many of the detalls concerning
addressing.

The move CMACRO has more general capabilities;, and may also be used
from LAP. It can manipulate machine specific items such as the registers,
the data pointer, and onchip memory locations. It 1s assisted by the
MOVEX CMACRO, which 1is the repository of information about external
memory access.

In addition, there are 9 CMACROs (subb, add, addc, anl, cjne, eclr, inc,
orl, xrl}) which represent single MCS-51 instructions.

Some CMACROs, such as !*"MOVE, !"WOR, !*WAND and !*WPLUS2 are
optimized for the special case where only one byte of a LISP item s
affected by the operation:  This test i1s made by the bytepattern predicates
and numeric predicates described above. The CMACROs found only in this
cross compiler are designated with [+]

CMACRO Purpose
+ *ADD Provides CMACRO access to the MCS-51 ADD instructionm.
+ *ADDC Provides CMACRO accass to the MCS-51 ADDC instruction.
+ *ADDRESSCOMP Does address computation of index/displacement access
to external RAM.
*ALLOC " - Allocates RAM on external data stack.
+ *ANL Provides CMACRO access to the MCS-51 ANL instruction.
*CALL Calls an entrypoint as a subroutine. ’
+ *CJINE Provides CMACRO access to the MCS-51 CJINE instruction.
+ *CLR Provides CMACRO access to the MCS-51 CLR instruction.
*DEALLOC Deallocates RAM from external data stack.
*EXIT Deallocates RAM and return from a procedure.
*FIELD Select and right-justify a subfield of a LISP 1item.
+ *FROMSOURCE Moves data from external RAM to direct RAM. See *Todest.
+ =INC Provides CMACRO access to the MCS-S5!1 INC instruction.
= JCALL Jumps to an entry point vhen return value not needed.
* JUMP Unconditional jump.
= JUMPEQ Jumps when two arguments are equal.
*JUMPIF Generalized conditional jump CMACRO.
= JUMPNOTEQ Jump when two arguments are not equal.
= JUMPNOTINTYPE  Jump when argument is out of a given range of types.
* JUMPNOTTYPE Jump when argument 1s not of a given type.
* JUMPTYPE Jump when argument is of a given type.
* JUMPWGEQ Inline code to jump when greater or equal.

A LISP Compiler for the DADO Parallel Computer




25

* JUMPWGREATERP

Inline code to jump wvhen greater.

= JUMPWLEQ Inline code to jump when less-than or equal.

* JUMPWLESSP Inline code to jump when less than.

«LINK Calls intralanguage procedurss.

=L0C Computes and loads the effoctive address of the item.

*MKITEM Combines a tag aand datum to create a LISP item.

sMOVE The foundation of the cross compiler. Moves data
betwveen any source and destination. See detail baelow.

+ sMOVE3ITEMSA Move from SymVal table (named biuding) to a register.

+ *MOVESITEMSB Move a register to the SymVal table (named binding).

+ sMOVECONSTANT Moves a tag and counstaat into destination.

+ *MOVEX Perform efficient address computation and access

to external memory. See detail bdelow.

+ *0RL Provides CMACRO access to the MCS-651 ORL instruction.

*POP Pop data from the data stack.

*PUSH Push data onto the data stack.

*PUTFIELD Stores a fleld of one argument into a field of another.
*SIGNEDFIELD Unimplemented (normally a field extract with sign extension).

+ *SUBB Provides CMACRO access to the MCS-51 SUBB instruction.

+ =TODEST! Store temp! result into external RAM defined by templ.

' Used by movex. See *fromsource.

+ =TODEST2 Store arbitrary onchip result to any exteranal RAM.

+ »TODESTSEA Copy external constant (wvar) into a register.

+ »TODESTSB Copy a register into external constant storage (wvar).
*WAND Inline code of logical and of arbitrary argumaents.
*WDIFFERENCE Inline code of numeric difference between tagged items.
*WMINUS _Unimplemented: Handles anary aminus, as in x:=-y.

*WNOT " Unimplemented: Handles x:=Not(y);
*WOR Inline code of logical OR.

*WPLUS2 Inline code of numeric sum between tagged items.
«WSHIFT Shifts one argument specifled number of bits. Simple
and frequent cases are coded inline.

*WTIMES2 Unimplemented: wuse (!*1ink times2) instead
«WXOR Inline code for exclusive or operation.
+ *XRL Provides CMACRO access to the MCS-51 XRL instruction.

A LISP Compiler for the DADO Parallel Computer




10. The MOVE CMACRO

The MOVE CMACRO s the foundation of the compiler. All  other
CMACROs can process only some operands, whereas the MOVE CMACRO
can handle all operands Therefore other CMACROs frequently invoke the
MOVE CMACRO to coerce their operands into a usable form, then recurse
on themselves, and finally use MOVE to restore the form of the operands.

The MOVE explicitly handles the following cases. The order of
consideration is 1mportant. Specific tests which produce very clean code are
placed before more general cases which produce less efficient code. The

CMACRO moves two operands, as shown 1in the following table and
subsequently described®.

The numbers 1n figure 10-1 correspond to the following operations:

Equal operands

One onchip operand into another onchip operand

A small number into an onchip operand

Zero 1nto a PSL-register

Small number 1nto a PSL-register

Number 1into a PSL-register

Global varniable (ie, stored in the SymVal table) into a PSL

register . '

8 PSL register into storage of the SymVal table

9. Quoted item 1nto a register

10. Data pointer into a PSL register

11. PSL register into the data pointer

12. PSL register to PSL register.

13. Indirect machine operand into a onchlp register

14. Indirect machine operand into any onchip location

15. Moving any other operand into an onchip location (if new tags
are created this may have to be updated)

16. Machine register i1nto an indirect location

17. Onchip memory into an indirect location

18 Between two offsets from the data stack

19. Offset on the data stack into a PSL-register

20. Offset on the data stack into any operand

21. PSL-register into the data stack

22. Any operand to the data stack

23. External static symbol to a PSL-register

24. PSL-register to an external static symbol

25. Any operand to an external static symbol

26. Small number to an extra-register (ie, when more than 8

registers are needed the machine will use RAM to simulate the

additional registers:  this 1s expensive but works)

SO OV WD

5In addition to the table, support has recently been added for DirectltemnP —> RegP, DirectWordP —> RegP, RegP ~>
DirectiternP, and RegP —> DirectWordP.

A LISP Compiler for the DADO Parallel Computer




(3]
~1

destination->|

squal

PSL register
extra-register
stack offset
Symval tadle
Extra static

onchip reg+
onchip+
indirect reg+
data pointer+

quotad item
zero

small number
number

PSL STATE TABLE

Legal Operand Transitions

el Plaels|SIElololilldlol
qlslzxltlylxlialalnolalt]|
s i Lltlalalt]lcleld]|]t!|nl
a | lrlelVirlbdlbdlilaloe]
llrlalxlalolitlarlr] I r |

| o | | I LI lplplelopl |
ilglrlol | s | | l ¢!l ol I
tl 1| el 1Tl |l [ I ]
s lsligltlalalel I 2t |
s |t | isl bl el gl vl ¢ !
s | o | l eI 11 ¢t | | | ¢ | o | i

[ r | [t | el ¢l I l g | r| |
1] X1 Xt X1 Xt X$| X1] X1| X3 Xtl Xtl
X1l 121 291 211 8 | 24| | | | 111 }
X11 281 301%X22| 1X241 | | | | |
X111 19{X201 181X201X20]X20(X20|X201X201 20|
X1l 7 1X311x22] 1 X24| I | | ! |
Xt| 231X31(x22] 1X24] | ] | | |

| | I | ! | I | I | !
Xt | X311X22] [X24| Xx21 | 18] | |
X1 1X311X22| I J | 2 [ 171 I |
X1 IX311X22] ~ I1X24| 13| 14| | | ]
X1 111%X311X22] | I | I | ! |

[ ] I I | | [ [ ) | f
X1l 9 [X31[x22] 1X24| | [ | | |
X1 4 [X311%22] (X241 | | | | !
X1l 6 | 281X22]| |1X24] X3| 3 | ! | |
X1l 6 | 27(x22] 1X24| | | | | |

I I | | | | | I [ ! |
X1(X15] 311 221X16] 25IXi15] 16|X15{X15| 33|

other

Figure 10-1:

indicates machine operand.
X# indicates subsumed stats,

as in X! 1s subsumbed 1.

Supported *MOVE operands

27.
28.

29

30.
31.
32.

Number to an extra-register
Extra-register to a PSL-register
PSL-register to extra-register
Between two extra-registers
Anything else to an extra-register
An 1mmediate operand into anything
33.. Anything else (within limits described below)

A LISP Compiler for the DADO Parallel

Computer




28

I the macro cannot processes the data it will pass its operands to the
MOVEX CMACRO. In this last case it is presumed that at least one
operand is 1 external RAM. and hence ‘the MOVEX CMACRO must be
used. Before 1invoking MOVEX the operands are modified by 2 general
firup function, and In addition an operand-speaific FizUpFn 1s applied f
there 1s one

The 1ntention of the fixup function is to parse the operand into the index
register, base register, and displacement  before the MOVEX CMACRO s
invoked.

A LISP Compiler for the DADO Parallel Computer




11. The MOVEX CMACRO

The MOVEX CMACRO assumes that at least one of its operands has been
processed by a fixup function. It produces code for 13 types of operand
pairs In addition, 1t generates an error message 1f 1t could not produce
code The error

| *MOVEX FOUND UNEXPECTED OPERANDS
will appear” in the output file when either MOVE or MOVEX was unable
to process its operands. It may indicate a compiler bug which must be
remedied by changing a CMACRO®

The fixup functions provide lists to the MOVEX CMACRO. These lists
begin with the token *ONE®* *TWO* or *THREE* to identify the type of
fixup which was performed, and indicates further processing requirements.

The *ONE* prefix 1s only produced when a FixUpFn has been applied. It

indicates the use of index/base/displacement addressing. This facilitates
address computation as the sum of 3 values: the contents of an index
register, plus the contents of a base register, plus a displacement. Any
fleld may be unused thus there are 8 casess Code 1s generated for these

by the *ADDRESSCOMP CMACRO.

The *TWO?* prefix indicates the operand represents a static external memory
location.  This allows constants or fixed offsets from constant -arrays.  This
case 1s processed by the AddrFieldExternal ANYREG.

The *THREE* prefix 1indicates an operand which 1s either a base address,
or a base address plus constant offset.

The following specific cases are processed by the MOVEX CMACRO:
Case 3 into a PSL register
Register 1nto case 3

Small number into case 3
Numeric 1into case 3

Case 2 nto anything

Case 1 into Case 1
Register into Case 1

Extra register into case 1
Small number 1nto case 1
10. Number 1nto case 1

11. Stack offset into case 1
12. Case 1 into a register

13. Case 1 into anything.

© 0 NG 0D

6Since the *MOVE employs *MOVEX when operands are not resolved the error cannot be diagnosed by the *MOVE
macro.

A LISP Compiler for the DADO Parallel Computer

i



30

12. LAP Programming

Programming 1n LAP 1s necessary when the most precise control over the
machine 1s necessary. An alternative to LAP programming is to use the

SYSLISP extensions of PSL.

LAP code is wrtten by writing a CORRECT list of CMACROs. The bhst
must begin with the identiier LAP for this to work. The LAP
programmer must be absolutely certain to write code free from errors.

All functions and routines have parameters passed in the registers, with the
first parameter in PSL register (REG 1), the second in register (REG 2),
etc. The function value 1s returned in PSL register (REG 1)

The followlhg 1s an example of lap code:

(LAP ‘' ((!+*ENTRY FASTAPPLY EXPR 2)

(!*PUSH (REG 1)) %% Save item pointer.
(1*MOVE (REG 2) (REG 1)) %% Get address ...
('*LINK GETFNCENTRYPOINT EXPR 1) %% of routine ...
(1*MOVE (REG 1) (REG 2)) %% remember it.
(1*POP (REG 1)) %% Restore item ...
(1*MOVE (REG 2) (REG DPTR)) %% prepare to ...
(1*CLR (ONCHIP ACCUMULATOR.A)) %% jump

(*JMP @A+DPTR"))) %% Do it.

(LAP ' ((!#ENTRY GETFNCENTRYPOINT EXPR 1)
(!*MOVE (WCONST 3) (REG 2))
(1*LINK TIMES2 EXPR 2)
(!'*MOVE (EXTERNALLOC "#HI SYMFNC®) (ONCHIP RAM DPH))
(!*MOVE (EXTERNALLOC ®"#LO SYMFNC®) (ONCHIP RAM DPL))
(!'+*WwPLUS2 (REG 1) (REG DPTR))
(1+EXIT 0)))

Figure 12-1: Sample LAP Code

The above routine first saves a PSL register on the stack. It then moves
the constant 3 into the register and invokes TIMES2 to multiply register 2
by 3 (since there are 3 bytes per LISP item). It then moves the location
of the function-table into the datapointer (since in this particular instance it

c?fn be used as a temporary register) and adds the previously computed
offset.

The effective address computation continues. The result of the addition 1s
moved 1nto register 2, and this 1s followed by restoration of the register.
Next the accumulator 1s cleared and register 2 1s moved into the data
pointer 1n preparation for an indirect jump. The final line 1s a quoted
string -- 1t does not involve the expansion of a CMACRO - and is simply
emitted as code.

A LISP Compiler for the DADO Parallel Computer



31

13. Porting Between Version 3.2 and Version 3.3

The HP PSL implementation made many extensions to the Utah
implementation. Hence 1t required some work to port the compiler to the
HP 9836 workstation (sertes 200) However. this port was accomplished
without modifying any CMACROs.

There were two main problems’  First, the modifications to the assembler
formatting phase of the process had to be moved into a copy of the
system-supplied formatting statements. This was apparently required in order
to provide proper variable bindings. These modifications format code
according to MCS-31 requirements.

Second, numerous properties had to be changed to be compatible with the
original implementation. In particular, the 'OPENFN property indicates that
an open function mechanism should be used prior to the CMACRO phase,
and the 'ANYREG property must be present for an ANYREG to be used.
Many 'OPENFN properties had to be removed, and .several 'ANYREG

properties had to be added.

To guarantee full compatibility , with the ornginal version, the compiler
patterns and compiler source of the PSL3.2 compiler [Utah| are also used in
the version which runs on the HP workstation.

_ The - modifications made to the compiler at Hewlett Packard (Palo Alto)
include significant improvements, yet the above process ignores them. We
hope at a future time to be more precise 1n analysis of the differences
between the Utah release and the HP release, so as to exploit the more
optimal code sequences that the HP version can produce.

The following code was used to make the cross compiler run on the HP
series 200 workstation.

A LISP Compiler for the DADO Parallel Computer



32

(on verboseload) (setq pathin!* loaddirectories!=*)

(load compiler rlisp pathin
syslisp zboot if-system useful)

(dskin ‘"psl2:compiler.sl*) %% The UTAH compiler
(reload hp-comp hp-lap lap-to-asm)

(dskin *psl2:rem-old-decl.sl") %% Listed belov
(reload hp-cmac)

(reload hp-asm) %% Includes 805l-spacific assembler

%% which must be included in the
%% primary source file for proper
%% variable bindings.

(dskin °®psl2:rem-old-decl.sl®)

(load 8051-cmac) %% The 8051-specific CMACROs

(setq lastactualreg!s 5)

(setq ° maxnargsig 16)

(dskin ‘*setprops.sl®) . %% Maintain the property list of PSL 3.2

(flag '(immediate indirect) ‘terminaloperand)
(channelprintf stdout!* *Ready to dump.%n*)

(o1t usermode)

(savesystem

(bldmsg "%w %w" "8051 Cross compiler, version® (date))
*MYPSL:8051-CROSS.DUMP* ())

(quit)

The system will generate a PASCAL error message after the savesystem
returns and execution begins.  Ignore the error message.

The f{following code 1s psl2:rem-old-decl sl It removes the HP9836 specific
optimizations, and substitutes general UTAH-PSL definitions.
(setq proplist '(ANYREG ARGUMENT-COUNT CMACRO COMPFN CONST DOFN EMITFN
EMITFN EXTVAR FLIPTST GROUPOPS LONGBRANCH MATCHFN MEMMODFN NEGJMP
NEGJMP ONE OPENFN OPENTST OPTFN PAIALGFN PALFN PAIREFORMFN REG SUBSTFN
SUBSTFN TERMINAL TRANSFER UNKNOWN UNMEMMOD UNMEMMOD VAR ZERO))
(de propremover(x) (foreach y in proplist do
(remprop x y) (remflagl x y)))
(mapobl ‘propremover)
(dskin °®psl2:pattern.sl®) %% The Utah compiler patterns.
(dskin "psl2:comp-decls.sl®) %% The Utah compiler declarations.

The following code 1is setpropssl. It removes additional properties that are
not necessary for the cross compiler It probably could be merged with
the above file.

A LISP Compiler for the DADO Parallel Computer



33

(setq openfnlist ' (*ADDMEM sMPYMEM ATOM BIGP BYTESP CODEP EQ FIELD
FIXNP FIXP FLOATP HALFWORDSP IDP INTP LOC MKITEMREV NE NEGINTP NOTBIGP
NOTBYTESP NOTCODEP NOTFIXNP NOTFIXP NOTFLOATP NOTHALFWCORDSP NOTIDP
NOTINTP NOTNEGINTP NOTNUMBERP NOTPOSINTP NOTSTRINGP NOTVECTORP
NOTWRDSP NUMBERP PAIRP POSINTP PUTFIELDREV RPLACA RPLACD SETQ
SIGNEDFIELD STRINGP VECTORP WAND WDIFFERENCE WGEQ WGREATERP WLEQ
WLESSP WMINUS WNOT WOR WPLUS2 WRDSP WSHIFT wXOR))

(prog (remover) %% Forget all about opencoded functions for the time being.

(De propremover (x)
(and (not (memq x openfnlist)) (remprop X ‘opentn)))

(papobl ‘propremover))
(remob ‘Openfanlist)

A LISP Compiler for the DADO Parallel Computer




34

14. Unix Shellscripts for Compilation, Assembly and Linkage

The newlasm script will compile, assemble, linkedit, and format a LISP
program Output is produced in several formats: intel hex format (filetype
is 180), for the simulator (no filetype), and in hex dump (filetype 1s
linkdump).

The syntax 1s:

newlasm [-main] [-clean] [-indir <imput dir]
[-outdir <output dir>] filename>

(Note: the square brackets indicate optional items.)

The filename 1s the filename of the sl file to be compiled.
The options are:

-maln To compile into a main program.

-clean To expunge the .global symbol file
, prior to compilation.

-indir To specify the directory where the

global symbol (8051 sym) file should be copied
from (note 1t 1s not copied back), and
, where extra object files should be found.
-outdir To specify the directory where the
listing, object, and other output should be
written.  The file 8051 sym 1s always written
into . regardless of the value given to -outdir.

The defaults are:

-nomatn Don't generate initialization code

-noclean ' Don't initialize the 8051 sym file

-indir Search current directory during linkedit.
-outdir . Send s, o, 1, .Ist, linkmap linkdump, and

also executables to the current durectory.

Examples are:
newlasm -main -clean myprog
Above compiles myprogsl as a main program.

newlasm -clean -outdir rtna.dir rtna
mv 8061.sym rtna.dir
newlasm -main -indir rtna.dir -outdir bigprog.dir bigprog
The above first compiles the routines in rtnasl and sends the

A LISP Compiler for the DADO Parallel Computer



35

output to directory rtna.dir  The 8051.sym file is manually
copied into the directory to prevent errors. Finally a main
program is compiled with the 8051.sym from rtna.dir, and it
1s linkedited with object files from rtnadir  The results
are written to bigprog dir

It 1s critical that no extraneous .o files be saved either in the working
directory or the -indir directory. The only .o files should be from
separate comptlation, and in this case the 8061.sym file 1n -indir should
correspond to all the .o files in -indir.

Because the 8051.sym file keeps the .o files synchronized it is important
that it not be unintentionally overwritten. Therefore this file 1s not
written to -outdir. Moveover, before a new 8051.sym file is written, the
old one is renamed to 8051.oldsym for safekeeping.

A LISP Compiler for the DADO Parallel Computer



36

Figure 14-1: UNIX Shellscript to Compile and Assemble a LISP Program

: Cross compiler. Compile, assemble, and do options. 12/5/84 Lerner.
. Modified to provide complete functiorality. 12/14/84 Christensan.

set -k
set symclean="/usri/lerner/8051/symclean®

: Process the -main and the -clean optionms.

. -main makes 1t a main file :
! -clean expunges the symbol table before compilation. :
. Default is -noclean ol
. ~indir the directory where of ths symbol table

: and .o files

. -outdir the directory to place the new symbol table

......................................................
......................................................

. nomain and clean are defaults

for param in $»

do
{ case $param in
-main ) set optiona=‘on main;*;shift ;;
-clean ) set optionb=*(load $symclean) (symclean)®;shift ;;
-indir ) shift;set indir=$1;shift;;
-outdir ) shift;set outdir=$1;shift;;
default )
esac )
done

echo indir is ${indir="'."'}
echo outdir is ${outdir="."}

mv 8051.sym 8051 .0ldsym
cp $1ndir/8061.sym .
echo Remember to put 8051.SYM into $outdir 1f appropriate.

$compiler << FLAGWORD

$optionbd

(dskin "/usri/lerner/8051/onelappassi.sl®)
(rlisp)

in */usri/lerner/8051/mod.red"$

$optiona

asmout °$1°;

in *$1.s51"$

asmend;

A LISP Compiler for the DADO Parallel Computer




37

FLAGWORD

A LISP Compiler for the DADO Parallel Computer




38

asm $1
1f test . != $outdir
then

mv $1.1 Soutdir
zv $1.0 Soutdir
nv $1.s $outdir
mvy $1.1st $outdir

11

it test ${optiona+set)
then asm d$1
17 test . != $outdir
then
nv d$1.0 $outdir
nv d$1.s $outdir
nv d$1.1st $outdir

mv d$1.s $outdir

: Optionally linkedit and
complete processing.

.........................

echo outdir is Soutdir
echo indir is $indir

if test ${optiona+set)
then linkup $1 $indir $outdir
14

UNIX Shcellscript to Compile and Assemble

a LISP

Program

A LISP Compiler for the DADO Parallel Computer



39

Figure 14-2: UNIX Shellscript to Linkedit Cross Compiler Output
: Linkedit add further process an asseambly. 12/5/84 Lerner.

It is important that kernel.o be the first file ir overlay 0.
: STACKTOPWORD was changed from Ox42 to 0x4a on Jan 2, 1985.
. Jan 2, 1985.
. The definition of REG3ITEM to REGSBITEM wvas changed.
: REG3ITEM from 0x24 --> 0x2¢
: REG4ITEM from 0x27 --> 0x2f and so on.

110k -o $3/81 -1 << FLAGWORD > $3/$1.linkmap
.option +maxdc

.pl 85

.start STARTCODE

.define *ONCHIP 0x25 Oxff
.define *CODERGOM 0x26

.define *CODE 0x4000 0x7000
.define *QONCHIPBITS 0 oxft

.define bottom O

.define top 4096

.define markbit 0x80
.define STACKPTR 0x4d
.define STACKTOP 0x72f{f.
.define stackptr 0Oxdd
.define stacktop 0x72f?
.define extrareg 0x7300
.define extraregtop 0x73f¢!
.define NEXTFREE 0x7400
.define STARTFREE 0x7400
.define ENDFREE 0x7A00
.define CSBUFFER 0x7BCO
.define REGLITEM 0x2
.define REG2ITEM 0x5
.define REG3ITEM 0x2¢
.define REG4ITEM 0x2f
.define REGSITEM 0x33
.define REGBITEM 0x38
.define REG7ITEM 0x39
.define REG8S8ITEM 0x3c¢c
.define STACKTOPWORD 0Ox4a
.overlay O
/usri/lerner/ppsl-utils/kernel.o
$3/%1.0

$3/4%1.0

.gearch $2

.search /usri/lerner/ppsl-utils
.end

FLAGWORD

: Creats result files

A LISP Compiler for the DADO Parallel Computer




40

echo Creating $3/$1.linkdump
linkdump $3/81 > $3/$1.linkdump
echo Creating $3/$1.180

amf $3/$1 > $3/$1.180

echo Creating $3/31.1lispsym

; Create f1le of lisp symbols

“ik /\(PUT \(QUOTE [a-zA-Z0-9]+\) \(QUOTE IDNUMBER\) \(QUOTE [0-9]+\)\)/ \
{ print substr($7.1,length($7)-2), substr($3,1,length($3)-1) > \
8051 .sym > $3/$1.1lispsym

egrep 'STARTCODE|DEBUG' $3/$1.linkmap

A LISP Compiler for the DADO Parallel Computer




4l

15. Sample Programs, Compilation, and Execution

The following shows compilation, linkage and execution of several programs
[t demonstates the primitive mapcar with the necessary fastapply and cons
routines, as well as reverse, list, and a recursive factorial function’.

The shellscript called “lasm” performs the entire process The steps of
lasm are shown below in boldface, though in practice the user can ignore
this.  Comments are shown in italics, and commands in boldface.

The following has been compiled with the cross compiler and correctly
executed.  The complete source includes additional support routines.

(DE FUNCD(X) (TIMES2 X X))
(DE FUNCE(X) (PLUS2 X X))
(DE FACTORIAL(X)
(COND ((EQ X 1) 1)
(T (TIMES X (FACTORIAL (SUB! X))))))

(DE DADO_MAINQ)

(PRCG (W Y)
(MAKEFREELIST)
(SETQ Y * (FUNCD FUNCE FACTORIAL))
(SETQ Y (FOREACH Z IN Y COLLECT (MAPCAR '(1 2 3 4 55 2)))
(DEBUG Y) %Probe to see result
(SETQ Y (CONS (NCONC Y "(ABC D)) *(EF G H)))
(DEBUG Y)
(SETQ Y (REVERSE Y))
(DEBUG Y)
(SETQ W 1)

MORE (SETR Y (CONS (FACTORIAL W) Y))
(SETQ W (ADD1 W)) -
(AND (NEQ W 8) (GO MORE))
(DEBUG Y)
(SETQ Y (REVERSE (CONS Y Y)))
(DEBUG Y)
(RETURN Y)))

Figure 15-1: Sample Program

7'I'he factorial is executed recursively.

A LISP Compiler for the DADO Parallel Computer




Figure 15-2: Sample Program Execution

% lasm checker >& checker.log Ezecute lisp cross compiler
Find entry point (startcode) and lest probe (debug)
% grep 'STARTCODE|DEBUG® checker. linkmap

0160 STARTCODE
0689 DEBUG
B /51251 Ezecute the 8051 instruction simulator
filename>chacker Name of linked object code
Loading memory 100 for  5bd Systern prints memory utilization
Loading memory 15d for 400
Loading memory 55d for 400
Loading memory 95d for 400
Loading memory dS5d for 25d
Loading memory le for 63
simBl> pc Give initial program counter ...
Value of pc: 160 as 160.
sim61> Db Give a breskpoint ...
break>689 to see what it does.
simS1> go Off and running!

breakpoint at 689
24355 instructions executed
sim6l> X Ezamine registers
Registers: 02 04 09 24 24 09 24 6¢
pc: 0689 (1673) acc: 24 (36) dptr: 118 psw: 40
Examine int_ram or sfr_ram?
simb1> 2z Print result
Print S-expr (2 cons cells) from> ri
((0x0001 0x0004 0x0009 0x0010 0x0019 )
(0x0002 0x0004 0x0006 0x0008 010002 )
(0x0001 0x0002 0x00056 0x0018 0x0078 ) )
simbl> go
breakpoint at 689
711 instructions executed
sim81> 2z
Print S-expr (2 cons cells) from> ri
(((0x0001 0x0004 0x0009 0x0010 0x0019 )
(0x0002 0x0004 0x0008 0x0008 0x000a )
(0x0001 0x0002 0x0006 0x0018 0x0078 ) ABCD ) EF GH)
simSi> go
breakpoint at 689
3361 instructions executed
simb1> 2
Print S-expr (2 coms cells) from> ri
(H G F E ((0X0001 0x0004 0X0009 0x0010 0X0019 )
(0x0002 0x0004 0x0006 0x0008 0x000a )
(0x0001 0x0002 0x0008 0x0018 0x0078 ) A BC D) )
simS1> x
Registers: 02 04 09 24 f{ffff90 1e 00 {11180
pc: 0689 (1673) acc: 90 (-112) dptr: 116 psw: 40
Examine int_ram or sir_ram?
simbi> go
breakpoint at 689

A LISP Compiler for the DADO Parallel Computer



4176 instructions executed

simb1> 2

Print S-expr (2 coms cells) from> ri

(030078 0x0018 0x0008 0x0002 0x0001 H G F E
((0x0001 030004 0x0009 0x0010 0x0018 )
(0x0002 030004 0x0008 0x0008 0x000a )
(0x0001 0x0002 00008 0x0018 0x0078 ) ABCD ) )

simbl> go

breakpoint at 689

7620 instructions executed

sim§1> 2z

Print S-expr (2 coms cells) from> ri

(((0x0001 0x0004 0x0009 0x0010 0x0019 )
(0x0002 030004 0x0006 0x0008 0x000a )
(0X0001 0x0002 0x0008 0x0018 0x0078 )
ABCD) EF G H 0x0001 0x0002 0x0006 0x0018 0x0078
(0x0078 0x0018 0x0006 0x0002 0x000f HG F E
((0X0001 0xCO04 0x0009 0x0010 0x0019 )
(0x0002 0x0004 0x0008 0x0008 0xC00a )
(0x0001 0x0002 0x0008 0x0018 0x0078 )

A B CD))
simS1> 1
Number instructions to execute before dreak? 1000
simS1> go
4096 instructions executed
simbl> s
0180: 80 fe SJMP code add simSi-step> Ezecution complete.
0180: 80 fe SJMP code add simbl-step>
0180: 80 fe SJMP code add simbl-step>
0180: 80 fe SJMP code add simb1l-step> q
simSi> q

Sample Program Execution

A LISP Compiler for the DADO Parallel Computer




44

Figure 15-3: Complete Source Code of Sample

(ON SYSLISP PLAP PCMAC)

(WDECLARE EXTERNAL WVAR (NEXTFREE NIL NIL)
(STARTFREE NIL NIL)
(ENDFREE NIL NIL))

%% Initially link memory as follows:

X% ==============z==== = = = =
%% | <========== car =========c > | < cdr > |
%% | tagl | bytelhigh | byteilow | tag2 | byte2high | byte2low |
%X | <====== = =====> | <=== address next pair ===> |

%% Later, use 3 first fit blocking compactor as in Madnick.

(COMPILETIME (SETQ SAVEDCOMPFN (REMPRCP (QUOTE CONS) (QUOTE COMPFN))))
(DE NCONS (U) (CONS U NIL))

(DE XCONS (U V) (CONS V U))

(COMPILETIME (PUT (QUOTE CONS) (QUOTE COMPFN) SAVEDCOMPFN))

(DE LISTE (UV W X Y) (CONS U (LISTA VW X Y)))

(DE LIST4 (U V W X) (CONS U (LIST3 V ¥ X)))

(DE LIST3 (U V W) (CONS U (LIST2 V W)))

(DE LIST2 (U V) (CONS U (NCONS V)))

(DE ADD1 (U) (WPLUS2 U 1))
(DE PLUS2 (U V) (WPLUS2 U V))

%% Markbit presumed defined at #0x80 (ie, bit 8)
%% mark marks an itea

(1ap *((!*entry markitem expr 1) %%Machine specific mark routine
{mov (onchip accumulator a) (onchip register r2))
(*ORL A, #markbit; turn on the mark bit.*)
(mov (onchip register r2) (onchip accumulator a))
(!*exit 0)))

%% Unmark unmarks an item

(lap '((!*entry unmark expr 1) %XMachine specific unmark routine
(mov (onchip accumulator a) (onchip register r2))
(*ANL A, # lo ~ markdit; turn off the mark bit.®*)
(mov (onchip register r2) (onchip accumulator a))
(1%exit 0)))

%% Markp checks if an item is marked
(lap "((!*entry markp expr 1)

(mov (cochip accumulator a) (oachip register r2))
("ANL A, #markbit; turn off everything except the mark bit.*)

A LISP Compiler for the DADO Parallel Computer



45

(*jz markpl")

(t+*move (quote t) (reg 1))
(*sjmp markp2*)

("markpl: °*)

(1+*move (quotae nil) (reg 1))
(*marxp2: *)

(1*exit 0)))

X% consitemp returns t if p is in conspace nil otherwise

(De consitemp (p)
(and (leq p (loc endfree))
(geq p (loc startfree))))

X% gc marks the items of p that are in conspace.
%% Items outside comspace get markaed temporarily but are left
%% unmarked when gc finishes.

%% (getmem p) rsturns the car of p
%% (getmem (plus p 3)) returns the cdr of p

(DE GC (P)
(PROG (TEMP BACKPT)
(setq backpt nil)
CARWORD -
(setq p (MarkItem P))
(COND
((OR (ATOM P) (MARKP (getmem P)))
(GO CDRWORD))
(T (SETQ TEMP (getmem P))
(SETF (getmem P) BACKPT)
(SETQ BACKPT P)
(SETQ P TEMP)
(GO CARWORD)))

CDRWORD
(COND
((OR (atom p) (ATOM (getmem (plus P 3)))
(MARKP (getmem (getmem (plus P 3)))))
(cond ((and (not (atom p))
(consitemp (plus p 3)))
(setf (getmem (plus p 3)) (MarkItem (getmem (plus P 3))))))
(GO BACKWORD))
(T (SETQ TEMP (getmea (plus P 3)))
(SET? (getmem (plus P 3)) BACKPT)
(setf (getmem (plus p 3)) (MarkItem (gstmem (plus P 3))))
(SETQ BACKPT P)
(SETQ P TEMP)
(GO CARWORD)))

BACKWORD
(COND ((NULL (unmark BACKPT)))

A LISP Compiler for the DADO Parallel Computer




(de

X%

(DE

%%

X%

%
%%

(DE

%

46

(T (SETQ TEMP P)
(SETQ P BACKPT) -
(COND ((MARKP (getmem (plus P 3)))
(SETQ BACKPT (getmem (plus P 3)))
(SETt (getmem (plus P 3)) TEMP)
(cond ((mot (consitemp (plus p 3)))
(setf (getmem (plus p 3))
(unmark (getmem (plus p 3))))))
(GO BACKWORD))
(T (SETQ BACKPT (getmem P))
(SET! (getmem P) TEMP)
(cond ((not (consitemp p))
(setf (getmem p) (ummark (getmem p)))))
(GO CDRWORD)))))))

markregister(r)
(cond ((not (numberp (getmem r)))
(GC (getmenm 1)))))

Markallocated calls gc to mark all the items that we have
to save.

MARKALLOCATED ()
(prog (stw)

.mark registers

(markregister regiitem)
(markregister reg2item)
(markregister reg3item)
(markregister reg4item)
(markregister reg6item)
(markregister reg6item)
(markregister reg7item)
(markregister reg8item)
(setq stv stacktopword)
mark stuff on data stack’

(FOR (FROM MEMLOC stw (difference (loc stacktop) 3) 3)

(DO (PROGN
(cond ((not (numberp (getmem memloc)))
(GC (getmem MEMLOC)))))))))

Makefreelist makes a new freelist of the unmarked items w“ithin
conspace.

MAKEFREELIST ()
(PROG (MEMLOC OLDMEMLOC)
(SETF STARTFREE (PLUS (LOC STARTFREE) 6))
(SETF ENDFREE (DIFFERENCE (LOC ENDFREE) 12))
(SETQ MEMLOC STARTFREE)
Find first free item
(WHILE (AND (MARKP (getmem MEMLOC)) (LESSP MEMLOC ENDFREE))
(setf (getmen memloc) (UNMARK (getmea memloc)))
(SETQ MEMLOC (PLUS MEMLOC 6)))

A LISP Compiler for the DADO Parallel Computer



47

X% If there is one then start free list at that point
(COND ((LESSP MEMLOC ENDFREE) .
(progn
(SETQ NEXTFREE MEMLOC)
(SETF (GETMEM MEMLOC) 0)
(setf (getmem (plus memloc 3)) 0)
(SETQ OLDMEMLOC MEMLQC)
(FOR (FROM MEMLOC (PLUS NEXTFREE 6) ENDFREE §)
(DO (COND ((NOT (MARKP (getmem MEMLOC)))
(PROGN (SETF (GETMEM (PLUS OLDMEMLOC 3)) MEMLOC)
(SETF (GETMEM MEMLOC) 0)
(setf (getmem (plus memloc 3)) 0)
(SETQ OCLDMEMLOC MEMLOC)))
(T (progn (setf (getmem memloc)
(unmark (getmem MEMLOC)))
(setf (getmem (plus memloc 3))
(uomark (getmem (plus memloc 3)))))))))))
(¢t (debug ’(garbage collection failed no free memory))))))

%% garbagecollect is the function that gets called when garbage
%% collection kas to be dona.

(DE GARBAGECOLLECT O
(MARKALLOCATED)
(MAKEFREELIST))

(DE CONS (U V)
(PROG (NF RV)
(COND ((EQUAL NEXTFREE 0) (GARBAGECOLLECT))).
(SETQ RV NEXTFREE)
(SETQ NF NEXTFREE)
(PUTFIELD NEXTFREE 8 18
%% Update the availablae list (AVL)
(GETMEM (FIELD (PLUS NEXTFREE 3) 8 16)))

(SETF (GETMEM NF) U) %% Store car
(SETQ NF (PLUS NF 3)) %% Point to cdr
(SETF (GETMEM NF) V) %% Store cdr
(RETURN (MKPAIR RV)))) %% Return pair

(DE MAPCAR (L FN) %% TAIL RECURSIVE MAPCAR DEFINITION. USES FASTAPPLY
(COND ((NOT (PAIRP L)) NIL)
(T (CONS (APPLY FN (LIST (CAR L))) (MAPCAR (CDR L) FN)))))

(LAP ' ((!=ENTRY FASTAPPLY EXPR 2)

(!'=PUSH (REG 1)) X% SAVE POINTER TO ITEM.
(!*MOVE (REG 2) (REG 1)) %% GET ADDRESS ...
(1+=LINK GETFNCENTRYPOINT EXPR 1) %% ... OF ROUTINE ...
(1+MOVE (REG 1) (REG 2)) X ... REMEMBER IT.
('=POP (REG 1)) %% RESTORE POINTER ...
('+MOVE (REG 2) (REG DPTR)) %% ... PREPARE TO ...
(!*CLR (ONCHIP ACCUMULATOR A)) b § ] ... JUMP TO ITEM.

A LISP Compiler for the DADO Parallel Computer




48

(*JMP @A+DPTR"))) DO IT.

(LAP * ((!«ENTRY GETFNCENTRYPOINT EXPR 1)
(1*MOVE (WCONST 3) (REG 2))
(1=LINK TIMES?2 EXPR 2)
(1=*MOVE (EXTERNALLGC "#HI SYMFNC*') (ONCHIP RAM DPH))
(!*MOVE (EXTERNALLOC °*#L0O SYMFNC®) (ONCHIP RAM DPL))
(!'+*WPLUS2 (REG 1) (REG DPTR))

(1+EXIT 0)))
(OFF SYSLISP)
(DE DEBUG(X)X) %% Named entry point for debugging.

(DE REVERSE (U)
(PROG (V)
(WHILE (PAIRP U)
(PROGN (SETQ V
(CONS (CAR U) V))
(SETQ U (CDR U))))
(RETURN V)))

(DE GARBAGECOLLECT() (PROG (X) ZZ (SETQ X X) (GO 22)))

(DE FUNCD(X) (TIMES2 X X))
(DE FUNCE(X) (PLUS2 X X))

(DE FACTORIAL(X)
(COND ((EQ X 1) 1)
(T (TIMES X (FACTORIAL (SUB1 X))))))

(DE APPEND (U V)
(COND ((NOT (PAIRP U)) V)
(T (PROG (U1l U2) (SETQ U1l (SETQ U2 (CONS (CAR U) NIL)))
(SETQ U (CDR W))
(WHILE (PAIRP U)
(PROGN (RPLACD U2 (CONS' (CAR U) NIL))
(SETQ U (CDR U)) (SETQ U2 (CDR U2))))
(RPLACD U2 V)
(RETURN U1)))))

(DE NCONC (U V)
(PROG (W)
(COND ((NOT (PAIRP U)) (RETURN V)))
(SETQ W U
(WHILE (PAIRP (CDR W))
(SETQ W (CDR W))) (RPLACD ¥ V)

(RETURN U)))
(DE DADO_MAINQ)
(PROG (W Y)
(MAKEFREELIST)
(SETQ Y * (FUNCD FUNCE FACTORIAL))
(SETQ Y

A LISP Compiler for the DADO Parallel Computer




49

(FOREACH Z IN Y COLLECT
(MAPCAR (1 2 3 4 8) 2))) -

(DEBUG Y) '

(SETQ Y (CONS (NCONC Y (A B C D)) '(EF G H)))

(DEBUG Y)

(SETQ Y (REVERSE Y))

(DEBUG Y)

(SETQ W 1)

MORE (SETQ Y (CONS (FACTORIAL W) Y))

(SETQ W (ADD1 W))

(AND (NEQ W 6) (GO MORE))

(DEBUG Y)

(SETQ Y (REVERSE (CONS Y Y)))

(DEBUG Y)

(RETURN Y)))

A LISP Compiler for the DADO Parallel Computer




50

Figure 15-4: Log file of program compilation, assembly and linkage

% cat checker. log

| |PSL, version 29-0Oct-84

1 1lisp> 1 lisp> PSL Rlisp

2 rlisp>> NIL

3 rlisp>> ASMOUT: IN files; or type in expressions
When all done execute ASMEND;

NIL

4 rlisp>> (!+ENTRY MAKEFREELIST EXPR 0)

('*ALLOC 0)

('+*L0C (REG 1) (WVAR STARTFREE))

(!'*WPLUS2 (REG 1) (WCONST 6))

(1*PUTFIELD (REG 1) (WVAR STARTFREE) (WCONST 0) (WCONST 24))
(1+«L0C (REG 2) (WVAR ENDFREE})

('*WPLUS2 (REG 2) (WCONST -12))

('*PUTFIELD (REG 2) (WVAR ENDFREE) (WCONST 0) (WCONST 24))
(1*MDVE (WVAR STARTFREE) (REG 3))

(!=LBL (LABEL G000S5))

(1 *JUMPWLEQ (LABEL G0006) (REG 3) (WVAR ENDFREE))
(1 *MOVE (WCONST 0) (REG 1))

('*EXIT 0)

(!'*LBL (LABEL G00086))

(1*MOVE (WCONST 0) (MEMORY (REG 3) (WCONST 0)))
(!*MOVE (REG 3) (REG 1))

(1+*WPLUS2 (REG 1) (WCONST 6))

(1«MOVE (REG 1) (MEMORY (REG 3) (WCONST 3)))
(1*WPLUS2 (REG 3) (WCONST 6))

(!*=JUMP (LABEL G000S))

(! *ENTRY NCONS EXPR 1)
(1*ALLOC 0)

(!*MOVE (QUOTE NIL) (REG 2))
(I1*LINKE 0 CONS EXPR 2)

(1*ENTRY XCONS EXPR 2)
(1*ALLGC 0)

(1+MOVE (REG 2) (REG 3))
(! *MOVE (REG 1) (REG 2))
(1«MOVE (REG 3) (REG 1))
(1*LINKE 0 CONS EXPR 2)

(!*ENTRY LIST6 EXPR 5)
(1*ALLOC 4)

(!*MOVE (REG 1) (FRAME 1))
(!'*MOVE (REG 2) (FRAME 2))
(1*MOVE (REG 3) (FRAME 3))
(1*MOVE (REG 4) (FRAME 4))
(1*MOVE (REG 6) (REG 4))
(1*MOVE (FRAME 4) (REG 3))
(1*MOVE (FRAME 3) (REG 2))
(1*MOVE (FRAME 2) (REG 1))

A LISP Compiler for the DADO Parallel Computer




(1*LINK LIST4 EXPR 4)
(1*MOVE (FRAME 1) (REG 2))
('*LINKE 4 XCONS EXPR 2)

(1 *ENTRY LIST4 EXPR 4)
(1%ALLOC 3)

(1«MOVE (REG 1) (FRAME 1))
(1*MOVE (REG 2) (FRAME 2))
(!*MOVE (REG 3) (FRAME 3))
(1*MOVE (REG 4) 728G 3))
(1sMOVE (FRAME 3, (REG 2))
(1*MOVE (FRAME 2) (REG 1))
(1sLINK LIST3 EXPR 3)

(! *MOVE (FRAME 1) (REG 2))
(VsLINKE 3 XCONS EXPR 2)

(!+ENTRY LIST3 EXPR 3)
(!*PUSH (REG 2))

(!*PUSH (REG 1))

(1=MOVE (REG 3) (REG 2))
(!«MOVE (FRAME 2) (REG 1))
(!=LINK LIST2 EXPR 2)
(!1«MOVE (FRAME 1) (REG 2))
(!*LINKE 2 XCONS EXPR 2)

(!'«ENTRY LIST2 EXPR 2)
('+«PUSH (REG 1))

(t=MOVE (REG 2) (REG 1))
(!'*=LINK NCONS EXPR 1)
('=sMOVE (FRAME 1) (REG 2))
(1sLINKE 1 XCONS EXPR 2)

(! *ENTRY ADD1 EXPR 1)
(1*=ALLOC 0)

(1=WPLUS2 (REG 1) (WCONST 1))
(1=EXIT 0)

(!+ENTRY PLUS2 EXPR 2)
(!=ALLOC 0)

(1sWPLUS2 (REG 1) (REG 2))
(1*EXIT 0)

(! +#ENTRY CONS EXPR 2)

(1sALLOC 4)

('+MOVE (REG 1) (FRAME 1))

(1*MOVE (REG 2) (FRAME 2)) .
(1« JUMPNOTEQ (LABEL GO00S5) (WCONST 0) (WVAR NEXTFREE))
(!*LINK GARBAGECOLLECT EXPR 0)

(!=LBL (LABEL G00OS))

(1sMOVE (WVAR NEXTFREE) (FRAME 4))

(!1*MOVE (WVAR NEXTFREE) (FRAME 3))

(!*MOVE (WVAR NEXTFREE) (REG 2))

('*WPLUS2 (REG 2) (WCONST 3))

(t+FIELD (REG 2) (REG 2) (WCONST 8) (WCONST 18))

A LISP Compiler for the DADO Parallel Computer




52

(1+PUTFIELD (MEMORY (REG 2) (WCONST 0)) (WVAR NEXTFREE) (WCONST 8) (WCONST
16)) Coe

(! *MOVE (FRAME 1) (MEMORY (FRAME 3) (WCONST 0)))

(1*WPLUS2 (FRAME 3) (WCONST 3))

(1*MOVE (FRAME 2) (MEMORY (FRAME 3) (WCONST 9)))

(1*MOVE (FRAME 4) (REG 1))

(!*MKITEM (REG 1) (WCONST 9))

(1*EXIT 4)

(! *ENTRY MAPCAR EXPR 2)

(1+ALLOC 3)

(1*MOVE (REG 1) (FRAME 1))
(1*MOVE (REG 2) (FRAME 2))
(1*JUMPTYPE (LABEL G0005) (REG 1) PAIR)
(1*MOVE (QUOTE NIL) (REG 1))
(1+JUMP (LABEL G0001))

(!*LBL (LABEL G0005))

(1*«MOVE (CAR (REG 1)) (REG 1))
(!1*MOVE (REG 2) (REG T!))
(*LINK FASTAPPLY EXPR 1)
(1*MOVE (REG 1) (FRAME 3))
(!*MOVE (FRAME 2) (REG 2))
(1+*MOVE (CDR (FRAME 1)) (REG 1))
(t*LINK MAPCAR EXPR 2)

(1*MOVE (FRAME 3) (REG 2))
(!*LINKE 3 XCONS EXPR 2)

('+LBL (LABEL G0001))

(! *#EXIT 3)

(!*ENTRY DEBUG EXPR 1)
(!*ALLOC 0)
(1*EXIT 0)

(! *ENTRY REVERSE EXPR 1)
(!*PUSH (QUOTE NIL))

(! *PUSH (REG 1))

(!'+LBL (LABEL G000S6))
(!*JUMPNOTTYPE (LABEL G0005) (FRAME 1) PAIR)
(!1*MOVE (FRAME 2) (REG 2))

(! *MOVE (CAR (FRAME 1)) (REG 1))
(!*LINK CONS EXPR 2)

(1*MOVE (REG 1) (FRAME 2))
(1*MOVE (CDR (FRAME 1)) (REG 2))
(!*MOVE (REG 2) (FRAME 1))
(1=JUMP (LABEL GO00S6))

(1*LBL (LABEL G0005))

(1*MOVE (FRAME 2) (REG 1))
('+EXIT 2)

(! *ENTRY GARBAGECOLLECT EXPR 0)
(1*ALLOC 0)

(!*MOVE (QUOTE NIL) (REG 1))
('+=LBL (LABEL GO000S5))

(1=MOVE (REG 1) (REG 1))

A LISP Compiler for the DADO Parallel Computer



53

(!sJUMP (LABEL GO0O0S))

(' *ENTRY FUNCD EXPR 1)
(1*=ALLOC O)

('=*MOVE (REG 1) (REG 2))
(1*LINKE 0 TIMES2 EXPR 2)

(!=ENTRY FUNCE EXPR 1)
(1*ALLOC 0)

(1*MOVE (REG 1) (REG 2))
(t*LINKE 0 PLUS2 EXPR 2)

(1 *ENTRY FACTORIAL EXPR 1)
(1+«PUSH (REG 1))

(1« JUMPNOTEQ (LABEL G0005) (REG 1) (QUOTE 1))
(1*MOVE (QUOTE 1) (REG 1))
(!'+«JUMP (LABEL GO0O1))
('sLBL (LABEL G000S))
(1=LINK SUB1 EXPR 1)
(!sLINK FACTORIAL EXPR 1)
('*MOVE (REG 1) (REG 2))
(!*MOVE (FRAME 1) (REG 1))
(!=LINKE 1 TIMES2 EXPR 2)
('=LBL (LABEL G0001))

(' sEXIT 1)

(! *ENTRY APPEND. EXPR 2)

(!'=ALLOC 4)

(1*MOVE (REG 1) (FRAME 1))
(!*MOVE (REG 2) (FRAME 2))

(1= JUMPTYPE (LABEL G0005) (REG 1) PAIR)
(1«MOVE (REG 2) (REG 1))

('=JUMP (LABEL G00QO1))

(1+LBL (LABEL G0005))

(!*MOVE (QUCTE NIL) (FRAME 3))
(1+*MOVE (QUOTE NIL) (FRAME 4))
(1sMOVE (CAR (REG 1)) (REG 1))
(¢t=LINK NCONS EXPR 1)

(!'*MOVE (REG 1) (REG 3))

(1+*MOVE (REG 3) (FRAME 4))
(!*MOVE (REG 3) (FRAME 3))
(!*MOVE (CDR (FRAME 1)) (REG 2))
('*MOVE (REG 2) (FRAME 1))
('=LBL (LABEL G0010))

(1= JUMPNOTTYPE (LABEL G0009) (FRAME 1) PAIR)
(!*MOVE (CAR (FRAME 1)) (REG 1))
(!'+LINK NCONS EXPR 1)

(!*MOVE (REG 1) (CDR (FRAME 4)))
(!'*MOVE (CDR (FRAME 1)) (REG 2))
(!'=MOVE (REG 2) (FRAME 1))
(1*MOVE (CDR (FRAME 4)) (REG 3))
(!*MOVE (REG 3) (FRAME 4))
(!'+JUMP (LABEL G0010))

(1=LBL (LABEL G0009))

A LISP Compiler for the DADO Parallel Computer



(!*MOVE (FRAME 2) (CDR (FRAME 4)))
(1=MOVE (FRAME 3) (REG 1))

(!'=LBL (LABEL G0001))

(1«EXIT 4)

(!+ENTRY NCONC EXPR 2)

(1*ALLOC 0)

('«MOVE (REG {) (REG 5))

('*MOVE (REG 2) (REG 4))

(1*MOVE (QUOTE NIL) (REG 3))
(1*JUMPTYPE (LABEL GOO00B) (REG 1) PAIR)
(1*MOVE (REG 2) (REG 1))

(1*EXIT 0)

('*LBL (LABEL G0005))

(1 *MOVE (REG 1) (REG 3))

(!+LBL (LABEL G0009))

(!« JUMPNOTTYPE (LABEL G0008) (CDR (REG 3)) PAIR)
(1*MOVE (CDR (REG 3)) (REG 1))

(!'*MOVE (REG 1) (REG 3))

(!=JUMP (LABEL G0009))

(!+LBL (LABEL G0008))

(t*MOVE (REG 4) (CDR (REG 3)))

('*MOVE (REG 5) (REG 1))

(1+EXIT 0)

(1*ENTRY DADO_MAIN EXPR 0)

(1*ALLOC 5)

(1 *MOVE (QUOTE NIL) (FRAME 1))

(!*LINK CONSINIT EXPR 0)

(1*MOVE (QUOTE (FUNCD FUNCE FACTORIAL)) (FRAME 2))
(!*MOVE (QUCTE NIL) (FRAME 4))

('*MOVE (QUOTE NIL) (FRAME 5))

(! *MOVE (FRAME 2) (FRAME 3))

(1% JUMPTYPE (LABEL GOO11) (FRAME 3) PAIR)
(!'+*MOVE (QUOTE NIL) (REG 1))

(1=JUMP (LABEL G0009))

(!'+LBL (LABEL G0O11))

(1*MOVE (CAR (FRAME 3)) (REG 1))
('«MOVE (REG 1) (REG 2))

(1«MOVE (QUOTE (1 2 3 4 B)) (REG 1))
(!'*LINK MAPCAR EXPR 2)

('«LINK NCONS EXPR 1)

(! *MOVE (REG 1) (FRAME §))

(!*MOVE (REG 1) (FRAME 4))

(1=LBL (LABEL G0010))

(!*MOVE (CDR (FRAME 3)) (REG 1))
(!'*MOVE (REG 1) (FRAME 3))

(1= JUMPTYPE (LABEL G0022) (REG 1) PAIR)
(!*MOVE (FRAME 4) (REG 1))

(1=JUMP (LABEL G0009))

(!=LBL (LABEL G0022))

('+*MOVE (CAR (REG 1)) (REG 1))

(1*MOVE (REG 1) (REG 2))

(1'«MOVE (QUOTE (1 2 3 4 5)) (REG 1))

A LISP Compiler for the DADO Parallel Computer



(!sLINK MAPCAR EXPR 2)

(1sLINK NCONS EXPR 1)

(1«MOVE (REG 1) (CDR (FRAME 5)))
(1*MOVE (CDR (FRAME 6)) (REG 2))
('*MOVE (REG 2) (FRAME 5))
(!*JUMP (LABEL G0010))

(!'=LBL (LABEL G0009))

(1sMOVE (REG 1) (FRAME 2))
(1sLINK DEBUG EXPR 1)

(1*MCVE (QUOTE (A B C D)) (REG 2))
(1«MOVE (FRAME 2) (REG 1))

(! *LINK NCONC EXPR 2)

(1+MOVE (QUOTE (E F G H)) (REG 2))
(1=LINK CONS EXPR 2)

('*MOVE (REG 1) (FRAME 2))
(1*LINK DEBUG EXPR 1)

(1*MOVE (FRAME 2) (REG 1))
('*LINK REVERSE EXPR 1)

(!*MOVE (REG 1) (FRAME 2))
(1sLINK DEBUG EXFR 1)

(1+MOVE (QUOTE 1) (FRAME 1))
(1«LBL (LABEL G0008))

(1«MOVE (FRAME 1) (REG 1))
(!*LINK FACTORIAL EXPR 1)
(1+«MOVE (FRAME 2) (REG 2))

(! sLINK CONS EXPR 2)

(1*MOVE (REG 1) (FRAME 2)) .
(1*MOVE (FRAME 1) (REG 1))
('*LINK ADDt EXPR 1)

(!*MOVE (REG 1) (FRAME 1))
(1*JUMPNOTEQ (LABEL G0035) (REG 1) (QUOTE 8))
(1+*MOVE (QUOTE NIL) (REG 1))

(1= JUMP (LABEL G0038))

(!'=LBL (LABEL G003S5))

('*MOVE (QUOTE T) (REG 1))
(!«LBL (LABEL G0035))

(!« JUMPNOTEQ (LABEL G0008) (REG 1) (QUOTE NIL))
(1*MOVE (FRAME 2) (REG 1))
(!*LINK DEBUG EXPR 1)

('«MOVE (FRAME 2) (REG 2))
(!*MOVE (REG 2) (REG 1))

(!+«LINK CONS EXPR 2)

(1+LINK REVERSE EXPR 1)

(1=MOVE (REG 1) (FRAME 2))
(!sLINK DEBUG EXPR 1)

(!sMOVE (FRAME 2) (REG 1))

(1 $EXIT 5)

NIL

§ riisp>> (!=ENTRY INITCODE EXPR 0)
(!'*=ALLOC 0) .

(!sMOVE (QUOTE NIL) (REG 1))

(1 *EXIT 0)

**ss% "SYMVAL® multiply defined

A LISP Compiler for the DADO Parallel Computer



*xxxx ‘SYMPRP' multiply defined
ssxxx ‘SYMNAM' multiply defined
s»xxx ‘NEXTSYMBOL' multiply defined
NIL

6 rlisp>> Exiting rlisp

NIL

7 lisp> Exiting lisp

1 lipes with warnings in this assembly
.pl 65

.start STARTCCDE

.define *DATA 1e If

.define *CCDE 100 If1ff?

.define bottom 0O Low memory to copy when ICE is used
.define top 40986 High memory to copy when ICE used
.define markbit 0xi0 Garbage collection bit

.define stackptr 44 Instial value of hardware stack
.define stacktop 2000 Instial value of data (so0jtware} stack
.define extrareg 2001 Start of cxtraregister area

.define extraregtop 2100 End of extrareqister ares

.define NEXTFREE 2400 Addr of pointer to nezt free cons cell
.define STARTFREE 2400 Start of cons cell 1pace

.define ENDFREE 2700 End of cons cell apace

.overlay 1

kernel.o Definitions of kernel entrypoints

.search /usri/lerner/ppsl-utils

4 Library entries to search

..library /usri/lerner/ppsl-utils/stacks.o Efficient stack routines
.lidrary /usri/lermer/ppsl-utils/subl.o Arithmetic

.library /usri/lerner/ppsl-utils/times2.0 Arithmetic

.library /usri/lerner/ppsl-utils/nkrn.o Kernel entry posints
.rm

.overlay O
dchacker.o Data segment of object code
checker.o Code segment of object code

.search /usri/lerner/ppsl-utils

4 Library entries to search

.library /usri/lerner/ppsl-utils/stacks.o
.library /usri/lerner/ppsl-utils/sudbi.o
.library /usri/lerner/ppsl-utils/times2.0
.library /usri/lerner/ppsl-utils/nkrn.o
.T]

;library /usri/lerner/ppsl-utils/stacks.
;library /usri/lernmer/ppsl-utils/sudbl.o
;lidrary /usri/lerner/ppsl-utils/times2.0
.l1ibrary /usri/lerner/ppsl-utils/nkrn.o

o

.rm

.end
0160 STARTCODE
0160 STARTCODE
0689 DEBUG
0689 DEBUG

% logout

A LISP Compiler for the DADO Parallel Computer



57

A LISP Compiler for the DADO Parallel Computer



16. Acknowledgements

Gerald Q Maguire Jr. commented on an earlier version of this paper.

This work could not have been conceived, let alone completed, without the
support of Salvatore Stolfo (Columbia University) and Gerald Q. Maguire Jr
(Columbia University). It s based on the Portable Standard Lisp (PSL)

compiler developed at the University of Utah [Griss 81 Grniss 82]. Bob
Kessler (University of Utah) provided insights and code at critical points in
the cross compiler development. Gerald Q. Maguire Jr provided key

insights into the compiler, and with Steve Taylor developed the 1dea of
using LISP to program DADO.  They specified the 1dea of maintaining the

symbol table 1n the host processor of the machine. Michael van Biema
made 1mportant design decisions and understood the thorniest parts of the
code generation Issues. Chris Maio 1s studying the question of parallel
debugging, and has suggested the generation of certain code sequences to
make automatic debugging possible. Among the technical staff, Douglas
Gordin integrated the compiler with the DADO kernel, and improved the
8051 machine simulator. Jens Christensen developed the garbage collecton
algorithm  specified by Michael van Biema, and patiently tracked down
obscure bugs. Philip Yuen worked on the kernel software, and developed

techniques for the communication of LISP structures between processors.

or ‘the DADO Parallel Computer

\\,\S? Comptler |
i /



17. References

[van Biema 84]
|IPSL: A Parallel Lisp for the DADO Machine by van Biema M,
M. D Lerner, G Q Magure Ir Columbia University Technical

Report, February 1984.

[Griss 79
A Portable Lisp Compiler by Martin L Gnss and Anthony C. Hearn,
Department of Computer Science, University of Utah. Report
#UUCS-79-113

[Griss 81|

A Portable LISP compiler by Martin L. Griss and Anthony C. Hearn
in *Software - Praciice and Experience,® June 1981, pages 541-605.

[Griss 82]
PSL Implementation Guide by M. L. Grniss, E. Benson, R. Kessler,
S. Lowder, G Q Magure, Jr. and J. W. Peterson.  Department of
Computer Science, University of Utah. May 1982.

[Intel 84] ‘ o ; :
Microcontroller Handbook, 1984 Edition Intel Corporation, Santa Clara,

CA 95951

[Kessler 84]
Peep -- An Architectural Description Driven Peephole Optimizer by
Robert R [Kessler.  Proceedings of the ACM SIGPLAN '84 Symposium
on Compiler Construction, SIGPLAN Noticess Vol 19, No. 6, June
1984 o

[Stolfo 83]
Architecture and Applications of DADO: A Large Scale Parallel
Computer for Artificial Intelligence by Stolfo S J, D. P Miranker,
and D E. Shaw 1n ‘“Proceedings of the Eighth International Joint
Conference on Artificial Intelligence*

[Stolfo 84]
DADO: A Parallel Processor for Ezrpoert Systems by Stolfo S. J, and
D P Miranker 1n  “Proceedings of the 1984 International Parallel
Processing Conference "

[Utah|
PSL Manual, Department of Computer Science, University of Utah

.“. LISP Comp”er f
or the DADo
' Pary|
P

/ CO{”PU{@,



