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ABSTRACT

This is the third paper in which we study icerationms using linear
information for the solution of nonlinear equations. In Wasilkxowski 1787

teraticns

e

and 779] we have considered the existence of globally convergent
for the class of anmalytic functions. Her2 we study che complexity of such
jterations. We prove that even for rthe class of scalar complex polvnomials
with simple zeros, any iteration using arbitrary linear information has
infinite complexity., More orecisely, we show that for any iteration % and
any integer %, there exiscs a complex polynomial £ wich all simple zeros such
thas the first k approximacions produced by o do not apoproximate any solution

of £ = 0 better than a starting approxination Xge This 4ol

(a8

s =ven Lf the

distance betweszn X and che nearest solution of £ =10 is arbizrarily small.
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1. INTRODUCTION

In this paper we continue the study of iterations using linear informa-
tion for the solution of nonlinear equations £ = 0. 1In Wasilkowski (78] we
have proven that no statjionary iteration using linear information can be
globally convergent for the class of scalar analytic functiomns with simple

zeros. In Wasilkowski [79] we have exhibited nonstationary iterations which

are globally convergent for the class of analytic functions with simple zeros
even for the abstract case.

In this paper we deal with the complexity of iterations using linear
information. We prove the surprising resulc that any such iteration has
infinite complexity even for the class 3 of scalar complex polynomials with
siﬁple zeros., To make this negative result as strong as possible we have
chosen a relatively simple class . Furthermore we deal with a very general
definition of information and iteration., Namely, any sequence of linear finite
dimensional operators is considered as possible informaction, and any sequence
of functionals as an iteration. We also do not specify which zero of f is
approximated, and the assumptions concerning the s:arting.poinCS are very weak,
Under these assumptions we prove that for any positive L, any integer k, and
any iteration ; using linear information, there exists a complex polynomial £
having only simple zeros such that the distance between a starting approxima-
tion X, and a nearest zero ~ of £ is no larger than L and the first k approxi-
mation produced by ; do not approximate any zero of f better than Xg- Yote

that L can be arbitrarily small which means that x, can be arbitrarily close

0

to a.
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2. INFORMATION AND ITEZRATIONS WITHOUT MEMORY

For the reader's convenience we repeat the very general definition of
informacion and iteration wichout memory introduced in Wasilkowski [79].
For simplicity, in Sections 2 through 5 we deal only with iterations without
memory. The extension to the general case is given in Section 6.

Let H be the class of all complex polynomials and § be the subset of H
which consists of all polynomials having only simple zeros. Let S(f) denote
the set of all zercs of £, £ € H. Consider the solution of a nonlinear

equation
(2.1) f(x) =0, £ € 3.

To solve (2.1) iteratively we must know something about f., Let
T..i :Hx T - Z be a funcrional which is linear with respect to the first

argument, i.e,, Li(clfl + czfz,x) = ClL'(fl’X) + CZLi(fZ’x)’ i=1,2,...,n.

i
Then the linear information operator T, T = [Ll,LZ,...,Ln] HxC - C:n, is

defined as
(2.2) E,x) = [Ly(f,2)),0,(E,2,),000,L (F,2 )], ¥E €, 7x € C

where z1 = x and

zj = Sj(zl; Ll(f)zl)!Lz(Iszz)!"‘)Lj_l(f)zj_l))

for some functions §j, j=2,3,...,n., Thus any zj depends on the previously
computed information. For brevity we shall sometimes write zj = zj(f). Let

#n be the class of all such information operators.



3. COMPLEXITY OF ITERATTIONS
In this section we define the complexity of an iteration. Let

dist(x,S(f)) = inf |[x-o|
o&S ()
denote the distance between the point x and the set S(f). Let L be a positive

number and let 5 be an iteration without memory. For any f € J and X such

that
(3.1) dist(xO,S(f)) <L,

consider the sequence [xi} generated by 5. For any ¢, ¢ < 1, define

N = Nd5,¢,x0,f) as the minimal integer, L{f it exists, such that
(3.2) diSt()ﬁN)S(f)) S e diSt(xo,S(f))a

and N = + ® otherwise. The number ¥ is determined by how many iterative
steps are necessary.tb reduce the starting error by e.

Let comp(;,:,xo,f) be the tofal cost of computing Xy satisfying (3.2).
We do not spécify exactly what we mean by the '"cost". We merely assume
that the cost of the assignment operation is not zero. Since any iterative

step performs at least ome assignment operation, there exists a posizive

number ¢ such that

(3.3) comp(q‘p,c,xo,f) 2 cN(E,e,xo,f), YP, €,X,Ee

0)

In Wasilkowski [79] we showed there exist globally convergent itesrations,

ie., iterations which for any X, and £ satisfying (3.1) comstruct a sequence

{xi} such that




comp (P, £,x) = + =5 YE €[0,1).

This means that the cost of reducing the starting error may be arbitrarily

large for some polynomials from 3 even if X is very close to a solutiom.



(% .4) ﬂ(h,xo) = 0,
Then there exists 8, 8 € (0,%0, such that h(x0+ﬁ) # 0. For positive @, define
fd(x) = x-x0-8+ch(x).

Let yl(c),yz(c),...,yr(c) be the zeros of fc where r is the degree of h. From
the theory of algebraic functions (see e.g., Wilkinson [63]) we know that
yl(c) # xo+8 and yl(c) - x0+6 as ¢ tends to zero. It is possible to show that
the yi(a) are simple zeros and |yi(c)l - 4+ @ as g goes to zero, i 2 2, Thus,
for sufficiently small o, £ € J(xy) and £_(x,) # 0. Due to (4.4),

ﬂ(fc,xo) = ﬂ(x-xo-ﬁ,xo) which means that
X, = 9 (X UE X)) = @, (x4, R(x=%4=8,%))

does not depend on o, 1 = 1,2,...,k. Note that there exists a small o such

that

(4.5) {xo,xl,.--,xk} n {’1(°1)'y2(°1)""’yr(°1)} = 8.

Indeed, for small o we have |y (o) > max Ixil for j= 2,3,...,r. Since

] 0s1sk
yl(c) takes infinitely many values as o tends to zero, there exists 9 such
that y, (9;) # x;» 1 = 1,2,...,k, vhich proves (4.5). Taking now f = f_, we

1
get £ € 3(x0) and xo,xl,...,xk £ S(f). This completes the proof of (4.3) for

n=1.

Suppose now by induction, that (4,3) holds for n < L We want to show
that (4.3) also holds for n = n0+1. On the contrary assume that there exist
T €
“q Sy

Q* * * J
A = [Lpelpseeeslyls
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Then for any f € A f(xo) # 0 and

3)
T* 3 * . * * N
(4.9) T Cozg (D) £ Hafly (5527 (0),1y (1205 ee L ()]
For an information operator Tl and £ € §, let
B() = (o € € :vh € ker s h(a) = 0}

where ﬂf is a linear operator defined by (4.1). We need the following lemmas.

Lemma 4.1

If A, # f then for any f € A,

*
S(6) NBA_y ) # 8-

Proof
From (4.9) there exists a polynomial §, £ = {(f) € H, such that

* *
Ln(g,zn(f)) = 1 and { € ker ﬁn_ Define

1,f°
8G(X) = £(x)+cf(x)

for ¢ > 0. Since f has only simple zeros, then as in the proof for n = 1, we

can conclude that g, has.only simple zeros which tend to the zeros of £ and

to infinity (if the degree of f is less than the degree of () as o goes to
zero. Thus, gc € 3(x0) for sufficiently small ¢. Note that

o %

Lj(gd,zj(f)) = Lj(f,zj(f)) for j = 1,2,...,n-1 which means zj(f) = zj(gc) for

j=1,2,...,n. Thus gc € AZ. Since X € S(f), then x, also does not belong

0

to S(gc) for sufficiently small o, say ¢ € (0,c Thus g, € Aqs

0)-

*
gy = 1,(0) € [1,k] :xio(gc) = cpio(xo; N (850%g)) €5(g), ¥ € (0,0
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1 if s = 1,

*
L (Ci’zj (£)) =

js S.
0 4if s & i.
We define .
-
ve = Ljs(f’zjs(f))cs
and g=]
*
A, = {f €3(xp) 5w NBR_; o F 8L
Lemma 4.2
(1) Ay Ca,,

(11) 1f A, # f then for any f €4,
- *
Sw) NB(R_, ) S S(H).

Proof
Without loss of generality we can assume that A3 is nonempty. Llet f € A3

*
be arbitrary. Then hf H f-wf € ker !Ttn and from Lemma 4.1, there exists

*
a €S(H) N B(mn-l,f

*
S(wf) N B('.'ln_l’f) is nonempty. Thus, £ € A, which proves that Aq c A&'

-1,f
). ‘muis, wf(a) - f(a)-hf(a) = 0 which means that

To prove (i1i), let f be an arbitrary polynomial from A,. There exists

&4
* *
o € S(vf) n B(L'ln_l’f). Since hf € ker an-l,f’ f(al) = “’f(al)"'hf(al) =0
which means that o € S(f). Thus, Lemma 4.2 is proven. |

%
Note that knowing '.'tn.l(f,xo) we can verify whether f belomgs to Ai’

- +* - * -
i = 2,4, Furthermore for any f € S(xo) with 'Jln_l(f,xo) = mn_l(f,xo), f € Ay

L1££ £ €A, 1= 2,4. For L= 1,2,..,k, define



4.8

Proof

From Theorem 4.l, there exists a polynomial g, g € 3(x0), such that
= = = . * . =
XgoX) = %Xp(8) .- 70 (@) €S(8). let T= {1 €(Lk]:x (8) #x}. 1£1=4

then for £ = g we have
0 = dist(xy,S(£)) = dist(x (£),S(£)), ¥i = 1,2,....k,

which completes the proof.

Suppose therefore that I f ﬁ. Consider a polynomial w of the form

n
46.11) w(x) = r_W(x-xi)m(x-xo) ZE ajxj, m = max{3n,deg g},
igx

j=0
satisfying

(%.12) ﬂg(w) = 0,

Note that (4.12) is equivalent to the following system of n homogeneous linear

equations
n

(4.13) E: ajLs([;J(x-xi)m(x-xo)xJ,zs(g)) =0 for s =1,2,...,n.
j=0 '

Since (4.13) has more unknowns than equations, there exists a non-zero polymomial

satisfying (4.11) and (4.12). Consider the factorization of w,

) P, T S,
0 i J
w(x) = (x-X%.) I er) | k»y)
¥t P g

for some r, r < n, $138,s+0.,5_ and py, p, for i € I where yj ~ x, for any i and j.

Due to (4.11),

(4.14) Py S n+l and Py 2 3n for L € 1.



min dist(x, (£),S(H) = dist(xg,S(£)) 0
i=0,1,...,k

which completes the proof.




5.2

diSt(xio’S(fO)) S e dist(xo,s(fo)) < dist(xO,S(fo))

which contradicts (5.4). Hence Theorem 5.1 is proven.

From Theorem 5.1 and (3.8) follows

Corcllary 5.1

For any positive L, any sequence of linear information operators T = {'Ri],

any iteration without memory 5 = [(pi] 63(?1) , and any starting point Xy e C,

Cmp(a, ‘)xo) =+ ®, Ve < 1.




6.2

(6.4) dist(xN,S(f)) S e dist(xO,S(f)),

and N = + @ otherwise. Let comp(E, e,xo,x_l,...,x_m,f) be the cost of computing

xN. Let L, L > 0, be a given constant. Then

(6.5) N(a,c,x 23X 13e0esX ) af sup N(E,e,x 23X Jye00e,X L)
0’"-1 - 0°"-1 -m
fQ(xo)

where S(xo) is defined by (3.6). Similarly, let

(6.6) camp(a,c,xo,x CRLREE ) ¥ sup comp(c-p,e,x 23X 1seeeyX ).
- -m 0’"-1 -
£ (xy)

As before, there exists a positive ¢ such that

(6.7) comp(;"’xo’x-l"..’x-m) 2 CN(C-P’stonxls'v':x_m), V;,e,xo,x_l,...,x_m.

By a technique similar to the proof of Theorem 5.1 it is possible to prove

Theorem 6,1

For any positive L, any m, m > 0, any sequence of linear information
operators with memory Ft, any iteration ;, B € @m'('.‘—l) and any distinct starting points
XX

-1""’x-m € C

comp(?p,c,xo,x_l,...,x_m) = N(a,e,xo,x_l,...,x_m) - 4o we<l, ]

Remark 6.1

In practice one often wants to reduce a residual error, i.e., to find a point

’—‘k such that

(6.8) [£(x)| = e¢|£(xy) |



7.1

7. OPEN PROBLEMS

In this section we pose a number of open problems which are relevant to
the questions studied in this paper.

In Theorem 6.1 we prove that for any m 2 0, any linear information

T = {ﬂi], T, €W , any iteration 5 = {@i} € Sm(?b and any integer k, there

i n,,m
i

exists a "difficult' polynomial £, £ € S(XO), i.e., a polynomial which requires
at least k+1 iterative steps to reduce the starting error dis:(xo,s(f)). Let
P = P(R,9,k) be the set of all such difficult polynomials and let d = d(R,wo,k)

be the minimal degree of such polynomials, i.e.,

d 4 min deg £.
£2P
Problem 1
Find d as a function of m, k, and nl,nz,...,nk.

It can be shown that
k

(7.1) d < (k+2) (2+Zni) + k.

=]

In general, this bound is not sharp. For instance, for a stationary iterationmn,

(7.2) d < (k+1) (nl+l) + k.

By a stationary iteration we mean an iteration which constructs a sequence of

approximations by the formula

(7.3) X" @l(xl,xi_l,...,xi_m; ﬂl(f,xi,xi_l,...,xi_m))

for some 'JLL € ykn o and 9 € E?(‘Rl).

1!



Problem &4

(1)

(11)

7.3

For a given nonincreasing function g, g : {0,1) = R, find informa-
tion % and an i:eration‘a using.ﬁ such that the complexity

comp(;,c,xo) < g(e¢) for any ¢ € [0,1).

Characterize the class of all information for which the complexity

of finding x, is finite.
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