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ABSTRACT.  All known globally convergent iterations for the solution of a nonlinear operator equation flx) = 0
are cither nonstationary or use nonlinear information. It is asked whether there exists a globally convergent
stationary teration which-uses hinear information It 1s proved that even if global convergence 1s defined in a
weak sense, there exists no such iteration for as simple a class of problems as the set of all analytic complex
funcuons having only simple_zeros. It is conjectured that even for the class of all real polvnomials which have
real simpie zeros there does not exist a globaily convergent stationary steration using lincar information.
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\. Introduction

Suppose we solve a nonlinear operator equation f{x) = 0 by an iteration which constructs
a sequence of approxiumations {x,}. For most convergence theorems it is assumed that fis
sufficiently smooth and starting points are “sufficiently close™ to a solution a. In practice
it is very hard to venfy the second assumption One theretore wants to use iterations which
are globally convergent.

All known globally convergent iterations are either nonstationary or use nonlinear
information. For instance. Laguerre's iteration (see. e g.. Ralston and Rabinowitz [1]) is
globally convergent for the class ot all real polynonuals having only real zeros. However
this iteration uses the degree of the polynomial whose zero is approximated. This means
that Laguerre’s iteration uses nonlinear informaion (see Section 6). An example of a
nonstationary iteration using linear information which 1s globally convergent for analyuc
operator equations may be adopted from Traub and Wozniakowski [4]. This will be
reported in Wasilkowski [6].

However, most commonly used iterations are stationary and use linear information
Therefore 1t is important to know whether there eust globally convergent statiwonary
tterations which use hinear informauon In this paper we prove that for as simple a class of
problems as the set of all analytic complex functions with simple zeros, there exists no such
iteration. We conjecture that the same negative result holds even for the class of all real
polynomials having real simple zeros.

We summanze the contents of the paper. In Section 2 we remind the reader of the
definiions of information and stationary neration without memory. In Section 3 we discuss

Permission to copy without fee all or part of this matenal is granted provided that the copres are not made or
distributed for direct commercial advantage. the ACM copynght notice and the title of the publication and 1ts
date appear. and natice 1s given that copying is by permission of the Asswiatuon tor ¢ cmputing Machinery. 1o
copy otherwise, or to republish, requires & fee and. or specific permussion

Thus rescarch was supported 1n pant by the National Science Foundation under Grant MCS 75-222-55 and the
OfTice of Naval Research under Contract NOO014-76-C-0370, NR 044.422

This work was done while the author was on leave from the University of Warsaw

Author’s present address: Depaniment of Mathematics. University of Warsaw. P K LN 8p 850.00-901 Warsaw.
Poland

© 1980 ACM 0004-5411/80/0400-0263 $00 7S

Journal of the Amocistion for Computing Machinery Vol 17 No 2 apnl 198 pp 16) 268

cucs-1-3-80




264 G. W. WASILKOWSK!

the concept of global convergence. In Secion 4 we show that no stationary iteration
without memory which uses linear information can be globally convergent for the class of
all analytic complex functions In Section $ we extend this result to all stationary iterations
with or without memory using linear information. In Section 6 we pose a conjecture that
for the class of all real polynomials with real simple zeros, there does not exist a globally
convergent stationary iteration using linear information.

2. Stationary lterations Without Memory

We recall the definition of informaiion and stationary iteration. (See Traub and Wozni-

akowski [S].) For the reader’s convenience. 1n Sections 2 to 4 we deal only with une-point

iterations without memory. The extension to the general case is given in Section 5
Consider the solution of a nonlinear scalar equation

Axy=0 2.1)

for f € &, where Fis a subset of a space H of functions f: D, C C — C To solve (2.1)
iteratively, we need to know something about f. Let L,: D;, C H x € — C be a functional
which is linear with respect to the first argument; i.e.,

Licfi + cofs, x) = oL, (fi, x) + .LA fo, x) whenever x€ D, N D, i=1.2... ,n
Consider the linear information operator A4, .4 :D, C H X C— C". defined as

. - (L f. x), La( f, %), - . .. La(f, X)) for x€ D,
AU x) {undeﬁned otherwise, 22)

foreveryf€ H.
Let xo be an approximation of a solution of (2.1). Let ¢: D, C C**' — C be a functional.
We construct the sequence of approximations x, by the formula

Xeer = @{x. . (S, x.)). ’ (2.3)

The functional ¢ is called a one-point siationary iterative operator withour memory using a
linear information operator .+. For brevity @ is called an iteration. Let (.4 ) be the class of
all such iterations.

Note that most iterations use values of f and its derivatives. A linear information
operator is a generalization of this. For example, the information operator .4 used by
Newton iteration,

_
[y
is A/, x) = [fAx). f'(x)]. This operator is linear and ¢ € G(A").

Xie1 = X,

3. What Do We Mean by Global Convergence?

Let # be the class of all functions f. f:D; C € — C analytic in D; and having only
simple zeros. Let S() be the set of all zeros of f.

Consider any iteration ¢ € ®, where ® is the class of all stauonary iteratons without
memory which use a linear information operator .4”per iterative step; ie., @ = U, &(A4").

Which properties should ¢ have to be called a globally convergent iteration? To moti-
vate our definition, consider first the problem f(x) = 0 where f is defined in D, =
{x:]lx — a] < R(f)} and a is its unique simple zero. Suppose we apply ¢ to this prob-
lem. Let r(f. ¢) be the maximal number such that for any starting point xo satisfying
[xo = a| < r(f, ). the sequence x,., = @(x... ¥ (f, x))) is convergent to a. Then the ball
{x:]x — a| < r(f. @)} is called the ball of convergence of ¢ for f. Of course, r(f, p) depends
on R(f) and. in particular. r(f, ¢) = R(f) Suppose there exists a positive constant ¢ =
o) such that r(f. @) = cR( f) for any /. Then ¢ enjoys a type of global convergence, since
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the ball of convergence has radius proportional to the radius R(f) of the domain D.
However. for problems with R(f) = +x. we get r( /. ¢) = +x. which means that any
chotce of a starting point x, yields convergence This seems to be too strong. For R(f) =
+o we would like to have r(f, ¢) large but not necessanly equal to infinity This is the
mouivation of the following: Let K. L be two given constan’ such that X = 0and0< L
< +x. Define Ry = min{R(f). K|a| + L}. Now the existence of a positive constant ¢ =
o(¢) such that r(f. ¢) = cR, implies a type of global convergence of q. This discussion
shows that we should compare r( f, ¢) with R,

If f has more than one simple zero. we proceed as follows. Let dist(a. 8D/} be the
distance of a. a € S(f). to the boundary aDy of the domain D;. Define

"Re(a) = min{dist(a. aD)). K|a| + L}, (K20.0< L=< +ex)
Note that if S(f) = {a}. then R{a) = R,. Let
Bb.f)= U (x:|x —a|j<b Rya)}.
N

where b = 0. For any iteration ¢, ¢ € ®(.+ ), we define a number (@) such that

(1) for any f € ¥ and for any starting point xo € B(c{). /). the sequence x,}. x.., =
@lxi. v (f x)). is well defined and lim,_.. x, € S( /). and

(1) for any € > 0, there exist a problem /'€ Fand a starting point x, € B(c(g) + €. f)
such that either the sequence {x,} 1s not well defined or lim,_.. x, &€ S(f).

Note that for any iteration, ¢(@) € [0. 1}. The set B(c(g). f) is a convergence domain of
¢ for the function /, since taking any starting point xo € B(c(g). f) we get convergence of
{x.}. Note, however, that we do not specify which element from S(f) 1s the imit of {x.}.

Definition 3.1.  We shall say that an iteration g. ¢ € ®. 1s globally convergent for the
class F ff () >0. O

Definition 3.1 imposes only a weak condition on ¢ However. we shall show that for anv
iteration from @, o(¢) = 0. This means that even in the sense of Detinition 3.1 there exists
no globally convergent stationary iteration using linear information for the class #

4. Main Result
THEOREM 4.1.  No iteration @ from @ is globally convergent for the class #.
PrOOF. Suppose there exist . + 1D, — C"and ¢ EP(t ) withc = c(q) > 0 Let
l if cK=1

cL
= — K<l
a [Z(I-CK) f K<

Define flx) = x — a. Then f € # S(f) = (a}. and R(a) = K|a| + L. Let x, = 0. Since
xo € B(c. f) = {x :|x — a] < cRAa)}. the sequence {x.}. x..s = ¢(x.. 4]/ x.)). tends o a.
a % 0. Thus there exists a unique integer k. & = 1. such that

a a
IXoI.IX\l ..... IK‘ 1|<; and |‘A|2; (41)
Consider a polynomial w of the form
n-k
wix)= Y ax'"’ (4.2)
=0
which sausfies
V(- wex) = (Y x) for ;=0.1... .. k-1 43
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This is equivalent to the following homogeneous sysiem of n-k linear equations:

L ]

alfx"' x)=0 for s=1.2. . n and j=0.1,. k-1 (4.4)
J

10

Since we have more unknowns than equations, 1t 1s obvious that there exists a nonzero
polynomial w of the form (4.2). Then there exist positive integers 7, | Sr=<nk + |, and p.
| = p<r and nonzero z,.y. . . .. 2. such that

wx) = xP(x — 2,.4) -0 (x = 2,)

For ¢ > 0. define

!
S(x) + - w(x) if ]x|<g.
ﬁ(x) = € 2
undefined if |x|= g
From the general theory of algebraic functions (see. e.g., Wilkinson [7]). it is known that
for sufficiently small « there exist p sumple zeros Ay(e). .. ., Ay(e) of f, such that
1.p
= |2 /O
Ade) } Py © + O(&). 4.5)

where ¢, is the ith complex root of the equation ¢” = ¢ Note that lim, ., A(¢) = 0. Vi
Therefore, for sufficiently small €. we get f, € # A(e), Ade). .... Afe) € S(f.) and
lim, .o R;(A(€)) = min{a/2. L}. Then the starting point yo = xo = 0 belongs to B(c, f.).
This means that the sequence {v). vi.i = @(v; 1T/.. v)). is well defined Obsene
that ¥ (fo. x;) = .4 fop) forj=0.1, . k — | and yo = xo. Therefore yoi = x4y =
Plx. A foxNfori=01 . . k-1 From (41) we know that |ys| = |xs| = a/2. which
means that y, does not belong (o the domain D, Thus .4 (/.. y) i1s not well defined (see
(2.2)). which contradicts o(g) > 0. O

Theorem 4.1 says that there exists no globally convergent iteration without memory
using a linear information operator for the class # of analytic complex functions having
only simple zeros. This negative result also holds for real problems. Let # be the class of
real functions f, f: D; C R — R. analytic in Dy and having a unique simple zero. Consider
real information operators, i.e.,.¥{f. x) € R", ¥/ € &, Vx € D,

TueoreM 4.2, For any real linear information operator .4 there exists no ieration ¢
from ®(.4 ) which is globally convergeni for the class #,.

ProOF. Suppose that for a real linear information operator . ¢, .+: D, — R”, and for
P EP(4). c=c(q) >0 Let f{x) = x — a be defined as in the proof of Theorem 4.1. Since
xo = 0 € B(c. ). the sequence {x,}. x.«; = @(x.. 4 (f. x,)) tends to a » 0. Therefore

x;=@0. 4 (f.0) %0 (4.6)

Consider now a real polynomial w.

wix) =¥ ax’"" 4.7
satisfying
S - w. 0)= 1 (£ 0) 48)

The equation (4.8) 1s equivalent to the following homogeneous system of # real linear
equations:

n

Yalix¥' x)=0 for s=1,2, ..., n. (4.9)

=0}
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It is obvious that there exists a nonzero real pelvnormial w of the form (4 7) and sausfying

(48). Let w(x) = a¥(x — 1) - (v —zgwherel=r<2n+l I=p=<rand: #0
fori=p+ Lt .. . r Owingto (4 7). pisodd
Define
| -~ -
mm{‘Tll l_p;'l l.’—[} f p<r
Tl )
le otherwise.
and

I u .
fux) = j(,x)-i-;w(x) it x| <T,
undefined f jx|=T,

for € >-0. For sufficiently small €. the solutions of £,(x) = 0 1n the complex plane are given
by (4.5). Since p is odd. only one of A,(¢€) in (4.5) 15 real. Thus /£, has a unique simpie real
zero, say A(e). Since A(€) tends to zero with € lim, o R/(A(€)) = min(T", L}, and xo = 0
€ B(c. f.) for sufficiently small € Therefore the sequence {1}, x.or = g(x, . ¥(fi. 1)) is
well defined. Observe that

X m @04 (fi 0)) = (0.8 (L O)).

Owing to (4.6) x;, € D; which means that x, s not well defined. This contradiction ends
the proof. O

S. The General Case

In Section 4 we showed that there exists no globally convergent one-point stationary
iteration without memory which uses linear information. In this section we prove the same
result for multipoint 1terations with or without memory.

Let Li. L, ... L, be functionals defined as in Section 2. Then a multipoint linear
information operator % D. C H X C— C". is defined as

N (foxy=[Ldfoay L fozn),  lalf )] YfEH Vi€ D, (5.1

where
n=x and e = healsc Ll fo) LS ) L Lal Sz,
k=12 .n-1 (52
for cenain functions &2, &. .. .. & Note thatif & = x. k = 2, . . n, then_t is a one-point
linear information operator as defined in Section 2.
For given integer m. let 1. v 4. ... x ,, he disunct approximations of a solution of
Jix) =0, f € # Suppose we construct a sequence of approximauons by the formula
X = @X X V(XD o) (X)) (53)

where ¢: D, C €C™*""*" — €15 a functional. Then ¢ is called a mulupownt stationary
tteration operator with memory \{ m = | and without memory \f m = QO using a linear
informauon operator .3 For brevity ¢ 1s also called an treration. Let @, ¢ ) be the class of
all such werations.

For particular.+” and m we get commonly used iterations. For instance. m = |. .4 (f. x)

= [fx)). and

X — ¥
Py b L RS (o) = x = g fix)

1s the secant iteration. An example of two-point stationary iteration without memory is
provided by Steffensen iteration (2]. which is defined as follows:

A foxy=[fla) izl where -, =x and =z - fln)
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and

L e o 1T L
e v (foxy = ﬂ—“——:') "ﬂta)l(:l)‘
An example of a multipoint method with memory can be found in Traub (3,
pp. 185-186}.
We extend the definition of global convergence as follows. Let. " be a one- or multipoint
linear information operator and let m be an integer. Recall that B(b, f) is defined in
Section 3. For any iteration ¢, ¢ € Pmi.+ ). define ¢ = (@) as 2 number such that

(i) for any f € ¥ and any choice of distinct starting points Xo, X-i, ..., X-= {rom
B(c. /). the sequence {x). Xxier = @(x,, Xomio -0 Xeews A(f) X)), H7(fo x020), -
H(f, x.-m)) is well defined and lim .. x, € S(f).

(ii) for any € > O there exist f € F and distinct points Xg, X-, .... X-m € B(c + €. f)

such that either the sequence {x.} 15 not well defined or im,_.. x, &€ S(f).

Definition 5.1, We shall say that an iteration ¢ is globally convergent for the class #
ife(p)>0. O

Now let ® be the class of all stationary iterations with or without memory which use a
linear information operator .V i.e., ® = U, Un ®u(-¥").

THEOREM S.1.  No iteration @ from & s globally convergen: for the class ¥

Proor. Apply the proof of Theorem 4.1 with starting points

J

XV'=4(m+ 1))

mumn-a L), j=01....m

and with n-k in (4.2) replaced by n(m + k). O

Theorem 5.1 says that knowing only the value of a finite number of linear functionals
on /. it is impossible to find a globally convergent stationary iteration for the class #
Therefore, if we want 1o solve f{v) = 0 by u stationary iteration. we have to assume that the
starung points are sufliciently close to a solution. By contrast it 1s known that for some
nonlinear information operators there exist globally convergent stationary iterations. An
example is provided by Laguerre iteration for the class of all real polynomials with simple
zeros. Also, for linear information operators. there exist globally convergent nonstarionary
iterations for the class .# An example may be adopted from Traub and Wozniakowski
[4], where global convergence of the sequence of interpolatory iterations /s is proved. For
this case, the kth iteration requires the knowledge of k linear functionals of /. This will be
reported 1n Wasilkowski |6}.

6. Final Comments

In Section 5 we showed that no stationarv iteration using linear information is globally
convergent for the class of analytic problems having simple zeros. The existence of globally
convergent iterations depends on the class .# of functions whose zeros we wani 1o
approximate. For some simple classes there exist well-known globally convergent stationary
iterations which use linear information For example. if .# is the class of real funcuons
/: R — R whose first derivative is monotenic, then Newton iteration is globally convergent.

For many mteresting classes the existence of globai convergent iterations 1» unknown.
Even for the class 11 of all real polvnomials with simple real zeros, this problem is open.
All known globally convergent iterations for the class [1 are erther nonstationary or use
nonlinear information. For example. Newton iteration with a suitably chosen starting
point. Bernoulli's method, and Laguerre neration are globally convergent for [1. (See. e.g..
Ralston and Rabinowitz [1].) Either implicitly or explicitly these iterations use the degree
k of the polynomial whose zero is desired
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Note that the degree & is nonlinear information. Indeed. suppose there exists a function
g (in general nonlinear) such that & = g(x; .17(f. ¥)) where .t is a mulupont hinear
information operator. For any x, there exists a polynomial w of degree greater than one
such that .+"(w, xo) = 0. Taking fi(x) = x + (l/epw{x). we get . 4 (fi. xo) = .4 '(x. xy) and
J € IT for sufficiently small . Therefore g(xa, . 4 (x. X0)) = g(xa,. t (f.. xa)). but the degrees
of the polynomials x and fi(x) are different. This contradicts the assumpuon k =
glx..¥'(f, x)), with .4 linear.

We believe that any globally convergent iteration for [T has to be nonstationary or use
nonlinear information. Therefore we propose the following conjecture.

Conjecture 6.1. There exists no globally convergent stationary ilerauon using linear
information for the class of all real polynomials with simple real zeros. O
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