A Survey of
Tree-Walk Evaluation Strategies

for Attribute Grammars

by

Daniel Yellin

CUCS-134-84

Computer Science Department
Columbia University
New York, New York, 10027

Séptember 1984

Figure
Figure
Figure
Figure

Figure 3

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

P e O 00~y
D = O °* v s .

[
[

*s @0 o0 ae as

—
e

O i L3 1D
e oe -9 e

o]
ee e

L]

o oo

k9 k9 kO LI kI 2D kD &3

w

List of Figures
An attribute grammar ezample
A semantic tree for the atiribute grammar of [igure 1
The semantic tree of [igure 2 with dependency arcs drawn in
Dependency and augmented dependency graphs
An atiribute grammar for transiating mathematical expressions into post-fiz
Polish notation
A semantic tree for the grammar of figure 5
Two different computation sequences for the semantic tree of figure 2
An gttribute grammar and pass sssignment PN
The pass-oriented evaluator for the attribute grammar of figure 8
An attribute grammar not evaluable by an alternating pass strategy
The unique semantic tree that the attribute grammar of [igure 10 derives
An algorithm for assigning pass numbers to attridbutes
Two attridutes not evaluatle on the same pass
A Dp graph and protaocols for Xp X, and X»

The acyclic graph Dp[&XO,EXl,&Xd and the c;clx'c graph DP/dXMXM’Xd T

The pseudo-protocol creation algorithm

Pieudo-protocol graphs formed by the algorsthm of figure 16

The cyelic augmented dependency graph Dp (5 4,54, gf

An attridbute grammar not evaluadle by a uniform strategy

A protocol graph obtained from a pseudo-protocol graph uasing the greedy
strategy

The IOy closure algorithm

Sets of protocols for the symbols of the attridute grammar of figure 19

The multi-protocol evaluator constructed for the grammar of [igure 19

A semantic tree for the attridbute grammar of figure 19

The protocol closure algorithm

The function COMPUTE _ PROTOCOLS

An augmented dependency graph formed from a set of strings

The semantic tree T constructed from the augmented dependency graph

DP/GXOIOXI""’IOXTIP/

O 00 B O o

10
13
18
19
21
21
a9

-

a9

-

24

29
30
30
31

34
38
38
40
41
45
47

Abstract

Since the time that Knuth's seminal paper on attribute grammars (AGs) first appeared
[24], the AG formalism for specifying the tranmslation process has received much attention
and has become the basis for several real translator-writing systems (12, 15, 19, 20, 25]. It
seems to be a promising vehicle for automating the construction of compilers, in addition to
its various other uses currently under investigation which includes syntax directed editors (5],
attributed parsing [18, 39), interactive proof checking [35], waveform analysis [30], natural
language translation into SQL data base code [31] and SQL data base code translation into

natural language [27].

Given a sentence in a source language, an AG specifies a unique semantic tree for that
sentence. The translation is found by evsluating the attribute-instances of the semantic tree.
Upon completion, certain distinguished attributes of the root contain the translated string.
Due to the declarative nature of the AG, there is no unique way to evaluate the semantic
tree. Determining strategies to evaluate the semantic trees of an AG has been the focus of
much discussion in the literature. [t has both theoretical and practical importance: Bad
strategies of evaluating semantic trees can be very inefficient in terms of both space and
time making AGs less attractive for real translator-writing systems.

In this paper we survey static tree-walk evaluator strategies that have been developed for
evaluating semantic trees. We compare the evaluators to each other on the basis of several
performance criteria. We develop the notion of optimality of an evaluator and determine
how close a given evaluation strategy comes to optimal. By considering different strategies
we find a aatural taxonomy of AGs: as not every AG will give rise to semantic trees
evaluable by a given strategy S, we can define the class of S-evaluable AGs as exactly those
AGs whose semantic trees are evaluable by strategy S. In this way we will discover a
hierarchy of strategies of increasing power, the strongest strategy being one capable of
evaluating the semantic trees of any well-defined AG.

In section 1 we present a brief introduction to AGs and set forth some terminology to be
used in the rest of the paper. In section 2 we introduce the general idea of tree-walk
evaluators and we formalize the concept of an optimal tree-walk evaluator for a semantic
tree. In section 3 we define am especially useful class of evaluators called static evaluators.
In the next three sections we survey three types of static evaluators: pass-oriented
evaluators, uniform evaluators and multi-protccol evaluators. In section 7 we summarize our
conclusions and review the taxonomy of AGs we have developed. The appendix presents the

proofs of two NP-complete problems cited in the survey.

1. A Brief Introduction to Attribute Grammars

Attribute grammars were first proposed by Knauth [24] as a way to specify the semantics
of context-free languages. A contezt-free grammar is a 4-tuple (N,L,S,P), where N is a set of
non-terminal symbols, £ is a set of terminal symbols, S € N is the start symébol, and P is a

set of productions. A production is of the form [p: X5 = X| an] Xy € N is the

left-part of p; Xl X, ... Xn is the right-part of p and for i > 0, X1 € N U L. Sometimes

the expression “p[i]” is used to denote X..

The basis of an attribute grammar is a context-free grammar. This describes the context-
free language that is the domain of -the traaslation; i.e., those strings on which the
translation is defined. This context-free grammar is augmented with attributes and semantic
functions. Attributes are associated with the nonterminal symbols of the grammar. We
write “X.A"” to denote attribute A of symbol X, and A(X) to denote the set of attributes
associated with X. Semantic functions are associated with productions: they describe how the
values of some attributes of the production are defined in terms of the values of other
attributes of the production. Given a production [p: X5 n= X; de], we call A(p) =
A(Xg) U ﬂ(Knp) the attributes of p.

Below is an attribute grammar that describes binary numerals and the decimal values they

denote.

bizsry zumber: {syntlesizsd atiridutes: dinary aunsber.val;
iaherited atts: §} —_

digits: {syatdesized atts: digits.ml;
inherited atts: digits.placs)

digit: {syntlesized atta: digit.val;
lin.bcri:ld atts: digit.place}

1:

a:]

Contezt free symbols of the attribute grammar and their attridutes

pi: bdinary aumber ::= digits,
bizary _aum.val = digits.val;
digits.place 2 Q;

p2: digite0 ::= digitsl digit.
digitsO.val » digizsi.val ¢ digit.nal;
digit.place = digitsO.place;
digitsl.place = digitsO.place ¢ {;

pS: digits ::= digie.
digits.val = digit.nal;
digit.place = digits.placs;

p4: digis ::s Q.
digit.val = 0;

: digit ::e 1,
pé (1“‘“'"1 s 7 digit.place,
Productions of the attridute grammar and their semantic functions

Figure 1: An attribute grammar ezample

In this AG there are 3 productions and each production has associated attributes and
semantic functions. In production 2, <digits0> and <digitsl> demote separate occurrences
of the same symbol, <digits>; the numeric suffixes distinguish these diiferent occurrences.

A semantic function specifies the value of an attribute-occurrence of the production, e.g.
the value of digitsO.val in production 2 above is defined to be equal to the sum of
digitsl.val and digit.val. Semantic functions are pure functions, they have no side-effects.
Their ornly arguments are either constants or other attribute-occurrences of the production.

How an attribute grammar specifies a translation can be most easily explained by an
operational description. The underlying context-free grammar of an attribute grammar
describes a language. Any string in this language has a parse tree associated with it by the
grammar. The nodes of this parse tree can be labelled with symbols of the grammar. Each
interior node of this tree, N, has two productions associated with it. The left-part
production (LP) is the production that applies at N, say p, deriving N’s children. The
right-part production (RP) is the production that applies at the parent of N, say p,
deriving N and its siblings. The production instances of p and p/ are adjacent productions
of the semantic tree. Leaves of the tree don't have LP productions; the root doesn’t have

an RP production.

<¢binary_number> N1

At ———t——y
| VAL |
P—————
|
<digitsd | 132
Pt —r————————
| PLACE | VAL |
P —————m
|
I
<digits> | 13 digit> | "
D e e,] s s e 4 e
| PLACZ | VAL | | PLACZ | VAL |
D ——————— D ————
| |
! :
<digits> | W6 aigie> | 18 |
* |
| PLACE | VAL | | PLACZ | VAL | |
|
| ! |
' L
«digiesd | W <digity | 1’| |
| I
| PLACE | VAL | | PLACEZ | VAL | | {
|
| ! | |
<digitd | 19 I | |
e | |]
| PLACZ | VAL | : : :
G r——————-me—
| I l |
1 | I |
1 0 1 0

Figure 2: A semantic tree for the attribute grammar of figure 1

A semantic ‘ree is a parse tree in which each node contains fields that correcpond to the
attributes of its labelling grammar symbol. Each of these fields is an attribute-instance.
Associated with each attribute is a set of possible values that instances of this attribute can
be assigaed. This is analogous to the “type” of a variable in a programming language.

However, each attribute-instance takes on precisely one such value; attribute-instances are
pot_variables. The values of attribute-instances are specified by the semantic functions.
Figure 2 shows a semantic tree for the string 1010 of the attribute grammar given in figure
1. Each node in this tree is labelled with its associated grammar symbol. To distinguish
between different instances of the same grammar symbol each node is also assigned a

number.

The semantic functions of a production represent a template for specifying the values of
attribute-instances in the semantic tree. Consider figure 2 again. N2 is a semantic tree
node labeled by the context-free symbol <digits>. [t has two productions associated with
it: [py: binary _number := digits| (its RP production) and [po: digits0 === digitsl digit|
(its LP preduction). These two production instances are adjacent in the tree. The semantic
function <digits.place = 0> of production p, indicates that the value of attribute-instance
N2.place will be set equal to the constant O. Similarly, the semantic function

<binary _number.val = digits.val> of that production indicates that the value of attribute-
instance N1.VAL should be copied from the value of N2.val.

Since two different productions are associated with each attribute-instance, there could be
two semantic functions that independently specify its value, one from the LP production and
one from the RP production. If we assume that each attribute-instance is defined by only
one semantic function, either from the LP production xor from the RP production, then we
must guard against an attribute-instance not being defined at all because the LP production
assumed that the RP production would define it and vice versa. These difficulties are
avoided in attribute grammars by adopting the comvention that for every attribute. X.A,
either: (1) every instance of X.A is defined by a semantic function asscciated with its LP
production, or (2) every instance of X.A is defined by a semantic function associated with its
RP production. We refer to the semantic function which evaluates X.a as fy ,. Attributes
whose instances are all defined in their LP production are called synthesized attributes;
attributes whose instances are all defined in their RP production are called inAerited
attributes, Every attribute is either inherited or S}’nthesizedl. Inherited attributes
propagate information down the tree, towards the leaves. Synthesized attributes propagate
information up the tree, toward the root. The inherited attributes of a non-terminal X are
denoted by [X), the synthesized attriubtes by HX); A(X) = AX) w X). The start symbol
has no inherited attributes. From the point of view of an individual production the above
conditions require that the semantic functions of a production MUST define EXACTLY all

the inherited attributes of the right-part symbols and all synthesized attributes of the left-

7 Some systems &10] have employed a third type of attribute, called an sntrinsic attridute,
initially introduced by [37). An intrinsic attribute has its value defined during the parsing
phase, as the semantic tree is being built. These attributes are evaluated during parsin
and before actual semantic evaluation of the tree due to both conceptual and practica
reasons. Conceptually these attributes directly relate to the input being parsed. Practically,
using intrinsic attributes often helps to eliminate an extra pass in a pass-oriented evaluator.
It has similar benefits for other evaluation strategies. In this paper, however, we shall
restrict ourselves to just inherited and synthesized attributes.

part symbol. We call these attributes the defining attributes of p,

2¢Rp) = HAXg) U AXy)... U x'()%p).

We shall not allow all attributes of A(p) to be used in defining the attributes of DEAp);
we only allow the applied attributes APAp) = A(p) - DEAp) to be used as arguments in the
semantic functions of p. That is, no attribute defined in p can itself be used to define
another attribute in p. An attribute grammar which obeys such a condition is said to be in
Bochmann normal form [l]. In the remainder of this paper we assume that all attribute
grammars are in Bocaimann Normal Form unless stated explicitly otherwise. This does not
impinge upon the power of the attribute grammar formalism; indeed it is not hard to see
that any attribute grammar can be easily converted to Bochmann Normal Form [i].
Nonetheless, for reasons of efficiency and convenience, many real systems (such as Linguist
[10] and GAg} [20]) drop this constraint and allow for attribute grammars not in Bochmann

Normal Form-=-.

Thus the semantic functions of an attribute grammar specify a unique value for each
attribute-instance. However, in order to actually compute the value of attribute-instance
X.att we must first have available the values of those other attribute-instances that are
arguments of the semantic function fX att that defines X.att. In the example of figure 2,
before N1.VAL can be computed the value of N2.VAL must have already been computed.
Such dependency relations restrict the order in which attribute-instances can be evaluated. In
extreme cases an attribute-instance can depend om itself; such a situation is called a
circularity and by definition such situations are forbidden from occuring in well-defined
attribute grammars. In general, it is an exponentially hard problem [16] to determine that
an attribute grammar is non-circular; i.e. that no semantic tree that can be generated by
the attribute grammar contains a circularly defined attribute-instance. Fortunately there are
several interesting and widely applicable sufficient conditions that can be checked in

polynomial time [1, 17, 21, 23].

The result of the translation specified by an attribute grammar is realized as the value of
one or more (necessarily synthesized) attribute-instances of the root of the semantic tree. In
order to compute these values the other attribute-instances must be computed. Figure
3 shows the semantic tree of the previous example with dependency arcs drawn in. If an
attribute Niatt of a node in the tree depends on the value of another attribute Nj.att in
the tree, then there exists an arc from Nj.att to Niatt. These arcs create a partial
ordering on the attribute instances in the tree. [t is important to note that since this
ordering is only partial, there is no unique order of evaluating the attribute instances in the

tree.

9
“Consider, for example, a production [p: X, := X, X,] with semantic functions X,.a =
f(X,.3a) and X,.a = ?(X .a).. A literal imppementa.t,ijon of these functions would .reqllire 2
evaluations of f(X,), one evaluate X,.a and one to evaluate X,.a. [f these functions were
to be rewritten irdo the equivalent forth X,.3 = {(X,.3) and X, = X,.a then (X ? would
only have to be evaluated once but Bochmann Normal Form cofistraints would be vidlated

<dinary _ aumber> i1
I VAL |

|
cdigitsd [A 12
| PLACE | VAL |

Munu N 1

'

| PLACZ | VAL |

digity 18
| PLACE | VAL | PLACE | VAL |

/' ; | I
frgen T AT Naio 1\ 18

|
:
| PLACE | VAL | | PLACE | VAL | :
I A |
digeed | T 1 [i
e i |
| PLACE | VAL | ! |
| i
| i i

1 Q 1 [+]

Figure 3: The semantic tree of figure 2 with dependency arcs drawn in

An attribute grammar evaluator for a given attribute grammar G is an algorithm which
takes as input a semantic tree constructed from any valid sentence in G and computes the
distinguished attribute-instances of the root (this normally involves computing all attribute-
instances of the tree and unless we say so explicitly, we shall make no further distinctions
between the twoS). Since the evaluator must be capable of evaluating any semantic tree of
the grammar G, embodied in its control structure must be some general mechanism
describing how to evaluate semantic trees. An attridute grammar evaluation strategy describes
how to build the control structure of an evaluator. It is a meta-algorithm for building an
algorithm that will compute attribute-instances in an order such that no attribute-instance is
computed before all dependent attribute-instances are available and such that all attribute-
instances of the root are computed. An attribute grammar evaluation strategy may work
correctly only on a subset of all well-defined attribute grammars. but it must work correctly

3Ar.r,ributes in a semantic tree which are not needed to compute the distinguished
attribute-instances of the root are called useless attributes. Normally evaluators are built
which compute all attribute-instances of the tree including useless onmes. Some evaluators,
however, are bullt to evaluate only needed attributes, claiming that this can save a
substantial amount of computation in the semantic tree. See (19, 22, 38] for instance. In
(14], Filt discusses how to convert an attribute grammar into an equivalent attribute
grammar which has the property that none of its semantic trees contain useless atiributes.
In general this constructicn can take an exponential amount of time.

on any semantic tree of an acceptable attribute grammar. The focus of this paper is to
survey various strategies which have been developed for efficient evaluation of semantic

trees.

Attribute grammars are attractive specification tools. Two principal reasons for this are
their locality of reference and their non-procedural nature. We say that an attribute grammar
bas locality of reference in that the values it defines (i.e. the attribute-instances) are
specified exciusively in terms of other attribute-instances local to a production. An attribute
grammar does not contain any global variables or implicit state information that can affect
the translation. Each local piece of an attribute grammar, i.e. each production,
communicates with the rest of the attribute grammar only through strictly defined
interfaces: the attributes of the symbols occurring in this production.

Like a context-free grammar, an attribute grammar is a description rather than an
algorithm. Just as a context-free grammar specifies phrase-structure independently of a
parsing algorithm, so does an attribute grammar specify semantics or translation without
presuming an evaluation order. Because semantic functions are pure functions, the definition
of an attribute-instance is determined by the attribute grammar and the semantic tree: not
by the algorithms of the evaluator or those of the semantic functions. Thus, an attribute
grammar is a locally described, non-procedural specification of values, rather than an

algorithm for computing those values. _ _

The modular nature of attribute grammars also allows for dependency information between
attributes to be expressed in a modular form. The dependency graph Dv of a production p
contains one vertex for each attribute of p and has an edge from v to w iff v is an
argument of the semantic function defining w. Any production-instance of p in any semantic
tree will exhibit the dependencies between its attribute-instances as given in the graph Dp; if
NO'NI"""an are nodes of a tree corresponding to the symbols Xg Xy Xy, of
[p: X v= X; Knp], then an edge (X.att;, Xj.atty) in Dp means that the attribute-
instance Nj.at.tl must be evaluated before the attribute-instance Ny.atto.

Just because there is no edge (v,w) in Dp does not mean, however, that w can be
evaluated before v; it may be that w is indirectlv dependent upon v. Consider a subtree
rooted at a node N in a semantic tree. I[nformation flows into N’s subtree by way of the
inherited attributes of N and information flows out of N's subtree by way of the synthesized
attributes of N. Hence the dependency information of N’s subtree as it relates to N can be
summarized by a graph Gn whose vertices are attributes of N and whose edges are between
inherited and synthesized attributes. An edge from the inherited attribute N.att; to the
synthesized attribute N.att, implies that N.atty’s value must already be computed before

N.att's value can be evaluated. Given a production [p: Xg = X Kﬂp] and the graphs
Gxy: k¥ = l..n,, summarizing the dependency information for anv subtree rooted at Xk'

the sugmented dependency graph Dp[G‘{l""'Gan] augments the dependency information of the
Dp grapa by adding dependency information concerning the subtrees rooted at the right-part
symoois of the production p. It is obtained from the Dp graph by adding an edge

(Xy-atty,] 1-3tte) to Dp whenever such an edge exists in Gyj. Assuming that in a given
semantic tree we have nodes Ny,. 'Nn corresponding to the context-free symbols of the
production [p: X n= X; ‘(n] and graphs Gy (1 < k < np) summarizing the
dependency information of the subtrees rooted at Ny (1 € k < np) then a path from
X;.atty to ‘(atty in Dp[le, Gxp | means that N: a.t.tl must be evaluated before N:.att.
Flgure 4 gwes a production p pro uctiony of Flgure 1), its Dp graph, Gy graphs for p’s
RHS symbols, and the associated augmented dependency graph. Note that the graph Gigit
contains an edge (place,val) since in some subtrees rooted at an instance of digits the
attribute-instance digit.val will depend upon the attribute-instance digit.place (see production

pg of figure 1).

p: digissO ::3 digicsl digie.
digits0.val = digitsl.val ¢ digit.nal;
digit.place = digitsO.placs;
digissl.place 3 digitaO.placs * 1]

A production p

<digitsQ>
| place | val |} Gyy rits Citpit
| place | val | | place | wal |
cdigitefd <digied v‘ v
| placs | val | | place | val I G|, graphs [or digits and digit

The dependency graph Dp for p

¢digits0>
e —————————
| places | val | -
\/
<digits
| place | val | | place | val |

R

The augmented dependency graph Dp/Gdfgital'Gdigitj
Figure 4: Dependency and augmented dependency graphs

Dependency and augmented -dependency graphs are useful in determining the order in
which atiributes of a production must be evaluated. For example, the augmented
dependency graph given in the above figure indicates a partial evaluation order of
<digitsO.place, digit.place, digit.val, digitsQ.val> and of <digitsO.place, digitsl.place,
digitsl.val, digitsO.val>. In sections 5 and 8 we shall make use of a slightly extended
version of augmented dependency graphs of the form Dp[GKO,G\Q, G‘(np] where the
composite graph in this case is the same as before only now edges in Gy, are included as
well. In this case an edge from Gy;.a to Gy;b (0 < i < np) indicates that a.ccormng to a
given strategy, X;.a must be evaluated before X;.b.

We close this section by presenting an attribute grammar which translates simple English
descriptions of mathmatical expressions into post-fix Polish notation. Although for the sake
of brevity we have greatly simplified the attribute grammar, we hope that it nonetheless
illustrates the power and simplicity of the attribute grammar formalism in translating strings
from one language into strings of another language. The grammar distinguishes between
expressions involving only integer values (in which case operators of the form +: and *; are
required) and those involving a decimal point value (in which case operators of the form +_
and *, are required). Figures 5 and 8 give the attribute grammar and a typical semantic
tree for the grammar which translates the string 'Multiply 80 by 3.8’ into the mathematical
post-fix expression (80,5.8,%.). The attribute-instances of the tree have been filled in to
reflect the values they will acquire upon computation.

Py S i:s Op Number!i Prepositios Fumber2.
S.traaslation = 12 (Preposition.asg = ok) then
Concatenate (" (® Numberl.translation,’,’ Numder2.traaslation,’,’',Op.translation,’)’)
else ‘error: preposition violatss context sensitivities';

Op.type = If (Numberi.type = decimal _poiat) or (NumberZ.iype = decizal _point)
then decimal point else integer;

Preposition.type = I2 (Op.trasslation = "r') or (Op.translation = "1')
then multiply else add;

Py: Faumber ::x Intager.

Number.translatioa = [ntager.traaslation;

Juaber.type = Iag;
py: Wumber ::3 Decimal aua.

Tumber.trazslation = Decimal zusm.traaslation;

Number.type » decimal _point;
Py Op ::® “add®.

Op.translation = If (Op.type = decimal_ point) them '+, else eyt
Pg: Op ::= ‘multiply’.

Op.translation = If (Op.type = decimal poizt) then ' ° elge ‘s '}
Pg: [ateger ::= digits.

Integer.translation & digits.value;
Py: Decimal _aum ::= digitsl *.° digits2.

Decinal _aum.traaslation = Concatensta(digitsl.valae,’'.’ digits2.valae);
Pg: Preposition ::% "dy’,

Preposition.asg = L! (Preposition.typs = sultiply) thea ok else notok;
Py Preposiiion ::= ‘%0’.

Preposition.asg = 12 (Preposition.type = add) thea ok slse 20tok;
Pip’ Preposiilon ::= ‘with’,

Preposition.asg = {2 (Preposition.type = multiply) thea ok e¢lse 20tok;

Figure 5: An attribute grammar for translating mathematical ezpressions into post-fiz
Polish notation

<S>

(80,5.8.9.)
[§e; M <TunbeT1> <prepositionr ¢Nunberld
| dectzal _pt | o, 1 1§ tat | 90 | | ok | aultiply | | decimal pt | 5.8 |
<Iateger? <Dacimal _3am>
Grmmmtncly L e
| 8o | | 5.8 |
G———
«ulu:n «digftaly Algitsdd
—— Am—— L o 4
|1 8o | I 61 181
saltiply l by [.. 8
igure 8: A semantic tree for the grammar of figure 3

10

2. Tree-walk Evaluators and Optimal Visit Sequences

An obvious way to evaluate the attributes in a semantic tree T would be to build an
acyclic graph G=(V,E) where V = attribute-instances of T and [vw] € E iff w is
dependent upon v in T. We could then do a topological sort on the vertices of G and
evaluate the attributes according to their topological order. This strategy bas the pleasant
property that a single evaluator would be able to evaluate any semantic tree for any well-
defined attribute grammar. This strategy has actually been implemented, along with several
optimizations, in the Delta system [28]. Unfortunately, the large number of attributes and
‘dependencies in a semantic tree makes this approach expensive and unweildy to use [28].
Furthermore, it also has the drawback of doing most of the semantic analysis during run-
time, precluding many time and space optimizations [13]. Various other strategies relying
upon run-time semantic analysis have also been considered [8, 19, 34]. Due to the reasons
cited above, however, most evaluators that have been devised are tree-walk evaluators. A
tree-walk evaluator has a single locus of control that moves around an explicit semantic tree.
The locus of control is always at some production instance in the tree. We will often say
that the locus of control is at a node N when we really mean that it is at the LP
production associated with N. So, for example, if the locus of control is at a production-
instance of {p: Xg == X; = X | in some semantic tree, we will say that it is at N, where
N is the node labeled by this occurrence of X, The evaluator executes a sequence of
EVAL,,, and VISIT, instructions. An EVAL,,, instruction says to evaluate the attribute
att of the production that applies at the current node by invoking its associated semantic
function f,,,. Arguments supplied to this function are the (previously computed) values of
appropriate applied attribute-instances of the current node and its children. A VISIT,
iostruction causes the evaluator’s locus of control to move from the current node to either
its parent or one of its children; VISIT, moves it to the parent, if k > 0 then VISITy
moves the locus of control to the k' child. Hence the locus of control always moves
between adjacent productions in the semantic tree. The locus of control is never moved to
a leaf as terminal grammar symbols have no attributes; a VISITy executed at the root

indicates the end of attribute evaluation.

It is helpful to view a tree-walk evaluator as 'roaming’ over the semantic tree. Upon
reaching a node, it decides to evaluate some attributes, visit some children, return to the
node, evaluate some more attributes, etc., and then leave the node. How it decides which
attributes to evaluate and which children to visit depends upon the control structure, which

embodies some attribute grammar evaluation strategy.

What computational costs are associated with evaluating a semantic tree using a trec-walk
atrategy? Certainly an evaluator will incur the cost of evaluating each attribute in the
semantic tree, corresponding to the execution of the EVALSn instructions. This cost cannot
be increased or decreased depending upon the evaluation method; it is constant regardless of
the evaluation strategy chosen. The second cost incurred by a tree-walk evaluator is the
cost of transferring the locus of control from one production-instance in the tree. to anmother
adjacent production-instance in the tree, corresponding to the execution of the VISIT)

11

instructions. This cost is dynamic and can vary widely in different evaluators. It might be
useful for the reader at this point to glance back at figure 2 and notice that starting at the
root, there are many ways one can traverse the tree, evaluating attributes and visiting
adjacent productions (see figure 7). A third cost incurred during the evaluation of a
semantic tree is intimately connected with the control structure of the evaluator. Upon
visiting a node a tree-walk evaluator decides upon some sequence of VISIT, and EVAL,,,
instructions to perform. If this decision involves a lot of computation it can also make the
evaluator very inefficient. For the static evaluators we shall study (to be introduced in the
next section) deciding what instruction sequence to execute has little overhead (it involves
the execution of a case statement for each VISIT instruction executed) and its cost can be
tacked onto the cost of executing the VISIT). instruction. Therefore an important criterion
by which to judge a tree-walk evaluator is by how many VISIT} instructions it uses to
evaluate a semantic tree. An optimal tree-walk evsluator for a semantic tree T is, by
definition, one which uses the minimum number of VISIT) instructions possible to evaluate

every attribute instance in the tree.

[we examine the behavior of a tree-walk evaluator E when evaluating a given semantic
tree T, we can write down the sequence of EVAL . and VISIT) instructions it executes.
Upon looking at this computation sequence (28] we can retrace the evaluator’s traversal of the
tree and note exactly when it evaluated each attribute-instance. I[f we remove all of the
EVAL,,, instructions from this sequence, the remaining VISIT) instructions are called a visit
sequence of E for T. An optimal tree-walk evaluator for a semantic tree will give rise to the
shortest visit sequence possible. The problem of determining whether or not there exists a
visit sequence of length < N evaluating all the attributes in a semantic tree is shown in the
appendix to be NP-complete in the number of attributes in the tree. This means that
building an optimal evaluator for a single semantic tree, let alone one which will be optimal
for every semantic tree of the attribute grammar, is an intractable problem.

Whenever a tree-walk evaluator visits the child of a node it must eventually return to the
parent, as the evaluator ends its evaluation with.the locus of control at the root. We adopt
the convention of referring to a VISIT instruction as a RETURN instruction. Note that
for every VISIT, instruction (k > 0) in a computation sequence there will exist exactly one
RETURN instruction. Figure 7 shows two different computation sequences an evaluator
might employ to evaluate the semantic tree of figure 2. The notation VISIT, {Ni} is used
to indicate that the visit to the k'2 child moves the locus of control of the evaluator to the
node Ni of the tree. -

zvu‘l?.plu:n' VISITI a2}, zvu‘!&.phcn'
VISIT, s}, ZVAL“.PI‘“. VISIT, (N8},

EVAL,a_Phc.. VISIT, {x8), !VAL"‘M.
RETURN (¥6}, RETURN (N3}, EVAL".PI‘C..
VISIT, {xe), DIAL,G.Y‘I. RETURN (X3},
IETURE (X2}, lVA.L".le., YISIT, a4y,
EVAL“.“I, RETURE (N2}, visiT, {x3),
VISIT, (§5}, w“‘l'l.plu.‘ VISIT, o7},

rv“‘".pll.c-‘ VISIT; (9}, EVALyg .4
IETURE (N7}, EVALy, ... RETURY (X5},

n”“ls.nl' RETURN (X3}, Ev”‘ls.nl'
AETURE (X2}, ““12.1;1' RETURY {(¥1),

EVM...,“ 1sl

Figure 7: Two dif[erent computation sequences for the semantic tree of figure 2

Ev“‘!?.plxc-‘ VISIH 2}, Ev“‘ls.ylucl'
w”"ﬂ.plxcn' V15172 a4z, Ev”‘ll.n.l'
RETURE (¥2), VXSIT1 {13}, EVAL“.N“.,
Ev”‘le.pllco‘ VISIT2 (xe3, E"“‘la.nx-
RETURR (X3), VISIY1 {N5}, EVA.L".PI“.,
EV“‘IS.;I;C:' V15112 (xs}, Dl“‘lﬂ.vtl'
RETURN {¥5), \IISIT1 {7}, DIAL“_PI“.,
VISIII {x9}, ‘JIAL“_"I, RETURN (N7},

EVALyy 41 RETURE {X5}}, EVALyg yal’
RETURE (X3}, EVALyq . ;. RETURN {12},

EVALy, 4q) RETURE 1}, EVALy: a1

Asymptotically the optimal evaluator, topological sort, and tree-walk evaluators all perform
work proportional to the number of attributes in the tree. For real systems constaat
factors become important and in this survey of tree-walk evaluators one criterion that shall
be considered is how close a given evaluator is to the optimal one. It is not that we
actually wish to build optimal evaluators- as mentioned above that is too hard aad
unnecessary. But it is important for the evaluator not to spend too much time on simply
visiting nodes, lest most of its time is spent executing VISIT), instructions instead of actually
evaluating the attribute instances of the treel. Some tree-walk evaluators we shall look at,
for example, in the worst case must visit each production-instance in the entire tree to
evaluate a single attribute. When this occurs the cost of visiting nodes in the tree
drastically increases, dominating the cost of evaluating a semantic tree. Minimizing the
number of VISIT) instructions an evaluator uses has been a major motivation behind the
development of the tree-walk evaluators described in this paper.

This is especially true if the entire semantic tree cannot fit into the working memory of
the machine. In such a case additional visits often mean additional IO operations (as that
part of the tree may not be in working memory but must be fetched from secondary
memory) and can be quite costly. Hence minimizing the number of visits becomes very

important.

13

3. Static Tree-Walk Evaluators

The remainder of this paper will deal with static tree-walk evaluators. This class includes
most tree-walk evaluators which have been proposed in the literature and almost all which
have been implemented to date. This is due to the fact that most static evaluators
recognize a large class of attribute grammars, are not overly complex to comstruct, and are
farily efficient in their evaluation of semantic trees. The difference between the various
static evaluators themselves lie in how they choose to balance the tradeoffs in efficiency
versus complexity; the simplest evaluators to build are not as efficient as those requiring a
more complicated construction and cannot be built for as many attribute grammars as their

more complex counterparts.

Static tree-walk evaluators are static in the sense that they do not dynamicaily generate a
sequence of EVAL_,, and VISIT) instructions to execute upon visiting a node but they
always execute a precomputed sequence of instructions. That is, upon arriving at a node
they do not examine the attribute dependencies and then decide which attributes to evaluate
and which children to visit but they merely retrieve and execute some sequence of
instructions which has been precomputed to obey the appropriate atiribute dependencies.
These evaluators are not allowed to use global information concerning the nature of the
semantic tree (such as dependency relations found in a particular subtree of a node) in
deciding which sequence of instructions to execute but only local information concerning
which production applies at the locus of control (the current production-instance) and which
productions apply at adjacent production-instances in the semantic tree. Some strategies
which violate these constraints have been proposed in order to extend the power of the
evaluator but they will not be discussed in any detail in this paper.

Formally, a static tree-walk evaluator consists of a set of mutually recursive procedures
where each procedure is associated with a production [p: Xq = X; ~* X] and coosists of
a sequence of EVAL,,, and CASEVISIT, instructions. ~ The execution of a EVAL,,,
instruction will cause the appropriate attribute of the production to be evaluated. The
execution of a CASEVISITy instruction (k = l..n,) will cause a visit to Xy, the k*B child
of the production and also determines which procedure will begin execution upor arrival at
that node. A CASEVISIT, instruction has the form:

Case LP production of X, 2 p;: VISIT, aad call proc,;
Pa: VISITk sed call procq:

Pat ViSITk azd call proc;
Note that the code executed upon arriving at Xy is determined soley by which production
applies there. If Xy is the LHS of m unique productions then there will be m conditional
parts to the case expression. Each proc; procedure of the CASEVISIT) statement is itself
one of the recursive routines of the evaluator and hence will consist of a sequence of
EVAL,,, and CASEVISIT, instructions. After the last instruction of the procedure is
executed a RETURN instruction is automatically performed, the locus of control returns to
the adjacent production and the execution of instructions in the calling procedure resumes.

14

For example, if a procedure contains the subsequence <EVAL3m,CASEVISITi,EVALam.z>,
after attl 1s evaluated the CASEVISIT; instruction is executed causing a visit to Xi and the
execution of a sequence of instructions in some procedure proc;. After execution of the last
instruction in proc; the locus of control returns to X;'s RP production and the EVAL, ;o
instruction is executed. Evaluation of the semantic tree begins by initially invoking a special
procedure to visit the root of the semantic tree and evaluation finishes when control returns

from this procedure.

Any correct evaluator for an attribute grammar G which can be built in the above form is
said to be a static tree-walk evaluator for G. By a correct evaluator we mean that for any
valid semantic tree of G the evaluator must finish evaluation with the special attributes of
the root computed and without having computed any attribute of the semantic tree twice.

Although we have defined a static tree-walk evaluator in terms of recursive procedures, we
could just as well have defined it in terms of coroutines, stack automata, or finite automata.
Our choice in couching the definition in terms of a specific implementation is based upon
our desire to present concrete examples of evaluaters and a complete description of the
construction process. [n [21], Kastens shcws how his evaluator could be implemented by any
of the above methods. Similar implementations could be built for any static tree-walk

evaluator as well.

In the next 3 sections, as we survey static tree-walk evaluators, we shall attempt to find the
unifying concepts behind them and a general criteria by which to judge them. One criterion
we shall use is how close a given strategy comes to an optimal one in the semse mentioned
in section 2. But this shall not be our only consideration; we shall also ask the following
questions about a strategy: Can it be used to build an evaluator for any well-defined
attribute grammar? If not, for what class of attribute grammars will such a strategy work?
How bhard is it to build such an evaluator? (Not surprisingly, the more efficient the
evaluator is, the harder it will be to construct t). How large is the evaluator? And finally,
how do we automate the building of an attribute grammar evaluator using this strategy;
that is, given an attribute grammar, how do we automatically generate an evaluator which

will evaluate any semantic tree of the grammar based on the given strategy? -

The first type of static evaluators we shall discuss are the pass-oriented evaluators. These
are obtained by restricting the nature of the instruction sequences allowed in the recursive
procedures of the evaluator. These restrictions insure that the evaluator will always
evaluate semantic trees by making left-to-right (LR) or right-to-left (RL) depth-first passes
over the tree. The next type of static tree-walk evaluators we shall look at are the uniform
evaluators. These evaluators assign a unique order to the attributes of a context-free symbol
called a protocol such that for any instance of the symbol in a semantic tree the attribute-
instances are evaluated in the given order. As we shall see, however, for many attribute
grammars it is not possible to find a unique protocol for every ccontext-fres symbol and still
evaluate every semantic tree. This will lead us to the multi-protocol evaluator which assigns a
set of protocols to each context-free symbol. The order of computing attributes in this

evaluator must be consistent with some protocol of each context-free symbol but not with

every one.

The order in which we present these svaluators corresponds to their increasing complexity
and size. Pass-oriented evaluators are easy to construct but can be far from optimal in
their evaluation of semantic trees. Furthermore, they can be built for only a small subset
of all attribute grammars. Uniform evaluators can be constructed for a larger class of
attribute grammars and are much more efficient in their evaluation of semantic trees.
Multi-protocol evaluators can be built for an even larger subset of attribute grammars yet
are still as close to optimal as uniform evaluators. The size of the resulting evaluator,
however, can be significantly larger than other static tree-walk evaluators.

16

4. Pass-orlented Evaluators

In a pass-oriented evaluator, every attribute X.a of the grammar is assigned a pass
number, PN(X.a). Let Kax be the highest numbered pass number assigned to any
attribute. The visit sequence resulting from the evaluation of any semantic tree will consist
of VISITy instructions deficing K .. consecutive left-to-right or right-to-left depth-first
passes over the tree. On the ith pass over the tree, before visiting any node labeled X, all
the inherited attributes of X with a pass number = | are evaluated. Before returning from
X (i.e.. before transferring the locus-of-control from the X's left-part production to X's right-
part production) all the synthesized attributes of X with a pass number = i are evaluated.
After the Kthma.x pass over the semantic tree all the attributes of the tree have been
computed and evaluation is complete. It is important to note that if an attribute X.a has
pass number = | then every occurrence of X.a in every semantic tree will be evaluated on

the itB pass.

The start procedure of a pass-oriented evaluator is given below. It consists of K .. visits

to the root node labeled S.

procg

degin

CASEVISITG, ... ,CASEVISITSRRAT

end;
In addition to this procedure there exists K. procedures for every production of the
grammar, one for each pass over the tree. They shall be referredhto Procy(1),Procy(g), -
,procp(Kmax).where procy ;) is the procedure associated with the i*} visit to the production
p occurring during the i*8 pass over the tree. The figure below gives the form of a typical

procedure Procy(;) where the ith pass over the tree is left-to-right and where p is of the

form [p: X u= X - ’(np]
Proc, (4
begia
GVAL,, .
CASEVISITy;
(EVAI.“'t iastructions for eack inherited atiriduts of X, with pass azader = i}

CASEVISIT,;

{nstractions for each iaherited attridats of X; with pass auaber = i¥;

CEVAL“g instractions for eack inherited atiribats of XnP vith pass aamber = {);

CASEVISIT‘P;
CIVAL.:z {astructions for each syatdesized attridaute of X, vitd pass augber 3 1};
ead;

Each CASEVISIT, instruction is of the form :
Case LP production of Xt =9yt VISITk and call proch(i);
P2t VISIIk and call P'°°p2(1);

Pa: YISITy and call P’°°p-(i);

17

A pass-oriented evaluator may make LR passes over a tree, RL passes, or a mixture of LR
and RL passes. Such an evaluator is called a LR-pass, RL-pass, and alternating-pass
evaluator respectively. If the ith pass over the tree is to be RL instead of LR then the
procedure proc ;) differs from the ome given above in that the order of evaluating
attributes and visiting nodes is reversed. First X,'s inherited attributes are evaluated and
X, is visited, then X[;'s inherited attributes are evaluated and X, is visited and so on

until X is -visited. Once again the synthesized attributes of XO are evaluated last.

Figure 8 gives a small attribute grammar and a pass assignment PN. Figure 9 presents
the pass-oriented evaluator comstructed for this attribute grammar using the pass assignment
PN. The evaluator will make 2 passes over any semantic tree, the first being a LR pass
and the second a RL pass. Due to space considerations, the procedures Procpa(1) Procpa(a),

ProcLy(1) and procpy(a) 2re omitted.

PR(S.traaslation) = 2, Pg: S :i® A B.

PECA.izhatt) = 1. A.inhatt = coastaaty;

PE(A.synazs) = 1. B.iadatt = coastaat,;

PY(B. inhatt) = 2. S.eraaslation = f(A.synatt,3.synatt);

PN(B.symatt) = 2.
Pass numbers for the attributes

Py Ag 11T Ay A, Py’ By ::% 3; By,
Ay izbats 3 g(Aq.iahatt); B,.inhatt 2 q@B,.symatt);
A, {ahast’2 au,.mm); Bp.inhatt = r@o.m“z):
Ag-synatt 2 1A symate); By.synatt = s (3, .synatt);
Pyl A T Py B iim b,
A.sysatt = X(A.{ahatt); B.synatt = t(8.izhatt);

Figure 8: An attribute grammar and pass assignment PN

Pass-oriented evaluators were first presented by Bochmann as making only left-to-right
passes over a semantic tree {1 [t soon became apparent that the method could be
enhanced by allowing right-to-left passes over the tree, as information often flows in that
direction in semantic trees [17, 32]. If we look at the attribute grammar of figure 8, for
instance, we see that by only allowing LR passes we cannot bound the number of passes
that will be aeeded to evaluate a semantic tree; the deeper the tree becomes, more passes
will be required. In particular, we cannot assign a pass number N to B.inhatt such that
every instance of B.att in every semantic tree could be evaluated on the Nth pass. Since no
evaluator making only LR passes could be constructed for this attribute grammar, it is not
in the class of LR-pass atiridute grammars. It is, however, in the class of alternating pass
attridute grammars as the evaluator given in figure 9 bears witness. :

18

procg

begia
Cass LP production of S = py: VISITg azd eall ProSeg ()i
Case LP production of S = P’ VISITs and call procw(z);
end:
proc
?0(1%-‘12
ALy, tanate’
Case LP production of A % p,: VISIT, sad call Procy (). -
Ps: VISIY1 aad call prccpa(l):
Cass LP production of 8 = p,: VISIT; and call Procaatyy.
P¢: VISIT, and call proc :
ond; ! 2 paw
proc
PO(zgugin
EAg {amate
Case LP production of B = Pg: VISIT; aad call P'°°p2(2)'
Pyt VISIT2 and call proc?‘(z):
Case LP production of A & p,: VISIT, aod call Proc,y (2
Ps: VISITl and call P'°°ps(2):
EVALs.trxnll;zion‘
end;
prec
Pl(xgogin
EVALAL. tabaee? _
Case LP production of Ay = py: VISIT, aad call PFOchy(1)-
Py: VISITl and call ?'°°ps(1);
BVALyz. iapate’
Case LP production of Ay = p : VISIT, aad call ProSay gy
Py: YISIT, and call proc :
VAL, : s ! P
.ayzstt
ead;
proc
pl(zg-gin
Case LP production of Ay ® py: VISIT, and call Procyy(2y-
Pg: VISIT; and call Procag(ay:
Case LP production of Ay = py: VISIT, aad call Proc, (2)-
Py: VISIT, and call proc H
ead; ’ ' P
proc proc
Py G
ENALA. synatt {2all}
ead; nd;

Figure 9: The pass-oriented evaluator for the atiribute grammar of figure 8

Let D = <D1'""DKma.x> be a sequenc: of directions where each D, is either LR or RL
indicating that the ith pass is either LR or RL and there are to be k .x Passes. If PN is

19

an assignment of pass numbers to the attributes of the grammar such that i) for every
attribute X.a, 1 € PN(X.a) < kmax and ii) for any instance of X.a in any semantic tree of
the grammar, X.a can be evaluated on the PN(X.a)‘h pass, then PN is said to be valid for

D.

Given a sequence D and a valid assignment PN for D, it is easy to create an evaluator for
the grammar. First construct the procedure procg. Then, for each production p and for
each i, 1 < i < k., 3dd a procedure procy) which visits each child and evaluates the
attributes of the production with pass number = i, as was done for the grammar of Figure
8. The main challenge in building the evaluator becomes one of finding such a sequence D
and valid assignment PN. This is done incrementally: First a pass direction D; and a set
of attributes S are found such that for every attribute in Sl' any instance of that attribute
in any semantic tree can be evaluated on the first pass in direction D;. Each attribute X.a
€ S, is assigned a pass number PN(X.a) = 1. Assuming that all attribute-instances of the
attriputes in Sy U Ss..U S; | in any semantic tree can be evaluated before the ith pass, the
it step coosists of finding a pass direction D; and a set of attributes S; such that all
ateribute-instances of attributes in S; in any semantic tree can be evaluated on the ith pass
in direction D;. Each attribute X.a € S; is assigned a pass number PN(X.a) = i. The

algorithm terminates upon one of two conditions:

i) All the attributes of the grammar have been given a pass number. In this case a
sequeace <Dj,...Dyg ... > and a valid assignment PN to the attributes have been found
upon which to build the pass-oriented evaluator.

i) There exists attributes which have not yet been assigned pass numbers yet no pass
direction D; can be found which will produce a non-empty set S; of attributes to evaluate
on the i*B pass. This means that there exists at least onme attribute X.a which cannot be
assigned a pass onumber; depending upon where the attribute instance occurs in the tree it
must be evaluated on different passes over the tree. If this condition holds then the
attribute grammar is not in the class of alternating pass-oriented attridbute grammars. Figure
10 below gives a simple attribute grammar which derives only one tree but is not in the
class of alternating pass-oriented attribute grammars. This is because in the tree which this
grammar derives, some instances of list.inhatt (namely list;.inhatt and listg.inhatt) need to
be evaluated on the pass before other instances of this attribute (namely Iistg.inhatt)s.

Using the incremental approach described above, depending upon which direction is chosen
for D; (either LR or RL) the set S; may differ. Let S;ip be the set chosen if D; = LR

aNote, that if we 'were to introduce a new context-free symbol Y, change the production
Py to Dt S = list, Y list, and add a production p,: Y ::= term making the appropriate
cganges % the semadtic fun¢tions, the attribute grammar would be evaluable in 2 RL or 2
LR passes; Evaluate Y.inhatt, Y.synatt, and S.translation on the second pass and all other
attrioutes on the first pass. This illustrates the fact that often an AG can be massaged to
make it evaluable by a given strategy. In {9], Farrow explores this issue for certain classes

of attribute grammars.

—~—

pg: S ::m listy list, list,, Py list :i:= term.
liggl,iah‘gg s const; list.aymatt = g(list.{ahate);

lins.‘.nlu.tt s const;

lintz.inhxzt = 2(11-:1.aynnt:.lilts.lynnt:):

S.translation = lincz.lynatt;
Figure 10: An attribute grammar not evaluable by an alternating pass strategy

Pemmnttrtt—— $
| translation |

ﬁ————%
/\/
+/ lise, 111%2 4 lin8
| izhatt | symatt | | iahatt | synatt | | tabatt | symatt |

Lera tera tera

Figure 11: The unique semantic tree that the atiribute grammar of figure 10 derives

and SiRL the set chosen if Di = RL. In deciding which direction to make D;, both SiLR
and S;p are computed. If SiRL € S;Lp then D; = LR is chosen. If SiLR € Sigy, then
D; = RL is chosen. If neither of these conditions hold then D; is arbitrarily chosen to be
the direction opposite of the one chosen for D;.{- It has been shown that making this
arbitrary choice can result in an evaluator which makes about twice as many passes over
the semantic trees then needed [33]. Finding the direction which would minimize the total
number of passes required, however, is an NP-complete problem [33]. Figure 12 gives the
algorithm described above for the construction of a sequence of directions D and a valid

assignment PN.

This algorithm calls for the computation of the sets S;Lr 2nd Sy, siven the sets
Sq,--5;)- To see how these sets can be computed note that an attribute X.a can be
evaluated during pass i iff it will be the case that for any occurrence of X.a in any
semantic tree dependent upon an occurrence of Y.a, either Y.a was defined on an previous
pass (i.e., PN(Y.a) < i) or Y.a is defined on the same pass but before the time to evaluate
X.a. Using the Dp graphs introduced at the ead of section 1, thkis condition can be made

more precise as follows:

Let X.a be an inherited attribute of the grammar. Then X.a is evaluable on the ith pass

iff lfor each production [p: Xg = X| an] with X = ‘(J J > 0.if 3 an edge (Xy.att,
Xj.a) in Dp then either

i) PN(Xy.att) < i or
i) k = 0 and PN(Xp.att) = i or
ii)) D; = LR, PN(Xp.att) =i, and 1 <k < jor

iv) D; = RL. PN(X.att) = i, and j < k < By

bdegia
TOT _ YET _ASSIGEED := all the attridutes of the graamar:
1 e (g -~
Cosputa S,y 4 a2d Sygy:
Thile (S # 8) and (S, # B do
bdegin
12 Sy © Sy thea Dy :® LR asd Sy :® Sy y
olse 12 Sy, & Sy thea D, :w AL aad 8, :w S,
olse 12 1 3 1 thea Dy = LR and §, :% 5y,
olse i£ D, , AL then D, :s (R wad §, = Su_‘
slse D1 :s AL aad S1 H) sLlL
endi?;
For each attridute X.a € Sy do PICX.a) = {;
T0T _YET _ASSIGNED :3 §OT _YET _ASSIGNED - S;
a7 L
{34 +1;
Compute 5,7, and Sm;
end;
I? §OT _YET ASSICYED # l tbn: rttlrn('t pass—orisated evalustor cannot be duilt for the grammar®)

slse retaralcd = O
/% D Ls the loqulnél ot dI,‘Eticnl !or ths evaluator and PY defines s valid assignment for D o/

end;

Figure 12: An algorithm for assigning pass numbers to attributes

If these conditions are not met then there exists some semantic tree with an occurrence of
X.3 dependent upon an occurrence of Xj.att where Xy.att will defined on the ita pass or
later and where the order of evaluation is such that X.a must be defined on a pass after
Xy.att is evaluated. An example of such a case is given below in figure 13. In that
example, if D; = LR and PN(Xj.att) == i then ,PN(Xj.a.) > i as the pass-oriented evaluator
strategy calls for evaluating attributes of Xj before those of X during an LR pass.

|

| | Xo Di = LR ————-—-:)

—
o——oo—mo—-——o
1 P X, ... 1 1 XsX, ... | ase] e | |
— 1 o-:—-o : ! o—:—-o xk — x"

Figure 13: Two attridutes not evaluable on the same pass

For a synthesized attribute an even simpler condition can be formulated: Let X.a be a
synthesized attribute of r.he grammar Then X.a is evaluable on the i*B pass iff for each
production [p: ‘(0 = Xgpl with X = X; if 3 an edge (Xy-att, Xg.3) in Dp then
PN(Xy.att) < i Thxs 51mple condpt.lon is due to the fact that the synthesized attributes of
Xp are the last to be evaluated in the procedures of the pass-oriented evaluator.

Using these conditions the algorithm of figure 12 computes the sets SiLR and SiRL given
the sets Sy,...,5; ; of attributes already assigned pass numbers. Initially all the attributes in
NOT _YET _ASSIGNED are candidates to be evaluated on the ith pass. These attributes
are examined and dismissed as candidates if they are found to violate the above conditions.
As the the removal of one attribute may cause another attribute to violate the above
conditions this step must be performed iteratively (taking the transitive closure) until stable

sets SiLR and SiRL are found.

—~—

An evaluator strategy closely related to the pass-oriented strategy is one which makes
sweeps over a semantic tree instead of passes. A sweep over a tree visits each node of the
tree once in a depth-first manner, but not necessarily in a strictly left-to-right or right-to-
left pattern. It may first visit the entire subtree rooted at Xy, then the subtree rooted at
Xy.1» 2nd finally the subtree rooted at Xy ;. The reader is referred to 7] for a
comparison of this strategy to a pass-oriented one.

Because pass-oriented evaluators visit every node in the tree during each pass they can be
extremely inefficient. If we look back at the example of figure 9, for example, we see that
during the first pass over any semantic tree of the atiribute grammar no attributes of nodes
labeled B are evaluated. Similarly during the second pass no attributes of nodes labeled A
are evaluated. As there can be an arbitrary number of these nodes in a semantic tree, the
evaluator can consume much time performing VISIT) instructions which are not at all
needed. This inefficient evaluation behavior was a prime motivation for the development of
the evaluators to be discussed in the next two sections. In contrast to pass-oriented
evaluators, these evaluators will only visit a node if doing so will cause it to evaluate at
least one attribute of that node. Thais will not necessarily result in an optimal evaluator but

does guarantee a much more efficient one.

§. Uniform Evaluators

Uniform evaluators [38], like pass-oriented evaluators, assign a number to every attribute of
the grammar. As a uniform evaluator is not restricted like the pass-oriented evaluator in
making passes over the tree, this number no longer corresponds to a pass number but to a
visit number. That is, if an inherited attribute X.a has a visit npumber = i, then
immediately before the it'h visit to the left-part production of an instance of X, X.a must be
evaluated. Similarly, if a synthesized attribute X.b has a visit number = i, then before
returning from the i*1 visit to the left-part production of an instance of X, X.b must be

evaluated. Bearing this in mind, we define the Concept of a protocol for a context-free

symbol X.

Let X be a nonterminal symbol of an attribute grammar. Then a protocol Y =
x(1),....x(2i-1),x(2i),...,7(2n,) for X is a sequence of sets of attributes of X such that

1. There exisits an even number of elements in the sequence.

2. Even elements of the sequence consist entirely of synthesized attributes, odd
elements consist entirely of inherited attributes.

3. AX) = 1) U .. U n(2n,)
4. Every set (i), i > 1, is non-empty.

A protocol for X is basically just an assignment of visit numbers to the attributes of
X. Let ry= x(1),...,x(2i-l),x(?i),...,x(?nx) be a protocol. The uniform evaluator will visit
any instance of X in any semantic tree oy times. Before the ith visit it will evaluate the
inherited attributes of x(2i-1) [henceforth referred to as xy{2i-1)]. Before returning from the
i*B visit it will evaluate the synthesized attributes of ry{2i). ny is called the length of the

protocol 7y. For every production [p: Xy = X ™~ an] with X = X, the evaluator will
have ny routines, one for each of the ny visits to X. The procedure associated with the ith

visit to a production p will be called precy i)y It must evaluate the synthesized attributes in
Txo(2i). What other instructions are in the procedure depends upon the dependencies of p
and the protccols for Xl,...,an. This is best illustrated by an example. Let [p: Xy ==
X, XQ] be a production with dependencies as given in the graph Dp of figure 14 and let
o TX1» T2 be protocols for X4, X, and Xy respectively.

%o
lafld»teldl Tyg * (8}, (). {c}. (4}
gy ® (02,2, (g}, {2}
. /,\ Tyq * (2453, e} 1)
lei tlglal 141 ylefld
X X

Figure 14: A Dp yraph and protocols for X, X, and X,

The protocol for Xy calls for the procedure procp(q to evaluate X4.b. (Xo.a, being an
inherited attribute of the LHS node, would be evaluated before visiting Xo and activating

this procedure). As this attribute is dependent upon X,.j, the procedure must visit X,
evaluating the attributes in 7ya(2) = {X5.j}. But the protocol for X, requires that X,.i be
evaluated before visiting X, for the first time so this attribute must also be evaluated

procy(1) This in turn requires that X; be visited, X,.h be evaluated, and so forth. In this
way production dependencies and protocols for the context-free symbols of the production
interact to determine the procedures of the evaluator. In this example we can determine
that on the first visit to p the attributes { Xj.e, X8 Xg.i, Xg.b } must be evaluated and
on the second visit { Xo.k, Xy.d } must be evaluated. In addition some of the RHS nodes
must be visited in between evaluating these attributes according to protocol specifications.
These considerations completely determine the form of the procedures Procy () and Procy(a),
corresponding to the 15 and 284 yisits to p, to be:)

PToc,(q) Procy 2y
Begin Begin
EVALyy o © EVALyg i
easevistt, L CASEVISIT,;
e WL BiMyo. 4
casTiisit,?; Ead;
EVALyq 4
CASEVISIT,;
EVALyp y:
End;

In proc p(1) We are guaranteed that after the executlon of the CASEWSIT instruction
control wnll transfer to some procedure proc /g where p YO =Y, .. Y, with Yy =
X, a2od i that procedure X,.[will be evaluated. This is because in constructing the
procedure proc /) we make use of the same protocol 7y as we did in constructing the
procedure proc 1) and this protocol demands that X;.[(= Y.} be evaluated on the 15t
visit to its left-part production; the protocols guarantee that the procedures will fit together.

The procedures of a uniform evaluator allow a single procedure to visit a node any
number of times and in any order. Furthermore, a node will only be visited if such a visit
will cause an attribute of the node to be evaluated. Contrast this to the procedures of a
pass-oriented evaluator where a node is visited exactly once per procedure whether or not
such a visit will cause an additional attribute evaluation.

It is crucial to note that not any protocols for the nonterminals will allow us to create a
uniform eva.lua.tor To see why this is true. consider the previous example again, only
substitute "(0 {c}, {d}, {a}, {b} in place of 7yy as the protocol for X5 On the first
visit to p, this protocol requires that Xg-d be evaluated. Because of the dependencies in p
and the semantics of the protocols, X,.I and hence ail of Xy's attributes must also be
evaiuated during this visit. As some of them are dependent upon Xj.a, this in turn means
that Xy.3 must be evaluated before visiting this production and in particular, before
evaluating Xp.d. But this violates the protecol ”"XO which calls for the evaluation of X4.d

25

before Xg.al Hence from the protocols ”lXO' rx1p 2a8d 7yo it is not possible to create a
uniform evaluator. A set of protocols (cne for each nonterminal of the grammar) is said to
be consistent iff a uniform evaluator can be built from them. Similarly a protocol for a
symbol X is said to be consistent if there exists some uniform evaluator using that protocol

for X.

Assuming that a consistent set of protocols for an attribute grammar has been found, it is
an easy task to create the uniform evaluator for it. The evaluator will consist of the start
procedure procg and ny procedures for each production [p: Xg == Xy an] where ny is
the length of the protocol for Xg. The procedure procg will contain just one CASEVISIT)
instruction. Each procedure proc; i), 1 < i < ny evaluates the synthesized attributes of
Xy in 7yg(21) as well as other inherited attributes of the right-part symbols. ~Which
inherited attributes of the right-part symbols are evaluated and which CASEVISIT,,
instructions are performed is determined by the dependencies of p and the other protocols of
the production, as illustrated in the example above. Actually, the construction is slightly
more complicated than that example would indicate. This is because the dependencies of p
and the protocols for the symbols of p will often only indicate a partial order of evaluation
of the attributes of p and to unambiguously construct the procedures of p a total order on
the attributes is required. This complication is easily resolved by choosing any total order
for the attributes of p compatible with the partial order. This can best be illustrated by

the following example:

sl
Faldsleldl Tyg * (a2, (0}, Le2, (1)
Ty ® (02022, 4g). Q2
. g Teg ® (X
el ¢l glyl 1£13!
LA X, < Xy Protocols for X X, and X,

Here the dependencies of p and the protocols 7o Tx] 28d 7ya describe only a partial -
order on the attributes of p. <Xg.3, X;.e, X;.f, X5.b, Xy.c, X8 Xih X, X5.j, Xp.d>
and <Xg-a. Xl.e, Xl.f, XQ.i, Xe.j, Xo.b, Xo.c, Xl.g, Xl.h, Xo.d>, for example, are both
total orders compatible with the partial order. On the first visit to this production either
total order calls for the procedure to evaluate Xj.e visit X, and evaluate X3.b. On the
second visit both must evaluate Xl.g, visit XI, and evaluate ‘(.Od On one of these visits
X,.i must be evaluated and X, visited. This must be done before evaluating Xy-d but
exactly when (in either the first or second visit) makes no difference and does not
significantly effect the evaluator. Hence this ambiguity can be resolved arbitrarily by
chcosing some total order compatible with the partial order and appropriately dividing it up

into visit sequences.

How are a consistent set of protoccls for the nonterminals of the grammar found?
Unfortunately, Engelfreit and Filé show in [8] that finding these protocols, if they exist at
all. is an NP-complete problem. That is, it is an Np-complete problem to determine if an

attribute grammar is in the class of uniform attribute grammars and if it is, it is just as hard
to determine a consistent set of protocols for the grammar. Still, for some subsets of this
class a consistent set of protocols can be found in polynomial time. The rest of this section
will examine how this is dome but first a a more precise method of determining the

consistency of protocols needs to be formulated.

For any protocol 7y, one can form the protocol graph &y = (V,E) where V = A(X) aad 3
a path from X.a to X.b iff X.a € rrx(m) and X.b € ry{m+k) for some k > 8. A protocol
graph is always acyclic since if there exists a path in &y from X.a to X.b then the protocol
7y specifies that X.a is to be evaluated before X.b. Given a protocol graph &y it is always
possible to reconstruct the protocol 7y from which it was derived. Note that in &, for
every inherited attribute | and synthesized attribute S either | & S or S % I. Moreover,
these edges alone are sufficient to recomstruct the protocol associated with this protocol
graph. Using protocol graphs it is possible to formalize when a set of protccols are
consistent for a given attribute grammar; the following theorem is proved in (6].

Theorem 1: A set of protocols for an attribute grammar G is consistent iff for
each production [p: Xy = X; '~ an] in G, Dp[&xo,...,éxnp] is acylic, where &y
is the protocol graph for Xj's protocol.

Intuitively this is so is because an edge (Xj.a,Xk.b) in a graph Dp[éxo,...,éxnp] means that
for any instance of p in any semantic tree, the occurrence of X..a must be evaluated before
the occurrence of Xy.b. If the edge is from the Dp graph then this requirement stems from
the fact that Xy.b is dependent upon Xj.a. H the edge is from a &¢ graph then this
requirement is due to the semantics of the protocol. I[f the graph Dp[&xo,...,sxnp] contains a
circularity then this requirement states that some attribute X.a must be evaluated before
X.a, which is clearly not possible. If there are no circularities, however, then we can create
a total order from the partial order given in Dp[&xo,...,&xnp]. This total order, together with
the protocols X0+ TXap will unambngu.ously determine the procedures PrOCy(1)+ PTOC o 1m)-
We know that all these procedures will fit together as they all make use of the same
protocols for the symbois of the grammar.

~—

In figure 15 we give the graphs Dp(fy(,6x(.6x0] and Dp[é’xo,éxl,éxg] for the example of
figure 14 above. The graph Dp[&"xO,é)(l,&x:.] contains a cycle since the protocols ’lXO’”XI’
and Ty are not coosistent. The graph Dp[éxo,éxl,&XQ], however, is acyclic since the
protocols O] and Ty are consistent,

The above theorem also suggests a method of computing consistent protocols for the
nonterminals of an attribute grammar. For each nonterminal X cf the grammar one starts
with a graph Gy baving attributes of X as vertices and no edges. Edges are added

6At:cording to this definition many different protocol graphs can be constructed for a
given protocol. All of these graphs, however, have the same transitive reduction graph. As
this transitive reduction graph is itself a protccol graph (with the fewest possible number of
edges), we shall take it to be the unique protocol graph for a given protocol.

l;lbleldl Illblcldl

P -Ure- N

l el ¢l gl 3l |i|j|k|l| lel tl gl liljlklll —
A FTFT M =
Figure 15: The acyclic graph Dp[&Xoﬁxl,ﬁxd and the cyclic graph DpﬁXoéxl,EXd

incrementally from X.a; to X.ag if it is determined (by examining an augmented dependency
graph) that an instance of X.a; must be evaluated before an instance of X.a9 in some
semantic tree using a uniform evaluaticu strategy. This process continues until no more
edges can be added to any Gy graph. At each step in the process, each Gy graph can be
considered as a rough draft of a protocol graph &y. The reason it is only a rough draft
and not an actual protocol graph is because it may not have the property that for every
inherited attribute [and synthesized attribute S of X, either | % S or S = [Even upon
termination when no more edges can be added to any Gy graph, these graphs may still be
only rough draits and not actual protocol graphs. However, if at termination of this stage
there exists an edge from X.a; to X.a9 then X.a); must be evaluated before X.35 using a
uniform evaluation strategy. Hence anv_edge in a Gy graph must exist in_a consistent
protocol graph for X. We shall refer to the {Gy} graphs upon termination of this process

as pseudo-protocol graphs.

The following two stage algorithm can be employed to find a consistent set of protocols
for an AG (if one exists): first form the pseudo-protocol graphs {Gy} as above, so that any
edge from X.a; to X3 in one of these graphs means that any uniform evaluator for the
grammar must evaluate X.a; before X.a,. Check and see if these pseudo-protocol graphs
are consistent- the addition of these edges has not caused a circularity in an augmented -
dependency graph. If they are not consistent then the attribute grammar is not uniform.
If they are consistent then stage two calls for completing these Gy graphs into actual
protocel graphs such that for every inherited attribute [and symthesized attribute S of X
either | » S or S % [. The addition of edges in stage two of the algorithm may also cause

an inconsisteacy to arise in the augmented dependency graphs.

Stage 1 uses the pseudo-protocol creation algorithm (21] given in figure 18 which finds pseudo-
protocol graphs {GX} for each ponterminal X of the grammar, adding an edge to Gy ounly
if such an edge must exist in 3nv consistent protocol graph for X. It begins by creating the
graph Gy = (V.E) for each nonterminal X of the grammar, with V = A(X) and E = 0.
It then considers the various augmented dependency graphs Dp[G‘(O,Gx{l GXn | adding an
edge (X;.3,X;.b) to the graph Gy; if 3 a path from X;a to X;b in Dp[G\(o,Gxﬂ, G\(np]
and this edge is not already in Gy;. After all such edges have bcen added, each augmented
dependency graph Dp[cho,G\ﬂ, G‘(np] is examined. If any one is cyclic then the
algorithm halts; in such a case the AG is not in the class of uniform attribute grammars.
This algorithm was initially formulated by Kastens [21] as the computation of his IDS

relation. It is similar but not equivalent to Kennedy and Warren's computation of 10y
graphs which is presented in the next section. It can be implemented in terms of a

transitive closure algorithm.

For each sontermizal X creste the graph Gy 3 (V.E) vhere V = AC) and Z v §;
Taile a2 edge caa be added to some graph Gy do
Begin
Choose a productioa [p: Xo s X1 e an] of the griamar;
12 3 a path from Xy.a to Xp.b 13 Dpllyg.Gyy.---uGyyp] aad O .8.X,.b) 1 20t ia Gy
Then add the edge Xy.3,Xp.3) to Gny:
Exd;
If for any prodaction p of the gramaar the grapd Dy(Gxo,GXI.....Gxnp] contains s cycle
Then retura(®gramaar is sot evaluable by s anifors evalzator?)

Else retara("the psendo~protocol graphs:® {Gy} “dave beea computed®);

Figure 18: The pseudo-protocol creation algorithm

Assume this algorithm terminates returning the pseudo-protocol graphs {GX}' If we look
at these graphs, we may find that in the process of adding edges some of them have become
actual protocol graphs whereas others remain only pseudo-protocol graphs; i.e., they need to
be completed further in order to be actual protocol graphs. In any case, for any resulting
Gy graph, if 3 an edge (X.2,X.b) in this graph then any comsistent protocol ry for X must
bave X.a € 7y{m) and X.b € ry{m+k) for some k > 0. This is due to the fact that an
edge (X.2,X.b) was added only if some production required X.a to be evaluated before X.b.

(See [11, 29]).

In the next figure we present an attribute grammar (giving the Dp graphs to describe
dependencies instead of the semantic functions themselves) having 3 nonterminals S, A, 2nd
B. We give the graphs G, and Gpg that are formed by the pseudo-protocol creation

algorithm.

The graph G, is a protocol graph for A describing the protocol ny = {a},{b} {c},{d}
whereas Gp is only a pseudo-protocol graph and could still be completed into 3 different
protocol graphs corresponding to 3 different protocols: rg = {g},{h}{e},{f}, ”,B =
{e}.{f}.{g}.{h}, and ””B = {e,g},{f,h}. The first of these is a consistent protocol for
B. The last two, however, introduce a cycle in the augmented dependency graph for Dp,;
i.e., the graphs Dpl[éA,GA,é’/B] and Dpl[éA,o'A,é"'B] are cyclic, where §, is the graph G,, E’IB
is the protocol graph formed from the protccol ﬂ’IB, and 6”8 is the protocol graph formed
from the protocol "”B' The graph Dpl[ﬁA,EA,a‘”B] is given below in figure 18.

The application of the pseudo-protocol creation algorithm completes the first stage in
finding a consistent set of protocols for the AG. After this step it may have determined
that the grammar is not in the class of uniform attribute grammars. If this is not the case,
then a collection of pseudo-protocol graphs have been found which contain edges essential to
20v set of consistent protocols for the grammar. Thz second stage of the strategy is

Pp: At w. I a1 » | ¢ | 41 py: Bi:s), I ¢ | ¢ 1 g | ¥)

N2 S

The productions of the grammar and their Dp graphs

I a1 % 1 ¢ 1 4 1 I« 1 ¢ 1 gt 2]
Sy S~ Ny’
The graph GA The graph Gg

Figure 17: Pseudo-protocol graphs formed by the algorithm of [igure 16

P o Wa A
I &« 1 | a I d
\
e e X~ e,
L a | b 1 ¢ | 41} RN
N G\ (iVW/

Figure 18: The cyclic augmented dependency graph DpI/JA,tSA,é’”B/

Py Ag :i® Ay B. |

concerned with further completing the {GX} pseudo-protocol graphs so that each graph
becomes an actual protocol graph instead of a pseudo onme and such that the resulting
graphs make up a conmsistent set of protocols for the attribute grammar. In general, as
stated earlier, this is an intractable problem. Instead an algorithm is chosen which
completes the graphs according to some heuristic H. On applying heuristic H to the pseudo-
protocol graphs {Gy} a set of actual protocol graphs {6x} for the grammar is obtained. If
these graphs determine a consistent set of protocols (which can be checked by examining
whether or npot the augmented dependency graphs are cyclic or not) then a uniform
evaluator can be built based upon them. If they are found not to be consistent, however,
then these canmot serve as the basis of a uniform evaluator. We cannot be sure (without
exhaustive search) whether there is some way to complete the graphs to a consistent set or
whether the grammar is not in the class of uniform attribute grammars. We could attempt
to use a different heuristic H' to complete the graphs and once again check the resulting
protocols for consistency. A better suggestion is to build a multi-protocol evaluator (as
described in the next section) instead. Figure 19 gives an AG which ’'passes’ the pseudo-

- 30

protocol creation algorithm test; i.e., all the dependency graphs augmented by the pseudo-
protocol graphs are acyclic yet this AG is not in the class of uniform attribute grammars.
In particular, the dependencies of p, indicate that stmt.a must be evaluated before stmt.c
but the dependencies of py indicate that stmt.c must be evaluated before stmt.a. Hence a
consistent protocol for stmt cannot be formed even though the dependency graphs
augmented by the pseudo-protocol graphs are all acyclic. This attribute grammar would
pass the first stage but fail in the second stage no matter which heuristic was used to
complete the pseudo-protocol graphs. Any uniform attribute grammar would pass the first
stage but would pass or fail the second stage depending upon which heuristic was used to

complete the graphs.

Pp: S i:T stat. Py: stat, ::3 simt, stat, 1.
0 ———s 1 Q 1 2 nno
| traas |
Y w; ¥ | DY stmt // %% j stat, o
boa b | ¢ | d | c |
‘ j J
Py: stat I:3 v, Pqt staty T stat, stat, v.
3 stat 2 ° 12 otat,
Il & I 5 I ¢ | 4 | I &« 1 » 1 ¢ | 4 |
Y{Z stat { sta v
' e | L ‘2

L/ L_>_J /J

~—
Figure 19: An attridbute grammar not evaluable by a uniform strategy

Several heuristics for completing the pseudo-protacol graphs into actual protocol graphs
have been discussed in the literature [9, 11]. Here we describe a heuristic similar to the one
devised by Kastens [21]. It follows a greedy strategy in that it completes the pseudo-protocol
graphs so as to make as small a protocol as possxble and to evaluate attributes as early in
the protocol as possible. Given the graph Gy, we define T; = {i | i € AX) | F edge (vi)
in Gy}. T, contains those vertices of Gy corresponding to inherited attributes of X which
have no entering arcs. Given the sets Tl""'Tj-l we create the set Tj in the following way:

T‘lj ={s|se SX)sg&Tph <2 |il 3an edge (vs)in Gy then v € Ty, k < 2j}

Tojpp ={ili€enX)|igTy b < 2j+1 [if 3 an edge (vii) in Gy then v € Ty, k <
2j+1

To; are those vertices s of Gy corresponding to synthesized attributes of X such that if 3

‘By making py = p(1),. T) as small as possible we mean making the length n_ of the
prutocol as smaa(a.s possi le his is advantagzous for several reasons. Most imp&rtantly,
the smaller Px is, the fewer VISITk instructions required to nodes labeled X in the tree.

31

an edge (v,s) entering s, then v is in an dq’earlier” set Ty T2j+1 has a similar
interpetation for the inherited attributes of X. Note that if there is a path from v to™w in
Gy then v € Ty and w € Ty for some k > 0. We create the non-empty sets T T
in this way forming a partition of the attributes of X. The protocol completion strategy
calls for introducing an edge (v,w) in Gy between every 2 vertices v and w such that v €
Tj and w € Tj+l' This heuristic certainly completes the pseudo-protocol graphs into actual
protocol graphs as after adding these arcs, either | & S or S & | for each inherited
attribute [and synthesized attribute S of X. Figure 20 gives a pseudo-protocol graph and,
the protocol graph obtained by using this protocol completion strategy. It is not hard to
see that this heuristic will not always result in the creation of a consisteat protocol. For
example, this heuristic would complete the pseudo-protocol graph Gp of figure 17 into the
protocol graph d,B corresponding to the protocol "J’B' We already saw that this protocol is
not consistent (see figure 18) even though there are ways to complete Gp into a protocol
graph corresponding to a consistent protocol for B.

-t £ y ; Ths protocol graph corresponding

laldletldl ol t] Faldt el dl el] to tis protscol

VY Y \wu (a.e}, (5,2}, (), (&

Figure 20: A protocol graph obtained from a pseudo-protocol graph using the greedy strategy

Kasten's heuristic [21] is similar to the one given here except that he forms protocols in
the reverse direction; he first creates a set T of those synthesized attributes s such that J
an edge (s,v) in Gy. He then creates the set T _; of those inherited attributes i such that
if 3 the edge (i.v) in Gy then v € T . He continues in this fashion to form the sets
T,,...Ty and then completes the pseudo-protocol_graphs based on these sets as we did
above. [f the resulting set of protocols turns out to be consistent, the attribute grammar is
said to be an ordered attridute grammar. For the pseudo-protocol graph given in figure
20 Kasten's strategy would compute the protocol {a},{b},{c,e},{d,f}. Contrast this protocol
to the one produced by the greedy strategy given above (see figure 20). It is easy to
construct grammars for which the greedy strategy would find a consistent set of protocols
but Kasten's strategy would not and vice versa. Both heuristics have the desireable

property of producing protocols which are as small as possibles.

It is not hard to see that a pass-oriented evaluator is just a special case of a uniform
evaluator. Given a k-pass evaluator for an AG, we can easily construct a consistent set of
protocols for the grammar. To each nonterminal X we assign the protocol: {X.i € AX) |
PN(X.i) = 1}, {Xs € S(X) | PN(Xis) = 1}, {X.i € AX) | PN(X.i) = 2}, {Xs € (X) |

8This does not mean that the resulting evaluator will be optimal as the optimal evaluator
may not be uniform at all. It does mean that the resulting evaluator will be the most
efficient uniform evaluator which can be constructed for the attribute grammar.

PN(Xs) =2}, {Xie 1X)| PN(X.i) = k}, {Xs € 9X) | PN(X.s) = k}g. This set will
be consistent or we would not have been able to build the pass-oriented evaluator for the
attribute grammar. Not only are uniform evaluators more efficient than pass-oriented
evaluators, ihey can be built for a larger class of attribute grammars. For example, the
reader should have no problem in recognizing {rg = D, {translation}, Tiss = {inhatt},
{synatt}} as a consistent set of protocols for the attribute grammar of figure 10. Thus
although we cannot construct a pass-oriented evaluator for that grammar, we can construct

a uniform evaluator for it.

% This may Dot be a protocol in the strict sense of the definition as some of these sets
may be empty. This can be corrected by deleting any set other than the first which is
empty.

33

8. Multl-protocol Evaluators

In the construction of a uniform evaluator given in the last section, a set of pseudo-
protocol graphs were obtained, one for each nonterminal grammar symbol. Each of these
graphs was then used as a model from which to build a unique protocol for each
nonterminal. The construction of a multi-protocol evaluator proceeds along similar lines.
Initially a set of model graphs is formed, onme for each nonterminal grammar symbol.
However, instead of using these graphs to form a unique protocol for each nonterminal, they
will be used to form a set of protocols for each nonterminal. From this family of protocol =
sets the procedures of the multi-protocol evaluator will be built in a manner analogous to
the construction of the procedures of the uniform evaluator.

The evaluator presented in this section follows, to a large degree, the sub-protocol evatuator
of Farrow [9]. It has many aspects in common with the trec-walk evaluator of Kennedy and
Warren [23] and the direct evaluator of Nielson (28]. We have chosen Farrow’s paradigm as
it is a pnatural extensicn of the uniform evaluator of the last section.

We begin by showing how to form the model graphs of the multi-protocol evaluator. For
each nonterminal X, a graph called [0y is formed!Q. This graph has only edges from
inherited attributes to symthesized attributes. If in any semantic tree 3 a node N labeled X
with the synthesized attribute N.s dependent upon the inherited attribute N.i then there will
be an edge (i,s) in [0x. The converse iz not true however: there may exist an edge (i,s) in
[0y even though there does not exist a subtree with 3 node N labeled X and with N.s
dependent upon N.i. The /Oy closure aigorithm which finds the set of 10y graphs for an

attribute grammar is given in Figure 21.

For sach zoztaraizal X creats the graph IO x (V,E) vhere V = AC) wad E = 8
Thile an sdge caa be added to some graph 10y do
Begia
Choose & production [p: X5 ::3 Xy *°* !‘P] of the grammsr;
If 3 a path from Xg.a to Xg.b i3 DplI0y..... 100,] aad (Xga.Xq.3) is 20t 12 IOy,
Then add the edge %l,xo.b) to I04;
End;
{f for any prodactiom p of the grasmar the graph D’(IBXI""'InXap] contaias & cycle
Then retura("grammar is 30t evaluadle by a sulti-protocol evaluator®)

Else retuara("the graphs:® {10y} *lave been computed®);

Figure 21: The IOy closure algorithm

Note the similarity between the pseudo-protocol creation algorithm of the last section and

109 graphs were first introduced by Knuth [24] and subsequentially used by Kennedy
and Wirren 123}, who gave them the name 10, graphs. IO stands for input-output as the
raph shows the dependencies between information snput into a subtree reoted at a node
abeled X and information output from the subtree. The informaticn enters via the
inherited attributes of the root and leaves via the synthesized attributes of the root.

34

the 10y closure algorithm. In fact, for any nonterminal X, the graph [Oy is a subgraph of
the pseudo-protocol graph Gy created by the pseudo-protocol creation algorithm. Any edge
in [0y certainly exists in Gy but not every edge in Gy exists in 10y The main difference
between the algorithms is that the IOy closure algorithm only adds edges to the graph
[0xg and not ‘o graphs IOXi' i > 0, when paths are found in DP[IOXI"“'IOXno] while the
pseudo-protocol creation algorithm adds edges to any Gy; graph. Note that because the
grammar is in B‘ochn?ann Normal For.rn, any ?ath in Dp[IOXl,...,IOan] from Xo.a to X4.b
will be from an inherited to a synthesized attribute of Xy

It for every production p in the attribute: grammar the graph Dp[IOXl,...,IOan] is acyeclie,
then the grammar is called absolutely non-circular (ANC) [23]. A multi-protocol evaluator can
be constructed for any ANC attribute grammar. Hence if we intend to build a uniform
evaluator but find that in the last step of completing the pseudo-protocol graphs we do not

end up with a consistent set of protocols we can still construct a multi-protocol evaluator
11

for the grammar”".

Given an ANC attribute grammar, using the set of 10y graphs a set of protocols [Ty is
constructed for each nonterminal X, except for the start symbol S which will have only one
protocol associated with it. This set of protocols will be such that for each production
[p: Xy == Xl an] of the grammar, for each protocol txg € Mxo 3 protocols] €
HXI,...,Tup € HKnp such that Dplbyq, by, - 5an] is acyclic, where éy; is the protocol
graph corresponding to ty;. Let I7T = {HX | X a nonterminal of the grammar} be a family
of protocol sets obeying the above property. Then IT is said to be a consistent family of
protocol sets. Just as a uniform evaluator can be built for any consistent set of protocols, a
multi-protocol evaluator can be built for any consistent family of protocol sets.

Given a family of consistent protocol sets the multi-protocol evaluator can be built in a
fashion similar to the way the uniform evaluator was built. The main difference is that in
the uniform evaluator one set of procedures was constructed for a production p based on
the unique protocols for XO”"’xnp' whereas in the multi-protocol evaluator a set of
procedures is created for each protocol of XO That is, for each 0 in Myq a set of
procedures is built b:ased o? thf: protocols X1 e nle'"j"an € Han such that
Dpléxg.0xys - 5an] is acyclic. These procedures will be similar to the procedures of the
uniform evaluator with the exception of some additional bookeeping to keep track of which

-

Upecall that our algorithm for finding a consistent set of protocols for an attribute
grammar consists of two stages: we first %uild pseudo-protocol graphs for the nonterminals
and check whether the augmented dependency graphs are acyclic. If so, we proceed by
attempting to complete the pseudo-protocol graphs into a consistent set of actual protocols.
f we were successful in stage 1, i.e., all the dependency graphs augmented by the pseudo-
protocol graphs were acyclic, then we can always build a multi-protocol evaluator as these
graphs being acyclic implies that the attribute grammar is ANC. But even if we failed at
stage 1, i.e., some Dp[GY ,Gyyr-Gy | graph is cyclic, the grammar may still be ANC
and we could create somlgﬁ}-prom evaluator for 1t. This is because a cycle in
Dpi{G+A,G G‘{np] does not necessarily mean that Dp[IO‘(I,...,IOan] will contain a

C)'Cge.XOI X1

35

protocol is being used for each nonterminal. So, for example, 3 CASEVISIT} statement now

takes on the following form:
Case LP productioa of X, # p,: VISIT, and call Proc,s (1) [x1.
pq: YISITy sad call Procygc4) (=1,

P, VISIT, aad call proe,y ¢4y [71:
Here procp(i)[x] is a procedure to visit production p for the ith time, using r as a protocol
for Xj. 2 is not a parameter to the procedure but part of the procedure name. Unlike the
uniform evaluator where there was only one procedure procy) corresponding to the i*h yisie
to an instance of p in a semaatic tree, in the multi-protocol evaluator there may be h
procedures procp(i)[wl],..., procp(i)[xh] each corresponding to the i*® visit to an instance of
p. Which of the procedures is used depends upon which of the h possible protocols is being
used for the node labeled X,. It does not require any extra overhead during run-time,
however, to determine which one to use; that is determined by the calling procedure. This
can best be demonstrated by an example. Figure 22 gives the sets of protocols for the
nonterminals of the attribute grammar presented in figure 19. Although this attribute
grammar is not ‘a uniform attribute grammar it is a multi-protocol attribute grammar.
Figure 23 presents the procedures of the multi-protocol evaluator built for it. In addition to
the procedures procg and procpg there exists 2 sets of procedures for each of the
productions py, Pg and pg. For example, since p; has the symbol stmt as its LHS, we need
one set of procedures for p; using 7y .. as the protocol for stmty and one set using ”’stmt
as the protocol for stmty. The set of procedures using 7 .. as the protocol for stmtg,
namely procpl(l)[”stmt] and pmcpl(?)(”stmt]' uses ... as the protocol for stmt; and
T ume 25 the protocol for stmtq sinece these protocols cause the augmented dependency graph
to be acyclic; should =g, o be used as protocols for both stmt; and stmtq the augmented
dependency graph would contain a cycle. Similarly the set of procedures for p; using ’r’stmt.

as the protocol for stmtg, namely pmcpl(l)[”,stmt] and pmcpl(?)["’stmt]' uses ’/stmr, as the
protocol for stmt; and g . as the protocol for stmtg since these protocols cause the

augmented dependency graph to be acyelic; should "Jsu;lt be used as protocols for both
stmt, and stmtg the augmented dependency graph would contain a cycle. Due to space
considerations, figure 23 does not give the procedures for production ps.

—~—

I {1 = 8, (trane) }

e * € Tge * Q10N Y, 2, 0 a (ehi(ad. (ad, (b} }

Figure 22: Sets of protocola for the symbols of the attribute grammar of figure 19

At this point it may be beneficial for the reader to trace the execution of the evaluator on
a typical semantic tree for this attribute grammar. Figure 24 gives such a tree. In this
figure we have labeled each nonterminal node by the protocol that would be (automatically)
used by the evaluator to evaluate the attributes of that node. Evaluation of the tree would
begin by calling procs{xs]. This procedure would in turn call proc,y. This first evaluates
N2.a, then visits N2’s LP production invoxing the procedure procpl(l)[”stmt] (indicating that

procg [Nsb]

Procyg

egia

/% The start procedure ¢/

Case LP production of § 3 P0: VISIT.t" and call procpo;

end;

/% pa: S
degin °

EVALI%It.l

HEL I 34 AN

o/

Casa LP production of stst = p,: VISIT ., aad csllAyrocpl(l)[ﬁ.t.‘];

Pq:

Ps:
EVALItl‘.C

VISIT
YVISIT

stat

stat

aad call ?’°°p2(1)(xltlt]:

1nd eall proc,g(yy [T ¢q,d:

Case LP production of stat » p,: VISIT . aad call P’°°p1(2)[xnt-t]:

P3¢

. Pa:
w‘% .traas’

end;

Pr°°p1(l)[ﬁltl=) * Ptocpl(2)[ﬂjlt-t]

begia

EVAthlti.;;

VISIT
VISIT

stat

stat

It py: stEty i3 stat, staty 1.

sad

aad

call Pr°°p2(2)[ﬁ|tnt];
call procyy gy (T enel:

Case LP production of stat; * py: \IISX‘X'"'“1 sad call Pr°°p1(1)[”|cln];

Pq: VISITlCItl and call Pr°°pz(1)[ﬂ|tlt]:

Ps:

E‘IAL"‘"T ¢

Case LP production of staty =

YISIT

stat

py: VISIT

stat

y aad call Procp&(l)[ﬂutnt];

q a2d call procpl(i)[ﬂj.‘.‘l;

P2: VISXT.‘.u aad call Procp:(l) [‘ ltl‘];

Py

EVAthnto.b

end;

procpl(z)[ﬁ.‘.‘] * Pr°°p1(1)[ﬂjltlt]

bdegina

EVA.L"“T 2

Case LP production of stat, =

P2

Py:

Evu‘ltlti . G;

Case LP production of stat, =

Pat
Py

EVALstlta.d

ead;

Proc 1) [Myeand * PFocps(2) (7 aed

begia
Evkthlt.)

ond;

Figure 23:

YISiT

sta

vg 32d call Pr°cp3(1)[ﬂjlt:t];

/% py: stmty i stat, staty u. o/

py: VISIT

stat.

5 azd call Procpl(Q)[nJltlt]:

: VISIT , 4q sad call Pr°°p2(2)t' stac)’

VISIT, ,peq sad call procps(z)lﬂjlc.=]:

py: VISIT

stat

y wad call Pr°°p1(2)[ﬂ|tlt];

VISIT, ey 32d call P’°°p2(2)(”.:.g]:

VISIT

sta

Proc g2y [T yened * Procys(1) ["Jn-:]

¢y tod call prccps(z)lx".‘]:

degis

EVAthlt.d

ead;

o/

/o stat ::

The multi-protocol evaluator constructed for the grammar of figure 19

o

Figure 24: A semantic tree for the atiribute grammar of [igure 19

N2's LP production is py, that N2 is associated with the protocol Tsume 304 that N2 is
being visited for the first time). Upon returning from this visit N2.c is evaluated; since
N2’s protocol is ., . we know that N2.b was evaluated during the visit. Next N2 is
visited for the second time invoking the procedure procpl(e)[xsth. Upon returning from
this visit we know that N2.d has been evaluated and that Nl.trans can be evaluated. We
see that although the evaluator never explicitly gave N2 the protocol Tqume tDIS assignment
is implicit in the procedure proc 4. If the reader continues the simulation of the evaluator
as it visits the other nodes in the tree, he will see that multi-protocol evaluator always
implicitly assigns to a node a protocol by choosing the appropriate procedure calls.

Note that several different procedures (procedures for the same production but using
different protocols for the nonterminals) can have the same code. procy (o [*syme 2nd
procpl(l)[x'stmbj, for example, have the same one instruction: EVAL v b The procedure

Procyy(a [7sume] corresponds to the second visit to a production-instance of py where the
LHS no‘fe stmt has the protocol »,, .. The procedure procpl(l)[’#stmnl corresponds L,o the

first visit to a production-instance of p; where the LHS node stmt has the protocol * tmt
Nonetheless this procedure needs to be written only once; during compiler construction time
the compiler generator needs to notice that two or more procedures are the same and to
eliminate duplicates. This can significantly reduce the amount of code needed for the

9
evaluatorl".

9

1"This idea of eliminating duplicate procedures which have the same code is due to
Farrow [9]. We actually bave generalized his technique somewhat. We allow more
procedures to be eliminated, but for this to be done we need a more complicated
technique- such as actually checking the procedures Tor equivalent code.

38

How many procedures are required by the multi-protocol evaluator? The uniform
evaluator required construction ~ of nyp procedures for each production
[p: Xy an] where nyp is the length of the protocol for Xy- A multi-protocol
evaluator requxres the construcblon of n°yg + n® xg *t - + nhXO procedures for each
production D where Iy = {~r X0 ThXO} are the set of protocols for X4 and anO is the
length of = \0 Since the number of protocols per nonterminal can be exponential in the
number of attributes of the symbol [9], this can result in an extremely large evaluator.
Fortunately this is only in the worst case. If, for instance, a multi-protocol evaluator for
the attribute grammar can be built by assigning a singleton set of protocols to every
nonterminal except ome, to whom a set containing 2 protocols must be assigned, then the
resulting multi-protocol evaluator constructed will be only slightly larger than the uniform
evaluator would have been. Furthermore, as illustrated in the last example, many of the
procedures constructed have the same code and can be shared. For these reasons it seems
probable that the size of a multi-protocol evaluator constructed for an attribute grammar
will be on the same order as a uniform evaluator would have been (had we been able to

copstruct one for the attribute grammar).

We have seen how to comstruct a multi-protocol evaluator given a consistent family of
protocol sets. But how do we initially find such a set? In figure 25 we give the pratocol
closure algorithm which, given an ANC attribute grammar, finds a set of protocols for each
nonterminal so that the multi-protocol evaluator can be built. Here we shall not concentrate
on finding a small set of protocols for each nonterminal, although this is obviously desireable
in order to build as small an evaluator as possible. The interested reader should comsult (9]
which presents heuristics for this purpose. The protocol closure algorithm starts with a
unique protocol for the start symbol S. As S has no inherited attributes, this protocol is
simply rg = O, {synthesized attributes of S}. It then generates protocol sets for all of the
nonterminals of the attribute grammar. The protocol closure algorithm will terminate as
there are only a finite number of possible protocols for a given nonterminal. It will always
be able to find a set of protocols such that- Dp[&xo 5y 5an] is acyclic because the
grammar is ANC. (See (28, 29)).

The protocol closure algorithm uses the function COMPUTE _PROTOCOLS given in
figure 25. This function can be viewed as a heuristic for completing protocols (see end of
section 3). Given the dependency graph Dp, the IOy graphs for XI"“"‘LAp' and a protocol
for Xg, it completes the model IOy graphs to form protocols for Xl,...,an. It does so by
determining which attributes will be evaluated and which childrea visited on each visit to
the production, based on the protocol for X, ~ From the resultant protocols xy,..7
together with Tgr a set of procedures for the multi-protocol evaluator can be constructed;
i.e., the graph Dp(éxg.8% 1 o SXap] is acyclic. The function
READY _TO_EVALUATE _INH(W,G,j) used by the function COMPUTE_PROTOCOLS
takes a set of already evaluated attributes W, an augmented dependency graph G, and a
subscript j. It returns the set {att € I("(]) W | for each arc (w, att) in G, w € W}; i.e,
:hose inherited attributes of X; which can be evaluated immediately as all of the attributes
it depends upon are in the set W of already evaluated attributes. The f{unction

39

Let xg ® §,.{synthesized attridates of S):
For ssch zonterminal X # S let ITX x'$ endror;
Repeat uatil 20 more protocols aeed to be added
For sach production [p: X5 ::m X, *°° X”]
For sack protocol Xxn € U
% CONPUTE_PROTOCTLS (Dp. Tyg. 10y . .. 10y,)

/e Dp(&xb,an. ceee %,J is acyelic ¢/

LI ap

For L € [1..2p]
1 2, & [Iyy thea 1dd 7w [y
endFor;
eadFfor;
sndFor;

endRepens;

Figure 25: The protocol closure algorithm

READY _TO _EVALUATE _SYN(W.G,j) similarly returns those synthesized attributes of X.
which can be evaluated immediately. The function, HAS_NON_EMPTY_YIELD(W,G%
returds a set of right-part context-free symbols {Xj -| k > 0 | 3 synthesized attribute X att
€ AXy) - W | for each arc (wXp.att) in G, either w € W or w €

READY_TO_EVALUATE _INH(W,Dp(6y,I0xq,....[0x)} i.e., those right-part symbols
which would yield newly evalua.ted synthesized attributes gy evaluating any of their inherited
attributes ready to be evaluated and then visiting their subtrees. So if X, €

HAS _NON_EMPTY_ YIELD(W,G) then we know that after evaluating the inherited
attributes of Xy which are ready to be evaluated immediately, we can visit X, and during
that visit evaluate some synthesized attribute of X which has not yet been evaluated. The
protocol closure algorithm and the COMPUTE _PROTOCOLS function are based on a
similar construction in [28, 29]. They also have features in common with the Kennedy-

Warren Planning Algorithm [23].

Notice the nondeterminism in the function COMPUTE_PROTOCOLS. On each step
through the WHILE loop the set HAS _NON_EMPTY _ YTELD pr{‘s‘(O'IOYl' IOXn Dis
computed. This is a set of RHS nodes X;, 1 < i £ op, such that if Xy is in this set Lhen
Xy can be visited allowing at least one symthesized attribute to be evaluated (we say that
the visit yields an attribute). The function arbitrarily chooses one of these nodes to visit
and then recomputes the set. This continues until no more possible visits can be made: i.e.,
until there does not exist a node which will yield an attribute by visiting it. Depending
upon how this nondeterminism is implemented different protocols may result for the children
Xy Xy [t is desireable to restrict this nondetermism so that the protocols produced are
as small as possible. [n the appendix it is shown, however, that prodrvcing the set of
protocols for Xi,... X,p (given the protocol X0 and the graphs [0y IO’(np) such that
their total length is minimal is an NP-complete problem.

—~—

40

func COMPUTE _PROTOCOLS(Dp: a dependeacy graph, Tyni » protacol for X, !OXI.....IUX“: 10y graphs
for RHS nonterainals);

/% Yoras protocols for the RHS nostermizals of p by cospleting the IOy graphs dased on the protocol My, o/
Begin
Let 5xo be the protocol graph for Ty, ()., . T(2ayg):
LIRSE N H
For } ::3 1 to “p do T 1:% empty sequence; eadFor;
For L ::% 1 %0 3yq do

LEELE NUJE SW¢ITSOH :

Wile HAS_FON _EXPTY _YIELD(W.Dpl&yq. 10y, ... 10x 1) # ¥ do

Chooss sOmie XJ- € HAS _¥ON _EMPTY_YIELD(W.Dpl&y,. 10y,..... 10y, 005

Iy i:m mm__m_svwrz_uua.np[&xo.mn.....I%P],j);
Xj Ij' /* Concantanate IJ to the ead of Kj o/
| RS | LJ I’,

5y 1% READY _ TO _ EVALUATE _ SYN(W.Dp (&g, 10y;. ..o 10y, 1):

NJ L KJ,SJ; /% Concantenate SJ %o the end of ?YJ o/
| IEST IR) SJ;

end¥hile;

| JERE IR AV Tyo(24):
sadFor;
Retura(m,,....7):

d; —
Figure 28: The function COMPUTE _ PROTOCOLS

&)

Although the multi-protocol evaluator outlined in this section is based on the ideas in [9],
it is very similar to the treec-walk evalustor of Kennedy and Warren (23] and the direct
evaluator of Nielson [28]. A comparison of these evaluators is presented in [9). A different
interesting approach, based on an algebraic formulation of attr:bute grammars (2, 4], can be
found in [19, 22 These evaluators are not really tree-walk evaluators; their underlying
scheme is to bulld one recursive function per synthesized attribute. In this way they avoid
construction of protocols and the need for flags (as found in the Kennedy-Warren evaluator).

Although multi-protocol evaluators can be built for a large class of attribute grammars, if
an evaluator for a attribute grammar which is not ANC is required then we must go
beyond static evaluators and build a dynsmic evaluator. We need to use more run-time
information than the static evaluator allows. Assume, for example, that we have a attribute
grammar which is not ANC. Then there is some production p such that Dp[IOXl,...,IOan]
is cyclic. Assuming that the grammar is actually well defined, this circularity must be due
to a spurious edge. That is, there are 2 edges (‘(k 23,X..b) and (Xj.c,Xy.d) along the cycle
in Dp[IO\{l, IO\(n] such that one will appear in some subtres rooted at a node labeled
Xy and the other w:ll appear in a different subtree rooted at a node labeled Xp but they
will never appear in the same subtree. In order to know in which order to visit the

41

children one must know which edge is spurious. A static evaluator cannot deal with this
situation: the only information it can use when at an instance of a production p is which
productions apply at its children. This information is not sufficient to detect which edge is
spurious and hence cannot determine in what order to visit the children nodes. A dynamic
evaluator, however, can use an arbitrary amount of knowlege concerning the semantic tree.
It could, for example, make a prepass over the tree passing information to each node on the
nature of its subtree. This sort of information is sufficient to evaluate any semantic tree
for any well-formed AG. Maay dynamic evaluators have been formulated (3, 23, 28|.

7. Conelusion

In this paper we have developed the notion of static tree-walk evaluators. These evaluators
represent an important subclass of all tree-walk evaluator strategies. We presented three
types of static evaluators: pass-oriented, uniform and multi-protocol evaluators. Pass-oriented
evaluators evaluate semantic trees by traversing each tree a fixed number of times in right-
to-left or left-to-right depth-first passes. They are easy to construct and reasonably small.
They have two significant weaknesses however. First of all, 3 pass-oriented strategy can be
very inefficient in its evaluation of semantic trees. Secondly, many attribute grammars
cannot be evaluated by such a strategy. Uniform evaluators do significantly better in both
of these areas: as they only visit a node in order to evaluate an attribute they are much
more effictent in their evaluation of semantic trees. Also, they can be constructed for a
larger subset of well-defined attribute grammars. But uniform evaluators have a weak point
as well: in general it is too hard (Np-complete) to construct such an evaluator for every
attribute grammar which could have one constructed for it. Most compiler generators based
on 3 uniform evaluation strategy will therefore only construct evaluators for a subset of all
uniform attribute grammars. Multi-protocol evaluators are not as restricted as uniform ones: -
for any absolutely non-circular AG a multi-protocol evaluator can be built. Moreover, this
evaluator evaluates semantic trees as efficiently as the uniform evaluator, only visiting a
aode of a tree if doing so would result in the evaluation of an attribute of the node.
Unfortunately, in the worst case the resultant evaluator can be exponentially large.

ACKNOWLEDGEMENT

I would like to thank Rodney Farrow for serving as my advisor and introducing me to
most of the material presented in this survey. Our conversations always led to new and
exciting ideas. He also read several drafts of this paper and offered many useful
suggestions. | would also like to thank Rich Korf and Kathy Mckeown for their helpful

recomendations.

43

Appendix

In this appendix we show that two related problems are NP-Complete. The first concerns
finding minimal length protocols, the second concerns optimal time evaluation of semantic

trees.

Given a production [p: X === X; - an] and an augmented dependency graph
Dp[éyco,loxﬂ, IO\(np] the algorithm of figure 26 computes valid protocols for the symbols
of Xy,... ‘%p. By valid protocols we mean protocols whose graphs &1 5301 are such that
the graph Dpléxy, 6\{1, o SXpp] is acyclic and such that every edge in
Dp(6x0.10x - IOYnD] is in Dp(éyq, 5\(1, - 5‘{np] It would be desireable to create these
protocols such that their total length length (1e 2! + oyo + .. + n‘(np) is as small as
possible; a smaller total length means that less visits to children need to made for any such
production-instance in a semantic tree and this would lead to more efficient evaluators.

Theorem 2: Given an augmented dependency graph Dp[éy,[0y,... IO‘(no] and
an integer k finding whether there exists valid protocels X1 TXap for the
grammar symbols X,,... X, bhaving lengths oYy 8%np such that ny) + 2ys +

+ 1y <kis NP complete.

Proof: Certainly the problem is in NP. Guess valid protocols T\(l, ~TXnp for the
grammar symbols. Verification can be done in p-time. To show that it is NP-complete we
will show that if this problem could be solved in p-time, the shortest common supersequence

problem, described below, could also be solved in p-time.

Given a3 string S over an alphabet I, a supersequence S’ of S is any string
s = W S g 2 I U over L such that § = s.3p.s,, and each w; belongs to E'; we
also say that S is a subsequence of s’. A common supersequence of a set of strings ¢ =
{Sl,...,Sr} is a string S over I such that S is a supersequence of each S). We shall refer to
the k'8 symbol of S as SJk. The shortest common supersequence problem is defined as
follows: given an alphabet L, a finite set ¢ of strings from ' and a positive integer k, is
there a common supersequence of ¢ of length < k? This problem was shown to be NP-
complete by Maier (3), provided that the size of the alphabet T is > 5. The result was

sharpened to include any alphabet with at least 2 elements in (4).

The reduction will be as follows: given an instance of the common supersequencs problem
(3 set of strings ¢ = {SI,...,Sr} over L = {aj...,a;}) we will create a graph
Dp(6xq,[0x - {Oxp] such that there will exist a common supersequence for ¢ of leagth < k
iff there " exists valid protocols for ‘(1, X, of total length < k. The graph
Dp[&xo,IOX1 IOx(n] can be specified by giving the attributes of each symbol X, 01 <
a, the edges in o the edges in I0y; I < i < n, and the edges in Dp.

Lc.et, ¢ = {Sl,...,Sr} be given. Create Dp[&xo,IOXl,...,IOXu] such that Xg has 2 attributes
Xg-inh and Xg.syn. The protocol graph syq will contain the single edge (inhsyn). Every
other symbol X;, 1 £ i £ n, will have 2n inherited and a synthesized attribute (called an
attribute pair) for esch occurence of 2; in any string S}, Hence if a; appears § times in

44

strings of ¢ then the context-free symbol X; will have 5 inherited and 5 synthesized
attributes. If a; appears as the kB symbol of the string S! then the corresponding inherited
and synthesized attributes added to X; will be Xi.S-'kinh and Xi.SJksyn. For example, if SJ
= ag 39 33 3g then S8} would contribute an attribute pair to each of the context-free
symbols X, and Xj and two attribute pairs to Xg (namely, Xg.8!inh, X5.8%;syn, X;.84,inh
and Xs.Sj4syn)_. For any attribute pair (Xi.SJkinh , Xi.SJksyn) the graph [0y; will contain
the edge (Xi.SJkinh , Xi.SJksyn). These are the only edges in the [Oy; graphs. The graph
Dp will have one edge for each two conmsecutive symbols $'y Sy 4 in say string S): Say
that SJk = 3, and SJk+1 = ap. Then Dp will have an edge from Xe.SJksyn to
Xf‘SJk_Hinh. The only other edges in the Dp graph are edges from Xj.inh to the inherited
attributes corresponding to the first character of $J (1 < j < r), and from the synthesized
attributes corresponding to the last character of si (1 j € 1) to Xgsyn. So, for
example, if SI = S"l""'SJﬁnal with SJ1 = a, and Sjﬁnal 3 then Dp will have the edges .

(Xg-inh | Xe‘sjl) and (Xf.SJﬁnalsyn , Xg-syn).

1A

The above description shows how to form, in p-time, the graph Dp[éxO,IOXI,...,IOXn] from
an instance of the common supersequence problem ¢ Figure 27 gives the augmented
. graph D 10+1,10v4,10y4] for th formed f trings ¢ = {S!,
dgpendeucy graph Dp(8y,10x},10x5,10y3] for i: grammar forme rorfl?srm s ¢ {
S-} over the alphabet T = {a.l, 39, a3}, where S° = a; a9 ag 3, and 57 = 39 245 2o.
.———Q—‘ xo

{ inh | sya |

e e

. /———-_}:/] <—

TR /22’2 T TR X
1st 1st, 1st 18t Ist, 1st, 152, 152, 15%,152%,1 15t 158,152,152,
I MR R T R I R N I I
liahisyniinbisynl Iiulanliullglinllnl |inhlsynlinh|syni

(AW VAWV WA

Figure 27: An sugmented dependency graph formed [rom a set of strings

3

We now must show that there exists valid protocols for Xj,..,X, (protocols whose graphs
bxp-dxp 2re such that the graph Dp(8¢.8x 18yl is acyclic and such that every edge in
Dp |8y 10x - IOx,] s in Dp(bxqg.6x rOxyl) 2nd of total length < k iff there exists a
common supersequence for ¢ of length < k. Assume that we had valid protocols for
XXy of total length k. Then we could write a procedure to evaluate the attributes of p
based on these protocols (this would be done as given in sections 5 and 8). This procedure
would mix evaluation of the attributes of p with visits to the children nodes (these visits
would yield synthesized attributes of the node) and would obey the dependency relations
given in Dp[éxo,loxl,...,loxn]w . There would be EXACTLY k visit instructions in this

13.—\ procedure obeys the dependency relations of an augmented degendency graph if before

an attribute X..i is evaluated all of its dependencies have already been evaluated. If it is
dependent upoh a synthesized attribute X,.s (k > 0) then X, must be visited before
evaluating X..i and at the time of visiting K all of X8 depemtencies must have already
been evaluated. This last condition means® that if fthe attribute is dependent upon a
syqthesiz‘f:d attribute of Xk then that synthesized attribute has been yielded on a previous
visit to X, .

<

45

procedure. This is because a protocol for X of length m requires m visits to X in order to
evaluate all of its attributes. Similarly if we are given a procedure cont.a.iiling k VISIT
instructions which evaluates all the attributes of p and obeys the dependencies of
Dp(sy:[Oxy - 1Oxy] then we can find the valid protocols for Xy Xy of total length = k
corresponding to this procedure. This fact is fairly intuitive: from valid protocols we can
construct procedures which do not violate any dependencies and from procedures which obey
dependencies we can extract valid protocols. This fact allows us to express our proof a
little differently: we will show that there exists a procedure to evaluate all the attributes of
p (assuming only that Xq.inh has already been evaluated upon entry into the procedure)
using k visit instructions and obeying all the dependencies of Dp(éy,10x ,...JOx,] iff there
exists a common supersequence of ¢ of length k. In particular, if the procedure contains the
sequence of instructions VISIT: {EVAL instructions} VISIT, {EVAL instructions}

VISIT_, thea a; ap ... a wilf be a common supersequence of ¢ As there exists a 1-1
correspondance {)ebween the visit sequence of a procedure and strings in £ we shall refer to
the visit sequence simply by the string it corresponds to; e.g., if a procedure contains a
sequence of visit iostructions VISITj,VISITk,VISITm we shall refer to it as the string

3j a.ka.m

i) Say a3 procedure obeying the dependencies of the augmented dependency g"aph

Dp[é‘(O'IO‘(l’ Iotnl has a visit sequence V = all ip--3jp. Let S = SJ SJ

We must show that SJ SJ) m = 2u1%u2-3um is a subsequence of V, Let. SJk = ae a.nd
ka-H = a,. From the way that the Dp and 10y; graphs were constructed, any procedure
evaluating the attributes of p according to the dependencies of the augmented dependency
graph will evaluate Xj. SJ» llnh only after visiting X, yielding X SJksyn and cannot visit X,
yielding that synt.hesxzed attrlbute until after evalua.t,mg X SJk lmh Hence the procedure
must evaluate the inherited attributes X, Sj.llnh Ku‘.! th ‘(um.SJmInh sequentially,
visiting X ;. X 2. Xy sequentially. Hence S} is a subsequence of V.

i) Let V = a;;ai5...3; be a common supersequence of ¢ We must show that there exists
a procedure evaluating all the attributes of p .(assuming Xg-inh has already been evaluated),
obeying the dependencies of the augmented dependency graph Dp[&XO,IOXI,...,IOXn] and
having a visit sequence of V. Create a procedure whose visit sequence is V and evaluates
attributes in between visits according to the following method: Locking at each subsequence
s = 3,132 3um (1 £j < r)of V, have the procedure evaluate XJk-*-ISJk-i-Imh before
visiting Xy (= s x+1) but after visiting X (= st x)- Finally evaluate Xg.syn. _This
procedure will obey the dependencies of the augmented dependeucy graph and will evaluate

all of the attributes of p.

End of proof

We now turn to the question of nptimal tree-walk evaluators and show that it is an NP-
complete problem to construct optimal evaluators. Recall from section 2 that a visit
sequence for a tree T is the sequence of VISIT) instructions used to evaluate T.

Coroilary 3: Given a tree T, it is an NP-complete problem to determine

18

whether or not there exists a visit sequence for T of length < k.

proof: Certainly the problem is in NP. Guess a sequence of VISIT), instructions.
Verification can be done in p-time. To show that it is NP-complete we will show that if
this problem could be solved in p-time, then the problem of finding minimal length protocols

could also be solved in p-time.

Our reduction will be as foilows: given an augmented dependency graph
Dp[éxo,IOXI,...,IOan] where &0 has length nyg we will construct a semantic tree T and
show that there exists a visit sequence for T of length < (2%ayy + 2°k) iff there exists
valid protocols for Xi,... X, of total length < k. As pointed out in the proof of the last
theorem, we can state this a little differently: given Dp[éXO,IOXl,...,IOXnD] we will construct
a semantic tree T and show that there exists a visit sequence for T of length < (2*nyg +
2*k) Hff there exists procedures to evaluate all the attributes of p obeying the dependencies
of Dp[&xo,IOXl,...,IOan] and using < k visit instructions.

Given the augmented dependency graph Dp[&XO,IOXI,...,IOan] construct a semantic tree
as follows. Let <py: S = Xp> be the production applying at the root. Let <p: Xg =
Xl...an> apply at X and let a production <p; Xj u= Lermina.li> apply at X; (1 <i
< op). The semantic functions of p have dependencies as given in Dp. the semantic
functions of pgy have dependencies as extracted from éxg and the semantic functions of P;
have dependencies as given in I0y;. Figure 28 gives the form of a semantic tree T

constructed by this method.

!V N_ T ___
/ I \
/ | \
—— Gy
] 1 | i | |
bm———— X P————y reva—e X
)t | poooeP
1 | i
ro————t —— ’—[
| I |
R aaantant 2 2 o L———r
tor:inxll t.n'ni:ul2 tonuxlnp

Figure 28: The semantic tree T constructed from the augmented dependency graph
Dp/&onOXI,...,IO:{nP/

Say that there exists a visit sequence for T of length 2"nyg + 2°k. We will show that
there exists procedures to evaluate all the attributes of p and obeying the dependencies of
.Dp[éxo,'IOXI,...,IOan] of length k. Any visit sequence to evaluate T must have.nxo v?sin
iostructions executed at the root. For each of these there is one VISIT,; instruction
executed 2t p to return control to the root node. Say that in addition to these visit

47

instructions only H are needed to evaluate the rest of the tree. For each VISIT; instruction
executed at the production p to visit the node Xj one VISIT, instruction is neecied at p: to
— ¥ visit instructions are executed at p. Since T has all the
] this means that procedures obeying the dependencies
visit instructions can be constructed to evaluate the

return back to p. Hence H/2
dependencies of Dp[&xO,IOXl,...,IOan

of Dp[&XO,IOXl,...,IOXnD] and using k
attributes of p. The only if part of the proof is left for the reader.

End of proof

48

(1]

8

(4]

(6]

8]

(9]

References

G.V. Bochmann.

Semantic evaluation from left to right.
Communications of the ACM 19, 1976.
pp. 33-82.

L. M. Chirica and D. F. Martin.
An algebraic formulation of Knuthian semantics.
In Proceedings of the | th [EEE Sympoaium on the Foundations of Computer Science. IEEE,

1978.

R. Cohen and E. Harry. -
Automatic generation of near-optimal linear-time translators for non-circular attribute

grammars.
In Conference Record of the Sizth ACM Symposium on Principles of Programming Languages.
ACM, January, 1979.

B. Courcelle and Franchi-Zannettacci.
Attribute Grammars and Recursive Program Schemes.
Theoretical Computer Science 17:163-191 and 235-257, 1982.

Alan Demers, Thomas Reps and Tim Tietelbaum.
Incremental Evaluation for Attribute Grammars with Application to Syntax-directed

Editors.
In Conference Record of the Eighth ACM Symposium on Principles of Programming Languages.

ACM, January, 1981.

Joost Engelfriet and Gilberto Filk
Simple Multi-Visit Attridute Grammars.
Technical Report, Department of Applied Mathematics, Twente University of

Technology, August, 1980.

Joost Engelfriet and Gilberto File
Passes,Sweeps and Visits in Attribute Grammars.
Technical Report, Department of Applied Mathematics, Twente University of

Technology, August, 1982.

I. Fang.
FOLDS, o declarative formal language definition system. i
Technical Report STAN-CS-72-329, Stanford University, 1972.

Rodney Farrow.
Covers of Attribute Grammaras and Sub-Protocol Attribute Evaluators.
Technical Report, Department of Computer Science, Columbia University, New York,

New York 10027, September, 1983.

50

[10]

[11]

(12]

[13]

[14]

[15)

[16]

[17]

(18]

[19]

Rodney Farrow.
Ezperience with a Production Compiler Automatically Generated from an Attribute Grarmmar.

Technical Report, Department of Computer Science, Columbia University, New York,
New York 10027, March, 1984,

Rodney Farrow.
Sub-Protocol Evaluators for Attribute Grammars.
In Proceedings of the SIGPLAN ‘84 Symposium on Compiler Construction. ACM-SIGPLAN,

June, 1984.
Published as Volume 19, Number 8, of SIGPLAN Notices.

Rodney Farrow.
Experience with an attribute grammar based compiler.
In Conference Record of the Ninth ACM Symposium on Principles of Programming Languages.

ACM. January, 1982.

Rodney Farrow and Danie! Yellin.
A Comparison of Storage Optimizations in Automatically-Generated Attribute Evaluators.
Technical Report. Department of Computer Science, Columbia University, New York,

New York 10027, January, 1985. =

G. File
Interpetation and reduction of attribute grammars.
Acta Informatica 19, 1980.

H. Gan:zinger, R. Giegerich, U. Moncke and R. Wilhelm.
A Truly Generative Semantics-Directed Compiler Generator.
In Proceedings of the SIGPLAN Symposium on compiler construction. ACM, June, 1982.

M. Jazayeri, W.F. Ogden, and W.C. Rounds.
The intrinsically exponential complexity of the circularity problem for attribute

grammars.
Communications of the ACM 18, 1975.

M. Jazayeri and K.G. Walter.
Alternating semantic evaluator.
In Proceedings of ACM 1975 Annual Conference. ACM, 1975.

Neil D. Jones and C. Michael Madsen.
Attribute-Influenced LR Parsing.
In Lecture Notes in Computer Science 94, . Springer-Verlag, 1980.

Martin Jourdan.

Strongly Non-Circular Attribute Grammars and their Recursive Evaluation.

In Proceedings of the SIGPLAN '84 Symposium on Compiler Construction. ACM-SIGPLAN,
June, 1984.

Published as Volume 19, Number 8, of SIGPLAN Notices.

(20] Uwe Kastens, Brigitte Hutt, and Erich Zimmermann.
GAG:A Practical Compiler Generator.
Spring-Verlag, Berlin-Heidelberg-New York, 1982.

[21] U. Kastens.
Ordered attribute grammars.
Acta Informatica 13, 1980.

(22] T. Katayama.
Translation of Attribute Grammars into Procedures.
ACM TOPLAS 8(3), July, 1984.

(23] K.. Kennedy and S. K. Warren.
Automatic generation of efficient evaluators for attribute grammars.
In Conference Record of the Third ACM symposium on Principles of Programming Langﬁagea.

ACM. 1978.

[24] D. E. Knuth.
Semantics of context-free languages.
Mathematical Systems Theory 2, 1988,
correction in volume 3, number 1.

(25] K. Koskimies, K-J. Raiha, and M. Sarjakoski.
Compiler Construction Using Attribute Grammars.
In Proceedings of the SIGPLAN Symposium on compiler construction. AC\f{ June, 1982,

(28] B. Lorho.
Semantic attribute processing in the system DELTA.
In A. Ershov and C.H.A. Koster (editor), Methods of Algorithmic Language
Implementation. Springer-Verlag, Berlin-Heidelberg-New York, 1977.

(27] Eva-Maria M. Mueckstein.
Q-TRANS: Query Translation Into English.
In Proceedings of the Eight International Joint Conference on Artificial Intelligence, pages

660-862. [JCAI-83, August, 1983

(28] H.R.Nielson.

Computation sequences: A way to characterize subclasses of attribute grammars.
Technical Report, Aarhus University, Denmark, 1981.

[29] H.R.Nielson.
Using computation sequences to define sttribute evaluators.
Technical Report, Aarhus University, Denmark, 1981.

[30] George K. Papakonstantinou.
An Interpeter of Attribute Grammars ans its Application to Waveform Analysis.

IEEE Transactions On Software Engineering Se-7(3), May, 1981.

wn
(4]

[31]

(32]

[33]

[34]

(36]

37]

(38]

[39]

S. R. Petrick.
Semantic Interpetation in the Request System.
Technical Report RC4457, IBM, JULY, 1973.

Diane Pozefsky and M. Jazayeri.
A Family of Pass-Oriented Attribute Grammar Evaluators.

In Proceedings of ACM 1978 Annual Conference. ACM, 1978.

K-J. Raiha and E. Ukkonen.
Minimizing the number of evaluation passes for attribute grammars.
SIAM Journal of Computing 10(4), NOVEMBER, 1981.

Thomas W. Reps.
Generating Language-Based Environments.
PhD thesis, Cornell University, [thaca, New York, December, 1983.

Thomas Reps and Bowen Alpern.
Interactive Proof Checking,.
In Conference Record of the Eleventh Annual ACM Symposium on Principles of Programming

Languages. ACM, January, 1984.

M. Saarinen.

On constructing efficient evaluators for attribute grammars.

In C. Ausiello and C. Bohm (editor), Automata, Languages, and Programming: 5th
Colloguium. Springer-Verlag, Springer-Verlag, New York, 1978.

W.A. Schulz.
Semantic analysis and target language synthesis in o transiator.

PhD thesis, University of Colorado, Boulder, Colorado, July, 1976.

S. K. Warren.
The coroutine model of attribute grammar evaluation.

PhD thesis, Rice University, May, 1976.

David A. Watt.
Rule splitting and attribute-directed parsing.
In Lecture Notes in Computer Science 34, . Springer-Verlag, 1980.

53

