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Abstract

This paper deals with the opii:aal solution of the Petrovsky-elliptic system lu = f, where | is of
Lomogeneous order ¢ and j & i77({3). Of particular interest is the strength of finite element information
(FEI) of degree k, as well as the quality of the finite element method (FEM) using this information. We
show that the FEM is quasi-optimal iff k¥ > r 4 ¢ — 1. Suppose this inequality is violated; is the lack of
optimality in the FEM due to the information that it uses, or is it because the FEM makes inefficient use
of its information? We show that the latter is the case. The FEI is always quasi-optimal information.
That is, the spline algorithm using FEI is always a quasi-optimal algorithm. In addition, we show that
the asymptotic penalty for using the FEM when k is too small (rather than the spline algorithm which

ueas the same finite element information as the FEI) is unbounded.




1. Introcduction.

This paper is a theoretical study of the optimal solution of systems of linear partial differential
equations which are elliptic in the sense of Petrovsky [1], [i2], [15]. A number of examples of such
problems are described in [15]; these include the Cauchy-Rieinann equations for Poisson’s equation in
the plane, as well as problems of fluid flow and elasticity. (The concept of elliptic system is defined in
Section 2.)

Since one of the most commonly-used methods for solving such problems is the finite element
method (FEM), see [2], [3], [4], [5], [11], [15], we wish to determine conditions under which the FEM is
quasi-optimal (i.e., optimal to within a constant factor).

In order to make the notion of optimality more precise, we use the information-centered approach
of [13]. The main idea is that an algorithm for solving this problem can only use information of finite
cardinality (see Section 3 for definitions of these terms). Hence, there is inherent uncertainty when
attempting to solve these infinite-dimensional problems using information of finite cardinality. From
this, we are able to determine tight bounds on the nth minimal error (i.e., the minimal error among all
algorithms using information of eardinality at most n).

In Section 4, we show that the FEM is quasi-optimal if and only if
(1.1) k>r+t—1,

where k is the degree of the finite element subspace, ¢ is the order of the elliptic system, and the problem
elements f are (2 priori) uniformly bounded in the H"(Q1)}-norm (so that r measures the regularity of the
class of problem elements). Thus, the degree of the FEM must increase with the regularity of the class
of problem elements, if the FEM is to remain quasi-optimal.

Suppose the inequality (1.1) is violated. Is the non-optimality of the FEM inherent in the finite
element information (FEI) it uses, or is it due to the fact that it uses the FEI inefficiently? We show
that the latter is the case; regardless of whether (1.1) holds, FEI is quasi-optimal information. That is,
the “spline algorithm” using the FEI is quasi-optimal.

In Section 5, we discuss the e-complexity of the problem, i.e., the complexity of finding approxima-
tions which differ by at most ¢ from the true solution. The FEM is a quasi-optimal-complexity algorithm
iff (1.1) holds; if (1.1) is violated, the asymptotic penalty for using the FEM is unbounded. However,
the spline algorithm using the FEI (which, again, is the same information that is used by the FEM) is
always a quasi-optimal-complexity algorithm, regardless of whether (1.1) holds.

2. The elliptic boundary-value problem.

In this section, we define (homogeneous) ellipticity, in the sense of Petrovsky. We quote “shift
theorems,” which allow a priori estimation of derivatives of the solution in terms of the derivatives of
the data. We use standard notations for (R"V-valued) Sobolev spaces, inner products, etc., found in (7]
(but extended to include functions whose values are in R™). Fractional- and negative-order Sobolev
spaces are defined via Hilbert space interpolation and duality, respectively (see [4], [8], and [11] for
details). Since for simplicity, we only deal with real systems, we use the notation of [1] when describing
ellipticity, even though the shift theorems are taken from [12]. For purposes of exposition, we assume

that the coefficients of the system and the boundary of the region over which the problem is to be solved
are C°,

Let @ C IR™ be a bounded C™ region. Define the differential operator

I(z,8) = [lij(z, Oh <ijgn

with 8; denoting the partial derivative in the Ith direction, where (using the standard multi-index
notation found in e.g. [7]) we set

Lz, €)= ) a(z)";

lnl<t
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here the coefficients a € C°°((}) and ¢ is a non-negative integer. Let

Bz, 0= Y ajf(z)e*

lp ]t

denote the principal part of I;;. We assume that [ is elliptic, i.e.,
Lz, £) := det{i%(z, €)] # 0 Vz€, Vnonzero E€ERN .

We now wish to specify a boundary operator. For z € 911, let v, and 7, denote unit normalized
tangent vectors to 9(1 at z, and set

Li(n)=Lz,7s+nv:) VneC.

L, is a polynomial of degree Nt in the complex variable , which (by ellipticity) has no real roots; since
the coefficients of L, are real, there is a non-negative integer m such that Nt = deg L, = 2m. Hence
we may factor

L:(n) = L} (n)L7 (n),

where the zeros of L} (respectively, of L) have positive (respectively, negative) real part, and deg L} =
deg L7 = m. Then we define a boundary operator

Yz, 8) = [bij(z, )1 gigm. 155N

by
bis(z, €)= ) bii(2)e*,

lulsr:
where r,,...,r, are positive integers and the coefficients b:{ are infintely-differentiable.
Let the principal part bY; of bi; be defined by

Wiz, &)= ) bJ(z)e".

laf=r,

Let L’*(z, £) denote the cofactor of {x(z, §) in the matrix [2,(z, €)ligr.egn- For z € 30 and complex
n, let

Cs(n) = [cij(z.n)igigm, 1858 »
with
N
cij(z,n) = Z Bz, 12 + nua )% (2, 72 + us) .
kmm]

The boundary operator b is complementary to | if the row vectors of the matrix C,, considered as
polynomials in the complez variable n, are linearly independent relative to the modulus of L¥(n).

We say that [ and b are elliptic on {1 if I is elliptic and b is complementary to l. For s > 0, let H*(9)
denote the completion (with respect to the Sobolev norm || - ||,) of the set of infinitely-differentiable
functions u such that bu = 0 on 3Q. We then have the following “shift theorem,” taken from [12]:

LEMMA 2.1. Ifl and b are elliptic on (3, then for anyr 2> 0, there ezists 0 > 1 such that

o7 tulls < llullree S olliull, VY u€H™YO).
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In order to proceded, we must consider the formal adjoint I+ of | given by
I*(z,0) = [lijlz, Oh<iisn

with

i$(z,0)u5(z) = D 0*(af(z)us(2)) .

lsl<t
Integrating by parts, one may define an adjoint boundary operator b* such that
(lu,v)o = (u, ¥ v) Yu€ HY3),¥Yve H )",
where for ¢ > 0, H*(8)* denotes the || - ||,;-completion of the set of infinitely-differential functions v

such that 6¥v = 0 on 9102,

In the remainder of this paper, we assume that [ and b are elliptic on {1, as well as I* and b+.
(Roltberg and Seftel [12] give a normality condition on b such that ellipticity of / and b on {} implies
that of {* and bt.)

We then have the following result from [12]:
LEMMA 2.2. Let r > 0. There i3 a constant 0 > 1 such that the following hold:
(i) For any f € H'(Q), there ezists u € H™+!(3) such that

lu=fin (] bu =10 on 30,
with
a7 HIflle £ llullre < allfl- -
(ii) For any g € H™(Q), there exists v € H™(8)* such that

tv=9ginQ btv=00n 80,
with
o Higlle < llvllr+e < allall- -

We are now finally ready to state the problem to be studied in this paper. Given r > 0, define a
golution operator

S:H'(Q) — H'(3)
by letting u = Sf satisfy
lu= fin Q] bu = 0 on 91.

Using Lemma 2.2, we see that S is a bounded injection with range H"+(9) C H*(8). By the Rellich-
Kondrasov theorem (7, pg. 114], S is an isomorphism or compact, according to whether r = 0 or r >
0.

3. Informatlon and algorithms.

In this section, we recall results from [13] concerning optimal algorithms and information, as applied
to the problem of solving an elliptic system.

Recall that we are trying to approximate Sf for arbitary f € H"(Q), where S: H"(Q) — H'(9)
is the solution operator defined above and r > 0. Most methods for solving this problem use a finite
number of linear functionals on f when approximating Sf. For instance, such methods may evaluate
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/ at a finite number of points in {1, or the inner product of f with a finite number of predetermined
functions. In fact, even when a closed form expression for f is available, most methods do not explicitly
use this expression; they only use the values of a finite number of linear functionals at f. Hence, we
assume that we only know the values of a finite number of linear functionals for each problem element
/. That is, we are given information N of cardinality n = card(N), which is a linear surjection

N:H(Q) = R"™ .

Such information N is then used by an algorithm p, which is a mapping p: R® — H*(3); the class of
such algorithms using N is denoted ®(N). Note that we allow any mapping to be an algorithm.

Given information N and an algorithm ¢ € ®(N), the quality of the approximations produced by
@ is measured by its error

e(p) = sup [|Sf — e (Nf)lls
JEF

where the set F of problem elements is taken to be the unit ball of H*(2)
F=BH'(Q):={/€H(Q): /|- <1}

and 0 < & < ¢. (In what follows, BH will always denote the unit ball of a Hilbert space H.)

We are interested in algorithms using given information whose error is as small as possible. Let
e(N)=inf{e(p):p € ®(N)}
denote the optimal error of algorithms using N. An algorithm ©* € $(N) is an optimal error algorithm
using N if
e(p*) = ().

Expressions for the optimal error and an optimal error algorithm are given by the following result from
[13, Chapter 4|:

LEMMA 3.1. (i) The optimal error is given by
e(N)=sup{||Sh|,:h€FNkerN}.
(i) Let
Nf =) M7 VS EH(D),

where \y,..., M\t H7(Q1) — R are linearly independent bounded linear functionals. Let { f1,...,[fa } be
o basis for the orthogonal complement (ker N}t of ker N in H"(Q) such that \i(f;) = &;j. Then the
spline algorithm

n
P (Nf) =3 NS ST
J=1
ig an optimal error algorithm usging N.

Note that although we allow any mapping to be an algorithm, a linear optimal error algorithm
always exists.

Now that we know how. to find an optimal error algorithm for any information, we now seek optimal
information of given cardinality. Let

e(n)=inf{e(N):card N < n}
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denote the nth minimal error. Information Nj of cardinality at most n is said to be nth optimal
information if

e(Ny)=e(n).

An algorithm ¢}, using inforimatioa of cardinality at most n for which
e(pa) = e(n)

is said to be an nth minimal error algorithm.

We now determine nth optimal error, optimal information, and a minimal error algorithm. Recall
that for a balanced convex subset X of a Hilbert space H, the (Kolmogorov) n-width of X in H is given

by
( ) Ha z€X AEH o Il ”H !

the infimum being over all subspaces H, of H- whose dimension does not exceed n. We then have the
following result from [13, Chapters 2 and 3]:

LEMMA 3.2. (i) The nth minimal error is given by
e(n) = da(SF,H*(3)).
(ii) If r +t = s (which can happen if and only if r = 0 and 8 = t), then there ezists o > O zuch
that

lim e(n) =¢o.
n—00

(iii) If r +t > s, let E: H'(8) — H*(D) be the inclusion operalor, 80 that ES is compact. Let
e; }°2., be an orthonormal basis of H'(Q) consisting of eigenvectors of K = (ES)*(ES), with
J J =1

Ke; = \je4

MS>X> ... >0 with lim \;=0.

)
Then
6(71) = \/ X..{.l ,

the information
Nyf=I(f,e)e--(fiea)e]T VS EHT(Q)
is nth optimal information, and

n

pa(N )= Y _(f.&) Se; V/EH'(D)

=1

is an nth minimal error algorithm.

The first statement in this lemma gives the nth minimal error as a Kolmogorov n-width. The second
implies that there is no algorithm whose error is less than € it r +¢t = a. The third tells us that if
r+t>s, then limy_oo e(n) = 0.

Although we have explicit formulas for optimal information and algorithms, as well as minimal error
algorithms, these may be difficult to determine in practice, since they require knowledge of S at the
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eigenvectors of K. For this reason, we will be willing to settle for quasi-optimality [14], i.e., optimality
to within a constant which is independent of the cardinality of the information; guasi-minimal error
algorithms are defined analcgously. As a benchmark for establishing quasi-optimality, we now est,abl.ish
an estimate of e(n) using techuicjies of [16]. The result is phrased in terms of Knuth's big-theta notation

{10]:
THEOREM 3.1. e(n) = ©(n—{"+=*/N) 45 n — c0.
Proof. For 8 > 0, let

X(0) = 0 BH™(8) = {u € H™(3): [[ullr4¢ < 0} .
Lemma 2.1 yields
X(¢~') € SF C X(o).

Since for any 8 > 0,
d,.(X(O),H‘(a))= 0d.(X(l), H'(a)) ,

the first statement in Lemma 3.2 yields that

- e(n)
S LEETEHE) =

Using (2, Theorem 2.5.1] and the results of (8|, we have
dn(BH"™!(3), H*(8))= e(d,.(BH(‘,(Q),Lg(Q))'“_')= Q(n~{(rHt=0/NY)

completing the proof.

4. Optimality of finite elements for elliptic systems.

In this section, we define the (least-squares) finite element information (FEI) of degree k and the
(least-squares) finite-element method (FEM) using FEI. We show that the FEM is a quasi-minimal error
algorithm iff k > r +t — 1, while the FEI is always quasi-optimal information. We use the notation and
terminology of [4], [7], [11].

Let k be a non-negative integer. Let T, be a triangulation of Q and let V, be an n-dimensional
subspace of H*(8) consisting of functions which are piecewise polynomial of degree k with respect to
the triangulation T,. (Of course, there is a problem in that such functions cannot in general satisfy the
boundary conditions; this may be handled by using curved elements [8] or isoparametric elements [7] on
the boundary, or by using the techniques found in (5], [15].) We assume that the family { T, }Jou_, is
quasi-uniform [11, pg. 272|.

In what follows, we assume that
(4.1) kE>2t—1-s.

See [16, Remark 4.1] for further discussion.

We recall the definition of the least-squares finite element method [5] as applied to systems (|2], [3],
[18]). Let f € H"(Q). For each positive integer n, we seek an approximation u, € V, to u such that

I/ = tunllo = min {[|f = lvallo : va € Va},
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i.e., uy € V, satisfies
(lum, lva)o = (f,lva)o Vo, & Vy.

Letting {wy,..., wa} dencic a basis for V,, define the (least-syuares) finite element information (FEI)
Na by

Naf =[(f,bwr)o...(f,lwa)]”  V/€EH(Q).
Then the (least-squares) finite element method (FEM) p, € ®(N,) is given by

¢n(”af) = Upn.

Since the basis functions are linearly independent and ! is injective, it is easy to see that p, is a well-
defined linear algorithm using ANa.
We now compute the error of the FEM.
THEOREM 4.1. Let
p=min(k+1-=t¢,r).
Then
e(pa) = O(n~#+!=9/N) g5 n — o,

and 30 {Pa }:o_, te o sequence of quasi-minimal error algorithms iff
(4.2) k2r+t-1.

Proof. We first show the lower bound for the error. If (4.2) holds, then g = r, and so Theorem 3.1
yields
e(pn) 2 e(n) = O(n~ B+ =N} a5 n 0.

We now suppose (4.2) does not hold, so that g = k+ 1 —¢. Using an N-dimensional version of the
proof of [18, Theorem 5.2| there exists a non-zero function u* € H"+%(3), a positive constant C, and a
positive integer ng, such that

inf [lu* —valls 2 Cn—sHt=d)IN  yp>p,.
Ua€ Va

Since u® is nonzero, lu® is also nonzero. Let f* = lu®/|[lu*||,. Then ||f*]l, =1, so that f* € F. Since
®n is linear with range V,, the previous estimate yields that

e(pn) 2 1S* — oa(Maf Mo = mllu' — oa(Nalu ),

n—( “+‘_‘)/N ,

> inf ||u* —v >
2 T, oonf, e = vnlle 2

completing the proof of the lower bound.

We now establish the upper bound. Let f € F. By (4.1) and (4.2), there exists C > 0, independent
of [, such that (setting u = Sf),

llu = ualle < Cr~+=N|iulf,y, V21,

(See [15, Chapter 8] for the case ¢t = 1, and the references cited therein for the case of arbitrary t.)
Hence Lemma 2.2 yields

IS5 = oa(Maf)lle = llu = unlls S CrB+H= Ny, y < Con=WH=0IN] 1],

1=




Since f € F is arbitrary, we have
e(pa) < Con—(r+i=/N
completing the proof of the first part of the theorem.
The remainder of theorem now follows from the first part and from Theorem 3.1.

Hence the FEM is (roughly) a minimal error algorithm iff (4.2) holds. Suppose (4.2) is violated. We
show that the non-optimality of the FEM is due to the fact that it uses the FEI inefficiently, rather than
being inherent in the FEI itself.

We first establish two intermediate results.
LEMMA 4.1. There ezists ¢ 2> 1 such that
lwll-r < ollwlli-» ¥V we€H' ).

Proof. If r = 0, this follows from Lemma 2.1. Once the result is shown for r > ¢, it then holds for
0 < r <t by Hilbert space interpolation [0] of the results for the cases r = 0 and r = £. So, we assume
r > t without loss of generality. Let w € H*(d). For any v € C3°(Q1), we may use Lemma 2.1 (with r
replaced by the non-negative real number r —t) to see that

[(tw, v)lo = l(w, Fv)o| < llwlle—rllFF vllr—e < ollwlle=|lv]l, -

Hence

lw,v
”lw”—' = sup{l( ”v“')OI 1vE Cgo(n)’ v 7é 0} S allwllf-f’

as required. ,
LEMMA 4.2. For g € CP(11), let v € C®(Q) be the solution of

tyv=ginQ btv =0 on 89.
Then there is a constant ¢ > 1, independent of g and w, such that
lIvlle—e < ollgll—.
Proof. By (ii) of Lemma 2.2 (with r = 0), we find
(4.4) lIvlle < ollgllo -
We next claim that
(4.5) livllo < <llgll—e;
indeed, (i) of Lemma 2.2 yields
o™ lullolISvlle < [[vll§ = |(Sv, v)o| = |(Sv, g)o| < [|Sullellgll—e

which implies (4.5). The result now follows by Hilbert space interpolation of (4.4) and (4.5).

We now show that FEI is quasi-optimal, regardless of whether (4.2) holds. Let ¢! denote the spline
algorithm using the FEI N, (see Lemma 3.1).

THEOREM 4.2. e(ph) = e(Nn) = O(n~{r+t=/N) 35 5 — 0.

Proof. The first equality follows from Lemma 3.1. We now establish the second. For the lower
bound, note that card No = n, and so

e(Na) 2 e(n) = O(n~(r+=0)/N) 35 5 — 0,
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We now establish the upper bound. Let z € F[) ker N, so that
(2,lva)o =0 Vv, € Vy

and
llzll- < 1.
Let g € CP(Q) be nonzero, and choose v € C*(Q) satisfyng (4.3). Then for any v, € Vs, we have

|(Sz, g)o| = |(Sz, " v)o| = |(z, v)ol = |(z, {Sv — va)), |
< li(Sv — va)ll-r < ol|Sv — valle—r

by Lemma 4.1. Since (4.1) holds, standard approximation-theoretic results ([4], [7]) imply that there
exists a positive constant C {independent of z, g, v, and n) and v, € V, such that

[|S0 = vallemr < Cn{TH NS0, .
But (i) of Lemma 2.2 and Lemma 4.2 imply that
||Svllze—s < allvlle—e < 0®[lg]l-..

Combining the three previous inequalities, we see that there is (another) positive constant C (independent
of z, g and n) such that

(Sz,g)o} € Cr{r*t=2/N ||, .

Since g is an arbitrary element of C3°, we have

sl = sup {05885 € cie(a), g 2 0} < nmtrse-arn.
-

Taking the supremum over all z € F [\ ker N,, we have
C(N") s Cn—(r+¢—9)/N ,
completing the proof of the theorem.

5. Complexity analysls.

In this section, we discuss the complexity of finding ¢-approximations to the solution of the elliptic
system, as well as the penalty for using the FEM when ¥k < ¢t —1+r.

Let ¢ > 0. An algorithm ¢ € $(N) produces an e-approzimation if

e(p) <.

The complezity, comp(p), of an algarithm p € ®(N) is defined via the model of computation discussed
in {13, Chapter 5). (Informally, we assume that any linear functional can be evaluated with finite cost
¢1, and that the cost of an arithmetic operation is unity.) It then turns out that if X has cardinality n,
then

(5.1) comp(p) > ney +n—1 Vo€ dN),

while If @ is linear, then

(5-2) comp(p) < ney +2n—1;
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see [13, Chapter 5, Section 2| for details. We then define, for € > 0, the e-complezity of the problem to
be

CCMP{¢) = inf{ comp(p) : e(p) < €}.
If ¢* is an algorithm for which

e(p*)<e and comp(p’) = COMP(¢),

then * is said to be an optimal complezily algorithm for e-approximation of the problem.

REMARK 5.1. Note the distinction between algorithmic complezity, which is the cost of using a
particular algorithm to solve the problem to within a tolerance of ¢, and problem complezity, which is
the snherent cost of solving the problem to within e.

REMARK 5.2. Not surprisingly, it is difficult to determine optimal complexity algorithms. We will
generally be willing to settle for optimality to within a constant factor, independent of . Hence, we say
that a family { ¢ }5 o of algorithms has gquasi-minimal complezity for the problem if

e(p:) < e for all sufficiently small e > 0

and
comp(p,) = B6(COMP(¢)) ase—0.

Recall that ¢, denotes the finite element method of degree k using the finite element information N,
based on the finite element subspace V,, and that p2 denotes the spline algorithm using this information.
We let

FEM(€) :=,inf{ comp(pa): e(pa) < €}
denote the algorithmic complexity of the FEM, and let

SPLINE(e) := inf{ comp(p2) : e(pn) < €}

denote the algorithmic complexity of the spline algorithm using the FEL Using the results of Section 4,
(5.1), and (5.2), we have

THEOREM 5.1. The problem complezity is
COMP(e) = §(e~N/{r+t=9)) g5 ¢ — 0.
The algorithmic complezity of the epline algorithm i3
SPLINE(e) = (e~ N/(7+1=9)) g4 ¢ — 0.
The algorithmic complezity of the finite element method is
FEM(e) = 6(eN/(t+1=9) g5 ¢ — 0,

where p = min(k + 1 —¢,r).
Hence, we may draw the following conclusions:
THEOREM 5.2. (i) The spline algorithm using the FEI is quasi-optimal.
(i) The FEM is quasi-optimal iffk 2> t+1—r.
(iii) Let
pen(e) = (—3%
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_ 1
pen(e) G(E—W 8 € — )
where
Xa.k___l_____h___]___ reig
+1—, Fahd— =-————__________
and so ¢ k15— >0,

lim pen(e) = oo,

e.quatllons. (This is because the coefficient matrix js jng
situations, this is not a realistic assumption. In such c;e:p:;’g?é&f'the problem element, 7.) I, iy
viewpoint of minimizing complexity (even when & B oo ok B :: n: ll:mger quasi-optimal from ¢r°
techniques may be used to transform the FEM into a methog which J]:a.: ;szsﬁzﬁs:ible Ithaz multi-grid
situations where such pre-conditioning is not allowed. However, no matter what mp‘)dr:}aorcf:rlﬁletzt{ in
is used, the quasi-minimal error properties described in Section 4 sti]] hold, since they are indeiina&;is

of any particutar model ~*¢omputation.
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