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ABSTRACT. This paper deals with the approximate solution of the Fredholm problem Lu = f
of the second kind, with f € WTP(I). Of particular interest is the quality of the finite element
method (FEM) of degree k using n inner products of f. The error of the approximation is
measured in the Ly(I)-norm. We find that the FEM has minimal error iff £ > r — 1. However
in the Hilbert case p = 2, there always exists a linear combination (called the spline algorithm)
of the inner products used by the FEM which does have minimal error; this holds regardliess of
whether £ > r — 1. We also investigate the case where the inner products used by the FEM
are not available. Suppose, however, that we can evaluate f(z) for any z € I. In this case, it
is reasonable to consider a finite element method with quadrature (FEMQ), in which the inner
products required by the FEM are approximated via numerical quadrature. We prove that the
FEMQ has minimal error iff ¥ 2> r — 1. Moreover, we show that the asymptotic penalty for using
the FEM or FEMQ with a value of k that is too small is unbounded.

1. INTRODUCTION

This paper is a theoretical study of the approximate solution of the Fredholm integral
equation Lu = f of the second kind, where f € W™P(I) and [ is the unit interval (see
Section 2). There is a vast literature dealing with the numerical solution of these problems.
See, e.g., the books (1], [2], [4], [6], [11], [17] and the review article [12], as well as the
references cited there.

We want to approximate the solution of u of the problem Lu = f by using the values of
n linear functionals of f, typical examples being

e n inner products of f, and
e the values of f at n points in I.

We address two problems:

(i) Given the values of n linear functionals of f, how may they be combined so as to
approximate the solution of the Fredholm problem with the smallest possible error?
(i1) What is the best set of n linear functionals to use?
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This problem was also studied in [8]. Our treatment generalizes that of [8] in two ways.
First, we allow f € W™P(I) for 1 < p < oo, whereas in [8], it is assumed that f € C"(I).
Second, we allow any linear functionals of f, whereas in (8], only function evaluations are
considered. For the sake of exposition, we only censider the case where r is a non-negative
integer in this paper. However, our results and proofs may be extended via interpolation
theory [21] to the case of arbitary r > 0, provided that when r is not an integer, we take
p < o0.

In particular, we are interested in the quality of the finite element method (FEM) of
degree k (as defined in Section 3) which uses n inner products (f, $,),...,(f,8n). Here,
{81, ... 8n} is a basis for a finite element subspace consisting of piecewise polynomials of
degree k and (-,-) is the Lo([/) inner product. Note that the FEM does not use the values
of r and p.

We show that the FEM has minimal error (to within a constant factor) iff £ > r — 1.
Moreover, this minimal-error property of the FEM holds for any value of p € (1, o] and
for any r < k+ 1. This is important for the following reason. In practice, we generally do
not know the exact smoothness of f, i.e., we do not know the best values of r and p such
that f € W™P(I). So, it would be useful to have an algorithm which is optimal for a large
range of r and p. If one agrees that r is restricted to r < k+ 1, the FEM is such a method.
Of course, it would be more interesting to find methods which have minimal error for all
r. We do not know of any methods for the Fredholm problem for which this holds.

We next ask why the error of the FEM is not minimal (to within a constant) when
k < r—1. Isit due to the fact that the n inner products used by the FEM are inherently
bad, or is it because the FEM uses these inner products inefficiently when k¥ < r — 17
We give a partial answer to this question, by restricting our attention to the Hilbert case
p = 2. For any values of k and r, there is a linear combination of the inner products
used by the FEM which yields smallest error among all methods using these same inner
products. This linear combination is called the spline algorithm. In Section 3, we show
that the error of this spline algorithm is minimal (to within a constant factor), no matter
what the values of k and r happen to be. This means that the inner products used by the
FEM form a best set of linear functionals. Hence in the Hilbert case, the reason that the
FEM is not optimal when k < r — 1 is that it does not make good use of its information.

When approximating the solution u of the Fredholm problem Lu = f, the “pure” FEM
(as defined in Section 3) requires certain inner products (i.e., the exact values of the
integrals of f multiplied by each of the basis functions for the finite element space). Often,
these inner products are not available. Suppose, however, that we can evaluate f(z) for
any z € I. In this case, the integrals that appear in the definition of the FEM may be
approximated by numerical quadratures (i.e., weighted sums of the f, sampled at various
points in the interval). In Section 4, we examine such a finite element method with
quadrature (FEMQ) using n evaluations of f. We show that the error of the FEMQ is
minimal (to within a constant) iff ¥ > r — 1. Hence, the values of f at n points in I form
a best set of linear functionals. Once again, the results in this section are independent of
the value of r < k+1 and p € (1, 0], so that the same method is optimal for a wide range
of r and p.

Finally in Section 5, we discuss the complexity (i.e., the minimal cost) of obtaining
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approximate solutions whose error is less than ¢. We find that the FEM and FEMQ
produce approximations with minimal cost (to within a constant factor) iff & > r — 1.
Moreover, we show that the asymptotic (as ¢ — 0) complexity penalty for using the FEM
or FEMQ with a value of k that is too small is unbounded.

2. THE FREDHOLM PROBLEM OF THE SECOND KIND

In this section, we define the problem to be studied, and prove a regularity theorem
which allows estimation of (derivatives of) the solution in terms of (derivatives of) the
data. We use standard notation for Sobolev spaces, norms, etc., as found in [5].

Let I denote the unit interval [0, 1], let r be a non-negative integer, and let p € (1, o0].
We are given a function k:] x I — IR such that 6{k is continuous for 0 < 5 < r,
where 8;’ denotes the jth partial derivative with the fth variable. Define a linear operator
K: Ly(I) — Lp(I) by

(Kv)(z) = /I Kz, 9)v(y) dy

Then K is compact. (See [7, pg. 518] for a number of alternative conditions which yield
compactness of K.) We also assume that 1 is not an eigenvalue of K. Set

L=1-K.

Then L is an invertible bounded linear operator on L,(I). Hence, L has a bounded inverse
on L,(I).

We now describe the problem to be studied. Define the linear operator
S:WrP(I) — Ly(])

by letting
u=Sf iff Lu=f.

By the remarks above, we see that S is a bounded linear transformation, which is an
isomorphism when r = 0, and (by the Rellich-Kondrasov theorem [5, pg. 118]) is compact
when r > 0.

We next state and prove a useful regularity theorem.

THEOREM 2.1. There exists a = a, > 1 such that
a”'ISfllrp S fllrp < allSfllrp YV EWTP(I).

PROOF: When r = 0, this holds with ag = max{||S||,||L|| }. We now suppose that r is a
positive integer. Let u € W™P([). Set

Bi(z) = ( /, 187 k(z, y)|” dy) . ,

where p’ is the exponent conjugate to p, ie.,




We then have

(K02l = | [ olka,v1o(0) o] < 5@l
Hence

”Ku”r.p < ’7r||“”0.p < 0'0'7r||Lu”0.p < ao’Yr”L“”r.p,

where
T 1/p
= (Sal,)
7=0

Hence, letting a, = 1 + ag9,, we have
lullrp = (L + K)ullrp <[ Lullrp + | Kullrp < arl|Lulr,p,
On the other hand, ap > 1 yields
ILullrp < lullrp + | Kullrp < llullrp + v llzllop < (1 + v )ullrp < arllu]lrp-

Thus
0’:1 |uflrp < ||Lu”r.p < ar||uflrp Yu e WTP(I).

The result desired follows immediately from this inequality, the bounded inverse theorem,
and the Fredholm alternative theorem.

3. MINIMAL ERROR PROPERTIES OF THE FINITE ELEMENT METHOD.

In this section, we discuss the finite element method (FEM) for the Fredholm problem.
First, we define the FEM of degree k. We then explain the concept of a minimal-error
algorithm, and give a tight estimate of the nth minimal error for our problem. Next, we
give a sharp estimate of the error of the FEM. It then follows that the error of the FEM
is minimal (to within a constant) iff

(3.1) E>r—1,

k being the degree of the finite element subspace. We also consider the situation where
(3.1) does not hold.

We first define the FEM, using the notation of [5]. Let k be a non-negative integer. For
a non-negative integer n, we let S,; be an n-dimensional space of piecewise polynomials of
degree k, with no inter-element continuity imposed. That is, let

An={0=§6 <& < <€m=1} and mk+1)=n

denote a grid on I. (In the remainder of this paper, we assume that the grid sequence
{An 132, is quasi-uniform [16, pg. 272].) Let

I=[6-1,6] (1<1<m)




denote the /th subinterval in the grid A,. Then
S € S, iff 3|1, € Pe(ly) (1 <1< m).

Note that S, C L4(I) for any ¢q € [1, o0).
The finite element method (FEM) is then defined as follows. Let f € WP (I). For each
non-negative integer n, an approximation u,, € S, to u = Sf is chosen such that

(3.2) B(un, 8) = (f, s) Vs € S,.
The bilinear form B: L, ([) x Ly(I) — R in (3.2) is defined by
B(u,v) = ((I - K)u,v) Vu € Lp(I),v € Ly (1)

Here, the duality pairing of L, (/) and L, ([) is denoted (-, -), i.e.,
(9.9) = [ gapla)ds Vo€ LoD, LpD),
I

where (as always) p’ denotes the exponent conjugate to p. Of course when p = 2, this
means that (-,-) is the usual inner product on Lo([).

To make the specification of the FEM more precise, we let {s;,...,s,} be a basis for
$n. Consider the Gram matrix

G = [B(s;, ;)]

1<i,5<n"

Later on, we will establish that G is invertible for n sufficiently large. Let
a=G'8 with fi=(f,%) (1<i<n)

We have

n
Un = E aJ'SJAc
=1

Examining this expression, we come to an important conclusion. The approximation
produced by the FEM depends on f only through the inner products of f with the basis
functions of the finite element subspace S, i.e., through

(f) ‘91)
Nnf =
(f) 3n)
We indicate this explicitly by writing
tn = ©n(Nn f),
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where (as before) u,, denotes the approximation produced by the FEM. We refer to N,
as finite element information (FEI), since N, f is the only knowledge the FEM has of a
right-hand side f.

We measure the quality of the approximations produced by the FEM in the L,(/) norm.
That is, we define the error of the FEM ¢, to be

(3'3) e(‘pn) = sup ”Sf - ‘ron(an)HO.pa
feF

where F denotes the unit ball of WP (])
F=BW™(I):={feW™(I):[|fllrp <1}
Since ¢,, is a homogeneous function, the error e(pn) also satisfies

|Sf ~ ‘Pn(an)HO.P
| f1lrp

Of course, the FEM is not the only method using the FEI. It is natural to ask whether
there are any better methods using this information. In other words, is there a better

combination (not necessarily linear) of the inner products making up the FEI whose error
is better than that of the FEM? Let

¢(Ny) = inf sup ||Sf - 99(an)“0'?‘
v feF

(3.4) e(cpn)zsup{ :feW”’(I),f#o}.

Here, ¢ is any mapping (possibly nonlinear) which uses the inner products in N, f to
approximate Sf. We say that ¢ is an algorithm using N,. Thus e(N,) measures the
minimal error among all algorithms using Nj,.

We finally ask whether there is any better set of inner products to use, so as to minimze

the error. Let
e(n) = inf e(N),
N

the infimum being over all information N consisting of n linear functionals. We say that
e(n) is the nth minimal error. An algorithm using n linear functionals whose error equals
e(n) is said to be an nth minimal error algorithm.

It is desirable to find nth minimal error algorithms for each n. In this paper, we are
content to pursue a more modest goal. We seek a sequence of algorithms, each using n linear
functionals, such that the error of the nth algorithm in the sequence is at most a constant
multiple of the nth minimal error. Adopting the terminology of {22}, we shall refer to such
a sequence as being a quasi-minimal sequence of algorithms. It is of particular interest to
find conditions which are necessary and sufficient for the FEM to be quasi-minimal.

To do this, we must first establish tight bounds on the nth minimal error. This will give
a benchmark, against which we may measure the error of the FEM. The result is expressed
in the big-theta notation of [15]. That is, we say that

f=6lg it  f=0(g)and f=10Q(g),
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where
f=Qg) if g=0(f).
THEOREM 3.1. The nth minimal error satisfies

e(n) =6(n"") as n — co.

PROOF: When p < oo, we may use {20, Theorem 2.6.1], Theorem 2.1, and {21, Theorem
4.10.2] to see that

e(n) = ©(d"(SF, Ly(1))) = 6(d"(F, Ly(1))) = ©(n™").

Here, d” denotes the Gelfand n-width. This establishes the result for the case p < oo.

We now turn to the case p = co. By [20, Corollary 3.3.1 and Theorem 3.5.1], the
fact that the linear Kolmogorov n-width A, dominates the Kolmogorov n-width d,, and
Theorem 2.1, we have

e(n) = An(SF, Leo(D)) > dn(SF, Loo(1)) = ©(dn(F, Luo(D)) )

Let
Fo= {1 €Wy I/ oo <1}
The Poincaré’s inequality yields
dn(Fa Loo(l)) = e(dn(FO’ Loo(l))'
Since the proof of [19, Theorem 2.76] actually establishes that
dn(FOa LOO(I))) = e(n—r)’

we have the lower bound

e(n) = Q(n”").

It remains to show that
e(n) =0(n"").

Since F C Fy, we have
An (Fy LOO(I)) S Af‘l(F‘Ov LOO(I)) = e(n—r)
see [13, pg. 182]. Hence Theorem 2.1 yields

e(n) = An(SF, Leo(])) = e(A"(F, qu))) = O(n™").

Thus we find that e(n) = ©(n™") when p = cc.

We now determine the Ly (/)-error of the FEM, using the resultsin [12]. Let P,: L2(J) —
Lo(I) be the orthogonal projector of Lz(I) onto S, i.e., for any h € L2(I), Pnh € S,
satisfies

(3.5) (Pah,s) = (h,8) Vs € Sn.

(This makes sense because S, C La(]).)

~1



LEMMA 3.1. For any q € [1,00]|, there exists 1y > O such that for any non-negative
integer n,
| Pavllo.q < 7qllvllo.q Vv € Lo(1),

and so

”U - Pn””O,q < (1 + 7r<]) aiensf,, ”v - 3”0'0'

PROOF: In order to establish the first inequality, let v € L,([). Let I be a subinterval in
An. By [5, (3.2.33)], there exists C > 0, independent of v and n, such that

(3.6) 1Pavlloqr < Cn'/2=1A|Pyvlio 2,1,
Let
w. = {an on [,
n 0 otherwise.
Using the facts that P,v = w, on [;, w, = 0 outside of I;, P, is self-adjoint, and P,w, =
wy, (which holds because w, € §,,), we find that

1 PavllE 2.1, = (Pav,wn)1r, = (Pav,wn) = (v, Pawn) = (v,ws) = (v, wn)1, = (v, Pav)y,.
Letting ¢’ denote the exponent conjugate to g, Holder’s inequality yields
1 Pavllg 2,1, < llvllo,q.nll Pavllo,g 1,
Once again, [5, (3.2.33)] yields the existence of C > 0, independent of v and n, such that
1Pavllo.qr.t, < Cnt/2= | Pavllo 2.1,
Using this inequality with (3.6) and the fact that 1/g + 1/¢’ = 1, we have
|Pavllo,q1. < Cllvllo,q.r-

The desired result now easily follows from this inequality and the discrete version of
Holder’s inequality.

To prove the remainder of the lemma, let v € L;(]). For any non-negative integer n and
s € S,, we have P8 = 3, so that

llv = Pavllo,g < [lv = 3llo,g + | Pnls — v)llo,q < (1 + mg)llv — sllo,q-

Since s € S, is arbitrary, we may take the infimum over all such s to establish the desired
inequality, completing the proof of the lemma.

Thus P, satisfying (3.5} is a bounded linear operator on L,([).

We briefly recall the standard approximation-theoretic results concerning S, see e.g.
[3] or [16]. Let 8 > 0 and g € [1,00]. There is a positive constant C such that for any
v € W*9(]) and any integer n, one can find v, € $,, for which

(3.7) llv — Unllo,g < C"_A”v”&q’
where
(3.8) A =min(k + 1, 3).

We then have



LEMMA 3.2. Let s >0 and q € [1,00]. There is a positive constant C such that for any
v € W*9(I) and any non-negative integer n,

lv = Pavlla,q < G"-A”U”a,qa
with A given by (3.8). Hence, for any v € Ly([),

nll’rr;o lv — Pavllo,q = 0.

PROOF: The first part of the lemma follows immediately from Lemma 3.1 and (3.7). To
see the second part, let v € Ly(I). Given € > 0, choose v € C' (/) such that

€

—_ < —ee |
”‘U Uc”O.q 2(1 +ﬂ.q)

Set ng(€) = [2C||vell1.q/€], where C is as in the estimate of the first part of the lemma.
Then for any n > ng(¢), we have

”‘U( - anCHO.q S C"_l”ve”l.q S

Il m

Moreover, Lemma 4.1 yields

€

(v — ve) — Pa(v — v)llo,g < (1 + mg)llv — vello,q < 5

Hence for any n > ng(e),
llv — Pavllo,g < [[(v = ve) = Pa(v — ve)llo,g + |[ve — Pavellog <,

completing the proof of the lemma.

We are now able to establish that the FEM ¢, is well-defined and uniformly stable for n
sufficiently large. In particular, this implies that the Gram matrix G defined previously is
invertible for sufficiently large n. We give sharp bounds on the error of the FEM, showing
that the FEM is quasi-minimal iff & > r — 1.

THEOREM 3.2. There exists a positive integer ng such that the FEM is defined for all
n > ng, as well as a constant C, independent of n, such that

lon (N Mllop < Clifllo, VS € WTP(I).

Moreover,
e(pn) =68(n"*) as n — oo,

where -
p=min(k + 1,r),
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so that the FEM is quasi-minimal iff (3.1) holds.
PROOF: Using the formulation of [12], we see that u,, = @, (N, f) is the solution of

(I - PhK)u, = P, f,

where the right-hand side is well-defined by Lemma 3.1. Since 1 is not an eigenvalue of K,
L = I — K has a bounded inverse on L,(/). Hence, [12, Theorem 2.1] implies that there
exists an integer ny such that I — P, K is invertible for all n > ng. Moreover, there exists
a positive constant C such that

I - PK)7 I < C

and
llu = unllo,p < Cllu - *DnUHO.P

for all n > ng. These results, with Lemmas 3.1 and 3.2, establish the well-definedness and
uniform stability of the FEM, as well as an upper bound e(p,) = O(n™#) on the error.
To establish a lower bound on the error of the FEM, we may use the techniques of [23,
Theorem 5.2] to see that there exists a nonzero function v € W"? (/) and a constant C > 0,
such that for all n sufficiently large,

< - > Cn~*||v||,,.
(3.9) jof 1o = slo.p > Cn~*Jollr,

Since v # 0, Lv # 0. Let f = Lv/||Lv|l,, € BW™P(I). Then the linearity of S, ¢,, and
N, yield

1

1.
e(en) 2 ISf — en(Nafllop = mllv — On{Np Lv)|lo,p > malensfn llv = sllo,p

(since @n (N, Lv) € S,). Using (3.9), we thus have

C
e(pn) 2 n~H,
"= Lyl

establishing that e(<p,,)‘: B(n~#). The final statement of the theorem now follows from
this estimate and Theorem 3.1.

Hence the FEM is quasi-minimal iff £ > r — 1. Suppose this inequality no longer holds.
We show that in the Hilbert case p = 2, the non-optimality of the FEM is due to the fact
that it uses its information in a non-optimal manner. To be more precise, let ¢ denote
the spline algorithm using the finite element information N,, [20, Chapter 4]. The spline
algorithm is a linear combination of the functionals which make up N,, i.e., there exist
elements u},...,u) of Ly(I) such that

n

(N f) = D (f, ) ut.

=1

(In fact, in the case where sy,...,8, are H"([])-orthonormal, u} is the exact solution of
the problem Lu! = s,.) Moreover, the spline algorithm has the smallest error among all
algorithms using N,.

10




THEOREM 3.3. For the Hilbert case p = 2,
e(p) =€e(N,) =6(n"") as n — oo.

PROOF: Since the first equality follows by optimality of the spline algorithm in the Hilbert
case (20, Theorem 4.5.1], we need only show that the second holds. In order to do this,
note that Theorem 3.1 yields

e(Ny) > e(n) =86(n7"),

establishing the lower bound e(N,) = Q(n~"). We need only show the upper bound
e(N,) = O(n~"), which will be done by using the formula

e(Nn) = sup  [|Sz]lo,2;
z€EFNker N,

see (20, Theorem 3.4.2]. Let z € F Nker Ny, so that
(2,8) =0 Vs € S

and
”z”r.’l <L

By [3, Theorem 4.1.1], there exists s € S, such that
llz = 8ll-r2 < Cn7"||zllo.2,

the positive constant C being independent of z, 8, and n. Using the results above with
Theorem 2.1, we find

al(z,z—8) _ allzllrzllz = sll-r,

lzllo2 l12]lo.2

|Sz]l0,2 < allz]lo,2 = 2<Cn.

Taking the supremum over all z € F Nker N,,, we have e(N,) = O(n~"). Hence, e(N,) =
O(n~") as n — oo, establishing the theorem.

Hence, regardless of whether (3.1) holds, there always exists a linear algorithm using
FEI (namely, the spline algorithm) which is quasi-minimal.

REMARK 3.1. It is reasonable to ask whether Theorem 3.3 holds for other values of
p. The main problem in extending Theorem 3.3 to the case p # 2 lies in extending (3,
Theorem 3.1.1] to this case. Most of the proof of that result seems to hold for the case
p € (1,00), assuming that spaces of fractional order (which arise in the proof of that
result) are defined via complex interpolation [21]. However, the proof of that theorem also
depends on the optimality of orthogonal projections in the Hilbert setting. The analogous
statement, required to prove the extension of [3, Theorem 3.1.1] to the non-Hilbert case,
would be the uniform boundedness of the W—22(I)-orthogonal projection onto S, in the
W =#9([)-norm, which is an extension of Lemma 3.1 of this paper from the Lq(/)-norm to
the negative norm of W—%9(I). It is not clear whether this extension holds. ~
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4. STANDARD INFORMATION AND THE FEM WITH QUADRATURE.

Recall that in approximating the solution u of the problem Lu = f, the “pure” finite
element method (3.2) requires the values of the integrals

(4.1) /;f(:r)s,-(.z‘] dz (1<:1<n)

(where s;,...,8, are the basis functions for the finite element space S, of degree k£ and
dimension n). The (exact) values of these integrals are not generally available for arbitrary
problem elements f. It is more usual to assume that it is possible to compute the values
of a problem element f at any point of /. If this is the case, one may approximate the
integrals (4.1) by numerical quadrature rules, i.e., weighted sums of the problem element
f evaluated at n points in /.

In addition, there is a second kind of integral appearing in (3.2), namely integrals of the
form

(4.2) /, [s,-(x) - [ K w)esto) dy] s(z)dz  (1<ij<n).

It is possible that for special kinds of kernals k, the integrals of the form (4.2) can be
evaluated in closed form (since the basis functions are piecewise polynomials). However,
for even moderately-complicated kernels, these exact values may be unavailable or difficult
to compute. For this reason, one might wish to approximate the integrals (4.2) by a
quadrature rule using n® values of the kernel k& and n values of sy,...,3n.

In this section, we introduce a “finite element method with quadrature,” in which in-
tegrals of the form (4.1) and (4.2) are approximated via numerical quadrature rules. We
show that the error of this FEM with quadrature is essentially the same as that of the
“pure” finite element method. From this, it follows that the FEM with quadrature is
quasi-minimal under exactly the same conditions that the FEM is quasi-minimal. That
is, the FEM with quadrature is quasi-minimal iff K > r — 1, where k denotes the degree of
the finite element subspace.

REMARK 4.1. Our analysis is similar to that of [5, Section 4.1]. That is, we establish
and then use a weakly coercive [16, Section 7.4] version of the First Strang Lemma |5,
Theorem 4.1.1], rather than try to directly apply the results of [12]. The main reason for
not using the latter approach is that the projection operator P, of (3.5) would have to
be replaced by a new projection operator. This new operator involves the evaluation of
problem elements at points in /, and hence is not defined over all of L,([); as a result,
this approach would yield estimates which are not sharp.

As in the previous sections, we will be using the notation of [5] for Sobolev spaces,
norms, seminorms, etc., our exposition closely following that of [5, Section 4.1]. In the
remainder of this section, we assume that r > 1, so that the Sobolev embedding theorem
implies that f(z) is well-defined for all z € I and for all f € W"™P(I), no matter what value
of p > 1 is chosen. We also assume that k € W (] x I).

For the sake of exposition, we restrict our attention to the case where the integrals
occurring in the definition of the FEM are replaced by piecewise (k + 1)-point Gauss
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quadratures. We let Q denote a (k + 1)-point Gauss quadrature rule over the reference
element I = [—1,1], so that

1 -~ -
(4.3) / §(2)dz = O3) + £@),
-1
where
A k
0@ =S @5d(2)
=0
and

Epy=0  V¥pe€ Pupi().

Using the notation of the previous section, we see that for 0 < a < m — 1, this induces a
quadrature rule Q4 on I, := [&, £a+1] by

k
9) = Z wjag(Zja),
7=0

where ¢ ¢ ¢ ¢

Wjq = a“,) 2@;  and 74 = “"'12 (2, + 1)+ &
Hence
(1.9 | s@)dz = Qulo) + Eulo),
where
(43) Edlg) = Sttt )
and ¢ ¢

99 =0 (£ 86 v ).

We write the nodes { z;, } in increasing order as z;,...,z,, with n = (k + I)m; w;g Is the

weight from {w;, } corresponding to the node z;.
Let n be a positive integer. We define a bilinear form B, approximating B by

B (v,w) = iw{ [v(z )

For f € WP (I), we define a linear functional f, approximating (f,:) b

= Zn:wif(zi)w z
=1

13
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The finite element method with quadrature (FEMQ) is then defined as follows. Given
f € WmP(I), for each positive integer n, an approximation u, € S, to u = Sf is chosen
such that
B (un, 8) = fa(9) Vs € S,.

We make the specification of the FEMQ more precise. Let {3,,...,3, } be a basis for
Sn. Consider the Gram matrix

G = [Bn(sj, 3,’)] lst‘,jsn.
Later on, we will establish that G is invertible for n sufficiently large. Let
a=G"'p with Bi = fnlsi) (1<i<n).

We have

n
=1

As in the previous section, this expression shows that the approximation produced by
the FEMQ depends on f only through the standard information

flzy)
Nif=1| =
f(zn)

We indicate this explicitly by writing

ui = R (N3S).

n

—

In the remainder of this section, we determine the error of the FEMQ), i.e., we find a
sharp estimate of

e(pf) = sup[|Sf — @R (N3 f)llo p-
fEF

From this estimate, it will follow that the FEMQ is quasi-minimal precisely when the FEM
is quasi-minimal. That is, the FEMQ is quasi-minimal iff £ > r — 1.

This error analysis will be based upon the following weakly-coercive version of the First
Strang Lemma (5, Theorem 4.1.1]. Here, and in the remainder of the paper, we follow the
custom of letting C denote a positive constant (not necesarily the same at each occurrence)
which is independent of n and the various functions involved.

LEMMA 4.1. Suppose that the approximating bilinear forms { B, } are uniformly weakly
coercive, i.e., there exists a positive integer n, and a positive constant 3 such that for all
n > n, and for any v € S, there is a nonzero s € S,, such that

|Bn(v,9)] 2 Bllvllo.sllsllo.p-
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Then the FEMQ 9 is defined for all n > ny. Moreover, there is a positive constant C

such that for any n > n,,

e(¢d) < Csupq inf [Hsf_g”o!p_*_ sup |B(s, w) — Bn(s, w)|]+
feF | s€Sa wES, lwllo,pe
w#0
sup (£ w) = fulw)] |
wESa ”u"“O,p’

w#0

PROOF: We first show that the FEMQ is defined for all n > n,. That is, we need to show
that the Gram matrix G is invertible, i.e., G has a trivial kernel. Suppose in fact that

there exists a nonzero ¢ € IR" such that G¢ = 0. Letting z = Z;-'=l ¢;8;, we see that
Bn(z,8)=0 Vs € §,.
Since ¢ is nonzero and sy, ..., 8, is a basis, z Is nonzero. Hence by uniform weak coercivity,

there exists nonzero s € S, such that
|Bn(z,8)| 2 Bllzllo.pll8llo,»» > O,

a contradiction. Hence G has a trivial kernel, and the FEMQ is defined for all n > n,.
We now establish the error bound. Let f € F, n > ny, and u, = ¢Z(NJf). Let s € 5,
By uniform weak coercivity, there is a nonzero w € S, such that

Bllun = sllopllwllo,pr < [Bnlun — 8, w)|
< |B(Sf — s,w)| +|B(s,w) — Bu(s, w)| + | Bn(un, w) — B(Sf, w)|
< ag|Sf = sllopllwllo,pr + |B(s, w) — Bn(s, w)| +|fn(w) — f(w)],

where aq is given by Theorem 2.1. Since w # 0, the above may be divided by B||w||o,p-
Hence, for any s € S, there exists nonzero w € S, such that
IB(S,U))—BH(S,U))I |(f’w)—fﬂ(w)|]

Qo
lun = sllop < — |IISf = sllop +
" P= B P llwllo,p: llwilo,pr

Since u, = p%(NJf), we have

ISf — @2 (NI Nlo.p S IISF = sllop + lltn — sllop-

Letting C = 1 + ap/3, the previous two inequalities yield
LICRUES: O AES AL

17 = e (NE o < © 17 = slo +
| Mlo.p | llo.p lwllo.pr llwllo,pr

Taking the supremum over nonzero w € S,, the infimum over s € S, and finally the
supremum over f € F', we have the desired result.

-
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In order to use this estimate, we will first establish the proper error estimates over each
subinterval in the grid, which will then be combined to yield an estimate of the error over
the entire interval. To do this, define

—

k k
ab(v w / I" :I: y)v(y)w(:z:) dy dr — Zwta I:ijbk(-rmy x]b)v(ij)] w(xta)

1=0 7=0
(1 <a,b<m).

Recalling the definition (4.4) of the error functional E,;, we have the following estimate of
the “local consistency error:”

LEMMA 4.2. Let 0 = min(k + 2,r). There is a positive constant C, such that for any
positive integer n, any v, w € S, any f € W"P(I), and any a, b€ {1,...,m }, we have
the estimates

(4.6) |Egs(v, w)| < C"—3|k|1,oo,lax1a””Ho.p,h”w”O.p‘.la )
(4.7) | Eas(v, w)| < C"_(a“)”k”r,oo,l.xlo”v”r.p.lb”U’HO.p‘J., )
and

(4.8) |Ea(fw)| £ Cn™%)|fllrp.1.l|wll0.pr.1, -

PROOF: Forc € {1,...,m}, define a. = (£ — £,—1)/2 and B = (.= + &.)/2. Then
F.: I — I., defined by
Fe(2) = acz + B,

is an affine bijection of [ onto I.. Letting

_ Qg 0 _ ﬂa
B""_[o Qb} and bab—[ﬂbJ ,

we define an affine bijection Fip: [ x [—=I,x1I by

SARE

For any 3:/ x [ — IR, let

denote the error in the tensor (k+1) x (k+1)- ponnt Gauss quadrature rule on [ x [. Given
a function z: [, x [, — IR, we define a function 3:/ x [ - R by the change of variables

2(z,9) = z2(z,y) where t=Fsz, y=Fy.
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Letting v and w be as in the statement of the lemma, we then may use the quasi-uniformity
of the family of finite-element spaces to see that

(4.9)  |Eab(v, w)| = | det Bas| |} j(k0)| = agas| E;, j(k0d)| < Cn~2|E; j (ki)
where C is a fixed positive constant. Analogously, by using (4.3), (4.4), and (4.5), we see

that there is a positive constant C such that if f and w are as in the statement of the
lemma, then

(4.10) |Eo(fw)| = |det Ba| |E(fib)| = aa| E(fid)] < Cn™![E(f)].
We first turn to the proof of (4.6). Define, for v, w € Pk(f), a linear functional A;¢ on

wteo(] x [) by
how(k) = E; j(kd).

Then there exist positive constants C, independent of ¥ and w, such that

1A60 (F)| < ClIkvD|lg o 1x; S CllEllg co,ix 119110 00,1118 Ml0 00,2

< Cllklly eo,ix i ll?llo,p, i 100 pr i

the last using norm-equivalence on the finite-dimensional space Pi(I). Hence, dow is a
bounded linear functional on W' ([ x [I), with

1Roull < Clidllg., ]l p i
Moreover, since 9, @ € Pi([), we have ki € Pay(] x I) whenever k € Po(I x I), and so
Xow(k) = E(kow) =0  Vke Py(Ix ).

Hence the Bramble-Hilbert lemma [5, Theorem 4.1.3| yields that there exists a positive
constant C, such that for any k € W1 (I x I) and any o, & € Pi([), the estimate

(4.11)  |Ej ;(kod)| = [Aoa (F)| < Clkly o ixjlldowll < Clkly o ixill0llg o ill0llg pr 7

holds. Since the grid sequence is quasx-umform, we may use [5, Theorems 3.1.2 and 3.1.3]
to see that

|i"|1'oo‘jxi < C||Bas|| k|1 .001.x1s < Cdiam(Ig x Ip)|k|1 00, 1ax2s € Cn7 2kl 00, 1ax 1 »

-1
ollg 5.7 < Cay Pllvllo.p.r, < Cn'Pll0]l0p.1,
and
(4.12) Bllg v ; < Caz/? |lwllo pr.1, < Cn P |[wllo pr 1.
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Hence (4.9), (4.11), the fact that 1/p+1/p’ = 1, and the estimates above yield the desired
result (4.6). ) _ )
We next establish the estimate (4.7). Define, for w € Pi([), a linear functional Ay on

W (] x I) by ) )
Ao (3) = Ep j(2).

Then there exist positive constants C, independent of Z and w, such that
| (2)] = |E1x1(2'1))| < C”‘éw”o oo, ixi = <C|2 “o o, 1x1”w”o P < 0”2”000 1x1“w”o o0

the last step again using norm-equivalence on the finite-dimensional space Pk(f ). Hence
Ay is a bounded linear functional on W2°(] x [I), with

1Al < Clldll p -

Moreover, since ¢ — 1 < k+ 1, we may use 1 € Pi([) to see that 31 € Pagy,(]) whenever
2€ P,y(I xI), and so

Ao(2) = E; j(30) =0 Vie P, (Ix]).

Hence the Bramble-Hilbert lemma yields that there exists a positive constant C, such that
for any @ € P([) and 2 € W?2°°(I x [I), the estimate

12a(2)] < CllAullZ]y 0,ix; € ClElg,c0,ixill®llg p i

holds. Now let 3 = kd. Then norm-equivalence on the finite-dimensional space Pi_; (1)
yields ,
16,00, = 1891lg 0.7 < CllEDg , 7 = Cll,

7.00,1 71, p,i’

and so [5, (4.1.42)] yields

|k£‘|aoolxl —Czlkla Joolxllvljool<cz|kla Joonllvlgp!

7=0
Thus
|Ej j (ko) = [Ag (kD) < Clkv|a so,ixill®llo pr. i
o
(4.13) < }: Ely_j oo i 181 p. 1 1011 i -

Since quasi-uniformity and [§, Theorems 3.1.2 and 3.1.3] yield

Flo—jcoixi < C (diam(la x 1))7 Iklo—jco,ruxts < Cn 2 DIkl oo rxss
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and /
- -1
19l ,5 < Cay "Pllvllypn £ Cn'l?llv]lj 5.1, ,

the desired estimate (4.7) follows from (4.9), (4.12), (4.13), the estimates above, and the
facts that 1/p+1/p’=1ando <.
We finally turn to the proof of (4.8). For W € Pi([), define a linear functional Ay on
wor(]) by
Ao (f) = E(fw).
Using the Sobolev embedding theorem and norm-equivalence on the finite-dimensional

space Py([), we see that there exist positive constants C, independent of f and 1, such
that

~—

A (N =1E(f@)] < Cllfidllg i < Cllfllg co.illBllo.c0.i € Cllfllyp illDllo, pr -
Thus Ay is 2 bounded linear functional on WP?([), with
1Xall € Clldlly i+

Moreover, since @ € Pi([) and 0 < k + 2, we have fi € Pogy (1) whenever f € P,_,(I),
and so L o i X
Ao(f) = E(fw) =0  Vfe Py (I)

Thus the Bramble-Hilbert lemma yields that there exists a positive constant C, such that
for any f € W?P([) and any @ € Pi([), the estimate

(4.14) |E(fd) = 13 (N)] € CllRall1flyp; £ Clflgp ill@llg pr i

holds. Using quasi-uniformity and {5, Theorems 3.1.2 and 3.1.3|, we find

1flop.i € Caz PPl flop.t.-

The desired bound (4.8) now follows easily by using this estimate, along with (4.10), (4.12),
(4.14), and the facts that 1/p+1/p’ =land o < r.

We next give an estimate of the “global consistency error” by summing the estimates of
the local consistency error. To do this, it is useful to define, for each positive integer n, an
interpolation operator I1,: W™?(I) — S, by

n

Moo =) v(z;)s;,

=1

where {s;,...,3, } is a basis for S, which is dual to the linear functionals which evaluate
at {z,,...,z, }; that is, 3;,...,8, € S, are chosen so that g;(z;) = & for 1 < 1,7 < n.
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LEMMA 4.3. Let o = min(k + 2,r). There is a positive constant C, such that for any
positive integer n, any v, w € Sp, and any f € W"P(I), we have

(4.15) |B(v, w) = Bn (v, w)| < Cn™?[k|1 corx1ll¥lo,pllwllo,p
(4.16) |B(In Sf, w) = Ba(InSf, w)| < Cn™?|lkllr.co x| fllrpllwllop,
and

(4.17) |(f,w) = fa(w)] < Cn™%||fllrpllwllo,pr-

PRrROOF: We first show that (4.15) and (4.16) hold. By Lemma 4.2, there is a positive
constant C, such that for any positive integer n and any v, w € Sj,

|B(v,w) — Ba(v,w)| €D |Eas(v, w

=1b=1

Q

(4.18) m m
< Cn~ NSNS " agllvllap.nllwllo p..
a=1b=1
where either
(4.19) a = 2, Aap = Ikll,oo,l,xloy ﬂ =0
or
(420) a =0, Agp = ”k“r.oo.l,xlba g=r.

Since m = 6(n) (by quasi-uniformity) and aq, > 0, the discrete version of Holder’s in-
equality yields

m m m 1/p
Y ) aallvlispnliwlop s, <C [l Srg{%gmaab] [gllvll,"},p,“] llwllopr,

a=1b=1

(with the obvious modification for the case p = oo) which, when combined with (4.18),
yields

1/p
(4.21) |B(v,w)—Bn(v,w)|SCn-°[ max aab] [levuﬁp.z,] el

~—

The result (4.15) now follows immediately from (4.19) and (4.21). In order to prove (4.16),
let v = I1,Sf in (4.21). Since Pi([}) is invariant under II, for each b € {1,...,m}, 5,
Theorem 3.1.4] yields a bound of the form

”Sf - Hnsf”r,p,lb < C”Sf”r.P-Ie )
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hence, the triangle inequality implies that there_is a positive constant C such that

”Hnsf“r,p,lo < C”Sf”r.p,la .

This result, along with Theorem 2.1, implies that

m 1/p ‘
[Z HHnSfllf,p,;,] < ClISfllrp £ Clifllrp -
b=1

Using this inequality with (4.20) and (4.21) gives the estimate (4.16).
Finally, we may use (4.8) and the discrete version of Holder’s inequality to see that

(£, w) = fa(w)] < D 1E(fw)] Cn™ Y | fllrpot o,z
a=1 a=1

m l/p m l/pl
) nfni’,,,,,c} [Zj ||w||z,,,,,,a]
a=1

a=1
::(7n_r”f”np|hU”QP”

<Cn?

establishing (4.17).

Our next task is to establish the uniform weak coercivity of the bilinear forms { B, }.
This is done by first establishing weak coercivity of the bilinear form B, and then using
Lemma 4.3.

LEMMA 4.4. The family { B, } of bilinear forms is uniformly weakly coercive.

PROOF: We first show that B is weakly coercive. That is, there is a positive integer ng
and a positive constant g, such that for any nn> ngy and any v € S, there is a nonzero
w € S, such that

(4.22) |B{v, w)| 2 Bollvllo.pllwllo,p -
If v =0, then (4.22) holds for any nonzero w € S,; hence it is no loss of generality to

assume that v is nonzero. Since 1 < p < o0, (9, (4.14.3) and (4.14.8)] implies that there is
a nonzero g € L, (I) such that

(429 (0,9)1 2 3 lello.pllalo-

Now choose w € §,, to be the finite element approximation of (L*)~!g; that is,
(4.24) B(s,w) = (s,9) Vs e S, .

By (the adjoint version of) Theorem 4.1, w exists for all n > ng, and

(4.25) lwllo.pr < Cllgllo,p-
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-Letting Bo = 1/(2C), we may use (4.23), (4.24), and (4.25) to see that

1
|B(v,w)| = |(v,9) 2 S llollosligllo. > Bollvllopliwllo,s:-

Finally, note that this inequality, along with the fact that v and ¢ are nonzero, yields that
B(v, w) # 0; since B is bilinear, this implies that w # 0.
Now let C be as in (4.15). Choose

ool ]

B =P —Cny?

is positive. Given n > n; and v € S,,, choose nonzero w € S,, such that (4.22) holds. Then
(4.15), (4.22), and the definitions of n, and 3 yield that

so that

| B (v, w)| > |B(v,w)| - |B(v,w) = Ba(v,w)| 2 (Bo — Cn™?)|v]|opllwllo 5
2 Bllvllo.pllwllo.p,

as required.

We are now able to establish that the FEMQ ¢ is well-defined and to give sharp bounds
on its error. We also show that the FEMQ is quasi-minimal iff (3.1) holds.

THEOREM 4.1. There exists a positive integer n, such that the FEMQ o2 is defined for
all n > n,. Moreover,
e(@l) =0 as  n—o,

where (as in Theorem 4.1)
p=min(k+ 1,r).

Hence, the FEMQ is a quasi-minimal error algorithm iff k > r — 1.

PROOF: Let n; be as in Lemma 4.4; then Lemmas 4.1 and 4.4 imply that ¢! is defined
for all n > n,.

We next establish the upper bound e(p?) = O(n™#). Let f € F, so that ||f||,p, < 1,
and let n > n,. Since Px([l) is Il,-invariant for b € {1,...,m}, [5, Theorem 3.1.4|, the
discrete version of the Holder inequality, and Theorem 2.1 yield that

1S/ = aSfllop < Cn™2)|fllr.s -

Replacing s by I1,S5f in the bound of Lemma 4.1 (which can, at worst, increase the right-
hand side of that bound), and using Lemmas 4.1-4.4 (along with the fact that f € F), we

have
ISf — @& (N f)lop < Cn™H.
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Since f € F is arbitrary, we may take the supremum over all such f to find the desired
upper bound e{pl) = O(n™*).

To establish the lower bound e(¢?%) = (2(n~#), note that ©I(NJf) € S,, so that (as in
the proof of the lower bound in Theorem 4.1}, we have

e(pf) = sup ||Sf — ©f (N3 f)llop 2 sup inf [Sf —sflop 2 Cn™*,
feF SEF s€Sn

completing the proof of the estimate e(p?) = ©(n~#). The last part in the statement of
the theorem follows immmediately from this estimate and Theorem 3.1

5. COMPLEXITY ANALYSIS

In this section, we discuss the complexity of finding e-approximations to the solution of
the Fredholm equation of the second kind, as well as the penalty for using the FEM when
k<r-1.

Let ¢ > 0. An algorithm ¢ produces an ¢-approximation to the problem if

—

e(p) <e.

The complexity comp(€) of an algorithm ¢ is defined via the model of computation dis-
cussed in [20, Chapter 5]. Informally, we assume that any linear functional can be evaluated
with finite cost ¢;, and that the cost of an arithmetic operation is unity.

Recall that ¢, denotes the finite element method of degree k using the finite element
information N, based on the finite element subspace S,. Also, recall that ©? denotes the
finite element method with quadrature using the standard information NJ3 described in
Section 4. Since the FEI N,, and the standard information NJ each contain n linearly
independent linear functionals, we find that

comp(pn) 2 nc and comp(pl) >nc;.
Throughout the remainder of this paper, we assume that
(5.1) comp(pn) = 6(n) and comp(pl) =0O(n) asn — 0.

REMARK 5.1. The assumption (5.1) is reasonable in either of two cases. In the first case,
we actually assume the existence of an algorithm which can solve the linear system gener-
ated by the FEM, whose number of operations is linear in n, the size of the linear system.
This condition holds in a number of special cases—finding such linear-time algorithms is
still an open problem for the general case. (It is perhaps possible that the approaches of
[10] and [18] may be used to transform the FEM or FEMQ into methods having roughly
the same error as the original methods, yet whose linear systems can be solved in time
which is linear in n.)

Alternatively, one may wish to make an assumption of preconditioning. That is, we
assume that any computation which is independent of the right-hand side f is done in
advance, and not counted when determining the number of operations required when ap-
proximating the solution u to the problem Lu = f. We make this notion of preconditioning
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more precise for the FEM (the case for the FEMQ being analogous). Recall that the FEM
is a linear algorithm, i.e., it produces a linear approximation to the exact solution u(z)
having the form Y., (f, 8i)gi(z), where g1,...,gn € Sp. Since gy, ...g, are independent
of f, they may be determined in advance. (This precomputation may be especially effi-
cient in the case where the problem Lu = f is to be solved for many different right-hand
sides f.) Hence, computing the value of the FEM at any point in [ requires at most n
multiplications and n — 1 additions, once the n inner products (f, s;),..., (f, 3») have been
evaluated. Thus (5.1) holds for the FEM, if one uses preconditioning.

Let
FEM(¢) = inf{ comp(pn) : n is an index such that e(p,) <€}

and
FEMQ(¢) = inf{ comp(p}) : n is an index such that e(p?) < ¢}

denote the cost of finding an ¢-approximation using the FEM and the FEMQ (respectively).
From the results of Sections 3 and 4, along with (5.1), we find

THEOREM 5.1. Let g = min{k+ 1,r}. Then
FEM(¢) = ©(¢~'/#)

and
FEMQ(e) = 6(¢~'/#)

as e — 0.

We now consider the Hilbert case p = 2. Let ¢} denote the spline algorithm using
the FEI N,. If we agree once more to accept the idea of preconditioning as discussed in
Remark 5.1, we find

(5.2) comp(py) = B8(n) as n — co.
We now let
SPLINE(€) = inf{ comp(e;) : n is an index such that e(p}) < ¢}

denote the cost of solving the problem using the spline algorithm (see Section 3). Using
(5.2) and Theorem 3.3, we find

THEOREM 5.2. In the Hilbert case p = 2, we have
SPLINE(e) = 6(e~'/") as e — 0.
We now wish to determine the minimal cost of solving the problem. Let
COMP(¢) = inf{ comp(p) : p is an algorithm for which e(p) < ¢}

denote the problem complexity, i.e., the inherent cost of solving the problem with error
not exceeding €. Using Theorem 3.1, (5.1}, and Theorem 5.1, we find
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THEOREM 5.3. The problem complexity is
COMP(¢) =6(e"'/") as ¢ — 0.

Hence, we may draw the following conclusions:

COROLLARY 5.1.

(i) The spline algorithm using the FEI is always quasi-optimal in the Hilbert case.
(i) The FEM and FEMQ are quasi-optimal iff k > r— 1. If k < r — 1, then for

1 <1
A= —— — - >0,
k+1 r>

the asymptotic penalty for using the FEM is

FEM() _ g (L)
COMP(e) = \ &

and the asymptotic penalty for using the FEMQ is

FEMQ(e) _ ¢ (_1_)
COMP(e)  ~\e* /"

Hence when k < r — 1, the asymptotic penalty for using the FEM or FEMQ (rather
than an optimal method) is unbounded, i.e.,

po FEM(d _ . FEMQ() _

¢e—0 COMP(¢) =0 COMP(e)

Hence when k is too small for a given value of r, there is an infinite aysmptotic penalty for
using the FEM or FEMQ. Based on examples similar to [23. Example 7.1}, it is reasonable
to suspect that this is not really an asymptotic result; we suspect that it is generally
more costly to use an FEM or FEMQ whose degree is too small (rather than one of the
proper degree), even for error criteria ¢ which are only “moderately” small, and hence of
“practical” interest.

ACKNOWLEDGEMENTS

I would like to thank Professors J. F. Traub and H. WozZniakowski for their helpful
comments.

REFERENCES

1. R. S. Anderssen, F. R. deHoog, M. A. Lukas (eds.), “The Application and Numerical Solution of In-
tegral Equations”, Monographs and Textbooks on Mechanics of Solids and Fluids (Mechanics: Anal-
ysis) 6, Slijthoff and Noordhoof, Alphen aan den Rijn, 1980.

2. K. E. Atkinson, “A Survey of Numerical Methods for the Solution of Fredholm Equations of the
Second Kind”, Society for Industrial and Applied Mathematics, Philadelphia, 1976.

25



3.

(<)

12.

13.

14.

15.

16.

17.

18.

23.

I. Babuska and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in
“The Mathematical Foundations of the Finite Element Method with Applications to Partial Differ-
ential Equations”, (A. K. Aziz, ed.), Academic Press, New York, pp. 3-359.

. C. T. H. Baker, “The Numerical Treatment of Integral Equations”, Clarendon Press, Oxford, 1977.
. P. G. Ciarlet, “The Finite Element Method for Elliptic Problems”, North-Holland, Amsterdam, 1978.
. L. M. Delves and J. Walsh (eds.), “Numerical Solution of Integral Equations”, Clarendon Press, Ox-

ford, 1974.

. N. Dunford and J. T. Schwartz, “Linear Operators—Part I: General Theory”, Wiley-Interscience,

New York, 1958.

. K. V. Emelyanov and A. M. llin, Number of arithmetic operations necessary for the appromimate solution of

Fredholm integral equations, USSR Computational Math. and Math. Phys. 7 (1967), 253-266.

. A. Friedman, “Foundations of Modern Analysis”, Holt, Rinehart, Winston, New York, 1970.
10.
11.

M. B. Friedman and D. R. Dellwo, Accelerated projection methods, J. Comp. Phys. 45, 108-126.

M. A. Golberg (ed.), “Solution Methods for Integral Equations”, Mathematical Concepts and Meth-
ods in Science and Engineering 18, Plenum Press, New York, 1979.

Y. lkebe, The Galerkin method for the numerical solution of Fredholm integral equations of the second kind,
SIAM Review 14 (1972), 465-491.

R. S. Ismagilov, Diameter of scts in normed linear spaces ard the appromimation of functions by trigonometric
polynomials, Russian Math. Surveys 29 (1974), 179-186.

B. Kacewicz, Optimality of Euler-integral information for solving a scalar autonomous ODE, BIT 23 (1983),
217-230.

D. E. Knuth, Big omicron and big omega and big theta, SIGACT News (April, 1976), Association for
Computing Machinery.

J. T. Oden and J. N. Reddy, “An Introduction to the Mathematical Theory of Finite Elements”,
Wiley-Interscience, New York, 1976.

H. J. J. te Riele (ed.), “Colloquium Numerical Treatment of Integral Equations”, Mathematics Cen-
ter Syllabus 41, Mathematisch Centrum, Amsterdam, 1979.

H. Schippers, Multigrnd techniques for the solution of Fredholm integral equations of the second kind, in “Col-
loquium Numerical Treatment of Integral Equations”, (H. J. J. te Riele, ed.). Mathematics Center
Syllabus 41, Mathematisch Centrum, Amsterdam, 1979,

. L. Schumaker, “Spline Functions: Basic Theory”, Wiley, New York, 1981.
. J. F. Traub and H. Woéniakowski, “A General Theory of Optimal Algorithms", Academic Press,

New York, 1980.

. H. Triebel, “Interpolation Theory, Function Spaces, Differential Operators™, North-Holland Mathe-

matics Library 18, North-Holland, Amsterdam, 1978.

. L. B. Wahlbin, Quasi-optimality of the Hd -projection into finite element spaces, in “Lectures on the Nu-

merical Solution of Partial Differential Equations: Proceedings of the Special Year in Numerical
Analysis”, (I. Babugka, T.-P. Liu, J. Osborn, eds.). Lecture Notes 20, Department of Mathematics,
University of Maryland, College Park, MD, 1981, pp. 420-434.

A. G. Werschulz, Complexity of indefinite elliptic problems, Research Report, Department of Computer
Science, Columbia University, New York. {(Submitted for publication.)

Keywords and phrases. Integral equations, Fredholm problem of the second kind, finite element methods,
optimal algorithms, computational complexity.

1980 Mathematics subject dassifications (Amer. Math. Soc.): Primary: 65R20. Secondary: 45B05, 45105, 45110,
68C25.

Division of Science and Mathematics, Fordham University / College at Lincoln Center, 113 West 60th
Street, New York, NY 10023

Department of Computer Science, Columbia University, New York, NY 10027



