CUCS~-124-84

Understanding Hierarchically
Structured Objects

Kenneth Wasserman
May 1984

This research was supported in part by the Defense Advanced Research Projects
Agency under contract N00039-82-C-0427

Table of Contents

Introduction

Definitions and Formalism
Multi-source Inheritance
Conclusions
Acknowledgments

oo @ 10

o -

—
e W O

Abstract

Natural and artificial hierarchical systems are pervasive. There 13 a strong
need on the part of researchers in artificial intelligence and other areas of
cognitive science to have mechanisms for ‘understanding” such systems.
Furthermore, computer programs often represent data in a hierarchical form and
they would greatly benefit from a technique that would allow them to dynamically
build such classification systems from this data. This paper presents a
formalism for describing hierarchies and then uses this formalism to ezplore the
issue of inheritance from multiple sources which is of particular importance in

hierarchy understanding.

1. Introduction

Much of what we perceive in the world around us is hierarchical. Physical
objects, river and road systems, library systems, family relations and all kinds of
taxonomies are but a few examples of common hierarchical phenomena (see [Simon
81) for more examples). Humans are apparently adept at understanding information
presented as hierarchies. We even create abstract hierarchically structured systems
when entertaining ourselves; most western music fits this form. It seems logical
that artificially intelligent beings (computers) should have a similar capacity to

comprehend hierarchies.

Artificial Intelligence researchers have used hierarchies for representing knowledge
almost since its beginning (for example, NOAH [Sacerdoti 73] stored its knowledge
as a hierarchy of plans and SCHOLAR [Carbonell 70] used a semantic net-based
hierarchy to encode facts about South America). Usually these knowledge structures
are built by a human expert and used by a computer program to either solve a
problem or store more information according to the previously established
classification categories. Furthermore, the data put into these hierarchical
classification systems are sometimes hierarchically structured themselves. For
example, animal body parts form a hierarchy that is classified in a taxonomy that

distinguishes creatures based upon their physical attributes [Hayes 77].

There 1s an obvious need for computer systems to automatically classify their own
data (for example, [Michalski and Stepp 83]. In our opinion this can only be
achieved by building systems that can ‘“‘understand” the hierarchies that fall within
their domain of expertise. In addition, there remains a great deal to be learned
about the fundamental nature of hierarchies. The goal of our research 1s to yield

interesting results in both of these areas.

The word understand 1s used in many senses both 1n ordinary conversational
language and 1n Artificial Intelligence. The main thrust of all of these 1s the
incorporation of an 1dea or experience into memory in relation to other, pre-existing
ideas or experiences. Incorporating a piece of knowledge into memory 1s usually
termed learning One form of learning, generalization, 1s the process by which
similarities among various pieces of information are ferreted out and a structure is

created that embodies the facts common to these instances In some sense all

[3]

learning might be considered to be generalization. Thus, “understand’” will refer to

the generalization-type learning process for the purposes of this paper.

We will present a formalism for exploring issues relating to hierarchy
understanding and use this formalism to explore one of the many important
problems. The problem of building a generalization hierarchy using data that can
be inherited from multiple sources will be analyzed within the context of hierarchy
understanding. The paper concludes by 1dentifying several other issues of
importance that need to be addressed before a complete hierarchy understanding

system can be developed.

2. Definitions and Formalism

In order to discuss the nature of hierarchies some terminology must be presented.
A hterarchy is a group of objects that exist in some partially ordered state such
that a sub-group of objects that are all subservient to another object form a logical
class. In this way, a hierarchy serves as a classification system for the objects that

comprise it.

What makes one object, or node, in a hierarchy subservient to another depends
on the information that the hierarchy is attempting to capture. For example, the
often-used IS-A link (see [Quillian 68] for early work using IS-A links in semantic
nets) serves to indicate that one node 1s an instance of another node. It has
application to almost any domain with a classification scheme based upon group
membership. PART-OF 1s another commonly used inter-node relation. (See
[Winograd 72| for similar examples in the blocks world) Here the link denotes
that one object is physically included within another. A third example, from the
business community, is the idea of chain-of-command. For practical purposes this
concept can be expressed as a binary relation between two nodes and might be
termed REPORTS-TO (eg., the president REPORTS-TO the chairman of the

board). This relation is used by corporations to build organizational hierarchies.

These examples illustrate that there is a single fundamental relation that serves
as the backbone of any hierarchical structure. [S-A, PART-OF and REPORTS-TO
are the links that give structure to the classification, component and chain-of-

command hierarchies They are all examples of fundamental relations, which we

will term F-RELs for convenience. To be sure, other relations can and do exist
between nodes in a hierarchy. For example, channels of communication between
members of a corporation can be represented as relations between nodes in the
organizational chart. However, the F-REL of REPORTS-TO 1s the most significant
relation and provides the f{ramework for the hierarchy to be assembled on.
Therefore, it is the F-REL of the hierarchy that determines the partial ordering of

1ts object.s.1

As stated earlier, generalization is what is implied by the word ‘‘understand”, in
our usage of it. When two or more objects are compared, a generalization about
them can be made. Furthermore, when two or more generalizations (or an object
and a generalization) are compared, a higher level generalization can often be made.
This process will produce a hierarchy of generalizations. The F-REL of this
hierarchy will be called VARIANT-OF.

The objects that are the nodes of this generalization hierarchy need not be
unitary; they can be hierarchically structured entities themselves. Herein lies the
notion of ‘‘understanding hierarchies”. It is precisely this: hierarchical systems can
be understood by building a generalization hierarchy in which each object in 1t
either represents a single instance of a hierarchy in the domain whose knowledge is
being encoded, or is itself another generalization. For example, to understand
automobiles one could build individual hierarchies for each car based upon the
PART-OF F-REL (e.g., the cylinders are PART-OF the motor which is PART-OF
the car). These would then become objects in a generalization hierarchy that might
represent information such as: A Ferrari 1s a VARIANT-OF a sports car which 1s a
VARIANT-OF an expensive automobile

Understanding hierarchical systems requires the use of at least two orthogonal
representation hierarchies. One 1s the structure hierarchy based upon the F-REL of
the domain, which we will call the F-TREE;, “Tree” being easier to read than

“hierarchy’” and these structures are usually tree-like in appearance An F-TREE

It should be pointed out that a particular domain may have several equally vahd
F-RELs For example, although must corporate hierarchies are built on the
REPORTS-TO F-REL there might be a need to design a structure chart based
u%on Ophysncal location. In this case the proper FgREL might be IN-SAME-
REGION" However, for most domains there 1s only one obvious F-REL to use.

provides a description of the structure of a single hierarchy in the domain under
study. The other representation structure is the generalization hierarchy, which we
will term the G-TREE for similar reasons. The G-TREE describes a whole set of
instance hierarchies within one classification hierarchy. The two trees are orthogonal
in the sense that they represent different ways of looking at the same set of
objects. The F-TREE of an object symbolizes the way that a particular object is
structured (e.g. physical structure, chain-of-command, etc.), while the G-TREE
represents how the objects can be classified according to their F-TREE encodings.

In order to facilitate our presentation of F-TREEs, G-TREEs and their
interrelation we need a concise notation. The essential facts that must be made
apparent by a good notational scheme are: given any node, what are its immediate
descendants in the F-TREE (i.e., subservient nodes) and what are its immediate G-
TREE descendants (i.e., instances and/or other generalizations). Furthermore, such a
scheme should be flexible enough to allow us to add new operators into it. In
particular, we will need to add operators that tie together the F-TREEs and G-
TREEs. Although these two trees were described as orthogonal, the understanding

process is rooted in the interaction between the two trees.

Encoding Meaning

A B, D node A has F-TREE subservient nodes B and D

B: C, >F node B has F-TREE subservient node C as well
as G-TREE vaniant F

C. E node C has F-TREE subservient node E

D: node D has no F-TREE or G-TREE descendants

F +G node F has an F-TREE subservient node, G in

addition to the ones 1t inherits from B

Each node in the F-TREE and G-TREE that has children is represented
by its name followed by a list of its descendants, a colon delineates the
parent from the children. G-TREE variants are prefixed by a “>" to
distinguish them from the F-TREE descendants in the lst of children. A
“4+” symbol prefixed before an F-TREE descendant indicates that it i1s an
added 'F-REL link (in addition to those that it inherits from its parent(s()j).
The F-REL of the hierarchy 1s implicit here and must be stated outside
the context of the encoding.

Figure 2-1: Notation for F-TREEs and G-TREEs.

Figure 2-1 introduces the basic notational scheme we have chosen to accomplish

the goals outlined above. The name given to identifiers can be abstract single

letter codes, abbreviations or more descriptive names. To put the abstract structure
described in this figure into perspective, assume that the F-REL of this example is
PART-OF. Then, this structure defines two objects, A and F. Object A has
parts B and D; object B in turn has a part, C while object D has no parts.
Furthermore, object C has E as a part. The second object, F, is actually a
VARIANT-OF object B. Thus, it inherits all the parts (F-REL links) that B
contains. It also has an additional part that B does not have, namely G. In
total, F has C and G as immediate parts.

The concepts introduced by this example are: inheritance - nodes that are
variants of other nodes in the G-TREE inhenit all the F-REL links (parts in this
case) that the parent node has; addition - the child node can have additional F-
REL links that the parent does not have (this is denoted by the “+" symbol).

Inheritance is certainly not a new technique in Al research and is often the main
motivation behind using hierarchical systems (see [Brachman 79a, Minsky 75| for
examples). It has the very desirable benefits of saving on memory usage (in that
data can be shared among similar nodes) and organizing information for easy
retrieval (usually only a few pointers need be followed for a node to acquire its
inherited data). We have specified that only F-REL links are inherited in our
representation scheme. In fact, one often wants to allow for other information to
be inherited, but since the examples in this paper deal only with F-RELs we will
not consider inheritance of other data. It should be emphasized that variants are

specifically not inherited.

A node that 1s a VARIANT-OF another node in the G-TREE can have F-REL
links (parts in this case) added to its F-TREE that are not inherited from the
parent node. Thus, addition is a means for specifying that a node i1s “just like its
parent only it has added F-REL links". Note that addition of F-REL links 1s only
possible if the node that is being added to is a VARIANT-OF some other node.
Other concepts than inheritance and addition are easily added to this formalism.
For example, subtraction is an operation similar to addition but specifies that a
node 1s “‘Just like 1its parent only its missing an F-REL link.” Another operation,
substitution, allows for the replacement of an F-REL link, that would be inherited
from the parent node, by a different F-REL link 1n the child.

With this formalism in hand, we will explore what happens when a node inherits
data from more than one parent in the G-TREE. In particular, we want to
incrementally build unambiguous G-TREEs that allow for inheritance of data from
multiple sources. It turns out that this process presents some difficult and
interesting problems. We term this phenomena the wmulti-source fnheritance
problem. It 1s distinct from the problem of multiple inheritance often encountered in
semantic net representations. We are concerned with creating correct
generalizations while allowing for possibly conflicting data to be inherited from
multiple sources as opposed to merging non-conflicting data from multiple parents

into an existing node.

3. Multi-source Inheritance

To look at the multi-source inheritance problem we will use an example from the
corporate world. Assume that a company has a vice-president of marketing (VP-1)
who controls the activities of the director of public relations (DPR). A second
company's marketing vice-president (VP-2) has a director of advertising (DA) under
him and a third company's vice-president of marketing (VP-3) controls both the
public relations director and the director of advertising. In addition, all three of
these marketing vice-presidents also control the activities of a director of sales (DS)
and a director of market research (DMR). Furthermore, we will consider a fourth
company whose vice-president of marketing (VP-4) controls a director of market
research, an advertising director and a director of public relations. Figure
3-1 summarizes what we know about these four company’s vice-presidents. Because
we are about to get somewhat technical and all of these executive titles are a bit
lengthy to keep reading, Figure 3-1 shows assignments of short mnemonics to each
job title. Although only these corporate hierarchies will be analyzed here, it should
be noted that the problem we will discuss exists in any domain where multi-source

inheritance of generalizations based on a single F-REL are used.

We will start with the generalization structure built by comparing VP-1 with
VP-2. Next, VP-3 will be added into the generalization hierarchy Finally, the full
magnitude of the problem will surface when VP-4 is taken into account. In this
sense, we can call each company a training instance that generalizations are built
from [Mitchell 77, Winston 72].

Job title symbolic F-TREE
v.p.-company-1 VP-1: DPR, DS, DMR
v.p.-company-2 VP-2: DA, DS, DMR
v.p.-company-3 VP-3: DPR, DA, DS, DMR
v.p.-company-4 VP-4: DPR, DA, DMR
director-public-relations DPR:

director-advertising DA.

director-sales DS.
director-market-research DMR:

Four F-TREEs are represented here, one for each marketing vice-
president that will be used in our examples. Short mnemonics are
assigned to each job title to condense the representations. Nodes VP-1,
VP-%Z, VP-3 and {/'P-4.comprlse the training instances for the example
followed in the next 4 figures.

Figure 3-1: Summarized data on four companies.

VP-X: DS, DMR, >VP-1, >VP-2
VP-1. +DPR
VP-2. +DA

Company-1's vice-president of marketing {(VP-1) and company-2’'s vice-
resident Q_/’P-?) have been generalized, creating a new G-TREE node
F X) which contains the information that -1 and VP-2 have In

common.
Figure 3-2: Generalization of company-1 and company-2.

Figure 3-2 shows how both VP-1 and VP-2 can be represented as variants of
some hypothetical object (VP-X) which has the subservient objects DS and DMR
assoctated with 1t. The only issue to take note of here 1s that a new G-TREE
node has been created that captures the data that its two variant nodes have In
common. We could have represented VP-1 as a VARIANT-OF VP-2 or vice-versa.
But this representation would have lost the concept that VP-1 and VP-2 have equal
status (i.e., it would have given one of them preferential status). Also 1t would
hide the fact that they have both DS and DMR in common. It is helpful to think
of the representation shown as factoring out what VP-1 and VP-2 have in common
and storing 1t 1n node VP-X. With this in mind consider what happens when
company-3's F-TREE 1s added into the G-TREE:

The new G-TREE node, VP-3 shown in Figure 3-3 demonstrates how 1ts data can

VP-X: DS, DMR, >VP-1, >VP-2
VP-1. +DPR, >VP-3

VP-2 +DA, >VP-3

VP-8&

_This G-TREE representation now includes company-3's vice-presid
Since node VP-3 is just the umon of the data in no%esyVP-l a;?ip\r/'elg]-Qerrllta
new F-REL links have been added to the tree. This is an example of
inheritance from two sources that causes no problems.

Figure 3-3: Addition of company-3 into the G-TREE.

be encoded by using inheritance from two sources. It is worth noting that only
two variant links need be added to the representation in Figure 3-2 in order to
capture all the data for node VP-3. The only common factor among company-1,
company-2 and company-3's vice-presidents is that they all have the pair of
employees DS, DMR. This has already been accounted for in node VP-X so no
extra work (factoring) is needed here. There 1s also no uncertainty as to what
node VP-3 should inherit. Obviously 1t should only have one F-REL link to DS
and one F-REL link to DMR. Since it inherits these links from the same ultimate
source (namely VP-X), there is no problem in determimng if it should have two
copies of DS, DMR or one copy. Unfortunately this simplicity does not usually

prevail.

VP-X: DS, DMR, >VP-1, >VP-2
VP-Y: DPR, DMR, >VP-1, >VP-4
VP-Z. DA, DMR, >VP-2, >VP-4
VP-1. >VP-3

VP-2 >VP-3

VP-8.

VP-4

A first attempt at incorporating VP-4 into the G-TREE shown in figure

3-3. It fails because of multi-source inheritance ambiguities. For example,
it 1s unclear if VP-4 has 1 or 2 F-REL links to DMR.

Figure 3-4: A first try at incorporating company-4 into the G-TREE.

In Figure 3-4 we have attempted to incorporate VP-4 into the G-TREE. Two
new G-TREE nodes have been created which represent different classifications of
objects (vice-presidents) than node VP-X does. VP-Y and VP-Z represent objects
that have subservient F-TREE nodes DPR, DMR and DA, DMR, respectively.
These were built for the same reasons that node VP-X was formed. Node VP-4 is

2 VARIANT-OF both VP-Y and VP-Z in that 1t has F-REL links to DPR, DA and
DMR. The problem that arises here is: what F-REL links do nodes VP-1, VP-2,

VP-3 and VP-4 really contain?

So far, there is no unique answer to this question within the realm of our
formalism. The problem is in determining how many copies of a particular F-REL
link should be inherited if these sources do not in turn inherit it from the same
source. In the case we have illustrated, VP-4 could have, for example, two copies
of DMR or just one copy. We could, of course, add a definition to our formalism
to force a unique answer. One possibility is to simply state that inheritance of the
same F-REL link from multiple sources results in the union of the sets of F-REL
links from all of the parent nodes. (We will discuss this possibility later).
However, such an arbitrary rule restricts the types of generalizations which are
possible and detracts from possibly interesting studies of this problem. Therefore,

we will look further.

Keeping in mind that we would like to factor out the common elements in G-
TREE nodes, we try fixing the structure shown in Figure 3-4. To accomplish this,
we realize that if we factor out the DMR node from VP-Y and VP-Z then node
VP-4 will not have any ambiguities (i.e., VP-4 will inherit only one F-REL link to
node DMR). Recognizing that node VP-X contains DMR as a factor, we also take
it out by making VP-X a VARIANT-OF a new node, VP-T, which contains only
DMR as an F-REL link. Next we make VP-Y and VP-Z vanants of VP-T, as
well This will result i1n a structure that has only a single node that contains
DMR, wherein all other nodes that need this as a subservient node will inhent

DMR from this ultimate source. Figure 3-5 demonstrates exactly this.

Left to explain is how we determined that DMR had to be factored out from VP-
X to fix the problem? Furthermecre, how did we even know that we had to check
nodes VP-1, VP-2 and VP-3 for potential problems? The answer i1s we didn't.
With a httle bit of thought one can reach the conclusion that each time a new
generalization 1s made it 1s possible that this factoring problem might cause some
previously represented node to become mis-represented (or at least ambiguous 1n
meaning). To state this more precisely: if a new generalization 1s bult that breaks

up some previously existing group of factors, then it 1s possible that one or more

10

VP-T' DMR, >VP-X, >VP-Y >VP-Z
VP-X: +DS, >VP-1, >VP-2

VP-Y: +DPR, >VP-1, >VP-4

VP-Z: +DA, >VP-2, >VP-4

VP-1. >VP-3

VP-2 >VP-3

VP-8

VP-4

Finally all the ambiguities have been eliminated. By factoring out DMR
from nodes VP-X V%-Y and VP-Z, node VP-T th becomg the only
source._ of DMR for all of the nodes (vice-presidents) that have DMR 1n
their F-TREE fernploy), . The key concept is: all common factors must be
?mgled out to form multi-source inheritance hierarchies that are ambiguity-
ree.

Figure 3-5: Final G-TREE representation of all four companies.
nodes in the representation will inherit the same F-REL links from more than one,

ultimate source.

Before describing each of the possible solutions we would like to make clear that
the example just presented is quite simple. In fact 1t 1s the simplest example that
demonstrates the full effect of the multi-source 1nheritance problem while
incrementally incorporating training instances into a generalization hierarchy. In
any real-life use of a generalization hierarchy a much deeper G-TREE would be
involved. This, unfortunately, makes the factoring out process much more difficult;
virtually the entire G-TREE would have to be searched for common factors
whenever a new generalization 1s created. Five possible solutions to this problem

are outlined in Figure 3-6.

The first possible method for dealing with the multi-source inheritance problem 1is
the one pursued in our example. That 1s, after each new training instance (F-
TREE) 1is incorporated into the G-TREE, the remainder of the tree must be
searched for factors in common with those of any newly created generalizations. If
there are any common factors, they must be singled out in order to avoid possible
inheritance ambiguities. The resulting representation 1s both compact and contains
only correct generalizations (those that mirror the F-TREE data). Unfortunately
the factoring out process is a lengthy one which increases with the size of the G-
TREE. For domalns with a significant number of training instances, this method is

impractical.

11

Method of implementation Time Space Comments

1-Find common factors slow efficient the obvious
incrementally. approach

2-Factor out all primitives, average average unnecessarily creates
even if not necessarily needed. G-TREE nodes, obscures

some generalizations

3-Use some heuristic to fast efficient may produce wrong
solve ambiguities. generalizations and limit
possible generalizations

4-Don't allow multi-source very fast efficient severely restricts
inheritance at all. possible generalizations
5-Use separate G-TREE nodes fast poor not too elegant,
for inheritance from but practical

different parents.

This table briefly describes several possible methods for solving the
multi-source inheritance problem. The Time column_ indicates the time
performance of each method relative to the others. Slmllarlg the Space
column shows the relative amount of storage space needed for the
equwa(lient,lamount of information. The text describes each method 1n
more aetail.

Figure 3-8: Five possible solutions to the multi-source inheritance problem.

The next method enumerated in Figure 3-6 1s a modification of the first approach
Instead of searching the G-TREE for common factors each time a new
generalization is created, this solution suggests that all possible factors (F-REL lLinks)
be bullt into separate G-TREE nodes. The use of one node per F-REL link would
guarantee a non-ambiguous inheritance process. This method would almost certainly
builld unnecessary generalization nodes. It would not recognize, for example, that
two F-REL links that occur together in all training instances should be represented
as a single unit because they would be split up into separate generalization nodes.
Although this approach would be substantially faster than the first one mentioned,

it would require more memory space for the unnecessary generalizations.

Solution 3 has been mentioned before. It was said that the union operation could

possibly solve the inheritance ambiguity problem. Using such a technique would

12

mean that regardless of the number of times a particular F-REL link occurs in the
composite of all parent nodes, only one copy of it would be inherited. Union is
Just one of an infinity of possible methods that could be used. Unfortunately, any
heuristic method leaves itself open to the possibility of creating wrong
generalizations. Furthermore, some generalizations would be impossible to make
using a given inheritance method. For example, if union was used, it would not be
possible to represent an F-TREE that inherited one part from parent A and
another, 1dentical part from parent B, even though it really does have two of the

same part.

For certain domains, solution 4, not allowing multi-source inheritance may be an
acceptable alternative, but for most this will not do. However it does suggest a

possible pragmatic solution that we have listed as method number 5.

The 1dea behind this method is to decompose each G-TREE node that is a
VARIANT-OF more than one parent into separate nodes that are only a
VARIANT-OF one parent each. Then a cluster of these decomposed nodes can be
built into one logical unit. Thus, all of the information needed to reconstruct an
F-TREE (from a given G-TREE node) 1s available in each of the nodes in the
cluster. Furthermore, all possible paths of inheritance are avallable by looking at
the cluster as a whole (this allows the G-TREE to form the same classification
scheme as in method 1). The obvious drawback to this approach is that it is
wasteful of memory in that it re-represents some data. However, only the data
that is involved in nodes that have multiple parents are duplicated, so this scheme

is often a useful approach to the problem.

In summary, the multi-source inheritance problem is a significant one that deserves
sertous consideration when large G-TREEs are involved. We have listed only a few
possible solutions. Other researchers, notably Brachman (see [Brachman 79b] for an
introduction, [Brachman 78] for more specifics), have addressed similar problems and
devised various ways around it.2 Nevertheless, it must be kept in mind when

deciding on how a hierarchy understanding system should be constructed.

2 _ v : R
“Brachman’s scheme allows inheritance links to be modified if they would cause a

conflict of inherited data. However, his scheme is for non-hierarchically structured

objects and is oriented toward generalizing an object’s properties not its structure.

13

4. Conclusions
Many issues that arise in the context of hierarchy understanding are rooted in the

somewhat broader arena of learning (generalization). The following are some of the
more important questions in generalization (aside from multi-source “aheritance) that

bear on hierarchy understanding.

What are the differences between incremental and all-at-once type generalizations
- the distinction here is between whether the training instances are available for
analysis all at one time or whether they trickle into the generalizer one instance at
a time Should all possible generalizations always be made? How can instances with
incomplete F-TREEs be incorporated into a G-TREE so that the information
already present is not disturbed? (This is a standard occurrence in natural
situations.) Can the information present in the G-TREE be used to fill in missing
data in incomplete F-TREEs? How can erroneous generalizations be corrected? (See
[Lebowitz 82], for example.) How can generalization systems be made robust (in

the sense that they don't fall when given input not specific to their domain)?

[n addition to these generalization problems, hierarchy understanding requires the
solutions to several other ones: what 1s the best way to incorporate other, non-
fundamental, relations into F-TREEs, i1s 1t useful to attempt to represent domains
with multiple F-RELs within a single G-TREE? Work on RESEARCHER [Lebowitz
83), a program that reads and understands patent abstracts, has given us the need
to explore all of the issues (and more) mentioned here. We are developing a
representation/generalization system that automatically (and dynamically) classifies

representations of the complex physical objects described in disk drive patents.

The formalism presented in this paper (when augmented with the subtraction and
substitution operations) is useful for describing a wide variety of problems that arise
in hierarchy understanding. In addition, 1t i1s easily expanded to take into account
new operations that effect the interaction of the F-TREEs with the G-TREE. For
example, non-fundamental relations that greatly enhance the meaning of a hierarchy
can ve added for a more complete picture of an individual F-TREE. Furthermore,
generalizations about these relations can be incorporated into the G-TREE alongside
the generalizations based upon the F-REL links.

14

Nevertheless, there is still much work to be done in understanding how learning
about hierarchical systems takes place. There are undoubtedly many general
principles concerning hierarchies that are yet to be discovered. This knowledge will
surely lead to more 1ntelligent computer systems and hopefully to 3 better

understanding of how the human mind works.

5. Acknowledgments

[would like to thank Michael Lebowitz for reading over earlier versions of this
paper and for many helpful discussions on hierarchy understanding. Much of the
work on generalization presented in this paper was done jointly with Tom Ellman
and Larry Hirsch. I would also like to thank John Kender for suggesting the idea

of investigating hierarchies in general.

15

References

[Brachman 78] Brachman, R.J. A structural paradigm for representing
knowledge. Tech. Rept. 3605, Bolt Beranek and Newman, Inc., 1978.

[Brachman 79a] Brachman, R.J. Taxonomy, descriptions and individuals in
natural language processing. Proceedings of the 17th Annual Meeting of the
Association for Computational Linguistics, Association for Computational Linguistics,
La Jolla, California, 1979, pp. 33 - 38.

[Brachman 79b] Brachman, R.J. On the epistemological status of semantic
networks. In NV Findler, Ed., Associative Networks, Academic Press, New York,
NY., 1979.

[Carbonell 70] Carbonell, JR. “Al in CAL: An artificial intelligence approach to
computer-aided instruction.” IEEE Transactions on Man-Machine Systems 11, 4
(1970), 190 - 202.

[Hayes 77] Hayes, P.J. On semantic nets, frames and associations. Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, International
Joint Conference on Artificial Intelligence, 1977.

[Lebowitz 82] Lebowitz, M. ‘“‘Correcting Erroneous Generalizations.”” Cognition
and Brain Theory 5 4 (1982), 367 - 381.

[Lebowitz 83] Lebowitz, M. RESEARCHER: An overview. Proceedings of the
Third National Conference on Artifictal Intelligence, American Association for
Artificial Intelligence, Washington, DC, 1983.

[Michalski and Stepp 83] Michalski, R.S. and Stepp, RE ‘‘Automated
Construction of Classifications: Conceptual clustering versus numerical taxonomy
Pattern Analysis and Machine Intelligence 5, 4 (1983), 396 - 409

Minsky 75] Minsky, M. A framework for representing knowledge In P H.
Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975

[Mitchell 77] Mitchell, T M. Version spaces A candidate elimination approach to
rule learning. Proceedings of the Fif:th International Joint Conference on Artificial
Intelligence, International Joint Conference on Artificial Intelligence, 1977

[Quillian 68] Qullian, M.R. Semantic memory. In M. Minsky, Ed, Semantic
In formation Processing, MIT Press, Cambridge, Mass, 1968

(Sacerdoti 75] Sacerdoti, ED. A structure for plans and behavior. Tech Rept
109, SRI International, 1975

[Simon 81] Simon, HA. The architecture of complexity. In HA. Simon, Ed.,
The Sciences of the Artificial MIT Press, Cambridge, Mass, 1981

16

[Wilensky 83] Wilensky, R. Planning and Understanding. Addison-Wesley,
Reading, MA, 1983.

[Winston 72] Winston, P. H. Learning structural descriptions {rom examples. In
P H. Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York,
1972.

[Winston 80} Winston, P H ‘“Learning and reasoning by analogy a
Communications of the ACM 23, 1980, pp 689 - 702

