Cucs-116-384

FIVE PARALLZL ALGORITHEMS FOR PRODUCTICH

SYSTEM EXECUTION OM THE DADO MACHINE

SALVATORE J. STOLFO

CuCs-116-34

FIVE PARALLEL ALGORITHMS FOR PRODUCTION SYSTEM EXECU N
ON THE DADO MACHINE® TIo

Salvatore . Stwolfo

Computer Science Department

Columbia University
New York City, N.Y. 10027

Abstract

In this paper we :pecily five abstract algorithms for the
parallel execution of production systems on the DADO
machine. Each algorithm is designed to capture the
isherent paralleiism in a variety of different production
system programs. Ongoing research aims to substantiate
our conclusions by empirically evaluating the performance
of each algorithm on the DADO?2 prototype, presently
under -omstruction at Columbia University.

1 Introduction

Iz this paper we outline five abstract algorithms
specifving parailel execution of production system (PS)
programs on the DADO machine. Each algorithm offers a
aumber of advantages for particular types of PS programs.
We expect to implement these algorithms oo the DADO?2
prototype and critically evaluate the performance of 2ach
on 2 vartety of application programs. Software
development is preseatly underway using the DADOL
protot¥ze that has been operational at Columbia Uaiversity
since April. 1983,

We begin with a3 brief description of PS's and
dentify various possible characteristics of PS programs
which may not be immediately apparent from a general
description of the basic formalism. These characteristics
lead to different algorithms which will be discussed in the
remaining sectioas of this paper.

2 Production Syatems

In gzneral. a3 Production Systerm (PS) [Newell 1973,
Davis and King 1973, Rychener 1978, Forgy 1982] s
defined by a2 zet of rules. or produciions. which form the
Producizon Memory (PM), together with 3 database of
awserttons. called the Working Memory (WM). Each
produciion consists of a comjunction of pattern elements,
called the left-hand side (LHS) of the rule. ilong with 1
set of actions cailed the rigat-hand side (RHS). "f"he RHS
specifies information that is to be added to (asserted) or
removed from WM when the LHS successinlly matches
3zainst the conteats of WM.

Pattern elemeats in the LHS may have a variety of
forms which are depeadent on the form and coatent of
WM elements. Io the simplest case, patterns ars lists
zomposed of coostants and variables (prefixed wita an

“This recearch has beea supported by :the Defense
Advanced Research Projects Agency through contract
N00039-34-C-0163. as weil as granis from lntei, Digital
Equipmeat. Hewiett-Packard, Valid Logic Systems. ATET
Bell Lateratories 2ad 1BM Corporations and the New Yerk
State Stencr and Taclnolegy Toundation. We gratefuily
icknowiel3: tlerr support.

Ff’auelmﬂs AAATI-8H

~ algebrz),

equals sign), while WM elements are simple lists of
coastant symbols (corresponding to tuples of the relational
Ap example production, borrowed f{rom the
blocks world, is ilustrated 1a figure 1.

(Goal Clear-top-of Block)

(Isa ==sx Block)

(On-top-of =y =x)

(Isa =y Block) -->delete{On-top-of =y =mx)
assert{On-top-of ==y Table)

If the goal is to clear the top of a block,
2ad there is 3 block (=x)
covered by something (=y)
which is also a block,
then remove the fact that ==y is on =ex
and assert that ==y is on the table.

Figure 1: An Example Production.

la operation, the production system repeatedly
executes the [ollowing cycle of operations:

1. Match: For each rule, determine whether the
LHS matches the current eaviromnmeat of WM:
each pattern element s matched by some WM
element with variables consistently bound
throughout the LHS. All matching instances of
the rules are collected in the conflict set of
rules,

2. Select: Choose exactly one of the matching rules
according to some predefined criterion.

3. Acrr Add to or delete from WM all assertions
specified in the RHS of the selected rule or

perform some operation.

During the selection phase of production srstem
execution. 3 typical interpreter provides con/flict rrzolution
strategies based on the recency of matched data iz WM,
as well as syatactic discrimination. Other resolution
schemes are possible, but for the present paper such issues
will got sigmiicantly change our anaiysis, and hence wiil
aot be discussed.

We shall oaly cocsider the parallel exzcution of PS
programs with the goal of accslerating the rule firing rate
of the recognizefact cyele as well as the oumber of WM
rrapsactions gertormed. [o a later section of this paper,
we shall consider otaer possible parailel activities as. for
example, the coacurrent execution of multiple PS programs.

Texas

On first glance it appears that each phase of the PS
cycle is suitable for direct execution on parallel hardware,
with the zreatest opportunity for a speed{’up in the match
pbase. (lodeed, Forgy [1979] notes that some PS
xatergreters spead over 90Tc of thetr time executing the
match phase of operation.) This requires a partitioning of
PM and WM among the available processors: some subset
ol processors would store and process the LHS of rules,
while another possibly iatersecting subset of processors
would store and process WM elements. Thus, we envisage
3 set of processors concurreatly executing pattern matching
tests for 3 aumber of rules assigned to them. Similarly,
once 1 coaflict set of ruies is formed, high-speed seiection
can be implemented in parallel as 3 logarithmic time
algebraic operation. Finally, the RHS ‘of a rule cag be
processed by a parallel update of WM. We summarize
this approach by the abstract algorithm illustrated in
figure 2.
1. Assign some subset of rules to a set of (distinet)
processors.

. Assign some subset of WM elements to a set of
processors (possibly distinct from those in step
1).

3. Repeat uantil 2o rule is active:

(2]

a. Broadcast an instruction to al processors
storing rules to begio the match phase,
resulting in the formation of a local
conflict set of matching instances.

b. Considering each maximally rated instance
within each processor, compute the
maximally rated rule within the eatire
system. Report its instantiated RHS.

¢. Brcadcast the changes to WM reported in
step 3.b to all processors, which update
their local WM accordingly. end Repeat;

Figure 2: Abstract Production System Algorithm.
This very simple view of the parallel implemeatation
of the PS cycie forms the basis of our subsequent apalysis.

3 Characteristics of Production System Programs

In this section we enumerate various characteristics of
PS programs in generai terms. The reader will note that
these caaracteristics are less indicative of a3 specific PS
formahlism., but rather are characteristies of various
problems whose solutions are encoded in rule form. It

should be aoted. though, that the ‘‘nherent parailelism”

in scrme problems may not be represented by the
particuiar PS formelism uaed for their solution.

I. Temporal Redundancy. Few WM changes are
made on each cycle. Thus, by saving state
between each cycle, previous matchiog operations
ae:d not be repeated. The Re:e aigorithm
{Forgy 1982] is probably the best example of 3
PS interpreter incorporating :this strategy.

. Few Affected Rules. Few rules are affected
by changes to WM on each cycle, and thus
reiatively few rules ased be matched 3gainst the

[

new state of WM, Note, however, that
temporal redundancy alone does not guarantee
this to be always the case.

3. Many Affected Rules. Many rules are
affected by the changes to WM on each cycle.
This may arise, for example, in situations where
similar pattern elements appear in many rules.

4. Massive changes to WM (non-temporally
redundaat). Io this case, action specifications in
the RHS of a rule may have large global effects
on WM. Thus, restricting the scope of the
match operation seems unlikely, i.e., saving state
is got appropriate.

5. Restricted scope of pattern matches. The

~ npumber of WM elements which may potentially
match -each rule is relatively small. Thus, a
single rule may not need access to all of WM
but to a relatively small subset of data
elements.

8. Global tests of WM., Pattern elements in the
LHS of 3 rule may test conditions requiring
access to large portions of WM, rather than
tadividual elements (for example, tests which
compare the number of WM elemeats agaiast
some constant threshoid value). This case may
be viewed as the converse of characteristic 3.

7. Muitiple rule firings. On each cycle of
operation, 3 number of conflict rules may be
executed prior to initiating the match phase of
the aext cycle.

8. Small PM. The aumber of rules is restricted
to oanly a few bundred.

9. Small WM. Similarly, WM may cogsist of oanly
a few hundred elements.

10. Large PM. A PS may coasist of several
thousands of rules in PM.

11. Large WM. Similarly, WM may copsist of
thousands of data elements.

4 Five Algorithms

In this section we outline five differeat algorithms
suitable for direct execution on .2e DADO machine. Each
will be independently discussed leading to various
conclusions about which characteristics they are most
appropriate for capturicg. Ougoing research aims to verily
our conciusions by empirically evaluating their performance
for differeat classes of PS programs.

The -eader is assumed to be koowledgeable about the
Rete match algorithm (see [Forgy 1679| and [Forgy 1982).
We will thus ?reely discuss the details of the Rete maten
when needed without prior explication. We begin with 3
briei description of the DADO architecture. (The reader is
encouraged to see [Stolfo 1983] 3nd {Stoifo and Miraaker
1984] for complete details of the system.)

1,1 The DADO Machine

DADO is a [ine-grain, parallel machine where
srocessing :nd memory are exteasively intermingled. A
fiil-zezle production version of the D-&DO machine would
ccmprise 3 very larze fon the order of a1 hundred
thuuszed) set of grocessing clements (PE's), each
containing its own processor. a small amount (15K bytes,
in the curreat desiga of the prototype version) of local
random access memory (RAM) aand a specialized [/O
zwitch. The PE’s are interconnpected to form a complete
binary tree.

Within the DADO machise, each PE is capable of
axecuting (a ¢ither of 1wo modes nnder the control of run-
nume zoftwase. I the first, which we will cail SIMD
mode ifor single m<ﬂucuon stream. muitiple data stream),
the PE executes instructions broadcast by some ancestor
PE within the tree. 1SIMD typically refers to a single
stream of “machine-level” instructions. Withia DADO, on
the other hand., SIMD is generalized to mean 3 single
szream of remote praocedure invocation mslrucuons. Thus,
DADO make: more effzctive use of its commuaication bus
by broadeasting more ““meaningful” instructions.) [a the
second. which wiil be referred to as MIMD mode (for
muitipie nstriuction stream, multiple data :tream), <ach PE
executss instructions stored in its owa local RAM,
icdependently nf rhe other PE's. A single conventional
soprocessor, adjac:at o the root of the DADO tree,
controis the operation of the entire cnsefnble of PE's.

Whea 2 DADO PE enters MIMD mode, its logical

is changsd n such a2 way as o effectively
annect” 1t and at: descendants from all higher-level
in the tree. la particular, a PE in MIMD mode does
no? récsive 20y instrucrings that mxgbt be rlaced oa the
ructured commumcation bus by oge of its ancestors.
Suck a1 PE may, however. brnadcast instructions to be
exergtad By ts swn desczndants, providing all cf these
desrandants have themselves besn switchzd to SIMD mode,
Tie DADO machine can thus be configured in such a way
an ardurary nternal node ia the tree acts as the root
3 .e.- truceurzd SIMD device in which 2@l PE's execute
crion {on differezt datal at 3 giveas point in
ms flexibie architeetnral design supperts multiple-

axzention (MSIMD). Thus. the machize may be
euily divided into distinet paruiticas., each executiog 2
¢t rask, and s che ormarv sourc: of DADQ's speed
executiag 2 larg: aumber of primitive pattera matching
ceration: ccacurreatly.

5 2L ey

Our comments will be directed towards the DADO?
prototype 5rmg of 1023 PE's consirncted from
cemmeraizlly avadable chips. Each PE contains an 8 bit

loizi 3731 processor, 15K bytes of locai RAM. 4k bytes of
lccal ROM and a :emi-custom 1/O <wuch The DADO2
[/O =wireh -\‘nc"x ts Deing implemenrsd in semi-cusiom
gats irray Tes hnoicgy, has been designed to support rapid
glotal commuaieztion. In addition, 2 spectalized
combinational cireuit :ncorporued within the [/O switch
will allow for the wvery rapid selection of a single
distingnished PE from a set of candidate PE's i3 the tree,
3 pruce we eafl mzzeresolving. {The max-raeolve

chien computes the maximum of 3 :pecified register
PE’s n one iasteuction cvele, which caa then be
ect 2 Zuunc: PE {rom the entire zet of PE's
m che aperatien) Currzaily, the 15 processing
a o DADO performs these ~reratioas
ifed in itz off-the-sheil cmpon=nis.

=

4.2 Algorithm 1: Full Distribution of PM

ln this case. a very small aumber of distiget
oroduction rules are distributed to each of the 1023
DADO2 PE’s, as well as all WM eiements relevant to the
rules In question, i.e., only those data elemeats which
match some pattern ia the LHS of the rules. Algorithm 1
alternates the entire DADO tree between MIMD and SIMD
modes of operation. The match phase is implemented as
an MIMD process, whereas selection and act execute as
SIMD operations.

h simpiest terrns, each PE executes the macch phase
for its own small PS. One such PS is ailowed to “fire” a
rufe. however, which i3 commuaicated to all other PE’s,
The zlgorithm is illustrated in figure 3.

. Initialize: Distribute a simple rule matcher to
each PE. Distribute 3 few distinet rules to 2ach
PE. Set CHANGES to initial WM elements.

2. Repeat the foilowing:

Act: For each WM-change in CHANGES do:

—

1. Broadcast WM-change (add or delete a
specific WM elemen:) to all PE's,

b. Broadcast a3 command to locaily match.
[Each PE operates indepeadeatly ia MIMD
mode and modifies its local WM. [If :his
is a deletion, it checks its local coanflict set
and removes :ule instances as appropriate.
It this is an addition. it matches its set of
rules and modifies its local conflict set
accordiagly].

c. end do:

4. Find local maxima: Broadeast ag iastruction to
each PE to rate its local matching izstances
according to some predefined criteria (conflict
resolution strategy (see [McDermott aad Ferzyv,
1978]).

. Select: Csing the high-spesd max-RESOLVE
ciremit of DADO?2. idenufy 2 single rule for
:xecutiog from among all PE's with active rules.

5. Instantiate: Report the instanniated RHS actions.

1)

Set CHANGES to the regorted WhM-changss.
7. ¢ad Repeau
Figure 3: Full Distaibution of Preduction Memory.

4.2.1 Discussion of Algorithm 1

We have left the details of the locai match routine
unspecified at ztep 3.5, Thus. a simple precompiled Rete
match ae:work acd taterpreter may be distributed to each
processar. Hewsver. it is not :lear whether a zimple naive
mateaiag aigoritim may be more appropriate sigee only 1
very small ""n..e. &f rulss is present in each
‘.(e*cr" sonsiderations may decide this issuer the overbead
aszsciated with linking aad maaoipuiating iotermediate
parzal matehss 1n a3 Rete network may be more expeasive
i rattera matehung aguast the local WM oa

Performance of this algorithm varies with the
complexity of the local match. In the best case, the time
to mated the rule set is bounded by the time to match
only 3 few ruies. The worst case is dependent on the
maximum 2aumoer of WM :lements accessed during the
match of the rules. If a3 simple naive match is used at
each PE, this may require a considerable amount of
computation evea t{ough the size of the local WM's is
limited. Simple hashing of WM may dramatically improve
a local naive matching operation, however,

We coneiude that this algorithm is probably best
suited to implemeating PS programs characterized by:

1. Temporal redundancy, since massive changes to WM
would require a considerable amouat of sequential
execution at each PE to modify its local WM.

3. Maay rules are affected on each cycle. Thus,
depending on the initial distribution of PM, it would
be best to partition similar rules separately. Note,
though, that characteristic 2 may also be suitable,
but a relatively small oumber of PE's would be
actively computing gew match results on each cycle.

Restricted scope of pattera matches. Clearly, each

rule is required to poteatially - match against 3

relatively small local WM. Heace, gzlobal tests of

WM wonld aot be particularly appropriate.

9. Large PM is possible. Given the above
characteristics, three or four rules stored at each PE
make it possible for a PM coasisting of 3000-4000
rules.

11. Similarly, depeading on the average oumber of
common pattern eiements betweez rules, WM may be
quite large. Even if an average of one unique WM
element is resident in each PE (while a significant
sumber of additional local WM elements are
replicated in other PE’s), 3 minimum of 1000
individual elements may be stored in WM.

o

The most serious drawback of this algorithm is the
case where a local WM is too large to be conveniently
stored i2 3 PE. Clearly, characteristic 3 is appropriate for
this algorithm only in the presence of characteristic 9,
small WM.

_Muitiple rule firings (characteristic 7) are indeed
possible. A discussion of this case is deferred to a later
section.

4.3 Algorithm 2: Original DADO Algorithm

The original DADO algorithm detaiied in [Stolfo 1983)
makes direct use of the machine’s ability 0 execute in
both MIMD aad SIMD modes of operation at the same
point in time. The machine is logically divided into three
conceptuaily distinct components: 3 PM-level, an upper
tree and 3 gumber of WM -subtrees. The PM-level consists
of MIMD-mode PE's executing the match phase at one
appropriately chosen level of the tree. A aumber of
distinct rules are stored in each PM-level PE. The WM-
subtress rooted by the PM.level PE's consist of a aumber
of 3IMD mode PE's tollectively operating as a hardware
ontent-iddressable memorv. WM elemezts relevaat to the

rules stored at the PM-level root PE are fully distributed
throughout the WM-subtree. The upper Lrez cc;:u?:ts eo!
SIMD mode PE's lying above the PM-level, which
implement synchronization and selection operations.

It is probably best to view WM as a distributed
relation. Each WM-subtree PE thus stores relational
tuples. The PM-level PE’s match the LHS's of rules in a
manner similar to processing relational queries. In terms
of the Rete match, intracondition tests of pattern elements
in the LHS of a rule are executed as relational selection,
while intercondition tests correspond to equi-join
operations. Each PM-level PE thus stores a set of
relational tests comptled from the LHS of a rule szet
assigned to i1t. Concurrency is achieved between PM-level
PE’s as well as ig accessing PE's of the WM-subtrees.
The algorithm is illustrated in [ligure 4.

4.3.1 Discussion of Algorithm 2

This algorithm was specifically designed for PS
programs characterized as:

4. Non-temporally redundant. Indeed, the ability to
distribute WM elemeats in a content-addressable
memory allows 2ot only parallel access 1o WM for
matching, but large changes to WM may also be
efficiently implemented. For such an enviroomeat,
saving state betwsen cycles has few advantages.

3. Maay rules are affected by WM-changes on each
cycle. Since massive changes to WM may be
permitted on each cycle, many rules may potentiaily
be affected. The concurrency achieved at the PM-
level would allow many rule matchings to be achieved
efficiently.

8. Global tests are aiso efficiently handled by the WM-
subtrees operating as an SIMD mode parallel device.

8. PM is, unfortunately, rather restricted in size. Since
oaly one level of the tree is used for rule storage, the
full capacity of the machine for PM is underutilized.
la DADO?2, for sxample, we envisage 3 PM-level at
level 4 of :he machine. Thus, 32 PE’s would each
store roughly 30 rules for a thousand rule system,
potentially decreasing performance. Rule systems
with a few huncred rules are more appropriate.

Il. WM may be quite large, however. For example, the
DADQ? configuration noted above would allow for 32
WM-subtrees, each consisting of 32 PE’s. Since each
DADO PE has considerable storage capacity, maay
thousands of WM elements may be =asily stored.
Furthermore, this allows a 32-way parallel 3ccess wo
WM for each PM-level PE. In total, aearly 1000
WM elemeats may be accessed in parallel at a given
point in tirze.

While attemptizg :o implement temporally redundaat
systems, Algorithm 2 may recompute mucd of its match
results calculated on previous cycles. This indeed may not
be the case if we modiiy Algorithm 2 to incorporate maay
of the capabilities of the Rete match.

Al MODEL PAPER

. Initialize: Distribute a match routine and a
partitioned subset of rules o each PM-level PE.
Set CHANGES to the initial WM elements.

2. Repeat the following:

3. Acu For sach WM-change in CHANGES do;

3. Broadcast WM-change to the PM-level
PE’s and an instruction to match.

b. The match phase is initiated in each PM-
level PE:

i. Each PM-level PE determines if WM-
change is relevant to its local set of
rules by 3 partial match routine. [f
so, its WM-subtree is updated

- accordingly. [If this is a deletion, an
associative probe is performed on the
ciement (relational selection) and any
matching iastagces are deleted. If
this is an addition, 3 free WM-
subtree PE is identified, aad the
element is added.]

i, Each pattern element -of the rules
stored at a PM-level PE is broadcast
to the WM-subtree below for
matching. Any variable bindings that
occur are reported sequentially to the
PM-level PE for matching of
subsequent pattern elements
{relational equi-join).

iii. A local conflict set of rules is formed
aad swred ajong with a priority
rating in a distributed maaner within
the WM-subtree.

c. end do;

4. Upon termination of the match operation, the

PM-level PE's synchronize with the upper tree.

Select: The max-RESOLVE circuit is used to
ideatify the maximally rated conflict set
1nstagce.

8. Rzport the instantiated RHS of the winning
instance to the root of DADO.

. Set CHANGES o the
specifications.

8. «od Repeay;

[

reported action

Figure 4: Original DADO Algorithm.

) Simple changes may dramatically improve the
situation. For example, -ather than iterating over each
patiern element in each rule as in step 3.b.il. we may only
execute the match for those rules affected by new WM
changes. The seiection of alfected ruies can be achieved
quuckly using the WM subtree as an assceiative memory.
y ézs:rxcpugg pattern :lements as reiational tuples in a
manzer simiar o WM, as:aciative probing (relational

selection) can be used to select rules for matchin ‘
faster thaa bashing). & (perhaps;

Counsideration of these techniques led us to investigate:
Rete for direct implementation on DADO2. Algorithms 3
and 4 detail this approach.

4.4 Algorithm 3: Miranker’'s TREAT Algorithm

Daniel Miranker has invented an algorithm which
modifies Algorithm 2 to include several of the features of
the Rete match for saving state. The TREe Associative
Temporaily redundant (TREAT) aigorithm [Miranker 1984
makes use of the same logical division of the DADQ tree
as in Algorithm 2. However, the state of the previous
match operation is saved in distributed data structures
within the WM-subtrees.

TREAT views the pattern elements in the LHS of
rules as relational algeora terms, as in Algorithm 2. Thus,
the evajuation of such relational algebra tests is aiso
executed within the WM-subtrees. State is saved in a
WM-subtree in the form of distributed Rete alpha
memories corresponding to partial selections of tuples
matching various pattern elements. Rule instances in the
conflict set computed on previous cycles are also stored in
a distributed manner within the WM-subtrees. These two
additions substantially improve the performance of
Algorithm 2, (We zote that Anocop Gupta of Carnegie-
Mellon University independently analyzed 3 similar
algorithm in [Gupta 1983L. Compared to Algorithm 2,
TREAT should perform substantially better for temporally
redundant systems. We npote that Gupta's anpalysis of
algorithm 2, however, depends on certain assumptions that
derive misleading resuits.)

Another aspect of TREAT is the clever manner in
which relevancy is computed. Pattern elements are first
distributed to the WM subtress. When a new WM
element is added to the system, a simple match at each
WM-subtree PE determines the set of :-ules at the PM-
level which are affected by the change. Those identified
rules are subsequently matched by the PM-level PE
restricting the scope of the match to a smaller set of rules
than would otherwise be possible with Algorithm 2.

The TREAT algorithm is outlined in figure 3.

4.4.1 Discussion of Algorithm 3

The TREAT algorithm is a refinement of Algorithm
2 incorporating temporal redundancy. Hence, TREAT is
best suited for PS programs characterized as:

Temporally redundant.

Many rules are affected on each scycle.

Global tests of WM are also efficiently handled.
Small PM.

Large WM.

mw e

—

We note, though, that minor changes allow TREAT
to implement Algorithm 2 directly (bdv"semng_ L o ail of
the rules at the PM-level in step 3.d.ii and ignoring step
3.d.i). Thus, TREAT may also efficieatly execute:

4. Noo-temporally redundant systems.

Ia step 3.d.iii, TREAT also implements a useful

Al MODEL PAPE=

1. Initialize: Distribute to each PM-level PE a
simple matcher (deseribed below) and a compiled
set of rules. Distribute to the WM-subtree PE's
the appropriate pattern elements appearing in
the LHS of the rules sppearing in the root PM-
level PE. Set CHANGES to the initial WM
clements,

2. Repeat the following:

3. Act: For each WM-change in CHANGES do:

a. Broadcast WM-change to the WM-subtree
PE’s,

b. If this change is a deletion, broadcast an
instruction to match and delete WM
elements and any affected conflict set
instances calculated on previous cycles.

¢. Broadcast an instruction to PM-level PE to
enter the Match Phase.

d. At each PM-leve] PE do;

i. Broadcast to WM-subtree PE's an
instruction to match the WM-change
against the local pattern element.

ii.. Report the affected rules anc :tore in
L.

iiil. Order the pattern elements of the
rules in L appropriately.
iv. For each rule in L do;

1. Matceh remaining patterns of the
rules specified in L as in
Algorithm 2.

. For each aew instance found,
store in WM-subtree with a
priority rating.

3. end do;

(-]

v. end do;
2. end for each:

4. Select: Use max-RESOLVE to find the
maximally rated instance in the tree.

. Report the winning instance.

8. Set CHANGES to the instantiated RHS of the
winning rule instance.

. ¢zd Repeag;

[723

-~

Figure 5t The TREAT Algorithm.
strategy. When iterating over each of the rules in L
aifected by recent changes in WM, those pattern elements
with the smallest alpha memories are processed first, This
Le'chmque tends w0 process the join operations quickly by
fiitering out many poteatially fai{ing partial joins.

, As oted above, Gupta's analysis of a TREAT-like
a.;orlr;hm. as well as subsequent analysis performed by
Miracker (1984, :how TREAT to be highly efficient

compared to Algorithm 2 executing tem rally redundant
systems. (The implementation, study and detajled analysis
0{; IR)EIA forms a major part of Daniel Miranker's PR.D.
thesis.

4.5 Algorithm 4: Fine-grain Rete

A Rete network compiled from the LHS's of a rule
set consists of a number of simple nodes encoding match

‘operations. Tokens, representing WM modifications, flow

through the network in one direction and are processed by
each node lying on their traversed paths. Fortunately, the
maximum _fan-in of any node in a Rete network is two.
Hence, a Rete network can be represented as a binary tree
(with some minimal amount of aode splitting).

This observation leads to Algorithm 4 whereby a
logical Rete network is embedded on the physical DADO
binary tree structure. In the simplest case, leal nodes of
the DADO tree store and execute the initial linear chains
of one-input test nodes, whereas internal DADO PE's
execute two-input node operations. The physicai
connections between processors correspond to the logical
data flow links in the Rete aetwork. The eatire DADO
machine operates in MIMD mode while executing this
algorithm, behaving much like a3 pipelined data flow
architecture,

Algorithm 4 is illustrated in figure 8.

4.5.1 Discussion of Algorithm 4

Since this algorithm is a direct implementation of the
Rete match, it is most suitable for PS programs
characterized as:

1. Temporally redundant

2 Few rules are affected by WM changes. This
observation is aoted in {Forgy 1979].

10. Large PM. We may, for instance, believe that oanly
1023 Rete nodes may be processed by DADO2.
However, a straight forward overlay technique can be
implemented where several Rete networks are
embedded in the tree 3nd processed in turn. Thus,
large PM may be achievable.

9. Small WM. However, since Rete network nodes
require significant storage for intermediate partial
match results (stored at alpha and beta memories),
the fimited storage capacity of a DADO2 PE may
require restricting the size of WM.

Although overlayed Rete networks would be processed
sequeatially on DADO?2, sigaificant l:err_orrqagce
improvemeats can be achieved by a natura plpehmng
effect. Immediateiy follewing a successful match an
communication at a node, the next two-input test from the
overiayed network is initiated. Thus, while the pareat
node Is processing the first network node, its children are
proceeding with their tests of the second overlayed aetwork

node.

A second source of pipelining c3n improve
performance as well. [n this case, the entire RHS action
specification is broadcast at omce to the DADO leaf PE’s
at step 3.a. Immediately foilowing the conclusion of the
first match operation and communication of the first WM

1. Initislize: Map and load the compiled Rete
aetwork on the DADO tree. Each zode is
provided with the appropriate match code and
aetwork information (see (Forgy 1982] for
details). Set CHANGES o initial WM
elements,

2. Repeat the foilowing:

3. Act: For each WM-change in CHANGES do;

a. Broadcast WM-change (a Rete token) to
the DADO leaf PE's.

b. Broadcast an instruction to all PE's to
Match. (First, the leal processors execute
their one-input test sequences on the new
token. The interior nodes lay idle waiting
for match results computed by their
descendants. Those tokeas passing the
ome-input tests are communicated ‘o the
immediate ancestors which immediately
begin processing their two-input tests. The
process is then repeated until the physical
root of DADO reporis changes to the
conflict set maintained in the DADO
control processor).

¢. ead do;

Select: The root PE is provided with the chosen
instagce from the control processor, Set
CHANGES 1o the instantiated RHS.

4. ¢ad Repeat;

Figure 8: Fine-grain Rete Algorithm.

tokea, the leaf PE's initiate processing of the second WM
token. Heoce, as a WM token flows up the DADO tree,
. subsequeat WM tokens flow close behind at lower levels of
the tree in pipeline fashion.

4.8 Algorithm $: Muitiple Asynchronous Execution

I3 our discussion 0 far, no meation was made about
charactenistic 7, multiple rule firings. We may view this
as

- multiple, indepeadently executing PS programs,
or
- execyting multiple coaflict set rules of the same

PS program concurreatly.

In this regard we offer zot a single algorithm, but rather
an observation that may be put to practical use ia each of
-the abovementioned algorithms.

We gote that any DADO PE may be viewed as a
roat of a DADO machine. Thus, any algorithm operating
at the physical root of DADO may also be executed by
some descendant node. Hence, any of the aforemeationed
algorithms can be executed at various sites ia the machine
concurreatly! (This was -oted in [Stolfo 10d Shaw 198‘.!L.)

13 coarse level of parailelism. however, will aeed to be

controlled by some algorithmic process executed in the
upper part of the tree. The simpleat case is represented
by the procedure iilusirated ig figure 7, which is similar in
some respects to Algorithm 2.

L. Initialize. Logically divide DADO to incorporate
a static Production System-Level (PS-level),
similar to the PM-level of Algorithm 2.
Distribute the appropriate PS program to each
of the PE's at the PS-level.

2. Broadcast an instruction to each PS-level PE to
begin . execution in MIMD mode. (Upon
completion of their respective programs, each
PS-level PE reconnects to the tree above in
SIMD mode.)

3. Repeat the following.

3. Test if all PS-level PE's are in SIMD
mode.

End Repeat;
1. Execution Complete. Hait.

Figure 7: Simple Multiple PS Program Execution.

In the cases where various PS-level PE's need to
communicate results with eachother, step 3 is replaced with
appropriate code sequences to report and broad;::ut. vajues
[rom the PS.level in the proper manner. Each of the
programs executed by PS-level PE's are first modified to
syachronize as necessary with the root PE t0 coordinate
the commuaication acts, at. for example, termination of the
Act phase.

In addition to concurreat execution of multiple PS
programs, methods may be employed o concurreatly
sxecute portions ol a siogle PS program. These methods
are intimately tied to the way rules are partitioned ia the
tree. Subsets of ruies may be conmstructed by a static
analysis of PM separating those rules which do not directly
interact with each other. Iu terms of the mateh problem-
solving paradigm, for example, it may be convenieat to
think ~ of independent subproblems and the methods
implemeating their solution (see [Newell 1973]). Each such
method may be viewed as a high-lev:l subroutine
represented as an indepeadent rule set rooted by some
internal node of DADO. Algorithm 1. for example, may
be applied in parailel for each rule set in question.
Asynchronous execution of these subroutines proceeds in a
straight forward manner. The complexity arises when one
subset of rules infers data required by other rule sets,
The coordination of these communication acts is the focus
of our ongoing research. Space dces rnot permit a
complete specification of this approach, and thus the
reader is encouraged to ses [Ishida 1984] for details of our
initial thinking in this direction.

Al MODEL PAZ 37

S Conclusion

We have outlined five abstract algorithms for the
parallei execution of PS programs on the DADO machine
and indicated what characteristics they are best suited for.
We summarize our results in tabular Z:rm as follows:

Algorithm PS Characteristics
1. Fully Distributed PM 1,357 9, 11

2. Original DADO 3,48 7 8 11

3. Miranker’'s TREAT 1,3, 4,8, 7 8, 11
4. Fine-grain Rete 1, 2,5, 7,9 10

5. Multiple Asynchronous Applies to all cases.

Of the five reported algorithms, only the original
DADO algorithm (oumber 2) has been carefully st.ugdicd

analytically. The performance statistics of the remaining -

four algorithms have yet to be analyzed in detail,
However, much of the performance statistics canpot be
analyzed without specific examples and detailed
implementations. Working in close collaboration with
researchers at ATZT Bell Laboratories, in the course of
the gext year of our research we intend to implement each
of the stated algorithms on a3 working prototype of DADO.

In this paper, we have outlined our expectations
conpernm? the suitability of each of the algorithms for a
variety of possible PS programs. We expect our reported
findings to substantiate our claims, and intend to
demounstrate this with working examples in the near future.

References

Davis, R. and I. King. An Overview of Production
Systems. Technical Report, Department of Computer
Science, Stanford University, 1975.

Forgy, C. L. On the Efficient Implementation of
Production Systemas. Technical Report, Carnegie-
Mellon University, Department of Computer Science,
1979. Ph.D. Thesis.

Forgy C. L. Rete: A Fast Algorithm for the Many
Pattern/Magy Object Pattern Matching Problem.
Artificial Intelligence, 1982, 19, 17-37.

Gupta, A. Implementing OPSS Production Systems on
DADO. Techanical Report, Departmeat of Computer
Science, Carnegie-Mellon University, 1983. ’

fstida T., and S. J. Stoifo. Simultancous Firing of
Production Rules on Trec-structured Machines.
Technical Report, Department of Computer Science,
Columbia University, 1984.

McDermott, J. and C. Forgy. Production System Conflict
Resolution Strategies. In Waterman and Hayes-Roth
(Eds.), Pattern-directed Inference Systema,
Academic Press, 1978.

Miragker D. P. Performance Estimates for the DADO
Machine: A Comparison of TREAT and RETE.
Technical Report, Department of Computer Science,
Columbia University, April 1384.

Newell, A. Production Systems: Models of Control
Structures. [n W. Chase (Ed.), Visual Information

Processing, Academic Press, 1973,

Rychener, M. Production Systems as .a Programming
Language for Artificial Intelligence. Technical
Report, Carnegie-Mellon University, Department of
Computer Science, 1978. Ph.D. Thesis.

Stolfo S. 1. The DADO Parallel Computer. Technical
Report, Department of Computer Science, Columbia
University, August 1983. (Submitted to Al Journal).

Stolfo S. J., and D. E. Shaw. DADO: A Tree-structured
Machine Architecture for Production Systemas.
Proceedings National Conlerence on Artificial
[nteiligence, Carnegie-Mellon University, August, 1982,

Stolfo S. J., aed D. P. Miranker. The DADO PFProduction
System Machine: System-level Detasls. Technical
Report, Department of Computer Science, Columbia
University, 1984, (Submitted to |[EEE Tragsactions on

Computers).

