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Abstract

LPS is a Logic Programming System currently under development and specifically targeted for
implementation on massively parallel architectures. We present a detailed explanation of algorithms
under development for paralilel execution of LPS programs. The explanation is significantly more detailed
than those published previously. An abstract proof procedure is developed which encompasses these
algorithms and several variants, as well as the standard sequential Prolog algorithm. This abstract
procedure provides a conceptual basis for our discussion and, in a companion paper, for a critical analysis
of various execution strategies.

The algorithms have been successfully implemented and demonstrated in simulation on a number of small
programs. Work is currently underway to transfer this implementation to a working prototype machine
based on the DADO parallel architecture.

Due to the depth of our treatment we assume that the reader has read previously published literature in
the area.

This research is supported cooperatively by: Defense Advanced Research Projects Agency under contract
N00039-82-C-0427, New York State Science and Technology Foundation, Intel Corporation, Digital
Equipment Corporation, Valid Logic Systems Inc., Hewlett-Packard, AT&T Bell Laboratories and
International Business Machines Corporation.
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1. Introduction

Logic programming has attracted a great deal of attention as a medium for the development of software
for parallel execution. Two major factors contributing to this perception are the demonstrated suitability
of logic programming for the expression of a wide variety of software tasks, and the identification of
several sources of parallelism inherent in the logic formalism itself. Thus logic programming languages
appear to offer 3 framework in which programs naturally lend themselves to efficient parallel execution,
but in which the programmer need not be overly cognizant of this goal.

With this view in mind we have developed methods for the execution of logic programs written in a
tanguage we call LPS, under a particular parallel execution model [14, 12]. Our methods are not well
characterized by any of the sources of parallelism identified by Conery (2], although they bear some
resemblance to OR and AND parallelism. We unify a conjunction of goals simultaneously throughout a
network of what may be considered intelligent memory devices. Each of these devices receives the entire
goal list and attempts unification of each goal with every literal in its own local store. Upon completion
of this activity, a series of metwork queries and combining operations results in the construction of a single
relation representing all potential solutions of the original conjunction. The cyclé repeats by selecting one
member of that relation and producing from it a new conjunction to be solved.

We may view our prool search as a perusal through a tree of goal lists, where each node gives rise to
children that can be obtained via resolution of one or more of its goals with clauses in the program. The
structure of this tree depends on which goals are chosen for resolution in each node. In particular, we note
that the standard sequential Prolog algorithm® chooses exactly one goal in each node, whereas the current
LPS algorithms® always resolve every goal in the goal list. Both algorithms pursue a depth first search,
although the LPS search tree, in comparison to the Prolog search tree, is characterized by:

- Shorter paths to leaves
- Earlier termination of unproductive paths

- Earlier consideration of most goals, causing earlier branching but not necessarily higher
branching factors

- A substantially reorganized leaf structure, resulting in a different order to the construction of
solutions

Although the LPS algorithms may appear to exhibit something of a breadth first nature due to the
simultaneous construction of all children for whichever node is under consideration, that view is
misleading. Although the children are constructed in unison, one child's subtree is searched before any
other child is considered, so that the search pattern itsell is purely depth first. The process may be viewed
as a hill-climbing strategy in which all branches are equally favored.

*See [15|. We will henceforth refer to this algorithm as simply the *‘Prolog algorithm.”

*We note that the algorithms are under ongoing development
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In this paper we begin by presenting an abstract proof procedure that encompasses both the LPS and the
Prolog algorithms, as well as many variations. We proceed with a specific example of the algorithm at
work, followed by detailed explanation of the current LPS implementation in terms of the abstract

algorithm.

For an introduction to logic programming methods the reader is referred to (7,8, 4]. A very brief
description of the Prolog language, on which much of LPS has been modeled, may be found in [9}; for
complete details see [1]. A description of the computing model for which our algorithms are targeted may
be found in [12]. The DADO architecture, for which a specific implementation is underway, is described in
10, 11). The reconciliation operation which we use may have been independently discovered by
Pollard [6], although we have encountered significant difficulty in obtaining this reference. Related
algorithms are described in [3].

2. An Abstract Proof Procedure

2.1 Proofs

We define a proof for a given directive to be sequence of goal lists beginning with an instance of the
directive and terminating in the empty goal list. Each goal list is composed of contributions from the
individual goals in the preceding goal list, where each goal contributes any one of"the following:

- Ttself, as a singleton goal list. In this case we say the goal has been retained.

- The empty goal list, if the goal is satisfied via some fact. In this case we say the goal has been
removed.

- The instance, under some substitution, of a rule body whose rule head, under the same
substition, is identical to the goal. Here we say the goal has been ezpanded.

Our proof procedure can then be viewed as the search for such a sequence. In addition, if a proof is found,
the minimal substitution that transforms the directive into the first goal list in the sequence is displayed.
We call this substitution a solution for the directive,

Since there may be more than one way to satisfy any given goal, one goal list may give rise to more than
one successor goal list, any or all of which may lead to a successful proof. Thus there may be several
proofs for a single directive. In general we will want our proofl procedure to be capable of pursuing all
possible proofs in a systematic fashion.

The difference stated in the Introduction between the search trees traversed by the Prolog and LPS
algorithms may now be restated as follows: The Prolog algorithm pursues proofs in which each proof step
consists of either removing or expanding the first goal in a goal list and retaining all other goals. In the
current LPS algorithms no goal is ever retained in a goal step; rather, each goal is either removed or
expanded.

2.2 The Procedure

Our description of what constitutes a proof allows us to quite readily verify proofs that are handed to us,
but it is substantially more difficult to discover correct proofs when they exist. Two processes allow us to
identify the substitutions that give rise to proofs: unification and reconciliation.




Unification [7] provides a method for determining whether a substitution exists that will transform two
terms into identical terms. Such a substitution is called a unifier, although in the sequel we shall use this
term to refer specifically to the most general unifier. By ‘‘most general” we mean that if U is the most
general unifier of terms Tl and T2, and S is any other unifying substitution, then S(Tl) is an instance of

U(T,).

Reconciliation [6, 3] is a procedure for determining whether two substitutions are compatible, and if so,
producing the “‘most general” substitution that subsumes both. By this we mean that if R is the
reconciliation of substitutions Sy and S,, then for any term T, R(T) is an instance of both $4(T) and
So(T). As with unification, by ‘“most general” we mean that any other substitution with this property,
when applied to any term T, gives rise to an instance of R(T).

Given the mechanisms of unification and reconciliation, the construction of a solution for a directive c¢an
be accomplished as shown in Figure 2-1. Starting with the directive itself as a goal list, the algorithm
produces successive goal lists until either an empty goal list is constructed or a failure condition is
encountered. Upon successful termination, Substitution _List contains a sequence of substitutions whose
composition is a solution for the directive.

Construction of a new goal list from its predecessor proceeds as follows:
1. Each goal is analyzed individually to produce:

- Its contribution 4o the new goal list,

- A substitution (which we call an instantiator) that will be applied to the contribution
before its addition to the new goal list, and

- Another substitution comprising constraints on the overall solution.

2. The constraining substitutions are combined via reconciliation to produce a substitution
supporting this goal step as a whole. This substitution is saved as a component of the solution
that we seek.

3. All instantiators are updated through composition with the above reconciliation.

4. Each contribution is passed through its corresponding instantiator, and the results are

collected into a single goal list.

2.2.1 Contributlons

Contributions (in their pre-instantiated form) are determined as follows:

- A RETAINED GOAL contributes itself, verbatim.®*
- A REMOVED GOAL contributes nothing.

- An EXPANDED GOAL contributes the body of the rule with whose head it unifies, verbatim.

*Keep in mind that we are presenting an abstract proof procedure which encompasses several practical
strategies. Thus although we have stated that the LPS algorithms never retain a goal, we include goal
retention in our abstract procedure in order to accomodate both the Prolog algorithm and several variants
on the LPS algorithms.




Goal _List := Directive;
Substitution _List := NIL;

WHILE Not Empty(Goal _List) DO
Constraint _Set := NIL;

FOREACH goal G in Goal _List DO
Decide whether G is to be retained, removed, or expanded;
IF retaining G THEN
Contribution(G) := G;
Instantiator(G) := NIL;
ELSE [F removing G THEN
Find a fact unifying with G, call the unifier U;
[F none can be found, FALL;
Contribution(G) := NIL;
Instantiator(G) := NIL;
Restrict U to bindings for variables in G, add
the result to Constraint _Set;
ELSE IF expanding G THEN
Find a rule R whose head unifies with G, call the unifier U;
[F none can be found, FALL;
Contribution(G) := rule body of unifying rule;
Instantiator(G) := U restricted to variables in R;
Insert bindings to new created variables into Instantiator(G)
for all variables from R not bound by U;
Restrict U to bindings for variables in G, add
the result to Constraint _ Set;
FI;
OD;

Compute reconciliation of all substitutions in Constraint _Set,
call the result Rec: IF reconciliation fails, FAIL;
Add Rec to Substitution _List;

New _ Goal _List := NIL;
FOREACH goal G in Goal _List DO
Instantiator(G) := Instantiator(G) composed with R;
Instantiate Contribution(G) using Instantiator(G),
and add the result to New _ Goal _ List;
oD;

Goal _List := New _ Goal _ List;
OD;

Figure 2-1: Abstract Proof Procedure




2.2.2 Instantlators

Non-empty instantiators are only produced for expanded goals. It would be pointless to compute an
instantiator for a removed goal since its contribution is always empty; in the case of a retained goal, all
instantiation information comes from the constraints imposed by unification of non-retained goals, so an
empty instantiator is set in place awaiting composition with the reconciliation of those constraints.

The instantiator for an expanded goal is simply the unifier that resulted from unification of the goal with
a rule head. We only include bindings for variables that are contained in the rule (rule variables), since
other bindings cannot contribute to instantiation of the rule body. We also insure that every rule variable
is represented in the instantiator by binding any unbound rule variables to new created variables. Such a
binding adds no information; the objective is to insure that the instantiated rule body will contain none of
the original rule variables.

2.2.3 Constralnts

Constraints are produced by unification of removed goals with facts anrd expanded goais with rule heads.
Each unifier is added to a constraint set, after restricting it to variables that occurred in the goal (goal
variables). The constraint set is used to produce a consistent substitution for the preceding goal list which
supports its transformation into the succeeding goal list. Thus the only bindings of interest are those for
goal variables, which is why the unifiers are pruned before adding them to the constraint set. Indeed, if
the same fact or rule head-is used to unify with more than one goal, inconsistent bindings for non-goal
variables might result, but these must not prevent the proof from progressing. For example, consider the
following program:*

Rule 1: tasty(X) - sweet{X).
Fact 1: sweet(cookies).
Fact 2: sweet(cake).

Directive: tasty({cookies), tasty(cake).

We suppose that {as would be the case with LPS) our algorithm chooses to expand both of the original
goals in its first step, using Rule 1. Unification of tasty(cookles) with tasty(X) produces the unifier
[X/cookles], while unification of tasty(cake) with tasty(X) produces [X/cake]. Reconciliation of these
two unifiers cannot succeed since variable X cannot be bound to both cookles and cake simultaneously.
Clearly, though, the directive is provable. This problem of unwanted binding interaction does not occur if
we discard bindings for X prior to reconciliation. Note that these bindings remain in instantiators so that
they may be used for instantiation of rule bodies.

Similar reasoning shows why it is necessary to include ‘‘dummy bindings” for non-unified rule variables in
the instantiators for expanded goals. If this were not done, those rule variables might end up occuring in
two or more goals at some point during the proof. This would cause unwanted interactions since the
algorithm would insure that only mutually compatible bindings were produced for all occurrences of those
variables, while the separate occurrences should in fact be treated independently.

The purpose of composing each instantiator with the constraint set reconciliation is to insure that each

*For our examples we adopt the Prolog convention that symbols beginning with a capital letter are
considered variables, while all others are considered predicate and function symbols.



goal list is cast in terms of the current state of knowledge of the solution under construction. That
solution is constructed as a sequence of component substitutions, where each proof step produces one
component. If goal lists are not kept up to date in this fashion, the same variable may end up bound by
two or more different components. During later composition of the components, all but the first of these
bindings would be completely lost. For example, the composition of [X/cookles] with [X/eake] is
simply [X/cookles]. In general, it will be the case that no goal list will ever contain a variable for which
a binding exists anywhere in the component substitutions produced thus far in the proof procedure.

2.3 Some Observations

Due to the ““most general” nature of unification and reconciliation, our algorithm computes the most
general solution that will support the constructed proof. This translates into conciseness in the solution
set reported for a directive, although it does not guarantee that no solution will be an instance of another.
This may arise if there are multiple proof paths for some particular solution.

Upon failure of a particular proof path, both the LPS and Prolog algorithms backtrack to the most recent
choice point and pursue an alternate path. In the LPS algorithms we find that all of these alternate paths
have already been started by the simultaneous construction of all possible successor goal lists from the
choice point. The Prolog algorithms do not benefit from such a head start. As mentioned in the
Introduction, this feature may easily mislead one to suspect that the LPS search strategy includes some
breadth first component rather than being strictly depth first.

Finally, it will be seen that in LPS the composition of the component substitutions is performed
incrementally as each component is produced, rather than computing the entire composition at the end of
the proof.

3. A Proof Example

Consider the following program:

Rule 1: can__eat(X) :- food _store(S), open(S.now), has_ money(X).
Rule 2: has_money(X) :- friend(Y,X), has_ money(Y).

Fact 1: food _store(mama _ joys).

Fact 2: food _store(take _home).

Fact 3: friend(chris,andy).
Fact 4: friend(tori,chris).

Suppose the author is interested in whether or not he is currently able to eat. First, from general
knowledge of neighborhood food stores, and by subtly questioning his friends, he arrives at the following
additional facts:

Fact 5: open{mama __joys,now).
Fact 6: has_ money(tori).

Next he invokes the algorithm with the directive ean__eat{andy) and observes the following execution:



-3

1. The initial goal list is {can_eat(andy)}. We choose to expand the single goal via Rule
1. Unification with the rule head produces the substitution [X/andy].

Our goal's pre-instantiated contribution is the rule-body, {food _store(S), open(S,now),
has_money(X)}. The instantiator is [X/andy,S/_ 1}, where _1 is a created variable to
which S is bound since it was not bound during unification. This expansion contributes
nothing to the constraint set since no goal variables were bound during unification (indeed,
there were no goal variables to be bound!).

Reconciliation of our (empty) constraint set produces an empty substitution, so our
instantiator is not affected, and the next goal list is {food _store(_1), open(_1l,now),
has _money(andy)}.

2. Current goal list: {food _store( _ 1), open(_ 1,now), has _money(andy)}

Retain goal food _store( _1}):

Contribution: food _store( _1)
Instantiator: NIL
Constraint: NIL

Remove goal open( _ 1,now) via Fact 5:

Contribution: NIL
Instantiator: NIL
Constraint: [_1/mama_ joys]

Expand goal has _money(andy) via Rule 2:

Contribution: {frlend(Y,X), has _money(Y)}
Instantiator: {X/andy,Y/_2]
Constraint: NIL

The overall constraint set is {[_1/mama_Joys]}, whose reconciliation is just
[_1/mama_Joys]. The only instantiator that is affected by this reconciliation is the first,
which becomes [_1/mama_Joys]. Instantiating all of the contributions with their
instantiators then produces the new goal list: {food_store(mama_ Joys).
friend( _2.andy), has _money(_ 2)}.

3. Current goal list: {food _store(mama_ Joys), friend( _2,andy), has_ money(_2)}

Remove goal food store(mama__ Joys) via Fact 1:

Contribution: NIL
Instantiator: NIL
Constraint: INIL

Remove goal friend( _2,andy) via Fact 3:

Contribution: NIL
Instantiator: INIL
Constraint: _ 2/chrls



Expand goal has_money( _2) via Rule 2:

Contribution: {frlend(Y,X), has_money(Y)}
Instantiator: [X/_3, Y/ _4]
Constraint: [_2,_3]

The overall constraint set is {[_2/chris], [_2/_3]}, whose reconciliation is [_2/chrls,
__3/chrls]. This affects the instantiator for the third goal, which becomes [X/chrls,Y/ _4].
Instantiating all of the contributions with their instantiators yields the new goal list:

{triend( _4,chris), has _money(_4)}.
4. Current goal list: {frlend(_4,chris), has_money(_4)}

Remove goal friend( _ 4,chrls) via Fact 4:

Contribution: NIL
Instantiator: NIL
Constraint: [_4/torl]

Remove goal has _money( _4) via fact 6:

Contribution: NIL
Instantiator: NIL
Constraint: [_4/torl]

The overall constraint set is {[_4/torl], [_ 4/torl]},* whose reconciliation is [_4/torl]. All
contributions are nil, so the new goal list is empty.

5. Current goal list: {}

The algorithm terminates successfully upon encountering an empty goal list.

The sequence of reconciliations that was generated by the algorithm is:

[

[ _1/mama_joys]

[ _2/chris, _3/chris]
[ _4/tori|

The composition of these components yields the overall substitution: (_1/mama_Joys, _2/chrls,

_3/chris, _4/torl]. The sequence of generated goal lists is:

{can_eat(andy)}

{food _store(_1), open(_1,now), has _money(andy)}

{food _store(mama _ joys), friend( _2,andy), has_money(chris)}
{friend( _4.chris), has_ money(_4)}

NIL

It we apply the overall substitution to this sequence of goal lists, we arrive at our final proof:

*Of course, this constraint set is not really a set since it contains duplicate entries. However, the
terminology is useful in a loose sense, and the current LPS implementation will in fact go through the

wark of reconciling two identical constraints rather than removing the duplicity.



{can_eat(andy)} _

{food _store(mama _joys), open(mama_joys,now), has__ money(andy)}
{food _store(mama__joys), friend(chris,andy), has_ money(chris)}
{triend(tori,chris), has__money(tori)}

NLIL

4. The Current LPS Implementation

The LPS algorithms that we have formulated can most easily be understood as comprising three
computational phases: unification, join, and substitution. In this section we will discuss an actual LPS
implementation in terms of these components, relating each functionally to the abstract algorithm
outlined above.

The implementation is based on the computing model described in Taylor et al [12]. Very briefly, we
envision a network of independent processing elements (PE's) each equipped with a moderate local storage
capacity. The network is controlled by a contol processor (CP) which coordinates global communication
and invokes individual instructions as well as local procedures in unison throughout the PE network.
Global communication consists of droadcast messages from the CP to the network, and reports solicited
by the CP from individual PE's.

4.1 The Blinding Set Representation

A binding set represents the result of applying a single step of our proof procedure to a goal list. [t
contains the following information:

- The reconciliation of the constraint set produced by unification of goals with facts and rule
heads.

- A list of rule body keys by means of which rule bodies may be obtained at the CP for
instantiation and inclusion in a new goal list. Note that a single rule body key may appear
more than once. This will be the case if the same rule head was used to expand more than one
goal in the goal list.

- An instantiator for each rule body key contained in the binding set. If a key appears more
than once, each is associated with its own instantiator.

Recall that the current LPS algorithms never retain goals from one goal list to the next. Thus the above
set of information includes everything required to construct the successor goal list as weil as the solution
component produced by this goal step.

The overall data structure may be viewed as comprising several “layers,” each identified with a layer
“marker.” Each layer contains a substitution of some sort -- either the single reconciliation carried by the
binding set or one of the possibly many instantiators. [n the former case, the layer is called the common
[ayer owing to its nature as a substitution that encompasses all the constraint set components contributed
by the unifications. The layer marker for the common layer is the atom, COMMON. A layer
containing an instantiator is called a rule [ayer, since a non-empty instantiator is produced only for a goal
that is expanded by unification with some rule head. The marker for a rule layer is a key identifying the
rule that was used in the expansion.
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A binding set with no rule layers is of special interest, and we call it a simple binding set. Other binding
sets are symmetrically termed compler binding sets. A simple binding set is important because it is
reported only at the completion of a successful proof.

4.2 Distribution of Data

As we shall see, all unification is performed in the individual PE’'s that form the processor network,
whereas instantiation takes place in the CP. For this reason we store all facts and rule heads, (that is, all
the positive literals of our program) in the PE network itself. Each literal resides in a single PE, although
any PE may contain several literals. Rule bodies, on the other hand, are kept in the CP. Each rule head
in the PE network is tagged with a key which can be used to identify the corresponding rule body in the
table maintained by the CP.

During execution of a logic program, goal lists are constructed in the CP, initially from the directive and
subsequently from the goal list contributions carried in the binding sets. When a goal list is complete it is
transmitted to the PE network where unification, reconciliation, and composition operations produce new
binding sets. Of the possibly many binding sets produced, a single set is selected for transmission back to
the CP, and the entire cycle is resumed while the other binding sets lie dormant in the PE network
awaiting later selection. The operation is shown pictorially in figure 4-1.

'
L
Control N\ Solutions,,
Insteatistion < Processor
Binding
_ Sets

: <YU(
o

Reconcilistion = Q
Sabetitation x'm Feo
~

Figure 4-1: Flow of Data in LPS Execution




4.3 The Unifieation Phase

The first phase of the LPS algorithm begins with the transmission of a goal list from the CP into the PE
network. Residing in each PE is some (possibly empty) collection of facts and rule heads that were placed
there when the program was initially loaded into the machine. Once the transmitted goal list has been
captured, each PE unifies every goal with as many of its resident literals as possible, producing unifiers
which are stored in the PE's local storage.

Unification with a fact produces a simple binding set whose common layer is the constraint set
contribution specified by the abstract algorithm for a removed goal. That is, the unifier is stripped of all
bindings for variables that were not present in the unified goal, and the resulting substitution becomes the
common layer.

Unification with a rule head produces a complex binding set whose common layer is the unifier stripped of
its non-goal variable bindings (same as the common layer for a removed goal). The rule layer is the
instantiator for the expansion, as specified in the abstract algorithm. In other words, the unifier is
stripped of all bindings for non-rule variables, and supplemented with bindings to new created variables
for all unbound rule variables.* The marker for the rule layer is the key associated with the unifying rule
head.

Each binding set produced during the unification phase is tagged with a level number which identifies, via
its position within the transmitted goal list, the goal whose unification gave rise to the binding set. It will
become clear during the discussion of the join phase why this tagging is required.

4.4 The Join Phase

We have named the second phase of our execution loop as the *‘join phase” due to a useful interpretation
of the basic operation as an equi-join over a set of database relations. Indeed, if we recall that each goal
in the transmitted goal set gave rise, during the unification phase, to a collection of binding sets with a
common level number, we see that the level number provides us with a key to the ‘‘relation” defined by
the corresponding goal. The database from which the relation was produced is the collection of literals
(facts and rule heads) present in the PE network.

With this interpretation in mind, one sees that joining these several relations, using reconciliation as the
basic pair-wise matching operation, computes reconciliations for all compatible combinations of unifiers for
the goals in the transmitted goal list. At the completion of the join phase, every one of these binding sets
will reside in the PE network and will be elegible for later selection and elaboration of the particular proof
path it represents. Thus the transmitted goal list can be discarded at that point.

Any matching operation performed on two binding sets will require that the two bindings sets be
accessible to the same processor. In general that will not be the case at the completion of the unification
phase, since each binding set is stored in the PE containing the unifying literal. The join phase thus
requires communication of binding sets around the network. This communication is coordinated by the
CP.

The basic step in the join phase consists of selecting two relations out of the several to be joined and

*Note that variables created by two different PE’'s must be distinguishable. This is easily done if the
PE's can be assigned unique identification tags, as those tags may then be incorporated into the created
variable names. Such tags may be assigned at system startup usin% resolve and report operations.
Alternatively, many existing and proposed machines fitting our model can generate unique s using
various highly efficient methods.



joining those two into a single relation, thus decreasing by one the number of relations to be joined.
When only one relation remains, the join phase is complete.

In order to join two relations, one of the two is chosen to "feed into” the other. The CP loops over the
feeder relation, extracting one member from the PE network during each iteration. As each element is
obtained from the feeder it is broadcast to the entire PE network, and any PE that holds elements from
the “‘consumer” relation attempts to reconcile the common layer of the feeder with each of its resident
consumers (remember, the common layer is where the constraint set contributions were placed during the
unification phase). Whenever reconciliation succeeds, a new binding set is created whose common layer
contains the reconciliation. Any rule layer that appeared in either of the contributing binding sets is
included in the new binding set, and the level number is set so as to identify the new binding set as
belonging to the new joined relation under construction.

Each feeder binding set is discarded as soon as it has been matched against all possible consumers, and
when the entire pair-wise join has been completed, the original consumer relation is discarded as well.
Thus two relations have been discarded, and one has been produced, bringing us nearer to our goal of a
single relation.

4.4.1 A Heurlstle For Ordering The Joln Phase

In our computing model communication should be held to a minimum since it must all be funneled
through a single channel (the CP). Due to the commutative nature of the rec.:pnciliation operation, we
may exercise a simple heuristic that should, under most circumstances, keep join phase communication
close to minimal. Specifically, we always choose the smallest existing relation as the feeder, and the
largest relation as the consumer. Cases can easily be constructed in which some other ordering turns out
to be preferable, but the heuristic seems reasonable in the absense of methods for predicting the sizes of
intermediate join results.

In the general case we choose to implement an approximation to the above heuristic since our computing
mode! does not provide an efficient means of determining the size of a distributed relation.* We make use
of a sequencing mechanism applied to the relation members. The idea is that within each relation the
individual binding sets are assigned unique sequence numbers in the hope that the difference between the
highest and lowest sequence numbers in a relation will generally be a useful estimate to the size of the
relation.

In the current LPS implementation, sequence numbers are assigned during the unification phase according
to the order in which the clauses were asserted during program loading. Thus any binding set that is
produced by unification with the program’s first clause is assigned a sequence number of one. Unification
with the program’s second clause yields sequence number two, and so on.

The assignment of sequence numbers to join results is analogous to the calculation of storage offsets to
multi-dimensioned array elements. The first "‘dimension™ is represented by the sequence number of the
contributing binding set from the first relation (level number one), and so forth. The ‘‘offset” calculation
can be performed efficiently by precomputing (in time linear in the number of relations) a “‘dope vector”
similar to that used by many programming languages for array indexing. All sequence numbers are
multiplied (again in linear time) by the dope vector elements corresponding to their level numbers prior to

*Note, however, that many architectures fitting our model do in fact allow for fast network-wide sums,
making the heuristic viable as presented. We hope to clarify the need for such a mechanism through
statistical investigations.
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the commencement of the join operation. Then when two binding sets reconcile successfuily, the sequence
number for the new binding set is the sum of the two contributing sequence numbers.

In addition to their contribution to the join ordering heuristic, sequence numbers provide a method for
ensuring a predictable perusal of the proof space by our implementation. Although from the point of view
of pure theorem proving such predictability is inessential, under some circumstances such as [/O and
recursion, it is crucial if the programming system is to be useful for a more general class of programs, as is
the case with Prolog. Unfortunately, the sequence numbers as described here do not appear to provide an
ordering that is easily comprehended or well suited for many programming tasks, so that alternatives
must still be investigated.

4.4,2 Partitlon Of The Join Phase

For reasons that will become apparent in the upcoming discussion of variable purging, it may be desirable
to impose a global constraint on the join phase ordering so that the relations arising from any single goal
list contribution are fully joined among themselves prior to any attempt at combining results from
different contributions. We adopt this strategy in the current LPS algorithms by conducting the join
phase in two steps. First, a series of partial joins takes place in which each goal list contribution is
reduced to a single relation in the PE network. When the partial joins have completed, a final join joins
each of these relations into a single relation representing the successors to the goal list under
consideration.

4.5 The Substitution Phase

The last task to be performed upon the discovery of a successful proof is the composition of the various
substitutions that were generated zlong the way. As indicated in the abstract algorithm, these
substitutions are the constraint set reconciliations computed to support the individual proof steps. Their
composition is computed in the substitution phase of our algorithm.

As was briefly mentioned in the observations following the abstract proof procedure, we have chosen in
our current implementation to compute this composition incrementally as the individual components are
generated. Thus each time a new reconciliation is produced, we compute its composition with all prior
reconciliations in its proof path. Once this has been computed, the individual reconciliation itself can be
discarded.

In order to achieve this strategy, we store in the common layer of a binding set, not the individual
reconciliation that produced the binding set, but its composition with all prior reconciliations on its proof
path. This is easily implemented because all of the binding sets produced by a join phase share a common
proof history, and the cumulative substitution representing that history is exactly the substitution stored
in the common layer of the complex binding set that gave rise to this proof step in the first place.

In our LPS implementation, then, the substitution phase is accomplished by transmitting the prior
reconciliation history to the PE network following the join phase and computing in each PE the
composition of that substitution with any new reconciliations.

Three possible benefits derive from our incremental substitution strategy.  First, composition
computations are performed in parallel in the PE network rather than individually for each reported
solution by the CP. Second, debugging is easier because the progress represented by each binding set can
be read directly in terms of the original directive variables rather than an obscure collection of created
variables. Finally, we avoid a bookkeeping chore in the CP which, depending upon whether certain
variants on the basic algorithms are chosen, may be extremely expensive in both time and space.
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4.8 Managing Created Varlables

In order to keep communication and processing costs to a minimum, it is desirable to discard bindings
from our binding sets whenever they are no longer needed. In general the instantiator stored in a rule
layer of a binding set will contain a binding for each variable appearing in the rule body, and no other
bindings. Thus rule layers are not a problem in this respect. The common layer is more complicated.

In general there are two possible reasons for keeping a binding in the common layer of a binding set:

- The binding will be required in order to construct a solution, should the current proof path
succeed.

- The binding might interact with other bindings to constrain the search space, so that
discarding the binding could lead to incorrect proofs.

If at any point a particular binding can be determined not to fulfill either of these conditions, we may
freely discard the binding and proceed with our proof.

When we report a solution, we limit the report to a display of a minimal substitution that will transform
the directive into a satisfiable goal list. In particular, the intermediate goal lists are not displayed, in
either their instantiated or uninstantiated form. Recall that our substitution phase is implemented
incrementally, so that common layer substitutions always represent the total accumulated current
knowledge of the solution being pursued. Thus we see that our first condition demands only that we not
discard bindings for variables that appear in our original directive (top-level variables).

Other bindings are required for their constraining effects. However, we observe that once a binding has
been produced for a variable, it is immediately used to remove all appearances of the variable from the
binding set. Aside from this instantiation, the only way a binding can ever act to constrain the search
space is through reconciliation with another binding for the same variable. But by the instantiation itself,
we are guaranteed never to see the variable in a future goal list along the same proof path, so that no
future bindings for it will ever be produced. Thus no further constraint by the variable is possible. We
conclude that we need never maintain bindings for a variable (other than a top-level variable) once a
binding for it has appeared at the end of a proof cycle.

We do not claim that the binding would not undergo further changes were it to be maintained throughout
the remainder of the proof. For instance, if we produce the binding [_ 1/p(_2)] we may later produce
the binding [_2/a]. The overall proof substitution would then include the binding [_1/p(s)]. However,
the search constraints that are represented by this refinement are accomplished by the construction and
reconciliation of bindings for _2; the refinement of _1's binding is a more or less passive side-effect.
Since __1is not a top-level variable, we have no interest in this side-effect, so there is really no point in
producing it in the first place.

We see, then, that when a binding set is reported to the CP from the PE network its common layer should
contain bindings only for top-level variables. However, more can be said about the other variables as well.
In particular, we recall the join phase partitioning strategy discussed earlier, in which the join phase
proceeds by a series of partial joins involving relations produced by common goal list contributions,
followed by a final join of the partial join results. It turns out that many bindings can be pruned from the
binding sets before the final join takes place, thus saving in communication costs during that join.

Recall that if a rule variable is not bound during unification the resulting instantiator is augmented by
binding that variable to a new created variable, The created variable will thus appear in exactly one of
the goal list contributions represented by the complete binding set, and hence in exactly one of the partial
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join result relations. Such a variable cannot constrain the final join, and since it is not a top-level
variable, it will be discarded when the final join is complete. We can save communication costs in the
final join if we discard the variable prior to the final join.

A list of such discardable variables may be computed easily by the CP during instantiation of a rule body
by gathering together term sides of all variable/variable bindings in the instantiators. For example, if the
binding [_ 34/ _46] appears in an instantiator, we can safely discard all bindings for variable _ 48 prior
to the ensuing final join.

We note here that if we are to discard bindings before the final join takes place, we must account for the
possibility that some of our top-level variables are bound to terms that include discardable variables.
Thus the composition operation that constitutes our substitution phase must in fact be performed prior to
the final join. We may apply the operation simultaneously to all the relations that will take part in that
join by waiting until all the partial joins have completed.

5. Concluslons and Future Work

It has not yet been established that the pilot algorithms presented in this paper can result in efficient
interpreters for the execution of logic programs under the parallel computing model that we propose. A
limited form of OR parallelism is achieved through simultaneous unification of individual goals with
literals that are distributed over a large multiprocessor network, and a limited form of AND parallelism is
achieved by satisfying an entire list of goals in a single algorithm cycle. Our abstract proof procedure has
provided a convenient basis for comparison between the LPS algorithms and the Prolog algorithm.

Our algorithms have been implemented in order to uncover problems in parallel execution of logic
programs and to discover various alternative strategies applicable under our computing model. The
experience and information gained will be used in conjunction with statistical measurements to highlight
fruitful areas for future research.

A companion paper [5] investigates specific alternatives to the LPS algorithms, again in the context of our
abstract proof procedure, and presents a comparative analysis of the various strategies. It is found that
no one strategy is optimal in all situations. Future research will further explore these and other
alternatives, and will attempt to develop mixed strategies in which alternatives are chosen based on static
and dynamic analysis of the program under execution.

We are currently planning an implementation of a LPS interpreter on a prototype machine based on the
DADO parallel architecture. One such prototype comprising fifteen PE's is currently functioning; a 1023-
node prototype is under construction. Weisberg and Lerner are working on an implementation of a
parallel version of Portable Standard Lisp for the DADO machine [16]. As our simulation software was
written in PSL, we expect that this effort will substantially simplify our implementation task by allowing
a simple recompilation of large portions of the existing code for execution on the actual machine.

Taylor [13] describes various methods currently under development for statistical analysis of logic
programs. These include static, dynamic, and data-flow analyses intended to guide algorithmic decisions
in the implementation of LPS. It is hoped that these analyses will quantify the potential for parallel
execution, allow accurate performance estimates to be made, and isolate various qualities of logic
programs which can be used in building intelligent compilers and interpreters.

Many features must be added to the LPS language in order to make it suitable for a wide range of
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applications. We intend to investigate such features as negated condition elements in rules, evaluable
predicates, and condition elements with side effects. Khabaza's work {3| appears promising as a basis for
the implementation of negation as failure in the LPS framework. In addition, we will explore issues
relating to control of program execution, including a more useful ordering of the solution set.
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