CuCs-111-g4

Concept Learning in a
Rich Input Domain:

Generalization-Based Memory

Michael Lebowitz
May, 1984

The research was supported 1n part by the Defense Advanced
Research Projects Agency under contract N00039-84-C-0165.

Concept Learning in a Rich Input Domain:

Generalization-Based Memory!

—

Michael Lebowitz
Department of Computer Science
Computer Science Building, Columbia University
New York, NY 10027

Abstract

Automatic concept learning from large amounts of complex input data is an
interesting and difficult process. In this paper we discuss how the use of a
permanent, generalization-based, memory can serve as an important tool In
developing programs that learn in rich input domains. The use of Generalization-
Based Memory (GBM) allows programs to determine what concepts to learn, as well
as definitions of the concepts. We present in this paper a characterization of our
research, describe our use of Generalization-Based Memory in two programs under
development at Columbia, UNIMEM and RESEARCHER, and describe how they
perform concept evaluation and generalization of complex structural descriptions,

problems typical of those we are concerned with.

Key Terms: Learning, automatic concept formation, generalization,
Generalization-Based Memory, intelligent information systems, artificial intelligence,

cognitive sclence.

1 Introduction

Automatic concept learning 1n the form of generalization has been shown to
be useful in interpreting and organizing large amounts of information about a
domain [Lebowitz 80; Schank 82; Lebowitz 83a], as well as being an interesting task

in 1ts own right. Recently, we have been concerned with the development of new

YThis research was supported in part by the Defense Advanced Research Projects Agency under
contract N00039-84-C-0165. Comments by Kathy McKeown and anonymous reviewers on an earlier draft
of this paper were most heipful. Work on RESEARCHER and UNIMEM has been great% advanced b

raduate students at Columbia including Tom Ellman, Larry Hirsch, Laila Moussa, Cecile Paris, Kennet
asserman and Ursula Wolz.

methods of concept formation that employ a permanent memory of previously
determined concepts along with the examples that led to therr creation. These
methods involve the determination of what concepts to learn, as well as the
definitions of the concepts. In particular, we have concentrated on the problems of
concept formation from a stream of input that is complex in any of several
different ways. In this paper, we detail the class of problems we are addressing,
present the basic learning technique that we_use, known as Generalization-Based
Memory (GBM), and indicate solutions to some of the specific problems that are

involved.

Much of the concept learning research that has been done in Artificial
Intelligence has consisted of either supplying programs with examples, and possibly
counter-examples, of specified concepts and having these programs determine
definitions of those concepts ([Winston 72; Mitchell 82; Dietterich and Michalski
83|, for example) or of using largely analytic techniques to classify input (e.g.,
[Michalski 80; Langley 81]). In “real-world” settings, the crucial concepts to be
learned -- those that best help explain and organize information about a domain
-- are not pre-supplied; réther, it is necessary to determine these concepts from a
stream of very complex input data. Consequently, our research concentrates not
just on how to compare examples, but also on methods for determining what

examples to compare, which largely determines the concepts to create.

Taking examples from various programs we have worked on, we look here at
how intelligent systems could extract from complex input streams generalizations
such as: “States that have high school expenditures have high per capita incomes”
(from information about the states of the United States); “A large class of disk
drives use flexible (floppy) dises’” (from patent abstracts about disk drives); or
“Terrorist attacks in Northern Ireland are frequently carried out by the [RA” (from

news stories about terrorism), to the same extent as human learners.

We describe here a powerful memory organization and concept learning
technique, Generalization-Based Memory GBM was developed for [PP, a computer
program that read, remembered and generalized from news stories [Lebowitz 80;

Lebowitz 83a, Lebowitz 83b], based on intuitions about how compiex human

episodes might be stored in memory in a manner analogous to Schank's MOPs
(Schank 80; Riesbeck 81; Schank 82] and Kolodner’s E-MOPs [Kolodner 84]. We
believe it is advantageous to use the same techniques in more traditional concept
learning environments and for intelligent information systems that make use of
complex streams of input. Our presentation of the problems of concept learning

from complex input focuses on two intelligent information systems being developed
at Columbia, UNIMEM and RESEARCHER, both of which use GBM.

UNIMEM 1s a program that can accept a large quantity of relatively
unstructured facts about a domain, use generalization techniques to determine
important concepts, and use these concepts to organize the information in a fashion
that allows further generalization and intelligent question answering. For example,
if information about the states in the US. is given to such a program (a domain
used in prototype testing), the program might determine that New England states,
or states with large education budgets are useful concepts. UNIMEM is being used
to study problems that can arise when the individual items used for learning are

not highly structured, each consisting simply of a set of descriptive features.

The problems in forming concepts from complex input data involved in our
research with UNIMEM include: the impact of domain-dependent knowledge on
concept learning; categorizing numeric input information so that generalization 1is
possible; concept evaluation and refinement from further examples; using concepts
that very slightly contradict new input items (those like Winston's ‘“‘near misses”
[Winston 72|, but not pre-identified as such);, dealing with concepts that change
over time, and question answering based on Generalization-Based Memory. In this
paper, we present the basic techniques for using GBM and for evaluating concepts
in the context of UNIMEM.

RESEARCHER [Lebowitz 83c; Lebowitz 83d], in contrast with UNIMEM, deals
with highly structured, physical descriptions of devicess. RESEARCHER reads
patent abstracts in natural language form, and then remembers and generalizes
information from these texts, automatically creating appropriate object classes.
Complete understanding (and generalization) of patent abstracts requires many kinds

of analysis. To date, we have concentrated on the complex physical descriptions of

the objects described (i.e., part x is on top of part y), as opposed to, for example,
functional characteristics. In this paper, we use RESEARCHER as a context in
which to discuss the problems of comparing complex, highly structured

representations.

Figure 1 shows some typical concepts generalized by each of the
Generalization-Based Memory programs mentioned here. The [PP and UNIMEM
generalizations were actually made by the programs (although the English was
generated by hand), and the RESEARCHER examples are target concepts which

can currently be learned from simplified input.

IPP Concepts:

Bombings in El Salvador cause damage, but do
not often hurt anyone.

Urban terronists 1n [taly frequently use

silencer equipped pistols.

UNIMEM Concepts: o~
State class — High urban percentage, low minority
percentage, moderate income, low taxes
manufacturing important [RI, NJ, TX, MI, FLA, OH]

State class -- High value of farmland, fairly high
population, manufacturmé agriculture, tourism
important [NC, ARK, TENN, MINN, WISC, VA, MO]

RESEARCHER Concepts:
Floppy disk drive

Double density disk drive
Fully enclosed disk drive

Figure 1: GBM Concept Examples

In the remainder of this paper, we describe how our research relates to other
work in concept formation, and present an overview of our concept learning
methods, concentrating on our use of Generalization-Based Memory Finally, we
describe the way we handle concept evaluation and generalization of complex

structurai descriptions, problems typical of those we are concerned with.

2 Complex Input Domains

The intelligent information systems we are developing basically engage in what
1s called multiple concept learning from observation (descriptive generalization) in
[Michalski 83]. These programs are given large number of examples, with no pre-
specification of the concepts to genebralize, and they acquire sets of concepts by
deciding what 1nstances to compare and how such examples are similar. The
concepts derived are often overlapping, in that many concepts can describe the

same example.

The tasks of our programs also involve aspects of Michalski’s concept
acquigition. In addition to determining the properties of instances in the classes
that they create, they fit objects to those classes. There are elements in our
programs of both observing patterns 1n data and developing discriminant

descriptions of the classes thereby derived.

- Our research is characterized by several other properties, all somewhat novel
for working systems (particularly in combination), but, we feel, crucial to the
development of useful, dynamic, information systems. The first parameter that
characterizes all our work 1s that we are dealifig with ‘“pragmatic’’ generalizations.
That 1s, we are concerned with concepts that describe what is usually, but not
necessarily always, true. This means, crucally, that methods that invalidate
generalized concepts on the basis of a single example are not acceptable In the
same vewln, we do not require that every concept that could legitimately be
generalized be found. The class of pragmatic generalizations provides more power

and flexibility in representing what it is possible to learn about a rich domain.

The pragmatic nature of our generalizations 1s in sharp contrast with most
other learning methods. While there has been work dealing with noisy input data
(e.g., |Quinlan 83], and to some extent [Mitchell 82]), it has always been assumed
that the generalizations themselves perfectly described the world, although they were
perhaps obscured in the input data. The need to deal with pragmatic generalizations

strongly affects all aspects of our work.

Secondly, we look at learning that is fncremental [t is not possible in systems

that are continually receiving 1nput to wait for all examples to be available for
inspection before creating concepts. We require that after every example s
processed, our systems have made the best possible generalizations based on the
input that has been processed. While 1t is possible to imagine many other methods
being applied incrementally, most other learning research has assumed that all the
input 1s available at once to the learning process, and that the process 1s rerun
from scratch if new information 1s added. A notable exception 1s [Winston 72|,
which incrementally develops a concept (although 1t only learns a single concept

from specially selected inputs).

Finally, we expect that our systems will ultimately deal with large numbers of
ezamples. It is the ability to deal with many examples and many concepts
simultaneously that gives human learning the power we would like our systems to
have. No method that requires comparison of a new instance with all, or a large
portion of, previous examples will be acceptable, for computational reasons. Even
comparison with generalized concepts must be done 1n a principled way.
Furthermore, our systems must deal with whatever examples they are given, not
spectally prepared (as by a teacher) input. We are, in addition, sometimes concerned

with cases where the individual items to be generalized are themselves complex, as
in RESEARCHER.

While there has been learning research that involves large numbers of
examples (e g, [Quinlan 79]), much of it has been statistically oriented (see [Cohen
and Feigenbaum 82]), and little of it has dealt with pragmatic generalizations (with
the exception of [Schank 82], and related research). The fact that all concepts are
not guaranteed to be logically correct turns out to have a major effect on the

learning process.

We feel that methods for dealing with the type of input described here will be
necessary In developing systems that take full advantage of the large quantities of
complex information. One area that we have not addressed. but feel will be
important in our future work, is the use of explanation-based generalization, of the
sort discussed 1n [Delong 83; Mitchell 83; Mostow 83; Riesbeck 83].

3 Generalization-Based Memory

In this section, we provide an overview of the techniques used to form
concepts as part of maintaining a Generalization-Based Memory. For clarity, we
describe the way the process works in UNIMEM, but the main techniques are
identical in [PP and RESEARCHER.

The basic i1dea of Generalization-Based Memory 1s that a generalization system
begins to create a hierarchy of concepts that describe a situation from a small
number of examples, and then records in memory specific items, both those
examples from which the concepts are generalized and others, in terms of the
generalized concepts. More specific generalizations are recorded along with specific
examples under the more general cases. GBM involves identifying and defining

multiple concepts, as opposed to maintaining a single model of a concept.

In order to standardize our terminology, we refer to the objects stored in
memory which are used to build generalizations, 1.e., the input examples, as
ingstances. In UNIMEM these are descriptions of objects in a domain. An instance
is described in UNIMEM terms of a set of features (essentially property/value
pairs). As we will see, RESEARCHER uses more complex descriptions of instances.
The combinations of generalizations, themselves sets of features, and the events and
sub-generalizations they organize are called GEN-NODEs.? GEN-NODEs form the
basis of GBM. The structure of a typical GEN-NODE 1s shown in Figure 2. The
manner in which GEN-NODEs are combined to form. a concept hierarchy 1is

tllustrated 1in Figure 3

Generalization-Based Memory consists basically of one or more hierarchies of

GEN-NODEs that describe concepts of 1ncreasing specificity.3 As shown in Figures
2 and 3, instances and sub-GEN-NODEs are stored under each GEN-NODE using

o
“GEN-NODESs were called S-MOPs in [PP, as they are, in some sense, specialized versions of Schank's
Memory Organization Packets [Schank 82).

3Technically, through methods not described in this paper, the set of GEN-NODEs may not actually
form a tree, but rather a directed acyclic graph.

GEN-NODE
descriptive features
sub-GEN instance
D-NET D-NET

. instances under
\ this GEN-NODE

More g Ielciﬁc
GEN-NODEs

Figure 2: GEN-NODE Structure

GEN-NODE
sub-GEN discrimination net

GEN-I‘SODE CJEN-NODE |GEN-NODE
instance discrimination nets

instances

GEN-NODE

instances
Figure 3: Schematic Structure of GBM

instances instances

discrimination networks (D-NETs) [Charniak et al. 80]. (Note that a GEN-NODE
can organize both instances and more specific GEN-NODEs.) D-NETs provide an
effictent way to retrieve any object stored with a given set of indices. In the GBM
model, every feature of an instance or sub-GEN-NODE is initially used as an index,
resulting in shallow, bushy D-NETs that allow retrieval of an object given any one
of 1ts features. The resulting plethora of indices is pruned by ceasing to use as

indices features that pertain to a large number of objects in a given D-NET.

The use of a hierarchy of GEN-NODEs with D-NETs as a method of memory
organization allows efficient storage of information since 1nformation in a
generalization does not have to be repeated for each instance that i1t describes. In
addition, 1t allows relevant generalizations and instances -- and only relevaat
generalizations and instances — to be found efficiently in memory during processing,
allowing further generalizations. This property of GBM 1s largely independent of

the specific knowledge representation being used.

The use of concept hierarchies to intelligently and efficlently organize
information about concepts is not a new one. Semantic networks [Quillian 78],
frame systems [Minsky 75|, MOPs [Schank 80; Schank 82], among many other
formalisms all include this property A primary feature of the representation
language KRL [Bobrow and Winograd 77| is its ability to allow inheritance to be
implemented easily. (Wasserman and Lebowitz 83| shows how frame-based schemes
can be applied to physical object descriptions. What is new here is the dynamically
changing nature of the concept hierarchy, and its use to guide the development of
further concepts. Ounly a limited amount of work has been done on automatically
generalizing concept hierarchies, including [Hayes 77, Michalski and Stepp 83;
Sammut and DBanerji 83|, and this work has not dealt with pragmatic

generalizations or particularly large numbers of examples.

The process of maintaining GBM, which is the learning process we are
considering here, i1s a relatively simple one, once the memory organization method
has been defined. As each new instance is processed, the most specific GEN-NODE
that describes it is found. This 1s done, easily and efficiently, using the
discrimination nets that index the GEN-NODEs in memory, starting with a very
general node that covers the whole range of instances in the domain. Then, before
the instance is actually indexed under that GEN-NODE, a check 15 made for
instances already stored there that have additional features in common with the
new Instance, which can be found using the instance D-NET. If there are enough
such features (one of many adjustable parameters of GBM?%), a new concept is
generalized, and the contributing instances indexed there. Otherwise, the new

instance is simply stored under the existing GEN-NODE.®

Two further 1important features characterize GBM. Since concepts are
generalized on the basis of few instances, they must be evaluated to eliminate over-

generalization (including the elimination of whole concepts). This is discussed in

4Fut,ure research may look at how the parameters of GBﬁ could be adjusted automatically.

°The process is actually a bit more complex, as a given instance can be stored in multipie spots in
memor‘y for two different reasons. An instance can either be classified initially in several different ways,
each of which would indicate a place to store it, or several different ‘‘most specific’ GEN-NODEs might
be found, each of which would lead to the processing described.

10

Section 4. The second feature is the use of an 1dea known as predictability. While
space does not permit a discussion of predictability here (see [Lebowitz 83a]), the
basic idea is that only the presence of some features of a concept 1n an instance
indicate the relevance of the concept, and that these features can be identified quite

easily using GBM.

Further details of the algorithm used to maintain GBM are shown in Figures
4, 5 and 6. Figure 4 shows how the addition of a new instance to GBM consists
of finding the GEN-NODE (or GEN-NODEs) that best describe the 1nstance
(updating feature confidence factors as this i1s done), followed by indexing the new
instance (which includes a check for new generalizations). Figure 5 shows the
process that searches for the GEN-NODE that best describes the new instance
(essentially a depth first search heuristically guided by features of the new 1nstance
that have not been explained), and Figure 6 shows how the new instance is actually

added to memory, possibly causing new concepts to be generalized.

D B - - - - - > " P - - - - -

- T B W - - - = e - - - -

- D = D WD - D D e S - WD . - = P ms

|Search GBM for most specific GEN-NODE that describes |
|instance by calling SEARCH(root-node, input features).|
| (Figure 5) ‘ |

D " - D D D D P S D - P D D R . W e = e AP D A W = e -

- B " T D - = = W = - - - -

|Add nev instance to GBM, generalizing if necessary.|
| (Figurs 8) I

- o - - AP D D WS D - - - - - - -

Figure 4: GBM Update Algonithm

We believe the use of GBM as described in this section can successfully satisfy

the domain characteristics described in Section 2. In particular:

11

SEARCH(gen-node, unexplained-features)

> T D D P WD R R D W W D P P < S e e e e P D R TR A A A NS 4 D R A A AP W N

Incresse confidencs in any features of gsn-node

in the unexplained feature list (nota -- gen-ncde

is ggar:nteed to be a 'potentiallz relevant® node,
a

by the way the algorithm is structared).
[
\/

------------------------------------ . S D T R P D e D S D e - - .-
Are there any features in gen-node| ---> {Decrement the confidence
contradicted in the unexplained of thoss features and
feature list? retara NIL. (If the confidence
------------------------------------ of a feature is lov enough,

o - = - -

Il no delste it.)

For each sub-gen-ncde, sx, of fen-uode vith at

least one feature in the unexplained list (determined

by using the sab-gen-sode discrimination network),

call SEARCH(sx, [unexplained-features - gen-ncde features]).

\/
|Does SEARCH retura a non-NIL set of nodes for any sx?|
|| yes || no
\/
|Return the union of those lists.| [Retarn gen-nodel

- - - - - - - - .- - = ————-——

Figure 8: Searching GBM for Most Specific GEN-NODE

1) All concepts generalized in GBM are ‘pragmatic”” No concept is removed
by a single counter-example, but instead, the process described in the next section is
used to evaluate all concepts. The generalization process is also pragmatic because
1t can sometimes miss concepts that could be found by comparing instances that
were stored in widely different parts of memory, but this seems a reasonable trade-

off to avoid combinatoric numbers of comparisons.

2) GBM is inherently fncremental. As each instance is added to GBM, the

best possible concepts that can be generalized so far are made.

3) GBM 1s 1deal for learning from large numbers of ezamples. The use of a
hierarchy of concepts that organize specific instances allows only instances that
might lead to generalizations to be compared to each other. Relevant concepts are

easily found. It 1s also an efficient way to store the concepts.

UPDATE(gen-node, nev-instance)

- - D - e . AP D D D W A AP P P P A 4D T R A R T A R A e W G .

Define unexplained-features as the features of the nev instance
that are not part of gen-node (cr its parent nodes). The information
caa be retained from SEARCH.

- > P D . . P = = R e T T Y D S o P P T R R AR R W WD W A

. S P T > . - e W = N e e S e e A = A A W e e W - -

Collect the set of all instances currently stored under gen-node
that have at least one of nev-instance’s unexplained features. (This
can be done using gen-node’s instance discrimination aetwork).

- . - Y T D A A TP N W N = = w h m A E E ER SR R A B S AR R W A W =

- - - - D W W D - A - S e R R W

,Do an{ of these instances shars snough else in common |
vith the new instance to warrant a newv generalizatioa?

- e - - = P D D D e T R S MR MR = e A

- - — - - - . - = =

Index the nev instance in gen-node’s
instance discrimination network,
using all the unexplained-features
as indices. Retarn.

R L e el ok T g pp——

For each such instance, create a nev gen-ncde
vith the unexplained features shared by the nev instance
and the instance of the gen-node.

1) Index the nevw Een-node in the gen-node’s sub-gen-node
discrimination net, using each of its features as an index.
2) Index both instances under the nev gen-node, as above,
3) De-index the old instance from the original gen-node's
instance discrimination network.

- - - - - - - T A . . - - -

Figure 8: Updating GBM

We further illustrate the details of updating GBM with an example 1n Section

5 that follows a discussion of concept evaluation.

4 Concept Evaluation

As mentioned 1n the previous section. the concept learning process we have
described inherently leads to over-generalization, particularly in a domain where
there 1s a large amount of information about each instance. Thus, we require each
concept learned to be evaluated over time. For each generalization made by
UNIMEM, an evaluation process continually looks for later instances for which the

generalization might be relevant. This occurs as a normal part of the memory

13

search process, since the generalizations to be evaluated are exactly those that
might be used to store the new instances. UNIMEM checks whether a relevant

generalization is confirmed or contradicted by each new instance.

A new instance found by UNIMEM is considered to contradict an applicable
concept 1f 1t possesses a predictable feature indicating that the concept is relevant,
but also another feature with the same property as the concept {such as the region
of a state), but with a different value (Midwest instead of East, perhaps). When

this condition occurs, intuitively, confidence in the concept should be reduced.

Early versions of confidence for generalizations in GBM simply involved adding
or subtracting points from a numeric confidence level for each GEN-NODE,
resulting in a property much like the confidence in conclusions discussed 1n [Collins
78|, or the confidence in rule application used in some expert systems (e.g., MYCIN

[Shortliffe 78]). In a domain rich in information this technique will not suffice, as
there will almost always be extraneous information in each generalized concept, as
the result of inevitable coincidences, that will cause confidence in the concept to be’

undermined.

What we would like to do when a generalization is disconfirmed is to throw
away the “bad” (overly specific) parts and keep the ‘“good” parts. The problem
then reduces to identifying the components of a generalization that are overly
specific, so that they can be deleted, leaving intact a valid generalization.
Furthermore, for this to be useful, it must be done at a mimimum of cost, hopefully
occurring as a natural part of the memory update process, and requiring only a
small amount of extra record-keeping. The task 1s somewhat similar to that for
which pattern recognition techniques are used (see [Cohen and Feigenbaum 82] for
an Al perspective to pattern recognition), but deals with concrete, if pragmatic,

concept definitions, rather than statistical representations.

The solution devised for UNIMEM is straightforward. Instead of keeping a
single confidence level as part of each GEN-NODE, UNIMEM tracks how often
each feature of a concept is confirmed or contradicted. In effect, a confidence level
is maintained for each feature of each concept, rather than a single value for an

entire concept.

14

Specifically, a counter i1s maintained for each feature of each generalization
and these counters are incremented or decremented as their features are confirmed
or contradicted, respectively, in a situation where a concept is deemed relevant.
The counter modification occurs as UNIMEM determines which GEN-NODEs best
describe a new instance, as described in Section 3. If a counter passes a negative
threshold (another adjustable parameter), then we can eliminate the feature from
the generalization, since the feature hes been wrong much more often than right.
We sometimes have to eliminate entire generalizations when too many of their
features have been eliminated. Detals of this process, and an example of its

application in the domain of football plays, can be found in [Lebowitz 82|

When this scheme was added to UNIMEM, it proved quite effective 1n culling
extraneous features f{rom generalizations, and only totally disconfirming those
concepts that were completely the result of coincidence. In several test domains
this procedure produced generalized concepts that made excellent intuitive sense. We
show here a simple example from the domain involving information about states o
the United States. Our use of this domain is fully explained in the detailed

example in Section 5.5

Figure 7 illustrates a concept (GND1) greneralized by UNIMEM. Roughly, this
concept describes states with moderately high per capita income, rather low taxes,
high school expenditure, and fairly low minority population (the last is actually a
broad category that covers most states). This concept can be used to describe the

seven states listed.

GID1:

INCOME RANGE INC3: 4
TAXES RANGE TAX2:5
SCHOOL-EXP RANGE SCH3:3
MINORITY-PCT RANGE MIN1:2

Organizing: IOWA, KANSAS, NICHIGAN, MONTANA, TEBRASKA, PEYNSYLVANIA, TEXAS
Figure 7: Final UNIMEM Generalization

6A different run of the program is used for the example here.

15

Figure 8 shows how this concept was initially generalized from lowa and
Nebraska). Notice that these states are similar in a number of additional ways,
e.g, they are both farm states, so UNIMEM initially generalized an over-general,
and not widely applicable, concept. These features, which are extraneous in the
sense that they inhibit wider application of the concept, were ultimately removed by

the evaluation process described in this section, leaving a much more useful concept.

GID1:

CRIME-RATE RANGE CRI3:5
STATE-DEBT RANGE DEB2:7
INCOME RANGE INC3:4
TAXES RANGE TAX2:5
MIGRATION-YET RANGE MIGL1:9
SCHOOL-EXP RANGE SCH3:3
STATE REGION FARM
MINORITY RANGE MINL:2

Organizing - I0WA NEBRASKA
Figure 8: Initial Generalization

5 A UNIMEM Example

As a further illustration of how GBM is maintained, including the formation of
new concepts, we will present here an example taken from an actual run of
UNIMEM 1n which we provided the program with a number of facts about each
state 1n the United States. Figure 9 shows a small portion of GBM after
information from 42 states (not including Oregon) had been added to memory. (The

states were presented to UNIMEM in random order.?)

Each GEN-NODE in Figure 9 s shown 1n terms of a set of features. For
features derived from numeric data, the third column of each feature (the value)
indicates a category derived from the numeric value by a method described 1n
[Lebowitz 85]. For example, the fourth feature of GEN-NODE GNDI, taxes, has
the value TAX2:5 indicating that the tax rate for the states described by this

-

‘Since UNIMEM has certain subjective aspects (in the sense of [Abelson 73; Carbonell 81|, the concepts
formed in GBM vary depending on the order instances are added. However, the effect does not seem to
be strong, and the concept evaluation process described in the next section tends to lead to similar
concepts arising over time, though not necessarily identical ones.

16

0o
G[LBIZUH ¥ASSACHUSETTS NEWMEXICO SOUTEDAKOTA YESTVIRGINIA]

G¥D1
IYDUSTRY TYPE MANUFACTURING (20
1IDUSTRY TYPE TOURISH -2
INDUSTRY TYPE AGRICULTURE 18
TAXES RANGE TAX2:5 14
MINORITY RANGE MIN1:2 32
STATE SIZE SI1Z4:6 delet.ed;
STATE REGION MT deleted
1IDUSTRY TTPE ¥INING deleted)
1YDUSTRY TYPE ELECTRO¥ICS deletad)
8]
GIDS
INCOME RANGE INC3: 4 4
I¥DUSTRY TYPE MINING 1
SCHOOL-EXP RANGE SCH3:3 0
STATE SIZE SI1Z24:8 delecedg
URBAN-PCT RANGE URBS:8 deleted
{UTAH]
GED7
CRIME-RATE RANGE CRI5:5 -1)
STATE-DEBT RANGE DEB3:7 1)
I¥DUSTRY TYPE GOVERNMENT (-1)
STATE SIZE S1Z4:8 0)
URBAN-PCT RANGE URBS: 8 0)
(COLORADO YEVADA]
GED13
STATE-DEBT RANGE DEB5:7 0)
FARM-VAL RANGE FARS:8 o;
STATE SIZE S1Z4:8 0
URBAN-PCT RANGE URB8:8 0)

(MICHIGAN MINNESOTA)
Figure 9: A Section of UNIMEM GBM Without Oregon

GEN-NODE falls 1in the second of five categories, 1e, rather low The numeric
value following each feature indicates UNIMEM’s current confidence in that {eature
(as described in the previous section). These values start at 0. The threshold for
eliminating a feature was -3 for this run. The features followed by a “deleted” are
not actually 1n the generalizations, but were originally included, and then deleted by
the concept evaluation algorithm. Listed under each GEN-NODE are the instances

(states) indexed there.

The section of GBM shown 1n Figure 9 includes five GEN-NODEs. The top-
level node, GNDO, has no features and hence describes all instances. It serves to
organize the GBM hierarchy for states, and index any instances not yet described
by any generalization. GNDI1 describes states with fairly low taxes, low minority

population and industries including manufacturing, tourism and agriculture.

17

Additional feature present when 1t was created (from Idaho and Colorado, as it
happens), have been deleted to make the GEN-NODE more widely applicable.

GND1 organizes several sub-GEN-NODEs, one of which, GNDS, is shown in
Figure 9. This node describes midcle-income mining states with high school
expenditures. Utah is indexed under GNDS. This GEN-NODE organizes, in turn,
two yet more specific GEN-NODEs, GND7 and GND13. GND?7 describes mid-sized
states with relatively high crime rates, moderate state debt. government as a
significant industry and high proportion of urban population. Colorado and Nevada
are indexed under 1t.8 GNDI13 describes mid-sized states with high valued farm
property, fairly high state debt and a high proportion of urban population. It
indexes Michigan and Minnesota. Notice how for the states at the bottom of the
hierarchy, such as Colorado, Nevada, Michigan and Minnesota, none of the
information 1n GEN-NODEs GND1, GNDS5, and GND7 or GNDI13 will have to be

repeated for the specific instance.

With GBM containing the information in Figure 9, we next added information
about Oregon to memory. Figure 10 shows the first phase of this addition
procedure. Shown are the features given to describe Oregon. Also shown are the
results of the search phase, where UNIMEM determined that GND5 (as well as
GEN-NODEs 1n other parts of GBM) best described the new instance. GNDS was
selected because it contained at least one feature of Oregon (two, in fact, income
and school expenditure), none of its features are contradicted by Oregon, and
neither GND7 nor GNDI13 is appropriate (GND7 conflicts in state debt and urban

percentage, and GNDI13 conflicts in farmland value and urban percentage).

Having decided that GND5 is the GEN-NODE that currently best describes
Oregon, UNIMEM proceeds to update GBM, by attempting to index Oregon under
that node. This results of process are shown in Figure 11. During the indexing
process, UNIMEM notices that Utah, which 1s already indexed under GNDS, has the

identical values for state size, crime rate, and region of the country as does Oregon.

8Not.e that although these states probably have small aumbers of total urban residents, the proportion
of such residents is high.

18

»(run-state 'oregom)
Features: OREGON (STATE)
REGION

STATE LE)
POPULATION RANGE POP5:7
URBAN-PCT RANGE URB5:8
MINORITY RANGE MIN1:2
MIGRATICN-JET RANGE MIG8:9
STATE SIZE S1Z4:68
SCHOOL-EXP RAXGE SCH3:3
CRIME-RATE RANGE CRI4:5
STATE-DEBT RANGE DEBS:7
MILITARY-MONEY RANGE MIL4:9Q
IICOME RANGE I3C3:4
FARK-VAL RANGE FAR4:6
TAXES RANGE TAX2:5
IXDUSTRY TYPE MANUFACTURIXG
TYPE FORESTRY
IYPE TOURISM
TTPE FOOD-PROCESSING
TTPE AGRICULTURE

Best existing S-MOP(s) --
GEDS -- potential remindings: UTAH
<and others>

Figure 10: UNIMEM Finding a GEN-NODE that Describes Oregon

Thus, a new GEN-NODE, GND50, can be created with these features. (It also
inherits all the features of GEN-NODEs GND1 and GNDS).

Creating more specific STATE (GND50) than GID5 froa events UTAR OREGOX
vith features:

STATE REGION ¥S
STATE SIZE SI1Z4:8
CRINE-RATE RANGE CRI4:S
SCHOOL-EXP RANGE SCH3:3
IXCOXE RANGE 1¥C3:4
INDUSTLY TYPE MINIXG
MINORITY RANGE MIN1:2
TAXES RANGE TAX2:5
INDUSTRY TTPE MANUFACTURING
TTPE TOURISH
TTPE AGRICULTURE

<processiang for other GEN-IODEs that describe Oregon>
Figure 11: UNIMEM Adding Oregon to GBM

Figure 12 shows how GBM has been changed by the addition of Oregon.
GND50, the new GEN-NODE, has been added under GNDS Oregon and Utah have
both been indexed there. Also note how the confidences of features supported by

Oregon have be incremented, and those contradicted have been decremented, using

the algorithm described in the previous section.

19

For example, in GND13, confidence

in state debt and state size has increased, and confidence in farm value and urban

percentage has gone down.

GID0
(ARIZONA YASSACHUSETTS FEWMEXICO SOUTHDAKOTA WESTVIRGINIA]

GID1
I¥DUSTRY TTPE
INDUSTRY TTPE
INDUSTRY TTPE
TAXES RANGE
MINORITY RANGE
STATE SIZE
STATE REGION
INDUSTRY ITPE
INDUSTRY TTPE
Q
GEDS
ISCOME RANGE
INDUSTRY TTPE
SCHOOL-EXP RANGE
STATE SIZE
URBAE-PCT RANGE
9]
GID?7
CRIME-RATE RARGE
STATE-DEBY RANGE
INDUSTRY TTPE
STATE SIZE
URBAR-PCT RANGE
(COLORADO NEVADA]
GID13
STATE-DEBT RABGE
FARM-VAL RANGE
STATE SIZE
URBAX-PCT RANGE
(MICHIGAN MINNESQTA]
GIDSO
STATE REGICHE
STATE SIZE
CRIME-RATE RANGE

(OREGON UTAH]
Figure 12:

6 RESEARCHER
As mentioned earlier 1n this paper, RESEARCHER [Lebowitz 83c; Lebowitz

83d], 1s a program that reads patent abstracts and adds information from them to a

Generalization-Based Memory so that it can effectively answer questions.

MANUFACTURIIG (21
1

TCGURISH -
AGRICULTURE 17
TAX2:5 15
MIN1:2 33
SIZ24:6 deleted)
T deleted
MINIXG deleted
ELECTROXICS deletad)
1¥C3: 4 -}
MINING 0
SCH3:3 1
S1Z24:8 deleted
URBS:8 deleted
CRIB:5 -2)
DEB3:7 0)
GOVERNMEET (-2)
SIZ4:8 1)
URBS:8 -1)
DEBS:7 1)
FARS:8 -1)
S1Z4:8 1)
URBS:8 -1)
1S 0
S1Z4:68 0
CRI4:5 0

The Same Section of GBM With Oregon

[n this

paper, we look only at the process of taking representations of two objects (or,

20

equivalently, a generalized concept and a concrete object) and forming a generalized
concept. The representations we compare are frame-like and primitive-based,
concentrating oﬁ the physical relations among the various parts of a complex object.
(See [Wasserman and Lebowitz 83] for a complete description of the representation

scheme.)

In the disc drive domain, typical concepts the generalization process might
identify as being useful would be floppy disc drives or double sided discs. As with
all our work, this must be done without specifically providing with examples of
these concepts. Instead, instances stored together in Generalization-Based Memory

are recognized as being similar and generalized.

The use of GBM is more complex here than in the UNIMEM. The ‘‘features”
that two objects have 1n common can only be determined by comparing two
complex object representations. The matching problem is much the same as that
faced by Winston in his blocks world learning work [Winston 72]. Our problem is
In certain ways both more difficult and easier than Winston's. It is more difficult
because we are dealing with much more complex representations. It i1s simplified,
however, at least in the long run, by the existence of an entire GBM, rather than a
model of a single concept. We believe this will simplify the matching process. We
look here both at the complexity of matching object descriptions and at how GBM

can simplify the process.

The representations for two similar. slightly simplified, disc drive patents, used
to test the initial version of RESEARCHER's generalization module are shown in
Figure 13.

Clearly the two disc drives in Figure 13 have much 1n common that can be
the source of a new concept derived through generalization -- an ‘“‘enclosed disc
drive”. Figure 14 shows the concept created by RESEARCHER's generalization
module. The process that created this generalization, while conceptually similar to
the GBM update algorithm shown 1n section 4, differs in many details, largely due
to the impossibility of representing complex physical objects as simple sets of

features.

anclosed-disc~drivel

/ !
== disk-drivei- enclosurel-=--~----
[I |/ on-top-of \
sotor$ | disk# | covert ---------- > support-sembert

spindle# r/v-head#

enclosed-disc-drive2

/ |
-- disk-drive2- enclosured-----ececccaaaa
oo | / on-top-of AU Y
motort | disk# | coverp -«------ > baged / \
spindle# r/v-heads / surr \

b-filter$ ---> r-filtert
Figure 13: Similar Disc Drives

enclosed-disc~-driveéd

/ I
-- disk-drives#- enclosureg-------
o L / on-top-of \
motor# | disk# | cover# ---------- > < >

spindle# r/w-heads

(enclosed-disc-drive! and enclosed-disc-drive2
stored as variants of enclosed-disc-drives#)

Figure 14: Generalized Enclosed Disc Drive

The idea illustrated in Figure 14 is that RESEARCHER finds the parts of two
objects that are similar, and abstracts them out into a generalized concept. In this
example, the two devices contained similar disc drives and enclosures. Each had a
cover on top of some other object. These similanities form the basis of a
generalized enclosed disc drive. Only the additional parts and relations of each
instance need be recorded in memory along with the generalization. Currently, the
generalization module of RESEARCHER, which 1s integrated in a simple fashion
with the parser, 1s able to handle a moderate number of simple examples, including

indexing the new objects as variants of existing generalizations. Y

[S]
o

Adapting GBM for use on complex structural descriptions has proven to be a
difficult problem, even when only considering the assorted relations among the
objects in the descriptions. Here we present one of the major problems and suggest

the nature of the possible solution.

A central problem in generalizing structural descriptions 1s the process of
matching two representations (either of two objects or an object and a generalized
object), thereby determining what parts and relations correspond (as was pointed
out for simpler examples in [Winston 72]). Clearly, if we have two distinct disk
drive representations and wish to determine that the disk mounts in them are
similar, then we must determine that they should be compared with each other.
(Note that if the similarity is strong enough, we may wish to modify the
representations to point to a single disk mount representation in memory.) Since
one part of the description of complex objects i1s a set of relations, we must

associate the relations in one object with those in the other.

The matching procesé here i1s a quite difficult one. Since we are dealing with-
structured objects, the parts of very similar objects may be aggregated differently in
various descriptions. For example, a read/write head might be described as a direct
part of a disc drive in one patent, but part of a “‘read/write assembly” in another.

This makes the inherent similarity difficult to identify.

At the moment, we deal with this ‘‘level problem’ with simple heuristics that
allow only a limited amount of ‘“level hopping' during the comparison process (to
avold the need to consider every possible correspondence among levels), and a bit of

combinatoric force.

We feel that the ultimate solution to the level problem lies in more extensive
use of Generalization-Based Memory. If a new object can be identified as an
instance of a generalized concept, with only a few minor differences (done with a
discrimination-net-based search of the sort described in Section 3), then the levels of
aggregation will be set. By using Generalization-Based Memory, we need compare
only a small number of differences between objects, rather than entire complex
descriptions. This should allow RESEARCHER to meet all our performance

23

constraints (i.e., generalize pragmatically, be incremental, and handle large numbers
of objects), even using the complex representations needed to describe real world
objects.

In effect, what we are doing here is using the generalized descriptions that we
have created to dynamically form a canonical framework for describing new objects.
Such an approach, we believe, can help solve one of the major problems with
canonical representations systems. Such representation schemes have many well-
known advantages (see [Schank 72|, for example), including simplifying the inference
process. However, it is often difficult to select the canonical primitives needed for
such schemes, and 1n domains that change over time, perhaps impossible. A
dynamically created framework of the sort we are suggesting has the potential to
gain the advantages of systems based on canonical primitives with the ability to
adapt to the domain and without the problems of initially selecting the primitives.?
A similar approach for cognitive modeling type tasks is taken in [Schank 82|, and
the issues of a dynamically changing canonical framework are a topic of our current

research.

7 Conclusion

~——

We believe that our work with Generalization-Based Memory has several
important morals. The first i1s that the development of a dynamic set of concepts
is a powerful approach to take when learning from a rich input domaimn. It is not
realistic to hope to find the “right’’ set of concepts all at once, so it 1s crucial that
we constantly update the concepts that we have and look for new ones. This
allows us to take advantage of new information that is being provided and
hopefully adapt to changes in the domain. Furthermore, the use of long-term
memory, in the form of GBM, allows us to deal with many concepts at once, and
still retain efficiency. In fact, as we have shown, considering many concepts at
once often ends up being easier than learning one at a time and certainly leads to
more powerful systems. We feel that our development of UNIMEM and
RESEARCHER indicate that the idea of Generalization-Based Memory i1s a sound

g r
While we still have to develop an initial representation for the instances given to our system, it is not
as crucial as in other systems, since many properties of the representation can change over time.

24

one, and that these programs can serve as valuable testbeds for the pursuit of

important issues in concept learning.

References

[Abelson 73] Abelson, R. P. The structure of belief systems. In R. C. Schank
and K. Colby, Ed., Computer Models of Thought and Language, W. H. Freeman
Co., San Francisco, 1973.

[Bobrow and Winograd 77] Bobrow, D. G. and Winograd, T. “An overview of
KRL, a knowledge representation language.”” Cognitive Science 1, 1, 1977, pp. 3
- 46.

(Carbonell 81] Carbonell, J. G. Subjective Understanding: Computer Models of
Belief Systems. UMI Research Press, Ann Arbor, Michigan, 1981.

[Charniak et al. 80] Charniak E., Riesbeck, C. K., and McDermott, D. V.
Arti ficial Intelligence Programming. Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1980.

[Cohen and Feigenbaum 82] Cohen, P. R. and Feigenbaum, E. A, eds. The
Handbook of Artificial Intelligence, Volume 8. Willlam Kaufmann, Inc, Los Altos,
Califorma, 1982.

[Collins 78] Collins, A. Fragments of a theory of human plausible reasoning.
TINLAP-2, Urbana-Champagne, [llinois, 1978

[DeJong 83] Delong, G. F. An approach to learning from observation.
Proceedings of the International Machine Learning Workshop, Champaign-Urbana,
[llinois, 1983, pp. 171 - 176.

—

[Dietterich and Michalskl 83] Dietterich, T. G. and Michalski, R. S.
Discovering patterns in sequences of objects. Proceedings of the International
Machine Learning Workshop, Champaign-Urbana, Illinois, 1983, pp. 41 - 37.

[Hayes 77] Hayes, P. J. On semantic nets, frames and associations. Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, International
Joint Conference on Artificial [ntelligence, Cambridge, MA, 1977

[Kolodner 84] Kolodner, J. L. Retrieval and Organizational Strategies tn
Conceptual Memory: A Computer Model. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1984

25

[Langley 81] Langley, P. “‘Data-driven discovery of natural laws.” Cognitive
Science 5, 1, 1981, pp. 31 - 54.

[Lebowitz 80] Lebowitz, M. Generalization and memory in an integrated
understanding system. Technical Report 186, Yale University Department of
Computer Science, 1980. PhD Thesis.

(Lebowitz 82] Lebowitz, M. ‘‘Correcting erroneous generalizations.” Cognition
and Brain Theory 5, 4, 1982, pp. 367 - 381.

[Lebowitz 83a] Lebowitz, M. ‘‘Generalization from natural language text.”
Cognitive Science 7,1, 1983, pp. 1 - 40.

[Lebowitz 83b] Lebowitz, M. ‘“Memory-based parsing.” Artificial Intelligence
21 4, 1983, pp 363 - 404.

[Lebowitz 83c] Lebowitz, M. Intelligent information systems. Proceedings of the
Sixth International ACM SIGIR Conference, ACM SIGIR, Washington, DC, 1983.

[Lebowitz 83d] Lebowitz, M. RESEARCHER: An overview. Proceedings of the
Third National Conference on Artificial Intelligence, Washington, DC, 1983.

[Lebowitz 85] Lebowitz, M. “Classifying numeric information for generalization.”
Cognitive Science , 1985. 1n press

[Michalski 80] Michalski, R. S. '‘Pattern recognition as rule-guided inductive
inference.”” [EEFE Transactions on Patltern Analysts and Machine Intelligence 2,
4, 1980, pp. 349 - 361.

[Michalski 83] Michalski, R. S. “A theory of methodology of inductive learning.”
Arti ficial Intelligence 20, 1983, pp. 111 - 161.

[Michalski and Stepp 83] Michalski, R. S. and Stepp, R. E. “Automated
construction of classifications: Conceptual clustering versus numerical taxonomy."
[EEE Transactions on Pattern Analysis and Machine Intelligence 5, 4, 1983, pp.
396 - 409.

[Minsky 75] Minsky, M. A framework for representing knowledge. In P. H.
Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975.

[Mitchell 82] Mitchell, T. M. ‘““Generalization as search.” _Artificial Intelligence
18, 1982, pp 203 - 226

[Mitchell 83] Mitchell, T. M. Learning and problem solving. Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, West
Germany, 1983.

26

[Mostow 83] Mostow, J. Operationaiizing advice: A problem-solving model.
Proceedings of the International Machine Learning Workshop, Champaign-Urbana,
[llinois, 1983, pp. 110 - 116.

[Quillian 78] Quillian, M. R. Semantic memory. In M. Minsky, Ed., Semantic
In formation Processing, MIT Press, Cambridge, MA, 1978

[Quinlan 79] Qunlan, J. R. Induction over large data bases. Technical Report
HPP-79-14, Stanford University Computer Science Department, 1979.

(Quinlan 83] Qunlan, J. R. Learning from noisy data. Proceedings of the
International Machine Learning Workshop, Champaign-Urbana, linois, 1983, pp. 58
- 64.

[Riesbeck 81] Riesbeck, C. K. Failure-driven reminding for incremental learning.
Proceedings of the Seventh International Joint Conference on Artificial Intelligence,
Vancouver, Canada, 1981.

[Riesbeck 83] Riesbeck, C. K. Knowledge reorganization and reasoning style.
Technical Report 270, Yale University Department of Computer Science, 1983.

([Sammut and Banerji 83] Sammut, C and Banerji, R. Hierarchical memories:
An aid to concept learning. Proceedings of the International Machine Learning
Workshop, Champaign-Urbana, Dlinois, 1983, pp. 74 - 80

[Schank 72] Schank, R. C. “Conceptual Dependency: A theory of natural
language understanding.”’ Cognitive Psychology 8, 4, 1972 pp. 532 - 631.

[Schank 80] Schank, R. C. “Language and memory.” Cognitive Science 4, 3,
1980, pp 243 - 284.

(Schank 82] Schank, R. C. Dynamic Memory: A Theory of Reminding and
Learning in Computers and People. Cambridge University Press, New York. 1982.

[Shortliffe 78] Shorthife, E. H Computer-Based Medical Consultation: MYCIN.
Academic Press, New York, 1978.

(Wasserman and Lebowitz 83] Wasserman, K. and Lebowitz, M.
“Representing complex physical objects.” Cognition and Brain Theory 6 3, 1983
pp. 333 - 352

(Winston 72] Winston, P. H. Learning structural descriptions from examples. In
P. H. Winston, Ed., The Psychology of Computer Vision, McGraw-Hill, New York,
1972.

