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Linear Problems (with Extended Range) Have Linear Optimal Algorithms

ABSTRACT:

Let F, and F, be normed linear spaces and S:Fy->F, a lLnear operator on a
balanced subset F, of F, If N denotes a finite dimensional linear information
operator on Fj, it is known that there need not be a linear optimal algorithm
¢:N(Fp)->F, which is optimal in the sénse that L o(N(f))-S(N)| 1s minimized. We
show that the linear problem defined by S and N can be regarded as having a
linear optimal algorithm if we allow the range of ¢ to be extended 1n a natural
way. The result depends upon imbedding F, isometrically i the space of
continuous functions on a compact Hausdorff space X. This 1s done by making use

of a consequence of the classical Banach-Alaoglu theorem.
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1. Introduction .

There has been considerable recent progress in applying and generalizing the
information centared theory of optimal algorithms. In particular, when the problem
and its information are linear, there are numerous useful and satisfying results
Thus, it has been shown that nonadaptive information 1s no less powerful (in terms
of the error of optimal algonthms) than adaptive information of the same
cardinality (see Traub and Wozniakowski [4, p. 49]). Also, for a wide variety of
classical linear problems and i1n several general linear settings, it i1s known that
linear op.f.xmal error algonthms exist. While it might seem reasonable to expect, in
the light of the above results, that linear problems should always have linear
optimal algorithms, there exist specially constructed examples to the contrary

In this paper we resurrect the above intuition that linear problems ought to have
optimal linear algorithms. We do this by showing that, under the mimimal
requirement that the range of the soluticn operator 1s a normed linear space, there
must be an optimal linear algonthm if we allow its range to be extended in a
natural way. Thus, linear problems do have linear optimal error algorithms as long
as the solution operator is given an appropriate codomain (perhaps considerably
larger than its range)

To develop this result, we will need some machinery from functional analyss,
including the classical Banach-Alaoglu theorem. The presentation will be organized
as follows. The next section reviews the information centered approach to
algorithms 1n the linear framework, including some of the existing positive and
negative results The third section introduces additional notation needed to state
and discuss the main result. The final section summarizes the technical material
needed from functional analysis and proves the main result

2. The Information Centered Approach to Linear Problems

A thorough development of the framework for the information centered approach
may be found in Traub and Wofniakowski (4] Here we summarize briefly the
standard setting for linear problems.

Let F; and F, be normed linear spaces over the scalar field K, where K 13 either
the real or complex numbers. Let Fo be a balanced gogvex subset of F|. In what
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follows, s function with domain Fy will be said to be linear if it is the restriction
of a linear function defined oo F,  Given S:F°->F._. Y finear operator and
NFg>K® s finite dimensional linear information operator, the inherent error,
r(S,N), in approximating the solution S working with the (incomplete) information N
is called the radius of information. This important concept is defined as follows

Given {6F, let ymN(f) and set V(y)={g€F,N(g)=y}.
Now define r(S,Nf) to be the radius of S(V(y)) as a subset of F,.
Finally, define ro{S,N)=sup{r(S N [).{6F,}.

We now investigate algorithms to aprroximate S{f). Since we only have limited
information y=N(f) on f, such algorithms can only be defined on N(Fy). Of

obvious importance are optimal algorithms ¢:N(Fo)->F,, where optimality means
lN(®) - S(1€ f(SN) for all {€F,

As indicated earlier, we are interested in the existence of [inear algorithms which
are optimal. There are several reasons why linearity 1s desirable, which we now
summarize. Linear algonthms would appear to be natural for problems in a linear
setting. Indeed, many of the standard algorithms for classical numerical problems
(integration and interpolation, for example) are linear. Linear algonthms tend to be
simpler and easier to implement. Most importantly, linear algonthms have small
combinatorial complexity and optimal linear algorithms can be formally shown to
have nearly optimal combinatorial complezity (see [4, Chapter 5]). In addition to
this valuable efficiency in time, linear algorithms also have small space complexity
(1f we ignore precomputation),

Since the result we will develop is immediate when r(S,N) is infinite, we can
assume for the remainder of the paper that r(S,N)<®®. We now state two general
positive results concerning the existence of optimal linear algorithms for linear
problems. The first theorem covers the case where the solution operator S is

scalar-valued.

Theorem 1: U F2=!$ then there exists a linear optimal error algorithm
¢ N(Fo}->K. Thus |¢ (N(f)}S(f)|&r(s,M for all f€F,

Proof: The case when K=R is due to Smolyak (3] and can be found 1in
[4 p. 54], the complex case 1s due to Osipenko (1]

The second result requires a slight reformulation of the general linear problem
We can, without loss of generality, assume that the balanced, convex set Fj; on
which S and N are defined is generated by a linear restriction operator



Theorem 3 : U F=T(F,) 1s 2" Hilbert space
and T(ker(N)) is closed in F, then there exists 2 linear optimal error
algorithm.

Prooft See (4, Chapter 4] The result emerges in the context of the
theory of spline algonthms, and the desired algorithm turns out to be a
spline algonthm which is central and hence stron_gly optimal.

Theorems 1 and 2 indicate that, 1n the presence of appropnate structure, optimal
linear algenthms can be constructed. A completely general result along these lines
1s ruled out by a counterexample constructed by Micchelli (see [4], p 60) We
sketch below a somewhat simpler example of a linear problem which has no opt:mai
linear algonthm

Example:
' Fix ) §(0.BA)and let Fy={(x,.X,.X,) M Ix leix,l€1, [ 0¢ °

Let S:F,-->87 be defined by S(x,.x,.x,)=(x,,x,),where
l; is gfven its Nilbert norm. ° ! *2 172

Let N:R3-->R be defined by N(xq.X; X,) ST, #)AX,.

Ve rely heavily upon Figure 1, which pictures S(F,) and S(V(y)) for
some critical values of ysN(x), where x=(x,.x,.x,)"

Part (a) of the figure is simply for orientation. It can be checked
;hst :g: br?ken line bas length ¢ 1 from which it follows that S(V(0))
as radius 1.

It can be checked that the radius of the set S(V(\) in part (b)
is the length of each of the broken lines. Further-or;, S(v(Z))
detersines r(S,N), which equals the square root of 1+\%.

the vertical (x,) symmetry of the probles., an linear optimal
algorithe aust bavd the form é(y)=(cy.0) for some cgl.

It then follows from the above that 1if § 1s to be a linear optimal
algorithm it must have the form o(y)s()\¢sy,0).

Now nsin§ part“c) of the figure, it can be show&,that with y=1/)-),
eo(y) - (1I/X.0 _> r(S,N) (this is where ) g (0.{2/2) 1is needed).
e

can thus conclude that the stated probleam has no optimal linear
algoritha. ,
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While it is clear that the above example is somewhat contrived, it does show that
no general resuit about optimal linear algonithms for linear probiems 1n the standard
setting is possible. In the next section we show that a small but significant
reformulation of the standard linear setting allows for optimal linear algorithms in a

very general context.

3. Optimal Linear Algorithms

To state our main result, we recall some standard notation from functional
a.na.lysis.- A more complete exposition of these ideas, including proofs of standard
results used in this and the next section can be found in Packel [2] (or any other
introductory functional analysis text). Given a compact Hausdorff space X, define

C(X)={g:X~->K]g continuous}
B(X)={g:X->K|g bounded}

where each function space is endowed with the sup norm

I E and F are normed linear spaces, they are defined to be isometrically
tsomorphic 1f there exists a linear bijection b:E~>F which 1s norm-preserving In
this case we regard E and F as 1dentical as far as thair normed and linear

structures are concerned.

We are now prepared to state the main result.

Theorem 3: Given a general linear problem defined by S and N, with
SFyeF,~>F, there exists

1) A compact Hausdorf{f space X such that F, is 1sometrically 1somorphic
to F,eB(X)

'ul A linear optimal error algonthm o N(Fg)->B(X) satisfying
1o (NSO $£(S.N) for all [6F,

Before developing the proof, we discuss interpretations of this Theorem. Theorem
1 of the previous section showed that if the range of S is suffictently simple
(namely the scalar field K) then an optimal linear algorithm was assured  The
Example sketched in that section then showed that merely expanding the range of S
to R? destroys the guarantee of an optimal linear algonthm if algorithms are
restricted (o the range of S. Theorem 2 now suggests that by giving S a codomain
(namely B(X)) which extends beyond its range, an opumal linear algorithm (with



range in this extended codomain) must enst.

As the forthcoming proof will show, the extended codomain 1s generally vastly
larger and more complicated than the onginal range In addition, its members
(other than the isometric images {rom F,) may have no meaningful connection with
the members of F, Nevertheless, one interpretation of the result i1s that a linear
problem does have an optimal linear algonthm if the solution operator is given an
"appropriate” codomain. While the theorem uses the rather extreme case of B(X)
for this fodomain, it may be the case that linear optimality holds for less drastic
extensions of the range of S In particular, 1t seems reasonable to conjecture.
perhaps with added hypotheses, that the Theorem might be strengthened by
replacing B(X) with C(X). We leave this for now as an open problem

4. Technical Background and Proofs
Let F be 3 normed linear space over the scalar field K The conjugate space 2
of F 1s deflined by
F'={{"F->K|t* continuous and linear on F)
A natural "operator” norm on F' is defined by
$1%0 =aup{|t°(0)} N 10 =1}
A weaker topology on F* can be defined as follows Each f¢F induces a linear
functional [ on F° defined by
(") =t"(1).
The weak’ topology on F° 1s defined as the weakest topology such that [° s
continuous for every { in F

Under the weak' topology, it thus follows that (“€F' (since {* 1s clearly linear
and must be continuous on F') Using the natural norms on F' and F'" we also
note that U{*N s {1 Indeed, [[{*V4 {1 since

W1 smaup{|f*(£"): N1") =1} =sup{|I°(N]: LI =1} 2aup{ll "D |11 11) =1}=|1)
The fact that ||f'| ={{} follows by a routine application of the Hahn-Banach
theorem on the space F° The above result says that F 1s 1sometnically 1somorphic
to a subspace Fof F* (by means of the linear 1sometry *:F=>F"") We now
apply these ideas to state and prove the following "[olk” result about normed linear
spaces Though this result can be found in a variety of texts, we give the

proof here since it 1s short and sets the stage for the main theorem.




Lemma 4: Let F be a normed linear space. Then there exists a
compact Hausdorff space X such that F is isometrically fsomorphic to a
subspace Fof CX). U F is a Banach space, then F 1s a closed subspace

of C(X).

Proof: Give th_e conjugate space F* its weak’ topology Let X be the
unit ball of F —X={fe¢F :§f &1} The classical Banach-Alaoglu
theorem says that X 1s compact in the weak topology on X Define

"F->C(X) by f w>I", where ['(I')=f'(f) for all {"€ X Then, as
developed above, Uf'W=1{fl, so the subspace F of C(X) defined by
'l?={f"f\eF} 18 1sometrically isomorphic to F. If F 13 a Banach space, then
F and F are complete, making F closed as a complete subspace of C(X).

Remark  The above result 1s not as powerful as it may seem at first glance,
since very little 13 known about the subspaces of C(X) Our application to the
proof of Theorem 2 1s, to our knowledge, the first really meaningful use of this

curious result. Before proceeding, we note that we can also treat F as being
isometrically imbedded 1n B(X) since C(X) & B(X).

We now prove the main theorem which we restate for :he convenience of the

reader.

Theorem Given a3 general linear problem define: by S and N, with
SFy8F|~>F, there exists:

I)AA compact Hausdorff space X such that F, is 1sometrically 1somorphic
to FoaB(X)

112 A near optimal error algorithm o N(Fg)-->B(X) satsfying
1o (N(D))»-S(f)| & (S,N) for all [&F, A

Proof: 1) The existence of X and F, follow directly from the Lemma
proved previously.

1) For each fixed x€X consi,c‘i\er the linear problem
Sy-Fo—->K where S ([)=8(f)(x)

By Theorem 1 we know there exists a lLinear optimal algonthm
¢ . N(Fgl=>K such that

o (N(D)-S (1)l €r(S,N)&r(SN) for all [€F, (1)

Letung x vary over X, we now must show that the linear operator o
thus defined on N(F,) has its range in B(X). First observe that



8,(0/={80 = SUSTR =TSN 2)

where the inequality follows from llS(f —aup{|S() (x) x€X}. Using (1)
and (2), we have for all feFy,

1 (N(DXR)] £ o (N(D)x}Sy(0] + 1S,(0)]
£ |y (N(DRSL D] + 15,0
é r(S N) + US(I8.

Sipce the final expression 1S independent of x, ¢ (N())€B(X) and the proof
1s complete.
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