PPL/M: The Sys}em Level Language
or
Programming the DADO Machine®*

Salvatore J. Stolfo
Daniel Miranker
Mark D. Lerner

Columbia University
February 29 1984

‘This research WA rupported iz pary bg \he Defense A
C-0427 wad the New York State Scieace sad Techaoiog F

dviaced Ressarch Projects Agency under comtrics NOOO3G-$72-
Burisess Muachines, Hewlest Packard

cundation, us weil a graats from Intel Corponation, [nternational
+ Digital Equipmaent Corporasion, Vaild Logie Systems, sad Bell Laboratories.

Table of Contents

1. Introductiom. -
2. The DADO Machine Architecturs
3. PPL/M: Parallel PL/M
3.1 Parallel Processing Primitives of the PPL/M Language
3.1.1 The Slice Attnbute
3.1.2 The DO SIMD Block
3.1.3 Added Built-in Communication Primitives
3.2 Examples
3.3 Implementation of PPL/M
4. Conclusion

References

PPL/M: The System Level Language [or Programming the DADO Machine

O =3 N~ b o

15

19
20

w——'-___——

List of Figures

Figure 3-1t Summary of PPL/M Primitives
Figure &3 Sequentially Loading DADO
Figure 3-3: Associative Probing

PPL/M: The System Level Language for Programming the DADO

Machine

14

13
18

1. Introduction

DADO (Stolfo and Shaw 82; Stolfo 82] is a fine-grain parallel computer designed
spectfically for the rapid execution of Artificial Intelligence (Al) software. Two
softwars systems are presently under development for DADO which implement two
language faculities supporting the high-speed execution of Production Systems (PS)
and Logic Programs:

o Herbal (named in honor of Herbert Simon and Allen Newell, inventors of
the Al PS paradigm) is similar in style to OPS [Forgy 82.

o LPS (a Logic Programming System) is similar in syntactic style to
Prolog.

For a number of years we have studied a variety of machine models to determine a
suitable (and relatively inexpensive to realize in hardware) parallel machine
organization for these two application domains. A number of algorithms have been
studied which were designed to capture the inherent parallelism in a wide range of
PS and Logic Programming applications. These algonthms led to the curreat model
of the machine, to be descnbed shortly.

A prototype machine, which we call DADOI, has been operational at Columbia
University since Apnl 1983. DADO! consists of 15 commercially available
microprocessors each associated with a single random access memory chip. These 15
processing elements (PEs), interconnected as a complete binary tree, serve as a
testbed for the development of software for a larger prototype. The larger DADO2
machine will comprnse 1023 PEs and 13 expected to be completed within two years.
The reader is encouraged to see [Stolfo 83| for details concerning the hardware
implementation of DADO, and the rationale for its design.

In the present paper we descnbe PPL/M, which 13 the first system level
programming language implemented for DADO PPL/M was rapidly developed using
a number of commerpally avallable compiler systems. The PPL/M language, as
defined in subsequent sections, served to test our ideas and clanfy our thinking
about programming the machine. Our expertment has been successful. A simple PS
interpreter has been wntten in PPL/M and demonstrated on DADO.

The PPL/M experiment has also helped considerably towards identifying a suitable
LISP-based programming language for DADO which provides a more convenient
eavironment for Al programming. In [Weisberg 84] we report on the current status
of the |[PSL (Parallel Portable Standard Lisp) implementation and :dent:iy thcse
aspects of the language derived from PPL/M. For the present paper we describe
only PPL/M. We begin with a bnef overview of the DADO machine architecture.

PPL/M: The System Level Language for Programming the DADO Machine

2. The DADO Machine Architecture

The power and number of processing elements expected to appear 1o a full scale
version of the machine are topics of ongoing experimental research; however, it is
expected that many thousands of processors each capable of efficiently executing
algorithms of significant complexity (e.g., unification, pattern matching, etc) will be
used. The PE’'s are interconnected to form a complete binary tree.

Within the DADO machine, each PE is capable of executing 1n either of two
modes. In the first, which we will call SIMD mode (for single instruction stream,
muitiple data stream [Flynn 72|), the PE executes instructions broadcast by some
ancestor PE within the tree.

In the second, which will be referred to as MIMD mode (for multiple instruction
stream, multiple data stream), each PE executes instructions stored in its own local
RAM, independently of the other PE’s. A conventional Aost processor adjacent to
the root of the DADO tree, controls the operation of the entire ensemble of PE's.

When a DADO PE enters MIMD mode, its logical state is changed in such a way
as to effectively ‘‘disconnect’” 1t and its descendants from all higher-level PE's in
the tree. In particular, a PE in MIMD mode does not receive any instructions that
might be placed on the tree-structured communication bus by one of its ancestors.
Such a PE may, however, broadcast instructions to be executed by its own
descendants, providing these descendants have themselves been switched to SIMD
mode.

The DADO machine can thus be configured in such a way that an arbitrary
internal node in the tree acts as the root of a tree-structured SIMD device in which
all PE's execute a single instruction (on different data) at a given point 1n time.
This flexible architectural design supports the logical division of the machine into
distinct partitions each executing a distinct task. This 13 called multiple-SIMD
(MSIMD) operation.

Details concerning the specific hardware design of the machine are beyond the scope
of this paper. We focus here upon the execution semantics of a DADO PE, as
defined above, and detail the language constructs implementing the various modes of
operation. Specifically, PPL/M provides:

o Constructs specifying SIMD mode of computation. While in SIMD mode,
a PE may be:

o enabled, in which case it will receive an instruction from 1ts parent,
send the instruction to its two children, execute the instruction, and
continuously repeat these steps.

o disabled, in which case 1t repeatedly receives an instruction from its
parent, and sends it to the children without executing it.

PPL/M: The System Level Language for Programming the DADO Machine

A et : e

o Constructs specifying MIMD mode of computation, in which the processor
executes instructions {rom its local RAM.

o Global communication instructions:

o Broadcast, to send data from a MIMD mode processor down the
tree to its SIMD mode descendants

o Report, to send data from one designated SIMD mode processor up
the tree to the MIMD mode root

o Send and Recv, to provide tree neighbor communication between
physically adjacent processors

o Resolve, to select one processor from a collection of distinguished
processors.

It is convenient to think of the host as the root of the DADO tree, which always
executes as a MIMD mode PE. Thus, in the following, when we refer to a MIMD
mode PE our comments also apply to the host processor. All of the PPL/M system
is resident in the host. PPL/M programs, though, can be executed by the host and
by any PE of DADO. Facilities resident in the host manage the loading of the
tree.

The PPL/M language provides a precompiler and a software kernel to support these
operations.

PPL/M: The System Level Language for Programming the DADO Machine

P A ——— ’

3. PPL/M: Parallel PL/M

Herbal and LPS are designed as very high level user application languages for
DADO. Consequently, the view of DADO as a massively parallel binary tree-
structured machine is nearly transparent within these programming formalisms. Both
are to be implemented in PPL/M or the closely related ||PSL language. Thus, in
order to maximize performance, PPL/M provides constructs that directly access the
DADO machine structure. Therefore, PPL/M may be viewed as a rather low-level
paralle] programming language, switable for tree-structured machines.

PPL/M is a superset of the PL/M language [Intel 82]. Before detailing the syatax
and semantics of PPL/M, we begin with a bnef introduction to PL/M.

PL/M s a high-level language designed by Intel Corporation as the host
programming environment for applications using the full range of Intel
microcomputer and microcontroller chips. Some of PL/M’s salient characteristics
include:

e block structure, employing several forms of the PL/1 DO statement,

o 3 full range of data structure :ties including arrays, structures and
pointer-based dynamic vanables

e “strong typing'' facilities (thus, data and subroutine definition statements
are provided)

o a statement-oriented syntactic structure

o all data 13 either of type BIT, BYTE or WORD (2 bytes).

A PL/M program 13 constructed {rom blocks of associated statements, delimited by
either a DO or PROCEDURE statement, and a terminating END statement. As 1s
typical of a block oriented language, nesting 13 permitted following the wusual
conventions for vanable scoping.

We will describe each of the executable statements briefly in turn. (In the
following definitions, symbols appearing within the bounds of square brackets{[| are
optional, whereas symbols appearing within set brackets {} are alternates)

Assignment statement
identifier [,identifler]® = expression;

The expression follows the usual conventions with the added provision of imphait
type conversion between BYTE and WORD data. Implicit conversion of BIT data
13 prohibited. (Refer to the section on data structures in the PL/M manuvaly
Multiple assignment i3 unpredictable if a variable appears on both sides of the
assignment operator.

IF statement

PPL/M: The System Level Language for Programming the DADO Machine

Ir rouuoau-u'grnuon THEM statement;
(F1SE statement:]

The relational expression provides the full range of logical and relational operators,
resulting in & value of type BIT.

Simple DO statement

{label:]DO;
statement-90;

statement-a;
END (labell:

The statement may be a data delinition whose scope is defined by the bounds of
the block.

[terative DO statement

DO counter = start-expression TO limit-expression
BY step-expression];
statement-0;

statement-n;

Each expression is evaluated once prior to the loop, while the termination test is
performed on each entry into the loop.

DO WHILE statement

DO VHILE relationsl-expression;
statenent-0;

statement-a;

The relational-expression must result in a value of type BIT.

DO CASE statement

DO CASE sslect-expresgsion;
statement-Q;

statement-a;

The select-expression must yleld a BYTE or WORD value, which s used to select 3
single statement for execution. Eighty-four cases is the maximum allowable number.
If the select-expression is out of range, resuits are unpredictable.

CALL atatement
CALL name((parameter list)];

tmae Deamramminag tha NANO Machine

Y A r MU i T el T ncaicaea

P—_

6

The name must be the name of an untyped procedure. Indirect calling is possible
by speciying the address operator defined below.

Definition statements
ladel-name: statement;

Labels are defined by use and are subject to the same scoping rules as variables.

Explicit declaration and typing is done primanly with the declare statement.

DECLARE varisble [(liﬂ,ll array dimenstion)] type:
DECLARE (variable list]) type:

The type of variable may be:

s BIT

e« BYTE

¢ WCRD

o STRUCTURE (variable type [, variadle type’])
o {BIT BYTE VORD} BASED variable

Strings and constants can be manipulated by operating on memory referenced

indirectly through based variables and pointers. For example,

DECLARE ptr WORD;
DECLARE string(84) BYTE BASED ptr;

Any reference to string will use the current WORD value stored in the vanable

ptr as the base address. Based variables used in conjunction with the dot operator
perform all of the indirect addressing capabilities of a high level language.

The dot (.) operator
. variabdle

This operator returns the address location (a value of type WORD) of variable. It

can also be used with constant lists as for example:
.("ABC")

The dot operator serves the dual purpose of structure variable qualification. I x 1s
of type structure with subcomponents y and z, each component 1s referenced by x.y
and x.z.

Procedure definitions

name: PROCEDURE ((parameter 1list)] [typel:
statemnent-0;

statement-g;
END naae;

Typical conventions are used with type conversion of arguments. Untyped
procedures are CALLed, while typed procedures are referred to within expressions as
a function call.

PPL/M: The System Level Language for Programming the DADQO Mach;ne

*—-—: -

3.1 Parallel Processing Primitives of the PPL/M Language

Many of the design choices made in the definition of PPL/M were influenced by
the methods employed in specifying parallel computation in the GLYPNIR [Lowre
75| language implementation for the ILLIAC IV processor. PPL/M provides two
syntactic constructs and ten primitive functions which significantly enhance the
PL/M language. These allow specification of parallelism, communication between
processors, and selection of particular PEs.

The first construct for programming the SIMD mode of operation of DADO is the
SLICE attnbute. This defines a vanable or procedure that will be stored at the
same location in each PE. A SLICEd vanable may be viewed as a vector which
can be operated upon in parallel. SLICEd procedures are automatically loaded and
stored at the same location within each PE.

The second addition is a syntactié construct, the DO SIMD block. This delimits
the parallel instruction sequences which are executed by SIMD-enabled PE’'s. These
blocks are translated into PL/M by the PPL/M precompiler.

The PPL/M language software allows users to employ all parallel processing
primitives. The compiler generates the synchronization and communication primitives
' as calls to kernel software.

3.1.1 The Slice Attribute

The SLICE declaration is a mechanism to guarantee that identically named objects
(variables and procedures) reside at the same location in all processors. Before a
vaniable is used in a DO SIMD block, the programmer must declare it to have the
SLICE attribute. The precompiler restricts SLICE procedures to address oaly
SLICEd vanables. This allows the rapid execution of the SIMD instruction stream,
since instructions do not require address modification before they are executed. For
example.

DECLARE variable[(single array dimension)] type SLICE;
naze: PRCCEDURE((parameter 1list)] (type] SLICE;

3.1.2 The DO SIMD Block

An assignment of a value to a SLICE variable causes the data transfer to occur
concurrently within each enabled SIMD PE, and must be wrntten within the scope
of a DO SIMD block. The expression on the right hand side (rhs) of an assignment
statement is evaluated concurrently within all enabled descendants. Each evaluation
utilizes the local store of the PE in which 1t i3 performed. Specifically, a constant
appearing on the right hand side is assigned to the left hand side vanable, and all
rhs expressions are evaluated independently of other PEs.

. PPL/M: The System Level Language for Programming the DADO Machine

-~

i 8

[nvocation of a SLICE procedure occurs when the PL/M CALL statement is written
within the scope of a DO SIMD block. It results in the concurrent transfer of
control within each SIMD enabled PE. This serves two purposes. First, all PL/M
statements may occur within a SLICE procedure, whereas only a subset of PL/M is
allowable within a DO SIMD block (as described below). Second, repeated code
sequences can be wrnitten once as a subroutine and invoked from several blocks.

In general, invoked SLICEd procedures may require different amounts of time in
distinct PEs. Consequently synchronization is implicitly enforced during execution of
communication primitives, and is directly supported by the hardware. Thus,
execution of the instructions which follow a primitive will not proceed until all
SIMD PEs terminate the execution of the operation.

The complete syntax is:

00 SIMD;
r-statenent-0;

r-statement-n;

The r-statement is restricted to be either
e an assignment statement tncorporating only SLICE verables and
congtants or
o a3 call to a subroutine that has been declared to be of type SLICE.
e a call to a system level subroutine.

For example, the statements
DO SIMD;
X=8,
END;
where X 13 of type BYTE SLICE, will assign the value 5 to each occurrence of X in

every SDMD enable PE. The statements
00 SIMD:
X=2%X+1
END;
will update the value of x in the SIMD enabled processors by operating upon the

value which resides 1n each processor.

A non-SLICE vanable may appear within an r-statement only as an argument to
the BROADCAST function (to be defined shortly) The BROADCAST ({unction
provides the means to communicate data used by a PE in MIMD mode to
descendant PEs executing in SIMD mode. In the following example, MVAL 18 any

variable, and SIMDVAR 1s any vanable with the SLICE attribute.

DO SIMD;
CALL BRGADCAST (MVAL) ;
SIMDVAR=ASB
-2'X*SI!‘®VA.R

PPL/M: The System Level Language for Programming the DADO Machine

?._"——-_:

9

This wil update the value of X in each PE by adding the root value of mvar
(broadcast to the-loeal SLICEd vaniable A8, discussed below) to twice the local x
value. e

3.1.3 Added Built-in Communication Primitives

The following is a detailed description of the communication primitives, which are
invoked with the PL/M caLL statement. The communication primitives in DADOI
are implemented in software. They are being implemented in hardware for the
larger DADO2 machine.

The primitive communication operations use the following user accessible variables
to specy the status of the parallel operations. These variables are resident in all
PEs as SLICEd vanables, although use of CPRBYTE and CPRR is restricted to MIMD
mode processors.

o EN1. (boolean). When set to true the SIMD processor is enabled, and set
to false to disable the processor.

o Al. (boolean). Prior to the resolve operation, the SDIMD processors which
are to participate 1n the operation set this bit. The resolve operation will
leave this bit set in only one processor.

« CPRBYTE. (byte). Receives data which is transmitted up the tree {rom

a single enabled SIMD PE to the MIMD mode PE issuing the REPORT

primitive.

CPRR. (boolean). Receives the status of the resolve operation.

o |08 (byte). Provides the data to be transmitted to other processors.

¢ A8 (byte). Receives data which i3 transmitted from other processors, by
the BROADCAST, SEND and RECV pnmitives.

A PE may disable itself by transferring a 0 1nto its EN1 register using an ordinary
assignment statement. [n a typical application, the contents of ENt will be set to
- the resuit of some boolean test prnior to the execution of such a store imstruction,
resulting 10 the selective disabling of all PEs for which the test fails. This
technique supports the ‘‘conditional’’ execution of a particular code sequence.
Following the execution of such a sequence, an ENABLE nstruction 18 issued to
“awaken’ all disabled PEs. In combination with appropriate register, transfer and
logical operations, this approach may be used to implement more complex
conditionals, including nested ‘‘IF-THEN-ELSE'' constructs embedded within a DO
SIMD block.

The primitive communication operations will now be described. (The PPL/M syntax
is indicated in boldface.) All operations may be viewed as being 1ssued by a MIMD
mode PE, with the entire tree of SIMD mode descendants participating in the
operation.

PPL/M: The System Level Language for Programming the DADO Machine

Y

| 10

,’ Call RESOLVE |

! RESOLVE is the basic operation to control information f{low to the top of the

’ tree- ..It. selects at most one PE from a candidate set, and indicates to the
MIMD* mode PE whether a PE was chosen.

‘ The candidate set consists of PEs with A1=t. PEs with A1=0 are ignored.
' After execution of this instruction the f{irst PE encountered in an inorder
traversal, whose A1 flag is set, is considered the winning PE. The A1 flag in
: this PE remains set to 1, while all other PEs have their A1 bit set to zero.
| The control processor's CPRR bit indicates the status of the operation: 1
indicates that a PE was selected. cPRa will be set to 0 only if all PEs had
A1=0 before the REsoLVE. No PEs are enabled or disabled by this routine.

In applications where several PEs must be identified (for example, if all ties
are to be examined) the A1 bits are stored in a local save-area before the
resolve operation. After the resolve operation, by execution of an instruction to
move the contents of At to ENt, only one processor will remain enabled.

The single enabled PE may now store a 0 into the save-area of the A1 bit.
The tree is re-enabled and the A1 is restored from the save-area. This
technique 1s used iteratively to enumerate each member of the candidate set
until CPRR is zero. For example:

DO SIMD;
CALL EXNABLE,; Insiielly emable processors
ENSl:BOOLEAN(SouTut) ; Set wp inilisl condition
DO SIMD;
CALL ENABLE; Ro-emeble reeryone within the loep
SaveValue=Al; Seve the Al bt
CALL RESOLVE; Find ene winner
EN1=AY; Turm of/ everything dae
SaveValue=90; Enebled processer leaves candidate 10t
CALL Process; Enebled processer csecuics sriiirery cads

The RESOLVE instruction may also be used to provide the control processor
with a binary completion code. As shown below, this programming technique
allows PEs to receive and operate upon data as long as one PE remains
enabled. The following code sequence illustrates a method by which a
candidate set of values may be communicated to all processors (by the
GetNextB8inding routine), and then used in a match process (by the DoMater
routine). This process continues until the DoMated routine stores 0 into ENi.

W0re=1;
DO VHILE more;
DO SIMD;
Call GetNextBinding; OMain mers in/ermation fer matching.
Call DoMatch; This onll disable the processer vhen & metch [eund.
E}{g‘ll Resolve; Tl Controd Procussor when ¢il processers are done.
more=CPRR; CPRR will be true i/ sny FE2 venl lo heep precesning.

PPL/M:. The System Level Language for Programming the DADO Machine

11

Call REPORT
The report routine transfers data from descendant PEs up the tree to the
MIMD root PE. The value 1n the A8 register of an enabled descendant PE is
written into the CPRBYTE of the root processor. If more than one descendant is
enabled, then the lowest numbered PE (according to tree-inorder traversal) is
used to resolve the conflict. This conflict resolution does not require any
additional time, but is actually a byproduct of the way the DADO circuitry is
designed.

The following is an example of transferring a single byte to the root:

DQ SIMD:
A8=8timd Var;
CALL Refore;

END;
Mimd_Var=CprByte:

Call BROADCAST(<byte>)
This is the pnmary mechanism for downward communication in the tree. The
argument of BROADCAST 18 placed on the broadcast bus and is stored into the
A8 register of SIMD enabled processors in the subtree. If some descendant PE
18 10 MIMD mode, that PE as well as its entire set of descendants will not
recetve the byte, since they execute instructions independently of their
ancestors.

Call SEND(<neighbor~PE>)
The SEND and RECV instructions implement tree neighbor communication. They
have been found of infrequent, though important, usage in the algorithms

written to date, and consequently are implemented in firmware in both the
DADO1 and DADO2 machines.

The instruction sends the contents of the A8 byte into the 108 byte of the
designated neighbor. The neighbor may be any of the following:

LC left tree child
RC night tree child

A PE 13 not permitted to SEND to its parent since the semantics would be
undefined if two descend-:nts of a PE attempted to SEND simuitaneously.

Call RECV(<neighbor~PE>)
This routine receives the value of 3 neighbor PE. The A8 byte of the
onginator PE receives the value of the 108 byte of the neighbor The
neighbors may be designated as:

LC left tree child
RC night tree child
P parent node

We illustrate this instructicn with the following code sequence to mark and
label each level of the machine.

PPL/M: The System Level Language for Programming the DADO Machine

Call

Call

12

Mar¥: PROCEDURE(Lavel);
DECLARE (Level,I) BYTE:
m.uz Marxdit BYTE SLICE:;

DO 38
CALL m Ewnaile oll precsssare,
Sl suiput byte to 1.
CM_L m (P): Recoiwe Jrom parent. Roet recnived 0 rince i has no parent.

mtbu-m(momnm) ; Oniy parent is “1" new,

I=0;
Do VHILI.EDIQ..VOI Send the “1” dewn 10 proper levd.

o0
I08=EXPAND (Markbdit) Sters euiput byte.
CALL RECV(P); Send ‘marbiit” down ¢ lovd.

mg&rkbib—mﬂlm (AS) ; Rucaive new ‘marbint.”

I=I+1; Kesp irach of the Leval.

END;
END Mark:
MIMD(< address>)

This instruction s used to partition the tree into independently executing
subtrees. The address specified in the instruction is broadcast down the tree.
The SIMD enabled PEs then logically disconnect themselves and eater MDMD

mode.

After disconnection from their parents, the MIMD PEs begin execution of code
stored 1n their local RAMs. The address given as the actual parameter to the
CALL MIMD instruction 1s the address of the procedure to be activated in each
PE. Any SIMD-disabled processors become descendants of their nearest MIMD
mode ancestor.

The MIMD mode of operation 1s terminated in two phases, which may be
performed in any order. To describe this process we introduce the following
vocabulary. Prior to the operation there was one root to the tree;, this is
called the originator node. Subsequent to the operation there may be many
disconnected MIMD processors; these are called roots of mimd subtrees.

The processors return to SIMD-disable state as socon as the two conditions are
satisfied:
1 Each root of a mimd subtree calls the £XIT routine to indicate 1t 13
prepared to return to SIMD disabled state.
2. The originator node calls the SYNC routine to restore the logical
state and reconnect the children.

EXIT

This routine 13 executed by the roots of mimd subtrees when they need to
reconnect to the tree. The subtree i1s placed into SIMD disabled state, and the
reconnection will complete when the parent of the new tree completes its call
to sYNC. After completion of the sequence, the PE will resume participation
1n all communication primitives.

PPL/M: The System Level Language for Programming the DADO Machine

13

Call SYNC
This routine is executed by the originator of a CALL MIMD when it is prepared
for its children to reconnect to the tree. The logical state of the tree is
restored to recogmze the children.

This routine operates by polling its children until they have executed the BxIT
routine. The polling presently waits until the children respond. It is also
possible for a user program to peniodically check the communication path, and
execute user-supplied instructions until the children are ready.

Call ENABLE

This sets the EN1 register of all descendant PEs to 1, thus enabling all
processors.

Call DISABLE
This sets the ENi register of all descendant PEs to 0, thereby disabling all
processors.

Figure 3-1 summarizes the communication primitives.

PPL/M. The System Level Language for Programming the DADO Machine

Routine <~ defoT€ -> <- after -> <= before ->
Name < --- USE INE ~~=oeme-
RESQLVE AL diwm cm (¢ Al bits se% Not
ggoetc:ur't: o zZere, tgglic-
de used in except for able.
the resolve. first oze.
REPORT Data to send Not Not
up to the root tgglic- tgglic-
is stored in . able. able.
A8 b of SIMD
enadled child.
BROADCAST Root of the A8 bdyte i1 Noznse.
SIMD subdbtree the enadled
drosdcasts a descendants
single dyte receive the
Argusent. dats.
SEND Source stores Single dyte None
byte 12 its is place
108, and calls into the A8
routine vith byte of the
name of ths destinatiocn
destination. PE.
RECV The source Single bzt None.
StOres s.-byte is pltco ia
ia its 108, the A8 of
and the dest- the PE vhich
ination selects iaitiates
the source. the RECY
ENABLE Executes call Changes EN1 Initiates
value. call.
DISABLE Executes call Changes EN! Initiates
vralue. call.
MIMD None SIMD Initiates
enabled call vith
processor name of a
enters aiad routine.
MIMD mode.
EXIT Descendant executes %O terainate its MIMD mode and retgra %o SIMD
SYNC

14

<- MIMD PART OF PEs

---------- >
->
<= after ->

CPRR soet
it nn{
Al b1 is

at rootv
recsives
data sent

up the tree.

Routine
Purpese
Selects one
PE from the
candidate
s0%.

Transait
data up the
tree from
one ¢hilg.

data dowvn
the tree,
{rom root
%o c¢hildren.

Tree
seighbor
communic-
ation:
transmait.

neighbor
comaunic-
ation:
read.

DISABLES a
SIMD
procsssor.

Partition
tree (0to
aultiple
ainds.

- - P D - - = W . =~ - =

Figure 3-1:

Summary of PPL/M Primitives

PPL/M. The System Level Language for Programming the DADO Machine

[U e p—

15

3.2 Examples

Code for two fundamental operations is presented in this subsection: the first loads
the DADCE tree sequentially with data from some external source; the second s
used to associatively mark all PEs which store data that match a given search
sting. These two code sequencu were the [irst to successfully execute on the

DADO1 machine.

Figure 3-3: Sequentially Loading DADO

We will aseurne that thia program 12 esernied within
DADO’s CP. Tha sysiom [uncion READSTR leads siring
date ints s buffer [rom seme esternel seures

SEQLOAD: PROCEDURE:
E:CLARE Intelligent- rncord(u) BYTE SLICE EXTERNAL:
ECLARE Not done SLICE

DECLARE (InZex,Lengtd) BYTE SLICE:
DECLARE I BYTE.
DECLARE Buffer(84) BYTE;

0O SIMD;
CALL SENABLE; ALL PE'S ARE ENABLED
NOT DQN’E =.1; ALL SLICES !NITIALIZED

INDEX = 0O

LOADLGCP:
pch o pete lead the nest record inte
0o SsI ﬁ)
CALL Enabdle
Al = EOOLEA.N(HO?. Done) ;
CALL Resolve; OniyemeAlisnew 1a

EN1 = AL Selectivdy diseble oll but sne pe
Not Doae = 0,
END, ~
ég Cprr=0 THEN 1f tree 1a [ull
Call writestr(.Mfull):
RETURN;

END;
CALL Readstr(. B’ﬂff.l' .Length Dats provided by esterndd towres
IF Buffer(0) =(RE%R.N

20 I= 0 TO LENGTH-
CALL Bro:dcut(authr(l))
DO SIMD;

Inteliigent Record(Index) = A8;
Index = Iad¥x + 1,
=D

DQ STMD;
Intclllgont Record (Index)=0;

END;
GOTO LOADLCOP;
END SEQLOAD:

PPL/M: The System Level Language for Programming the DADO Machine

16

The second example implements the most basic operation for associative matching

on DADO.

Figure 3-3: Associative Probing

ASSPRO: PROCEDURE (BUFPTR,LENGTH):
declare BUFPTR VORD:
declare LENGTH BYTE.
m INDEX BYTE SLICE;
ECLARE I BYTE AUXILIARY:
DM ATBUFPTR BASED BUFPTR BYTE;

DO SIMD;

CALL ENABLE; Initislly enebie oli PEs
DO I = 0 TO LENGTH-!; Oveadeart bytes 1o loeh for

CALL Brosadcast(l); Firet somd lhe inden

DQ SIMD;

Index = AS;
END;
CALL

%otdcut. (ATDTIPLT) . Tiem somd the dote

3

SI
DNsable PEs that don Y match
Enl, A1 = A8 = Intelligent Record(Index);

Bufptr = Bufptr+i;

D0 SIMD:
CALL Resgolve;

END:
END asspro;

3

3.3 Implementation of PPL/M

The PPL/M language was implemented by a precompiler which analyses source
code and replaces it with sequences of calls to system level subroutines*. In
addition to supporting the above parallel primitives, the precompiler performs syntax
checking and error message generation. The result of preprocessing 13 compiled by
the Intel compiler on an Intel Microcomputer Development System. After
compilation, code 18 downloaded into the DADOI! tree and executed. For example,

the statement:
DO SIMD;

X=5;
END;
compiles to a set of statements that invoke the system routine SIMD to perform 3
parallel assignment of the constant 5 to the sliced variable X occurring 1n each simd
enabled processor.

As noted, parallel code sequences are programmed as DO SIMD blocks. These are
transiated by the precompiler into parameterless subroutines. The precompiler

*The precompiler was implemented on a DEC VAX/11-780 using Lex [Lesk 75| aad YACC [Jobasen 78| sad consiste of 20
leieal rules udP 78 parving rules.

PPL/M: The System Level Language for Programming the DADO Machine

surgoey OQV(Q oY1 SmmwmesBord Joj sBenBue] [aae] waisdS oL IW/1dd

§}00]q Ul palojs-aid 8q UEd SUONORIISUI 3Y3 ‘A[BAIJRUIA[Y "#jndaxa K[aiEipawuwl
§9d JUEPUadsap 9yl {oIgm SUOIONIISUL BUIGIEW 3SEIPEOIq UBD 31 “8I1] ‘sAem Om)
Ul TOJVg Uo pajuswaldwl usdq SEY UWOLNdaxs apow (PAIS Jo loddns jauisy eyl

suop /14970 11=0WOQ NIHL 0= (usT8uTia8)BUTIAS dI

1 vee1s ‘eqdgado=(us 1Eui2ag) Buiaas

Yo*M OIS OG f¢ pu3 ‘N3 123
UL TIN]S P PPN ' NYNL3Y

saswusd uotIBIIURLLUWISS 40/ prissawl pery o I TUDSEY TIVD €1
s yused o uROu) 1 « XOPUI=XOPUT
2389 U3 PAOIY : (x.pﬂl)iutl’lﬂ:ﬁV

PR OIS [repes ssenduys 1e7 010D NIHL INZ _1ON d1 IS

232301403 8Y WOLIRIIEY ‘Frinii) QKIS WYM :Z3 0100
T 210F 11300 §OLYD FULINES Py 2y PYSAY] RIS TIVD

:0d
‘1+80TBuTI S=ueTBUT2LS

- (0=suOP) FTIIHA 0
doo) sryporpsn] 10=080] [1-=UeTEUTILS

unedy W/1d

Q3
swep [y ¥22yD I1-eUOQ KIHL ,0=(ue1Buiiag)Puiras dI
nens eqkga (us 1ButIas)Butaas
‘aNG

" 1Y) YoR S 1104 TIVD
493used JUILLLOIL] ‘1 « XepUI=X0PU]
#ahq wy vaspy 1 (XOpUI) BUTIISI=BY

-Q§IS od
‘14U TBUTING=UITHTTIIS

: (0=3ANDQ) TIIHA OQ
dos) rzapoapsny .0=000Q !]1-=USTBUTIIAS

2poD W/ 1dd

"pazIolfesl usaq sey Lrejuswmoy) ‘1ossadold 003 3y 03 JJ PeIqeuL

@AIS ® woly; Bulljs € sImsTel; 8pod sIqL W/1d Buumsed ay) pue W/1dd Ti10Q
Ul umous st Jajeidisqul waysds uwononpoid ® wol) apod Buimo[jo] Yy ‘sidwmexs 104

‘WONONISTI FIEVNI TIVO ¢
Jojfe JO 'YOO|q GKIS OQ ® Ul 358 8y} §1 YOIrgm JU3Wa9e}s [[ed € JajJe paltmbas &1 9833
ou ‘s|dwexs Joj -sdmn{ lo syse] Lressadeuun ajelsuUs? jo0u seop Jadwodaad Y

‘2UIgoem #Yj Ul £309))3
reqor3 Buiaey sSUNNOJI [9UI3Y JO UTONINIEXa 83 sedjuerend sIq] "YO0[q AKIS 04 33
UIGHIM QULTaIE}S TIVD 9X3U Y] O3 UOIINOaxs Jajsuel; suononlysul dwnl pajsesul oyl

"INZ Jo Bumies 8yy 309]e OsTe LewW eseY) 8OUIS ‘SUOIIONIISUI TIVD [Te Jajje o
Jossad0ld € 3|qesTp pnod s1g} #9UIS 'IN3 03 JULWUBLSE e o

'pardastl ere MSH] ean oYy UI sHJ
e jo uonelsadood [nj aYyj esmbas esay) se ‘suworoun) WeysAs #3ndexe L[uo s1o8s3d01d
peIqesiq ‘peiqeus §1 FJ °Y3 Jaylaym 983 03 seduanbes dwinf-pup-yes; sejeieUai

i1

Y

within all descendant PEs, with execution invoked by transmission of the routine's
inique identification. There are performance tradeoffs between these methods.

18

A SIMD machine conserves space when it broadcasts its instructions for execution,
yet the time needed to broadcast and store the instructions may exceed the time to
execute them. A faster technique 18 available when needed, which stores compiled
procedures 1n the descendant processors, and subsequently broadcasts the function
address to invoke the procedure. This technique can also be used to broadcast code
blocks; it requires 3 SLICE procedure which receives instructions from the broadcast
bus, stores them at 3 prespecified address, and subsequently transfers control to this
address.

PPL/M: The System Level Language for Programming the DADO Machine

19
4. Conclusion

he PPL/M lang s

T:ess ﬁ‘m usgs i3 important for several remons. Firt, it oromd

ge m pmen ‘ or proymmlns a Pulllel mum ° Th ' ?rOVl es f,be

learn important techniques for implementing and debu:;ng dl-; hzt'h ulov;;d us to
onthms. Moreorver,

PPL/M has helped to resolve several hardwar :
e d i
be difficult to understand without code sequenc; :’31 E&dt;!ua that would otherwise

Nevertheless, PPL/M is not completely sufficient for our needs

many drawbacks. It does not provide a sufficient level of 3;;- I suffers from
high level algorithms; for example it is unable to pass ubitrm':lc::on to develop
the tree. Moreover the PL/M-51 compiler generates very ineifi 3 structures in
supports neither abstact datatypes of recusion. icient code, and

We consequently embarked on [|PSL LISP, which provides additional faciities to
ameliorate many of the shortcomings of PPL/M. The PPL/M language exists
however, and has been demonstrated on an operational prototype parallel computer'
It is hoped that our experience 10 developing a systems-level programming langug;
for a massively parallel computer may help to guide others who are investigating
similar machine architectures.

PPL/M: The System Level Language for Programming the DADO Machine

Y

. e emadeea

20
References
Browning §., “Hierarchically Organi .
(Eds.), Introduction to VLSI s,,.,e,,,fd,;‘;"mﬁ”. [a Mesd aad Conway

Browning S., The Tree Machine: A Hight
Environment, Ph. D. Thesis, California Institut:

Flyan M. J, "“Some Computer Organizations apg Their .
IEEE Transactions on Computers, 1972. E““"“'h-"_

Forgy C. L., A Note on Production Systems and ILLIAC v
Report 130, Department of Computer Science, Carneg,ie~Mellon,
1980.

Techniea)
Un'ners'uy,

Griss M. L., and A C. Hearne, “A Portable LISP Compiler.” Software
. Practice and Ezperience, 11:541-605, June, 1981.

Intel Corporation, PL/M-51 Users's Guide for the 8051 Based
Development System, Order Number 121966, 1982.

Johnson S. C., Yace: Yet Another compiler Compiler, Computing Science
Technical Report No. 32, 1975, Bell Laboratories, Murray Hill, NJ 07974.

Leiserson C. E., Area-Efficient VLSI Computation, Ph. D. Thess,
Department of Computer Science, Carnegie-Mellon University, 1981

Lesk M. E., “Lex — A lexical Analyzer Generator,”” Comp. Sci. Tech.
Rep. No. 89, Bell Laboratories, Murray Hill, New Jersey (October 1975).

Lowrte Duncan D.,, T Laymar, D Daer and J M. Randal
“GLYPNIR- A Programming Language for ILLIAC [V, Comm. ACM,
18 3, March, 1975.

Miranker D., “Herbal, A Production System for the DADO Machine,”
Technical Report (in preparation) Department of Computer Science,
Columbia University, 1984.

Stolfo S. J., and D. E. Shaw, “Specialized Hardware for Production
Systems,”’ Department of Computer Science, Columbia University, 1981.

Stolfo S. J., and D. E. Shaw, "“"DADO: A Tree-structured Machine
Architecture for Production Systems,”' 1n the Proceedings of National
Con ference on Artificial Intelligence, 1982.

PPL/M: The System Level Language for Programming the DADO Machine

T ———e

Stolfo S. J., “The DADO Parallel Computer,” Department of Computer
Science, Columbia University Technical Report,” submitted to AJ

Journal, 1883

Stolfo S. J., “Knowledge Engineering, Theory and Practice,” Proceedings
of the [EEE Trends and Applications, 1983. -

Taylor S., “LPS, A Logic Programming System: Motivations and Goals’”
Technical Report (in preparation) Department of Computer Science,
Columbia University, 1984.

Taylor S., A Lowry, G. Q Magure, and S. J Stollo, “Logic
Programming using Parallel Associative Operations,” 1o 1984

" International Con ference on Logic Programming, February 6-9, 1984.

Weisberg M., M. Lerner, G. Q. Maguire, and S. J. Stolfo, “||IPSL: A
Parallel Lisp for the DADO Machine,” submitted to ACM Con ference on
Lisp and Functional Programming.

PPL/M: The System Level Language for Programming the DADO Machine

